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Abstract. We consider the problem of selective imaging extended reflectors in

waveguides using the response matrix of the scattered field obtained with an active

array. Selective imaging amounts to being able to focus at the edges of a reflector

which typically give raise to weaker echoes than those coming from its main body. To

this end, we propose a selective imaging method that uses projections on low rank

subspaces of a weighted modal projection of the array response matrix, P̂(ω). We

analyze theoretically our imaging method for a simplified model problem where the

scatterer is a vertical one-dimensional perfect reflector. In this case, we show that

the rank of P̂(ω) equals the size of the reflector devided by the cross-range array

resolution which is λ/2 for an array spanning the whole depth of the waveguide. We

also derive analytic expressions for the singular vectors of P̂(ω) which allows us to show

how selective imaging can be achieved. Our numerical simulations are in very good

agreement with the theory and illustrate the robustness of our imaging functional for

reflectors of various shapes.
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1. Introduction

In this work we consider the problem of detecting and imaging extended reflectors

submerged in the sea, using acoustic waves produced by an active array. The array

consists of N transducers that act as sources and receivers. The data that we are going

to use for imaging are assumed to be given in the form of the so called array response

matrix in the frequency domain, i.e., an N × N complex matrix whose entries are the

Fourier transforms of the time traces of the echoes recorded in all receivers when each

source emits a signal. The term ‘extended’ refers to reflectors which are comparable

in size to the acoustic wavelength. Here, the sea is modeled as an acoustic waveguide

consisting of a single homogeneous water layer confined above by the sea surface and

below by the seafloor, both assumed to be horizontal. Thus, our waveguide is an infinite

strip of constant depth.

The imaging problem that we wish to solve is the following: Assuming that the

extended reflector is illuminated by an active vertical array which spans the whole

depth of the waveguide, and that the array response matrix is known, we want to image

an extended reflective scatterer located in the waveguide. To this end we define a search

domain (a bounded subset of our waveguide) and use appropriate imaging functionals,

which have the property that their values, when they are computed and graphically

displayed in the search domain, exhibit peaks that indicate the presence of the scatterer.

Examples of such imaging functionals include the Kirchhoff migration functional (see

[4, 5]) and the matched field functional (see [18]).

Another question that often arises in imaging of extended reflectors is whether we

can create an image which focuses on specific parts of the scatterer. A way to achieve

this is by a selective imaging technique called the subspace projection method [7]. This

method is based on the singular value decomposition (SVD), see for example [11, §2.5],

of the array response matrix, which helps us to create a filtered version of it which, in

turn, will be used for imaging purposes. This technique has been employed in [7] to

image extended scatterers embedded in a homogeneous medium, while in [8] the authors

considered selective imaging in clutter, i.e., propagation media with inhomogeneities

that are unknown, cannot be estimated in detail, and, are modeled as random processes.

The concept of selective imaging of extended scatterers has been motivated by the

concept of selective focusing, which concerns the case where there are multiple point

(or small) scatterers in the medium and, essentially, allows one to distinguish specific

scatterers by creating images that focus separately in each one of them. In this direction,

the work of Prada and Fink [22] has been very influential. They have introduced the

so-called DORT method (DORT is an acronym for ‘decomposition of the time reversal

operator’ in French), which uses the singular value decomposition of the time reversal

operator to focus selectively on scattering obstacles. The experimental results obtained

in [22] show that for small scatterers, the number of nonzero (or significant) singular

values of the response matrix is exactly the number of obstacles contained in the medium.

Furthermore, the use of the corresponding singular vectors as incident field results
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in selective focusing on the scatterers, provided that pairwise they are located at a

sufficiently long-distance apart. Related works include [20, 23]. When the scatterers

are clustered together, the one-to-one correspondence between the singular vectors of

the response matrix and the scatterers does not hold any more, and as a consequence,

selective focusing cannot be achieved with DORT. This issue was addressed in [6] where

selective focusing was achieved by using as illumination an optimal convex combination

of the leading singular vectors across the bandwidth. To the best of our knowledge,

the first rigorous mathematical justification of DORT has been given in [16], where the

propagation medium is the free space R3. For the analysis of DORT in a waveguide

environment we refer to the work of Pinçon and Ramdani [21].

The main goal of the present work is to propose and analyze a selective imaging

method of extended reflectors in waveguides. Moreover, we want to investigate whether,

and how, the number of ‘significant’ (non-zero) singular values of the array response

matrix is related to the size of the reflector. Relevant works in the same spirit, but for

the free space case, include [27], where an analysis of the response matrix for extended

reflectors is presented, and [7], where the subspace projection method has been analyzed

and a relation between the number of significant singular values and the size of the

reflector has been derived.

This work is organized as follows. In Section 2, we formulate the problem, present

the basic features of wave propagation in waveguides and introduce the relevant notation

and terminology. In Section 3 we present the imaging functionals that will be used

throughout this work. These are the Kirchhoff migration functional and an alternative

imaging functional, based on a weighted projection of the response matrix on the

propagating modes. In Section 4, we present the outcome of some numerical experiments

for a circle, a rhombus and a square shaped scatterer. Section 5 is devoted to the

theoretical analysis of the imaging method for a simplified model problem where the

scatterer is a crack, i.e., a vertical one-dimensional perfect reflector. For this model

problem, we derive a relation between the number of significant singular values of the

array response matrix and the size of our scatterer. Specifically, we show that the

number of significant singular values equals the size of the scatterer divided by the

array resolution. This result which is intuitive was derived in [7] for the free space and

is, to the best of our knowledge, a new one concerning the waveguide geometry. We also

explore the form of the singular vectors of the response matrix in order to gain some

insight regarding selective imaging features. We end with some concluding remarks

in Section 6, while in the Appendix a resolution analysis for the proposed imaging

functional is performed.

2. Formulation of the problem

We consider the problem of detecting and imaging extended scatterers submerged in

the sea using acoustic waves. More precisely, we model a marine environment by an

infinite two-dimensional waveguide R × (0, D) in Cartesian coordinates (z, x), where z
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denotes the range variable, and x the depth (cross-range) variable taken to be positive

downward. Troughout this paper, vectors in Rn are denoted by boldface characters

while vectors in R× (0, D) are denoted by boldface characters with an overscript arrow.

Our waveguide consists of a single water layer, with constant density and constant sound

speed c0. A single extended scatterer denoted by O is submerged in the water layer,

see Figure 1. The term ‘extended’ indicates that the typical size of the scatterer is

comparable to the wavelength.
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Figure 1: Schematic representation of our waveguide problem and of the active array

imaging setup.

We assume that the total acoustic pressure field ptot(t, ~x) satisfies the wave equation

∆ptot(t, ~x)− 1

c20

∂2ptot(t, ~x)

∂t2
= f(t, ~x), (1)

where the source term is of the form f(t, ~x) = − exp(iωt)δ(~x− ~xs), modelling a point-

like source with time harmonic dependence located at ~xs . The scatterer is assumed to

be sound-hard, hence a homogeneous Neumann condition is posed on its boundary ∂O.

Equation (1) is supplemented with pressure release boundary conditions on the surface

and the seafloor, and we also assume that ptot(t, ~x) = 0 for t ≤ 0, expressing that the

medium is quiescent before emission. Taking the Fourier transform

p̂ tot(ω, ~x) =

∫
eiωtptot(t, ~x) dt,

we obtain from (1) the Helmholtz equation

−∆p̂ tot(ω, ~x)− k2p̂ tot(ω, ~x) = δ(~x− ~xs), (2)

where k = ω/c0 is the real wavenumber, ω = 2π/λ is the angular frequency, and λ is

the wavelength.

Now, let {µn, Xn}n=1,2,... denote the eigenvalues and corresponding orthonormal

eigenfunctions of the two-point vertical eigenvalue problem

X ′′(x) + µX(x) = 0, x ∈ (0, D) and X(0) = X(D) = 0,

i.e.,

µn = (nπ/D)2, Xn(x) =
√

2/D sin(
√
µnx), n = 1, 2, . . . . (3)
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The family of eigenfunctions {Xn}n=1,2,... forms an orthonormal basis of L2[0, D]. We

assume that for each frequency there exists an index M such that

µM < k < µM+1,

or, in other words, that the wavenumber does not coincide with any of the mode cutoff

frequencies, and the first M eigenvalues correspond to the propagating modes, while the

rest to the evanescent modes. Let us also denote the horizontal wavenumbers by

βn =

{ √
k2 − µn, 1 ≤ n ≤M,

i
√
µn − k2, n ≥M + 1.

(4)

Moreover, let Ĝ(~x, ~xs) be the outgoing Green’s function of the Helmholtz operator

−∆ · −k2·, evaluated at ~x = (z, x) ∈ R × (0, D) due to a point source located at

~xs = (zs, xs). (In the underwater acoustics community a point source in plane geometry

is usually referred to as a line source, [17].) Then it is well known, see, e.g., [17, 21],

that Ĝ admits the following normal mode representation

Ĝ(~x, ~xs) =
i

2

∞∑
n=1

1

βn
eiβn|z−zs|Xn(x)Xn(xs), (5)

where {µn, Xn} and βn are defined in (3) and (4), respectively.

2.1. Array imaging setup

We consider a one-dimensional vertical active array spanning the whole depth of the

waveguide and located at range z = za ≥ 0, see Figure 1. The array consists of N

transducers which act both as sources and receivers, and, we assume that they are closely

spaced and uniformly distributed on the array with an inter-element array distance

h = D/(N + 1); h is usually called the array pitch.

Let, also, Π̂(ω) denote the N ×N complex array response matrix in the frequency

domain, whose (r, s) entry is defined as the Fourier transform of the time traces recorded

at the r-th transducer due to a δ–function impulse generated by the s-th transducer,

for a given frequency ω. In what follows, the data that we are going to use for imaging

is the array response matrix for the scattered field in the frequency domain, created by

subtracting the array response matrix for the incident field from the corresponding one

for the total field.

3. Imaging

Let us first define the search domain S, as a bounded subdomain of our waveguide that

may contain a scatterer. S is discretized, using a rectangular grid, and ~y s = (zs, xs)

denotes an arbitrary node in S. We are interested in creating an image of the search

domain S. A classical imaging method is Kirchhoff migration (KM), [4, 5], defined by,

IKM(~y s, ω) =
N∑
r=1

Ĝ(~xr, ~y
s, ω)

N∑
s=1

Π̂(~xr, ~xs, ω) Ĝ(~xs, ~y
s, ω), (6)
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for a single frequency ω and ~y s ∈ S. Here the bars denote complex conjugation. KM

consists in backpropagating the signals from each receiver ~xr to a point ~y s in the search

domain and then back to the source ~xs. The image is the sum of the backpropagated

signals for all sources and receivers.

In (6) we have defined the imaging functional for a single frequency ω. When we

have multi-frequency data, we can compute instead,

IKM(~y s) =
∣∣∣∑
ω

IKM(~y s, ω)
∣∣∣. (7)

KM is widely used in seismic imaging and exploration geophysics; typically in these

applications the arrays and the bandwidth are very large. This is a setup in which perfect

imaging resolution can be achieved. Indeed, in that case the ideal point spread function

(i.e., the image of a point scatterer), which is a Dirac distribution, can be obtained at

least asymptotically as the array aperture and the bandwidth tend to infinity (cf. [4]).

To be more precise this result is obtained for a slight modification of (6) that uses a

weighing factor which takes into account the source–receiver geometry.

3.1. Selective imaging

In selective imaging we are interested in reconstructing specific parts of the reflector like,

for example, its boundary. A way to achieve this is by means of the subspace projection

method [7], which is based on the singular value decomposition (SVD) of the N × N
array response matrix Π̂(ω) in the frequency domain. As remarked in [7], the SVD of

Π̂(ω) may serve as a filter which enables us to identify reflections emanating from the

edges of the scatterer. Such reflections are typically weaker than, and therefore masked

by, those coming from the body of the scatterer. The SVD of Π̂(ω) is a factorization of

the form (see, for example, [11, §2.5])

Π̂(ω) = U(ω)Σ(ω)V ∗(ω),

where Σ is a diagonal matrix containing the singular values σi of Π̂(ω) in descending

order, and U, V are unitary matrices containing the left and right singular vectors,

respectively. For the rest of this section, we will occasionally omit the ω’s for sake of

notational convenience.

Now, let us write the SVD of Π̂(ω) as a sum of the form:

Π̂(ω) =

ρ∑
i=1

σiUiV
∗
i ,

where ρ = rank(Π̂(ω)), so that σ1 ≥ . . . ≥ σρ > σρ+1 = . . . = σN = 0, and Ui, Vi are

the left and right singular vectors, respectively. Then a filtered version of the response

matrix may be written in the form:

D[Π̂(ω)] =

ρ∑
i=1

diσiUiV
∗
i ,
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where the coefficients di are called the filter weights. We will simply consider di ∈ {0, 1},
which amounts to saying that if di = 1 then the i-th singular vector is taken into account

in the filtered version of the response matrix, while if di = 0 it is not.

We will assume hereinafter, that the scatterer and the search domain are located

far enough from the array to allow us to retain only the propagating modes in (5). Then,

replacing Ĝ, given by (5), into (6) we may write the KM functional in the form

IKM(~y s, ω) = − 1

4

N∑
s,r=1

Π̂(~xr, ~xs, ω)×

×
M∑

m,n=1

e−i(βm+βn)|za−zs|

βmβn
Xm(xs)Xm(xs)Xn(xr)Xn(xs). (8)

Let us also define the functional

IKM,f(~y s, ω) = − 1

4

N∑
s,r=1

(
D[Π̂(ω)]

)
rs
×

×
M∑

m,n=1

e−i(βm+βn)|za−zs|

βmβn
Xm(xs)Xm(xs)Xn(xr)Xn(xs), (9)

derived by replacing the full response matrix by its filtered version. For multi-frequency

data, we define

IKM,f(~y s) =
∣∣∣∑
ω

IKM,f(~y s, ω)
∣∣∣. (10)

Finally, we introduce the functionals

IKM
J (~y s, ω) = −1

4

N∑
s,r=1

(σJ(ω)UJ(ω)V ∗J (ω))rs ×

×
M∑

m,n=1

e−i(βm+βn)|za−zs|

βmβn
Xm(xs)Xm(xs)Xn(xr)Xn(xs), (11)

and

IKM
J (~y s) =

∣∣∣∑
ω

IKM
J (~y s, ω)

∣∣∣, (12)

which are derived from (9) and (10), respectively, when dJ = 1 and di = 0 for all i 6= J ;

in other words, when we consider projection on the single J-th singular vector of the

response matrix.

3.2. Modal projection and selective imaging

For an array spanning the whole waveguide depth with an array pitch h small enough,

we can approximate the double sum in (8) by a double integral over [0, D], to get,

IKM(~y s, ω) ≈ − 1

4h2

∫ D

0

dxs

∫ D

0

dxr Π̂(~xs, ~xr, ω)×
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×
M∑

m,n=1

e−i(βm+βn)|za−zs|

βmβn
Xm(xs)Xm(xs)Xn(xr)Xn(xs)

= − 1

4h2

M∑
m,n=1

e−i(βm+βn)|za−zs|

βmβn
Xm(xs)Xn(xs)×

×
∫ D

0

∫ D

0

Π̂(~xs, ~xr, ω)Xm(xs)Xn(xr) dxr dxs. (13)

Now, let us introduce an M ×M matrix Q̂(ω), with entries

Q̂mn(ω) =

∫ D

0

dxs

∫ D

0

dxr Π̂(~xs, ~xr, ω)Xm(xs)Xn(xr), (14)

for m,n = 1, 2, . . . ,M .

In view of (14), (13) may be equivalently written as

IKM(~y s, ω) ≈ − 1

4h2

∑
m,n

e−i(βm+βn)|za−zs|

βmβn
Xn(xs)Xm(xs)Q̂mn(ω). (15)

Instead of using (15) we propose to use the following imaging functional

ĨKM(~y s, ω) = − 1

4h2

M∑
m,n=1

e−i(βm+βn)|za−zs|Xn(xs)Xm(xs)P̂mn(ω), (16)

where the M ×M matrix P̂ is defined as

P̂mn(ω) = βmβnQ̂mn, m, n = 1, . . . ,M. (17)

Note that P̂mn(ω) is a weighted modal projection of the array response matrix. Our

numerical results indicate (see Section 4) that (16) is a robust selective imaging

functional while this is not the case for (15). Our choice of imaging with (16) is also

justified by the theoretical analysis carried out in Section 5 for the case of a simple

scatterer geometry.

For multi-frequency data, we define

ĨKM(~y s) =
∣∣∣∑
ω

ĨKM(~y s, ω)
∣∣∣. (18)

We also introduce functionals for selective imaging, as we have done in (9)–(12),

using filtered versions of P̂. The only thing that changes in this process is the size of

the response matrix. Now, we are dealing with an M ×M matrix, where M denotes

the number of propagating modes. Specifically, for a single frequency ω, let

ĨKM,f(~y s, ω) = − 1

4h2

M∑
m,n=1

e−i(βn+βm)|za−zs|Xn(xs)Xm(xs)
(
D[P̂(ω)]

)
mn
, (19)

while for multi-frequency data we define

ĨKM,f(~y s) =
∣∣∣∑
ω

ĨKM,f(~y s, ω)
∣∣∣. (20)
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Furthermore, we define

ĨKM
J (~y s, ω) = − 1

4h2

M∑
m,n=1

e−i(βn+βm)|za−zs| ×

×Xn(xs)Xm(xs)
(
σJ(ω)UJ(ω)V ∗J (ω)

)
mn
, (21)

and

ĨKM
J (~y s) =

∣∣∣∑
ω

ĨKM
J (~y s, ω)

∣∣∣, (22)

where by abusing slightly the notation we denote by σJ(ω)UJ(ω)V ∗J (ω) the projection

on the J-th singular vector of P̂(ω).

4. Numerical experiments

In this section we present the outcome of some numerical experiments that we have

performed with scatterers of various shapes and sizes. In order to construct the array

response matrix, which is necessary for evaluating the imaging functionals, we solve

numerically the wave equation problem (1). To this end, we use Montjoie [19], a high-

order finite element C++ code developed in INRIA, designed to solve problems arising

in wave propagation phenomena, such as acoustic, electromagnetic, aeroacoustic and

elastodynamic problems.
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Figure 2: Schematic representation of a waveguide truncated near and far from the

source with two perfectly matched layers.

We consider a waveguide with depth equal to D = 200 m and sound speed

c0 = 1500 m/s. The vertical array is placed at za = 40 m and consists of N = 39

transducers uniformly distributed in the water column with a pitch h = 5 m. Point-

like sources are simulated by considering the source term in (1) to be of the form

f(t, ~x) = h(t) g(~x; ~xs). Here h(t) is a Ricker function of time, given by

h(t) =
√

2f0
[
1− 4π2f 2

0 (t− tc))2
]

exp
{
−[
√

2πf0(t− tc)]2
}
,

where f0 is the central frequency of the pulse and tc is the time at which the source

attains its maximum. In all experiments that we will show here f0 = 75 Hz, tc = 0.01 s
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and the final computation time is taken equal to T = 4 s. The function g(~x; ~xs) is

a Gaussian, given by g(~x; ~xs) =
√

2π/α exp(−α|~x − ~xs|2), where α = ln(106)/r2; r

determines the support of the Gaussian and is taken equal to 10 m.

The originally infinite (in the z-direction) domain is truncated by introducing two

perfectly matched layers (PML) [3, 9], see Figure 2. The one near the source is confined

in range in [−100, 0], while the other, far from the source, in [500, 600] (all distances

are in meters). We have checked that the width of 100 m for the PML was enough in

order to absorb the waves efficiently. The resulting computational domain is discretized

with quadrangles (mainly squares, unless otherwise indicated) on which the usual basis

functions of the Qn family (Qn = span{x`ym, 0 ≤ `,m ≤ n}) for n = 4 are used.

Numerical quadrature is based on Gauss-Lobatto rules, and time discretization employs

a fourth–order Leapfrog scheme.

In all cases the frequencies that are used are close to a central reference frequency

f0 = 75 Hz, for which the corresponding wavelength is equal to λ0 = 20 m. In particular,

we consider frequencies ranging from 70.5 to 79.5 Hz with an increment of 1 Hz, unless

otherwise stated.

In what follows we will examine the performance of the imaging functionals IKM

and ĨKM. Let us recall the results for selective imaging in free space: it was shown in

[7] that information about the edges of a reflector is contained in those singular vectors

that correspond to singular values of the response matrix that lie in the intermediate

regime between the large ones and zero. In our numerical simulations we observe the

same behaviour for imaging in waveguides with ĨKM while this is not the case for IKM.

The behaviour of ĨKM will be explained with the analysis carried out in Section 5.

Test case 1: Circular scatterer with diameter δ = 40 m. We consider here a circular
scatterer with diameter δ = 2λ0 = 40 m centered at (440,100) m. Figure 3 depicts the

singular values (normalized with respect to the largest one) of the matrices Π̂ and P̂ for
a frequency equal to 75.5 Hz. As expected, only few of the singular values are nonzero.
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Figure 3: Normalized singular values of Π̂ (left subplot) and P̂ (right subplot) for a

circle scatterer with diameter b = 40 m.

In Figure 4 we plot the values of IKM and ĨKM when the full matrices Π̂ and P̂,

respectively, are used. In both cases we see that the front part of the circle is recovered,
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although for ĨKM the image is supported mainly around the center of the circle at

x = 100 m.
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Figure 4: IKM (left subplot) versus ĨKM (right subplot) for a circular scatterer with

diameter δ = 40 m.

In Figure 5 we present the results of selective imaging with IKM
J and ĨKM

J (see (12)

and (22), respectively), for J = 1, 4 and 5. For J = 1, IKM
J focuses towards the endpoints

of the vertical diameter of the circle, while ĨKM
J in the front center of the circle. For

J = 4, IKM
J seems to focus in the two endpoints of the horizontal diameter of the circle

and ĨKM
J towards the endpoints of the vertical diameter. For J = 5, both IKM

J and ĨKM
J

seem to locate roughly the boundary of the circle.
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Figure 5: IKM
J (top row) versus ĨKM

J (bottom row) for a circular scatterer with diameter

b = 40 m. J indicates projection on the Jth singular vector. From left to right J = 1,

J = 4 and J = 5.

As a first comment, note that selective imaging with ĨKM exhibits the expected

behaviour (see e.g. [7]), in the sense that the largest singular value is associated to

an image focused at the center of the object, while intermediate singular values carry

information about the edges.
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Test case 2: Circular scatterer with diameter δ = 20 m for a single frequency.

Here we decrease the diameter of the previous circular scatterer to δ = λ0 = 20 m. In

Figure 6 we plot the values of |IKM
1 (ω)| and |ĨKM

1 (ω)| (selective imaging with respect to

the first singular vector) for single frequencies of 73 Hz (left column) and 74 Hz (right

column). For both frequencies |ĨKM
1 (ω)| focuses towards the front center of the circle,

as opposed to |IKM
1 (ω)| which focuses towards its edges for f = 73 Hz but in the center

for f = 74 Hz. This kind of lack of robustness has initially motivated us to work with

ĨKM rather than with IKM.
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Figure 6: |IKM
1 (ω)| (top row) versus |ĨKM

1 (ω)| (bottom row) for a circle shaped scatterer

with diameter δ = 20 m for a single frequencies of 73 Hz (left column) and 74 Hz (right

column).

Test case 3: Rhombus shaped scatterer with diameter δ = 40 m

Here we want to assess the performance of ĨKM
J in a more complex test case. Specifically,

we consider a rhombus with diameter δ = 40 m centered at at (440,100) m. In the left

subplot of Figure 7 we plot the singular values (normalized with respect to the largest

one) of the matrix P̂ for a frequency equal to 75.5 Hz. Now, the first four singular

values are quite close to each other, larger than 80% of the σ1(P̂(ω)). The next two are

between 30% to 40% of the largest, the seventh is about 10%, and the rest lie below

10%. In the right subplot we plot the values of ĨKM using the full matrix P̂. Note that

this image carries information also for the support of the scatterer. Figure 8 depicts the

values of ĨKM
J (~y s) for J = 1, . . . , 6. Clearly, projection on the first singular vector leads

to focusing in the center of the object. For J = 2, 3 and 4, ĨKM
J carries information from

the bulk and from the edges, while for J = 5 and 6, it focuses towards the endpoints of

the vertical diameter.
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Figure 7: Normalized singular values of P̂ (left subplot) and ĨKM for a rhombus shaped

scatterer with diameter b = 40 m.
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Figure 8: ĨKM
J for a rhombus shaped scatterer with diameter δ = 40 m. J = 1, . . . , 6,

and indicates projection on the Jth singular vector.

Test case 4: Square scatterer with side length b = 40 m.

Now, we consider a square scatterer of side length b = 2λ0 = 40 m, with its center located

at (470,100) m. In this test case we examine the behaviour of ĨKM and its filtered version

under the influence of instrument noise. In order to simulate measurement noise we

proceed as in [7] and add a noise matrix W (ω) with zero mean uncorrelated Gaussian

distributed entries with variance εpavg, i.e. Wr,s(ω) ∼ N (0, εpavg). Here the average

power received per source, receiver and frequency is given by

pavg =
1

N2Nfreq

Nfreq∑
i=1

‖Π̂(ωi)‖2F,
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where ‖ · ‖F is the Frobenius matrix norm and Nfreq the number of frequencies. The

expected power of the noise W (ωi) over all frequencies, receivers and sources is

E

Nfreq∑
i=1

‖W (ωi)‖2F

 = εN2Nfreq pavg.

Since the total power of the signal received over all frequencies, receivers and sources is

N2Nfreq pavg, the Signal-to-Noise Ratio (SNR) in dB is −10 log10 ε.

As before, we use frequencies ranging from 70.5 to 79.5 Hz with an increment of

1 Hz. In Figure 9 we plot the singular values of the matrices Π̂ and P̂ for the frequency

of 75.5 Hz (normalized with respect to the largest one) in the absence of noise and for

SNR = 10, 0 and -10 dB. Notice that the singular values that are larger than 20% of

the largest one in the case of 10 dB SNR remain close to those corresponding to the

unperturbed matrices, while noise has a more profound influence in the singular values

of 0 dB and -10 dB SNR.
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Figure 9: Normalized singular values of Π̂ (left subplot) and P̂ (right subplot) for a

square scatterer with side length b = 40 m, in the abscence of noise and by adding noise

with 10, 0 and -10 dB SNR.

In Figure 10 we plot the images obtained with ĨKM without using any selective

imaging techniques. In all cases the left side of the scatterer is recreated.

Next, we use filtered versions of the matrix P̂ that employ more than one singular

values. These are chosen as follows, [7]:

a) we normalize the singular values with respect to the largest one,

b) we determine an interval [a, b] ⊂ (0, 1), and

c) we include in the filtered version of ĨKM,f all the singular values that lie in [a, b].

Figures 11–12 depict the values of ĨKM,f without noise included and when noise is

included with 0 and -10 dB SNR. We do not show the images with 10 dB SNR because

they are essentially the same as the ones without noise. Specifically, in Figure 11 we

have employed in the computation of ĨKM,f the singular values that are between 5% and
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Figure 10: ĨKM for b = 40 m, D = 200 m, c0 = 1500 m/s, f ∈ [70.5, 79.5] Hz and

SNR=∞, 0,−10 dB.

60% of the largest one ([a, b] = [0.05, 0.60]) and in Figure 12 we take [a, b] = [0.12, 0.74].

In both cases the results with 0 dB SNR are qualitatively very similar to those obtained

in the absence of noise. Note that even with −10 dB SNR, we are still able to recreate

the left side of the object, but the effect of the noise is visible in the image.
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Figure 11: Normalized values of ĨKM,f , for b = 40 m, D = 200 m, c0 = 1500 m/s,

f ∈ [70.5, 79.5] Hz and SNR=∞, 0,−10 dB, [a, b] = [0.05, 0.6].
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Figure 12: Normalized values of ĨKM,f , for b = 40 m, D = 200 m, c0 = 1500 m/s,

f ∈ [70.5, 79.5] Hz and SNR=∞, 0,−10 dB, [a, b] = [0.12, 0.74].
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5. Analysis of the imaging method

In the present section we consider and analyze a simplified model problem that allows

us to obtain some explicit expressions of the array response matrix, thus helping us to

investigate and understand the phenomena we have observed in the selective imaging

approach of the previous sections.

Specifically, we consider the following model problem: In the marine environment

described in Section 2 we assume that the active array passes through the x axis, i.e.,

the transducers’ coordinates are (0, xi), xi = ih, 1 ≤ i ≤ N , where h := D/(N + 1) is

the pitch. The target, denoted by T , is assumed to be a vertical one-dimensional perfect

reflector, i.e., a ‘crack’ of width b, located at range z = L. The center of the target is

denoted by ~y ∗ = (L, x0). Let us also denote by C the vertical section of the waveguide

at range z = L, i.e., C := {(L, x) : 0 ≤ x ≤ D}. This setup is schematically depicted

in Figure 13 and aims at simulating the left side of the square scatterer which we have

examined in Section 4. For an analogous setup used to analyze the response matrix for

extended targets in the free space we refer to [27].
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Figure 13: A vertical crack, implemented in the waveguide.

5.1. Array response matrix

Assuming unit reflectivity at each point of the target we may approximate the response

in a receiver placed at ~xr = (0, xr) due to a source at ~xs = (0, xs), r, s ∈ {1, 2, . . . , N},
as

Π̂(~xr, ~xs, ω) =

∫
T
Ĝ(~y, ~xr)Ĝ(~y, ~xs) dx, (23)

where ~y = (L, x), x ∈ [x0 − b/2, x0 + b/2], and Ĝ is the Green’s function defined in (5).

For future reference, let us also recall that µn, Xn are the eigenvalues and corresponding

eigenfunctions of the operator −d2/dx2 in H2(0, D) ∩H1
0 (0, D), defined in (3), and βn

are the horizontal wavenumbers defined in (4).

Inserting (5) into (23) shows that

Π̂(~xr; ~xs, ω) = −1

4

∞∑
m,n=1

eiβmL

βm
Xm(xs)Xn(xr)

eiβnL

βn

∫ x0+
b
2

x0− b2

Xm(x)Xn(x)dx. (24)
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Moreover, let gm(xi) := i
2
eiβmL

βm
Xm(xi) =

(
Ĝ(·, ~xi), Xm

)
L2(C)

, where the outer

parentheses in the second equality denote the standard L2 inner product on C. Let

us also define G to be the matrix

G :=


g1(x1) g2(x1) . . . gM(x1) gM+1(x1) . . .

g1(x2) g2(x2) . . . gM(x2) gM+1(x2) . . .
...

...
...

...

g1(xN) g2(xN) . . . gM(xN) gM+1(xN) . . .


and Ainf the (infinite) matrix with entries

amn =

∫ x0+
b
2

x0− b2

Xm(x)Xn(x)dx, m, n = 1, 2, . . . . (25)

Then, using (24), we may write the array response matrix Π̂ as a matrix product of the

form

Π̂ = GAinfGT . (26)

We point out that if L is sufficiently large and m ≥M + 1, then

gm(xi) =
i

2

eiβmL

βm
Xm(xi) =

1

2

e−
√
µn−k2L√

µn − k2
Xm(xi) ' 0,

or, in other words, only the principal N ×M part of G is practically non-zero; thus, in

practice, instead of Ainf we work with its M ×M principal part denoted by AM . Note

also, that since h = D/(N+1) is the distance between any two consecutive transducers,

then for N sufficiently large, the orthonormality of the eigenfunctions infers

(GTG)mn = −1

4

ei(βm+βn)L

βmβn

N∑
k=1

Xm(xk)Xn(xk)

≈ −ei(βm+βn)L

4βmβn

1

h

∫ D

0

Xm(x)Xn(x) dx = −1

h

ei(βm+βn)L

4βmβn
δmn. (27)

Hence, GTG is “almost” diagonal, i.e., GTG ≈ D, where

Dmn =

{
− 1
h
ei(βm+βn)L

4βmβn
, m = n

0, m 6= n.
(28)

Therefore (26) and (27) imply

Ainf = D−1GT Π̂GD−1. (29)

At this point let us remark that although Π̂ is associated with Ainf (and, in practice,

with AM) through (26), or (29), we cannot infer from these formulae an explicit relation

between their singular values.

Next, it is natural to ask how AM is related to the matrix P̂ that results when we

project the array response matrix Π̂ on the propagating modes. Recalling the definition
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of P̂ (14), and using the orthonormality of the eigenfunctions {Xn}n=1,2,..., one may

immediately see that

P̂mn = −1

4
ei(βm+βn)Lamn, m, n = 1, . . . ,M, (30)

or, in matrix form,

P̂ = −1

4
QAMQ, (31)

where Q is the diagonal matrix diag(eiβ1L, . . . , eiβML). Hence P̂ is unitarily equivalent

to AM , since Q∗Q = I.

5.2. Spectral properties of AM

Now, we turn our attention to the spectral properties of the real, symmetric matrix AM ,

since we have shown that it is related to both matrices Π̂ and P̂ that are involved in

the computation of IKM and ĨKM, respectively. In what follows we will refer to either

the eigenvalues–eigenvectors of AM or to its singular values–vectors, since the latter are

just the former written in descending order.

For m,n ≥ 1, and in view of the simple trigonometric identity 2 sin a sin b =

cos(a− b)− cos(a+ b), it holds that

amn =

∫ x0+
b
2

x0− b2

Xm(x)Xn(x)dx =
2

D

∫ x0+
b
2

x0− b2

sin
mπx

D
sin

nπx

D
dx

=
1

D

∫ x0+
b
2

x0− b2

cos
(m− n)πx

D
dx− 1

D

∫ x0+
b
2

x0− b2

cos
(m+ n)πx

D
dx.

Hence

AM = TM −HM , where TM := (t`−m)M`,m=1, HM := (t`+m)M`,m=1,

and

tm =
1

D

∫ D

0

1T (x) cos
mπx

D
dx, (32)

where 1T (x) is the indicator function of T . Note that here 1T (x) is the so called

generating function of the matrices AM , TM and HM . One may immediately recognize

TM as a (real symmetric) Toeplitz matrix, i.e., a matrix with constant entries along

the diagonals, and HM as a Hankel matrix, i.e., a matrix with constant skew-diagonals

(these are the diagonals that are perpendicular to the main diagonal). Hence AM is a

Toeplitz–minus–Hankel matrix. As we shall briefly discuss next, the spectral properties

of AM are determined by the Toeplitz part TM . This can be seen, for example, by

modifying appropriately the proofs in the work of Fasino [10], where he studies the

spectral properties of Toeplitz-plus-Hankel matrices, or by tracing back to the work

of Trench [25], where he studies the spectral properties of the real symmetric Toepliz

(RST) matrix

Tn = (tr−s)
n
r,s=1, where tr =

1

π

∫ π

0

f(x) cos rx dx,
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and the generating function f ∈ L2[0, π]. Following Trench’s notation, a vector x ∈ Rn

is called symmetric if Jx = x and skew-symmetric if Jx = −x, where J is the flip

matrix (i.e. the matrix that has ones on the secondary diagonal and zeros elsewhere),

see also [2]. Moreover, an eigenvalue λ of T is defined to be even (odd) if T has a

symmetric (skew-symmetric) λ–eigenvector.

Now, let λ(M)

1 ≤ λ(M)

2 ≤ . . . ≤ λ(M)

M be the eigenvalues of TM and ν(M)

1 ≤ ν(M)

2 ≤
. . . ≤ ν(M)

M be the eigenvalues of AM . Since, in our case, the generating function f of

the matrices AM , TM and HM , is the indicator function of T , its essential lower and

upper bounds are simply 0 and 1, respectively, and a result of Szegő, [14, pp. 64, 65],

guarantees that i) 0 ≤ λ(M)

i ≤ 1, for all i = 1, . . . ,M , ii) for any fixed integer k, λ(M)

k → 0,

λ(M)

M−k → 1, as M →∞, and iii) if G is any continuous function defined in [0,1] we have

lim
M→∞

1

M

M∑
i=1

G(λ(M)

i ) =
1

D

∫ D

0

G(f(x))dx. (33)

Moreover, the following theorem specializes results stated in [25] to our case, where

we work on [0, D], the entries of our matrix are given in (32), and f = 1T .

Theorem 5.1 (a) The odd eigenvalues κ(2M+1)

1 ≤ κ(2M+1)

2 ≤ . . . ≤ κ(2M+1)

M of T2M+1 are

the eigenvalues of AM , [25, Th. 2].

(b) Since f is bounded the sets {λ(M)

i }Mi=1 and {κ(2M+1)

i }Mi=1 are absolutely equally

distributed, [25, Def. 1, Th. 5].

(c) Since f is bounded (33) holds also for ν(M)

i instead of λ(M)

i . Moreover, the cardinality

of the set {i : ε ≤ κ(2M+1)

i ≤ 1− ε, for ε > 0} equals 0.

Summarizing, the eigenvalues of the matrix AM are clustered emphatically near 0

and 1, and considering the function G to be the identity on [0, 1] we immediately see

that

lim
M→∞

1

M

M∑
i=1

ν(M)

i =
1

D

∫ D

0

1T (x) dx =
b

D
.

This indicates that asymptotically as M → ∞ the ratio of the non-zero eigenvalues of

AM to the total number of eigenvalues is equal to b/D. In our case, where M is the

number of propagating modes and is equal to
⌊
2D
λ

⌋
, it is expected that the number of

‘significant’ singular values for our matrix is[
M

b

D

]
≈
[

2b

λ

]
. (34)

To conclude we have shown, that the number of non-zero singular values is related

to the size of the object. Moreover, considering that the resolution in cross-range is λ/2

(see Figure A1 in the Appendix), then the rank of the matrix (i.e., the number of non-

zero singular values) is roughly the size of the object divided by the ‘array resolution’.

This has been proven for the case of free space (see [7, §4.5.2]), but, to the best of our

knowledge, it is a new result concerning a waveguide geometry.



Selective imaging of extended reflectors in 2d waveguides 20

In the next subsection we explore the form of the eigenvectors of AM , in order to

gain some insight about the behaviour of the functionals that we are using for selective

imaging.

5.3. Selective imaging

We consider the imaging functional ĨKM
J , where the subscript J indicates that the matrix

P̂ is approximated by means of the J-th singular vector for selective imaging. Then, for

a search point ~y s = (L, xs) located at the correct range L, (21) and (30) imply that

ĨKM
J (~y s) =

1

16h2

M∑
m,n=1

Xm(xs)Xn(xs)σJu
m
J u

n
J = σJ

(
1

4h

M∑
n=1

unJXn(xs)

)2

, (35)

where uJ = (u1J , u
2
J , . . . , u

M
J )T is the singular vector of AM that corresponds to the

singular value σJ . Recalling the definition of Xn in (3), and suppressing constants, we

associate to uJ the trigonometric polynomial

sJ(x) =
M∑
n=1

unJ sin
nπx

D
.

Therefore, the behaviour of ĨKM
J is in fact determined by the properties of sJ(x), that

we shall illustrate in the following example: Consider a waveguide with depth equal

to D = 200 m and constant sound speed equal to c0 = 1500 m/s. In Figure 14 (left

subplot) we plot the singular values of AM for a frequency of 74 Hz, for which the

number of propagating modes M = 19, the wavelength λ ≈ 20.27 m, and T is centered

at x0 = 70 m while its width is taken equal to b = 40 m ≈ 2λ. According to (34)

the number of ‘significant’ singular values equals 4. Indeed, one may see that the first

three remain very close to 1, the fourth one is approximately 0.65 and the fifth lies in

the transition layer between 0 and 1 close to 0.3. The sixth one is less than 0.1 while

the rest are very close to zero. In the right subplot of Figure 14 we plot the square
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Figure 14: Left: The singular values of AM (M = 19). Right: The graphs of (sJ(x))2,

x ∈ [0, 200], for J = 1, 5, 8, normalized with respect to their largest values.
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of the values of the trigonometric polynomials sJ(x) for J = 1, 5 and 8, normalized

with respect to their largest values. The relevant singular vectors uJ , J = 1, 5, 8 have

been computed with MATLAB. The red circle in these figures indicates the center

x0 of T and the red dashed lines the width b. Note that s1(x) that corresponds to

the first singular value is supported in T and exhibits a peak at the center x0, s5(x)

exhibits peaks near the endpoints of T , while s8(x) is approximately zero for x ∈ T .

These remind us the spectral properties and the band-limited behaviour of the so called

prolate matrix, see [24, 26, 15]. As remarked in [15] for the prolate matrix, one may

characterize the eigenspace corresponding to eigenvalue cluster near 1 as the signal

subspace, the eigenspace corresponding to eigenvalue cluster near 0 as the noise subspace

and the eigenspace corresponding to eigenvalues in the intermediate layer as the transient

subspace; the terminology is adopted by [15].

Next, we try to explore the form of the singular vectors (eigenvectors) of AM .

To this end, we consider an orthonormal basis {Yj(x)}∞j=1 of L2[x0 − b/2, x0 + b/2];

specifically, let Yj(x) =
√

2
b

sin
(

(x−x0+ b
2
)jπ

b

)
, j = 1, 2, . . .. Then, the restriction of the

eigenfunctions Xn ∈ L2[0, D] on the crack T may be written as

Xn(x)|[x0−b/2,x0+b/2] =
∞∑
j=1

vnj Yj(x), where vnj =

∫ x0+
b
2

x0− b2

Xn(x)Yj(x) dx.

The orthonormality of the Yi’s and Parseval’s relation imply that

amn = (Xm, Xn)L2(T ) =
∑
i

(Xm, Yi)L2(T )(Xn, Yi)L2(T ) =
∞∑
i=1

vmi v
n
i . (36)

Let us define

vi = (v1i , v
2
i , . . . , v

M
i , . . .)

T , (37)

and note that the sequences vi ∈ l2, for every i. Then the infinite matrix Ainf may be

written as

Ainf =
∞∑
i=1

vi v
T
i . (38)

Moreover, the vi are orthonormal. Indeed, let 〈·, ·〉 denote the standard inner product

in l2, and Ỹi the extension by zero of Yi on [0, D]. Then

〈vi,vj〉 =
∞∑
n=1

vni v
n
j =

∑
n

(Xn, Yi)L2(T )(Xn, Yj)L2(T )

=
∑
n

(Ỹi, Xn)L2[0,D](Ỹj, Xn)L2[0,D]

Parseval
= (Ỹi, Ỹj)L2[0,D] = (Yi, Yj)L2(T ) = δij.

Now, let V be the closure of span{vi}i=1,2,.... Then l2 = V ⊕V ⊥, and Ainf is a projection

operator where its only eigenvalues are 0 and 1.

Next thing is to investigate the relation between the eigenvectors uj of AM that

correspond to eigenvalues close to 1, and the eigenvectors vj of Ainf corresponding to the
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eigenvalue 1. Let us multiply, for example, AM by the vector consisting of the M first

components of vj, (i.e.,
(
v1j , v

2
j , . . . , v

M
j

)T
). The i-th component of the resulting vector

is equal to

M∑
k=1

aikv
k
j =

∞∑
k=1

aikv
k
j −

∞∑
k=M+1

aikv
k
j

=
∞∑
k=1

(Xi, Xk)L2(T )(Xk, Yj)L2(T ) −
∞∑

k=M+1

aikv
k
j

=
∞∑
k=1

(Xi1T , Xk)L2[0,D](Ỹj, Xk)L2[0,D] −
∞∑

k=M+1

aikv
k
j

=
∞∑
k=1

(Xi1T , Ỹj)L2[0,D] −
∞∑

k=M+1

aikv
k
j = vij −

(
∞∑

k=M+1

aikv
k
j

)
.

The last term above in the parenthesis is O(1/M), hence if the j-th singular value is

approximately 1, then
(
v1j , v

2
j , . . . , v

M
j

)T
approximates uj, i.e., the j-th singular vector

of AM . This is illustrated in Figure 15 where we plot the components of the first two

singular vectors uJ , J = 1, 2, of AM and the M first terms of the sequences vJ , J = 1, 2,

for the parameters of the previous example for which M = 19.
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Figure 15: The singular vector uJ of AM (its components are marked with red squares)

vs. the M first terms of vJ marked with blue circles, for J = 1 (left) and J = 2 (right).

Hence, as long as J is associated to a singular vector that lies in the signal subspace,

one may approximate ĨKM
J as

ĨKM
J (~y s) ≈

M∑
m,n=1

Xm(xs)Xn(xs)vmJ v
n
J =

(
M∑
n=1

vnJ Xn(xs)

)2

, (39)

where constants are once more suppressed. Moreover, letting M →∞, we get that

(ĨKM
J (~y s))1/2 ≈

∣∣∣ ∞∑
n=1

vnJXn(xs)
∣∣∣ =

∣∣∣∑
n

(Xn, YJ)L2(T )Xn(xs)
∣∣∣

=
∣∣∣∑
n

(ỸJ , Xn)L2[0,D]Xn(xs)
∣∣∣ = |ỸJ(xs)|. (40)
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Using the specific form of the YJ we get that as long as the J-th s.v. is close to one,

then

ĨKM
J (~y s) ≈ 2

b
sin2

(
(xs − x0 + b

2
)Jπ

b

)
. (41)

In the remaining of this section, we will compare these asymptotic results with the

outcome of some numerical simulations.

5.4. Numerical experiments

Next, we present some results for the simplified model of the vertical one dimensional

scatterer (the crack). Specifically, a) we compare results of selective imaging with ĨKM
J

with those obtained using the asymptotic formulae (39), (41), and b) we compare

results between selective imaging with IKM
J and ĨKM

J . In all the following examples

the sound speed is taken equal to c0 = 1500 m/s and the depth of the waveguide equal

to D = 200 m.

5.4.1. ĨKM
J versus asymptotics

First, we consider a single frequency f = 74 Hz, hence the wavelength λ ≈ 20.27 m.

The array has N = 39 receivers, the pitch h = 5 m ' λ/4 and the crack, centered at

(L, x0) = (410, 70) m, has length b = 40 m ' 2λ. The number of propagating modes

in the waveguide is M = 19. The singular values of AM are shown in Figure 14. We

have seen previously that AM and, consequently, the matrix P̂ defined in (30), have

[2b/λ] = 4 significant singular values. In other words, and with reference to Figure 14,

it is expected that the first three singular vectors comprise the signal subspace, the

fourth and the fifth lie in the transient subspace, and the rest correspond to the noise

subspace.

We now turn to check the validity of the asymptotic expressions (39) and (41).

In Figure 16 we plot superimposed the normalized graphs of ĨKM
J (~x s, ω) (see (21)), of

(39) and of (41), for ~x s that are located at the correct range L, and for J = 1 and 2.

The subscript J indicates that only the J-th singular vector is employed in the filtered

version of the matrix P̂, defined in (30). As one may immediately see there is good

agreement between the numerics and the asymptotic expressions.

In Figure 17 we show analogous results for selective imaging with ĨKM
J (~x s, ω) and

(39), based on the third to the sixth singular vectors. Now, one may notice somewhat

larger discrepancies but, in general, the asymptotic expression agrees well with the

numerical results for J = 3, 4 and 5. For J = 6 there is a clear mismatch, with ĨKM
J

focusing approximately 4.5 m below the lower endpoint of the crack, since now the

corresponding singular vector belongs to the noise subspace. (The discrepancies, as

expected, are even larger between the results of ĨKM
J (~x s, ω) and (41), and we do not

include them in the figure. These discrepancies may be attributed to the fact that

the asymptotic analysis is based on matrices of order n, where n → ∞, while in the

numerics only their principal M ×M part has been taken into account. For example,
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Figure 16: The graph of ĨKM
J ((L, xs), ω) (solid black line) normalized and superimposed

on the graphs of (39) (dash-dotted red line) and (41) (dashed blue line). J indicates

projection on the Jth singular vector. The ordinate x0− b/2 and x0 + b/2 are in dashed

green lines, and x0 is marked with a green circle. Here c0 = 1500 m/s, f = 74 Hz,

D = 200 m, b = 40 m, x0 = 70 m and J = 1 (left subplot), J = 2 (right subplot).
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Figure 17: The graph of ĨKM
J ((L, xs), ω) (solid black line) superimposed on the graph

of (39) (dash-dotted red line). J indicates projection on the Jth singular vector and

the ordinate x0 − b/2 and x0 + b/2 are in dashed green lines, while x0 is marked with a

green circle. Here J = 3, 4, 5 and 6, c0 = 1500 m/s, f = 74 Hz, D = 200 m, b = 40 m,

x0 = 70 m.

the orthogonality of vi (see (37)) is valid only for the infinite matrix Ainf and is expected

to hold only approximately for fixed n.)

Figures 16 and 17, suggest that selective imaging with ĨKM
J (ω) by means of the

first singular vector focuses in the middle of the object, while the fourth and the fifth

singular vectors are focusing mainly in the lower and the upper endpoint of the crack,

respectively.
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5.4.2. IKM
J versus ĨKM

J

Next, we compare selective imaging with IKM
J versus ĨKM

J , keeping the same setup as in

Section 5.4.1.

In the top row of Figure 18 we plot the modulus of IKM
J (ω) (see (11)), for J = 1, 2, 4

and 5, and in the bottom row the corresponding results for the modulus of ĨKM
J (ω) (see

(21)). As before J indicates projection on the Jth singular vector, and the search

domain is [350, 470]× [10, 130] (all distances are in meters). Note the robustness in the

results of ĨKM
J (ω), where projection on the first singular vector focuses in the center of

the crack as projection on subsequent singular vectors results in focusing towards the

edges, as opposed to those of IKM
J (ω) .
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Figure 18: Values of IKM
J (ω) (top row) and ĨKM

J (ω) (bottom row) for the crack, where

J = 1, 2, 4, 5 and it indicates projection on the Jth singular vector.

The theoretical analysis and the numerical results shown in this section for the

model problem of an one dimensional reflector are in agreement and help us understand

the selective imaging results presented in Section 4 in the more general case of extended

two dimensional reflectors.

6. Concluding remarks

In this paper we considered the problem of selective imaging extended reflectors in a

waveguide using an active array of sensors. To this end, we proposed a novel selective

imaging functional based on Kirchhoff migration and the singular value decomposition of

P̂(ω), which is a weighted modal projection of the array response matrix. The proposed

imaging method has been theoretically analyzed for a simplified model of a vertical

one-dimensional reflector of width b, and the following main results were derived:

(i) We showed that the rank of P̂(ω) is approximately equal to [ b
λ/2

], that is, the size

of the reflector divided by the array resolution λ/2 (λ being the wavelength at

frequency ω). This result has been recently proven in free space (cf. [7, §4.5.2]),

but, to the best of our knowledge, it is a new result for waveguides.
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(ii) We derived analytic expressions for the singular vectors of P̂(ω), as well as for our

selective imaging functional. Exploiting these expressions we showed that imaging

using the projection of P̂(ω) on its first singular vector exhibits focusing in the

center of the reflector, while by projecting on the last significant singular vector we

create an image that focuses in the endpoints of the reflector. Again our results are

in agreement with those obtained in free space (cf. [7]).

Moreover, the results obtained for this simplified model show good agreement when

compared with those derived in the more involved case of a square scatterer.

One of the main assumptions that is essential for the construction of the proposed

imaging functional and for the subsequent analysis is that the array spans the whole

waveguide, a hypothesis that is probably not realistic in applications. Therefore it would

be very interesting to generalize this approach to the case of partial array aperture.

This does not seem at all straightforward. For example, for a partial array aperture,

key properties like the orthonormality of the vertical eigenfunctions Xn along the array

fail to hold.

Appendix A. Resolution analysis for a point scatterer

Resolution analysis is a classical way to assess the performance of an imaging method

and relies on studying the behaviour of the point spread function (PSF), i.e., of the

imaging functional for a point scatterer. We consider here an array passing through the

x axis and a point scatterer placed far enough from the array at ~x∗ = (z∗, x∗). Then,

for a source located at ~xs = (0, xs) and a receiver at ~xr = (0, xr) we may approximate

the (r, s) entry of the response matrix for the scattered field by

Π̂(~xr, ~xs, ω) = τ(ω)Ĝ(~x∗, ~xs, ω)Ĝ(~xr, ~x
∗, ω). (A.1)

In (A.1), we ignore the direct waves going from ~xs to ~xr and assume that the scattered

field is simply the Green’s function from ~xs to ~x∗ multiplied by the scattering coefficient

τ(ω) and then by the Green’s function from ~x∗ to ~xr. In what follows, we assume

for simplicity that our scatterer is an isotropic point reflector with τ(ω) = 1. Next,

we replace the expression for the Green’s function given by (5) into (A.1) taking into

account only the propagating modes, and get

Π̂(~xr, ~xs, ω) = −1

4

M∑
k=1

M∑
`=1

eiβkz
∗

βk
Xk(xs)

eiβ`z
∗

β`
X`(xr)Xk(x

∗)X`(x
∗). (A.2)

For a ~y s = (zs, xs) in our search domain, the imaging functional (6) becomes

IKM(~y s, ω) =
1

16

N∑
s,r=1

M∑
m,n=1

M∑
m′,n′=1

ei(βm+βn)z∗

βmβn
Xm(xs)Xn(xr)Xm(x∗)Xn(x∗)×

× e−i(βm′+βn′ )z
s

βmβn
Xm′(xs)Xn′(xr)Xm′(x

s)Xn′(x
s). (A.3)

Assuming that the array spans the whole depth of the waveguide with an array pitch

h small enough, we can approximate the double sum with respect to s and r in (A.3),
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by a double integral over xs and xr, and use the orthonormality of the eigenfunctions

Xn to obtain

IKM(~y s, ω) ≈
(

1

4h

M∑
n=1

eiβn(z
∗−zs)

β2
n

Xn(x∗)Xn(xs)

)2

. (A.4)

On the other hand, using (A.2) the matrix P̂, defined in (17), takes the form

P̂mn(ω) = −1

4
eiβmz

∗
eiβnz

∗
Xm(x∗)Xn(x∗).

Hence, in view of the above relation, (16) reduces to

ĨKM(~y s, ω) =

(
1

4h

M∑
n=1

eiβn(z
∗−zs)Xn(x∗)Xn(xs)

)2

. (A.5)

Appendix A.1. Cross-range resolution for ĨKM(ω)

To examine the resolution in cross-range, we assume that the wavelength λ is much

smaller than the depth (λ � D) and that the search point is located at the correct

range, i.e., zs = z∗. Then, recalling (3), the imaging functional (A.4) simplifies to

IKM(~y s;ω) =

(
1

2Dh

M∑
n=1

1

β2
n

sin
nπx∗

D
sin

nπxs

D

)2

, (A.6)

while (A.5) takes the form

ĨKM(~y s;ω) =

(
1

2Dh

M∑
n=1

sin
nπx∗

D
sin

nπxs

D

)2

. (A.7)

We have the following result:

Lemma 1 (A.7) can be approximated by

ĨKM(~y s;ω) ≈
[

1

2λh

(
sinc

(
2
λ
(x∗ − xs)

)
− sinc

(
2
λ
(x∗ + xs)

))]2
, (A.8)

where sinc(x) = (sin(πx))/(πx).

Proof: Letting ξn = λn/(2D) we approximate the sum over n in (A.7) by an integral.

Therefore, from (A.7) we have

ĨKM(~y s;ω) ≈
[

1

λh

∫ 1

0

sin

(
2πx∗ξn
λ

)
sin

(
2πxsξn
λ

)
dξn

]2
=

{
1

2λh

∫ 1

0

[
cos

(
2π(x∗ − xs)

λ
x

)
− cos

(
2π(x∗ + xs)

λ
x

)]
dx

}2

=

[
1

2λh

(
sinc

(
2
λ
(x∗ − xs)

)
− sinc

(
2
λ
(x∗ + xs)

))]2
. (A.9)

�
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Figure A1: Left subplot: The graph of (A.6) for D = 200 m, f = 100 Hz, c0 = 1500 m/s,

x∗ = 120 m. Right subplot: The graph of (A.7) (solid blue line) superimposed on the

graph of (A.8) (dashed red line), for the same parameters.

In the left subplot of Figure A1 we plot the normalized modulus of the imaging

functional (A.6) for D = 200 m, c0 = 1500 m/s, x∗ = 120 m and frequency 100 Hz, in

the cross-range window [40,200] (in meters). In the right subplot we superimpose for

the same parameters the graphs of (A.7) and (A.8), normalized with respect to their

maximum values. As one may see ĨKM exhibits considerably lower side lobes than IKM,

albeit IKM’s main lobe is slightly narrower than that in ĨKM.

Appendix A.2. Range resolution for ĨKM(ω)

In order to estimate the resolution in range we assume that the search point is located

at the correct depth, i.e. at ~y s = (zs, x∗), and, for simplicity, that the scatterer is placed

at half the depth of the waveguide, i.e., xs = x∗ = D/2.

Then, the imaging functional (A.4) takes the form

IKM(~y s, ω) =

 1

2Dh

dM
2
e−1∑

n=0

eiβ2n+1(z∗−zs)

β2
2n+1

2

, (A.10)

and similarly, (A.5) becomes

ĨKM(~y s, ω) =

 1

2Dh

dM
2
e−1∑

n=0

eiβ2n+1(z∗−zs)

2

. (A.11)

Lemma 2 (A.11) can be approximated by

ĨKM(~y s, ω) ≈
{

1

2λh

[
1− π

2
H1

(
2π
λ

(z∗ − zs)
)

+ i π
2
J1

(
2π
λ

(z∗ − zs)
)]}2

, (A.12)

where J1(x) and H1(x) denote the Bessel and Struve function of order one, respectively,

[1].
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Proof: Let
(
n+ 1

2

)
λ
D

= ξn. Then β2n+1 = 2π
λ

√
1− ξ2n and the sum in the right-hand

side of (A.11) may be approximated by

IKM(~y s, ω) ≈
(

1

2λh

∫ 1

0

ei
2π
λ
(z∗−zs)

√
1−x2 dx

)2

. (A.13)

Letting α = 2π(z∗− zs)/λ, we want to evaluate the integral
∫ 1

0
eiα
√
1−x2 dx. To this end,

letting x = sin θ we have∫ 1

0

eiα
√
1−x2 dx ≈

∫ π/2

0

eiα cos θ cos θ dθ

=

∫ π/2

0

cos(α cos θ) cos θ dθ + i

∫ π/2

0

sin(α cos θ) cos θ dθ =: I1 + i I2

In I2 we change variables θ = π
2
− x to obtain

I2 =

∫ π/2

0

sin(α sinx) sinx dx =
π

2
J1(α),

where the integral is found in [12, (3.715.2)].

For I1 we integrate by parts

I1 =

∫ π/2

0

cos(α cos θ)(sin θ)′ dθ = 1− α
∫ π/2

0

sin(α cos θ) sin2 θ dθ = 1− π

2
H1(α).

For the last integral above see [12, (3.716.16)]. Finally, we have that

ĨKM(~y s, ω) ≈
[

1

2λh

(
1− π

2
H1(α) + i

π

2
J1(α)

)]2
. (A.14)

�
In Figure A2 we plot the modulus of the imaging functional (A.10) (left subplot)

and the modulus of (A.11) versus the modulus of the graph of (A.12) (right subplot),

normalized with respect to their maximum values, for D = 200 m, c0 = 1500 m/s,

z∗ = 480 m and frequency 100 Hz, in the range window [380,580] (in meters). Note that

for IKM the width of the PSF is about 2λ at less than 10% of its maximum value, while

for ĨKM the width becomes 2λ at about 20% of its maximum value.

Remark 1 The plots in Figures A1 and A2 show the point spread function (PSF) of

IKM and ĨKM as a function of cross-range and range, respectively. We observe that the

PSF is centered at the correct location of the scatterer. The resolution of the imaging

method can be determined using these plots. If we define, for example, the resolution as

the width of the PSF at half its maximal value we obtain a cross-range resolution of λ/2

(see Figure A1).
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