10,854 research outputs found

    Computational polarimetric microwave imaging

    Get PDF
    We propose a polarimetric microwave imaging technique that exploits recent advances in computational imaging. We utilize a frequency-diverse cavity-backed metasurface, allowing us to demonstrate high-resolution polarimetric imaging using a single transceiver and frequency sweep over the operational microwave bandwidth. The frequency-diverse metasurface imager greatly simplifies the system architecture compared with active arrays and other conventional microwave imaging approaches. We further develop the theoretical framework for computational polarimetric imaging and validate the approach experimentally using a multi-modal leaky cavity. The scalar approximation for the interaction between the radiated waves and the target---often applied in microwave computational imaging schemes---is thus extended to retrieve the susceptibility tensors, and hence providing additional information about the targets. Computational polarimetry has relevance for existing systems in the field that extract polarimetric imagery, and particular for ground observation. A growing number of short-range microwave imaging applications can also notably benefit from computational polarimetry, particularly for imaging objects that are difficult to reconstruct when assuming scalar estimations.Comment: 17 pages, 15 figure

    On Time-Reversal Imaging by Statistical Testing

    Full text link
    This letter is focused on the design and analysis of computational wideband time-reversal imaging algorithms, designed to be adaptive with respect to the noise levels pertaining to the frequencies being employed for scene probing. These algorithms are based on the concept of cell-by-cell processing and are obtained as theoretically-founded decision statistics for testing the hypothesis of single-scatterer presence (absence) at a specific location. These statistics are also validated in comparison with the maximal invariant statistic for the proposed problem.Comment: Reduced form accepted in IEEE Signal Processing Letter

    Compressive Matched-Field Processing

    Full text link
    Source localization by matched-field processing (MFP) generally involves solving a number of computationally intensive partial differential equations. This paper introduces a technique that mitigates this computational workload by "compressing" these computations. Drawing on key concepts from the recently developed field of compressed sensing, it shows how a low-dimensional proxy for the Green's function can be constructed by backpropagating a small set of random receiver vectors. Then, the source can be located by performing a number of "short" correlations between this proxy and the projection of the recorded acoustic data in the compressed space. Numerical experiments in a Pekeris ocean waveguide are presented which demonstrate that this compressed version of MFP is as effective as traditional MFP even when the compression is significant. The results are particularly promising in the broadband regime where using as few as two random backpropagations per frequency performs almost as well as the traditional broadband MFP, but with the added benefit of generic applicability. That is, the computationally intensive backpropagations may be computed offline independently from the received signals, and may be reused to locate any source within the search grid area

    Selective imaging of extended reflectors in a two-dimensional waveguide

    Get PDF
    We consider the problem of selective imaging extended reflectors in waveguides using the response matrix of the scattered field obtained with an active array. Selective imaging amounts to being able to focus at the edges of a reflector which typically give raise to weaker echoes than those coming from its main body. To this end, we propose a selective imaging method that uses projections on low rank subspaces of a weighted modal projection of the array response matrix, P^(ω)\widehat{\mathbb{P}}(\omega). We analyze theoretically our imaging method for a simplified model problem where the scatterer is a vertical one-dimensional perfect reflector. In this case, we show that the rank of P^(ω)\widehat{\mathbb{P}}(\omega) equals the size of the reflector devided by the cross-range array resolution which is λ/2\lambda/2 for an array spanning the whole depth of the waveguide. We also derive analytic expressions for the singular vectors of P^(ω)\widehat{\mathbb{P}}(\omega) which allows us to show how selective imaging can be achieved. Our numerical simulations are in very good agreement with the theory and illustrate the robustness of our imaging functional for reflectors of various shapes

    Acoustic, psychophysical, and neuroimaging measurements of the effectiveness of active cancellation during auditory functional magnetic resonance imaging

    Get PDF
    Functional magnetic resonance imaging (fMRI) is one of the principal neuroimaging techniques for studying human audition, but it generates an intense background sound which hinders listening performance and confounds measures of the auditory response. This paper reports the perceptual effects of an active noise control (ANC) system that operates in the electromagnetically hostile and physically compact neuroimaging environment to provide significant noise reduction, without interfering with image quality. Cancellation was first evaluated at 600 Hz, corresponding to the dominant peak in the power spectrum of the background sound and at which cancellation is maximally effective. Microphone measurements at the ear demonstrated 35 dB of acoustic attenuation [from 93 to 58 dB sound pressure level (SPL)], while masked detection thresholds improved by 20 dB (from 74 to 54 dB SPL). Considerable perceptual benefits were also obtained across other frequencies, including those corresponding to dips in the spectrum of the background sound. Cancellation also improved the statistical detection of sound-related cortical activation, especially for sounds presented at low intensities. These results confirm that ANC offers substantial benefits for fMRI research
    • 

    corecore