9 research outputs found

    Spectral Shape of Check-Hybrid GLDPC Codes

    Full text link
    This paper analyzes the asymptotic exponent of both the weight spectrum and the stopping set size spectrum for a class of generalized low-density parity-check (GLDPC) codes. Specifically, all variable nodes (VNs) are assumed to have the same degree (regular VN set), while the check node (CN) set is assumed to be composed of a mixture of different linear block codes (hybrid CN set). A simple expression for the exponent (which is also referred to as the growth rate or the spectral shape) is developed. This expression is consistent with previous results, including the case where the normalized weight or stopping set size tends to zero. Furthermore, it is shown how certain symmetry properties of the local weight distribution at the CNs induce a symmetry in the overall weight spectral shape function.Comment: 6 pages, 3 figures. Presented at the IEEE ICC 2010, Cape Town, South Africa. A minor typo in equation (9) has been correcte

    Rate-Equivocation Optimal Spatially Coupled LDPC Codes for the BEC Wiretap Channel

    Full text link
    We consider transmission over a wiretap channel where both the main channel and the wiretapper's channel are Binary Erasure Channels (BEC). We use convolutional LDPC ensembles based on the coset encoding scheme. More precisely, we consider regular two edge type convolutional LDPC ensembles. We show that such a construction achieves the whole rate-equivocation region of the BEC wiretap channel. Convolutional LDPC ensemble were introduced by Felstr\"om and Zigangirov and are known to have excellent thresholds. Recently, Kudekar, Richardson, and Urbanke proved that the phenomenon of "Spatial Coupling" converts MAP threshold into BP threshold for transmission over the BEC. The phenomenon of spatial coupling has been observed to hold for general binary memoryless symmetric channels. Hence, we conjecture that our construction is a universal rate-equivocation achieving construction when the main channel and wiretapper's channel are binary memoryless symmetric channels, and the wiretapper's channel is degraded with respect to the main channel.Comment: Working pape

    Stability of Iterative Decoding of Multi-Edge Type Doubly-Generalized LDPC Codes Over the BEC

    Full text link
    Using the EXIT chart approach, a necessary and sufficient condition is developed for the local stability of iterative decoding of multi-edge type (MET) doubly-generalized low-density parity-check (D-GLDPC) code ensembles. In such code ensembles, the use of arbitrary linear block codes as component codes is combined with the further design of local Tanner graph connectivity through the use of multiple edge types. The stability condition for these code ensembles is shown to be succinctly described in terms of the value of the spectral radius of an appropriately defined polynomial matrix.Comment: 6 pages, 3 figures. Presented at Globecom 2011, Houston, T

    Performance Analysis and Design of Two Edge Type LDPC Codes for the BEC Wiretap Channel

    Full text link
    We consider transmission over a wiretap channel where both the main channel and the wiretapper's channel are Binary Erasure Channels (BEC). We propose a code construction method using two edge type LDPC codes based on the coset encoding scheme. Using a standard LDPC ensemble with a given threshold over the BEC, we give a construction for a two edge type LDPC ensemble with the same threshold. If the given standard LDPC ensemble has degree two variable nodes, our construction gives rise to degree one variable nodes in the code used over the main channel. This results in zero threshold over the main channel. In order to circumvent this problem, we numerically optimize the degree distribution of the two edge type LDPC ensemble. We find that the resulting ensembles are able to perform close to the boundary of the rate-equivocation region of the wiretap channel. There are two performance criteria for a coding scheme used over a wiretap channel: reliability and secrecy. The reliability measure corresponds to the probability of decoding error for the intended receiver. This can be easily measured using density evolution recursion. However, it is more challenging to characterize secrecy, corresponding to the equivocation of the message for the wiretapper. M\'easson, Montanari, and Urbanke have shown how the equivocation can be measured for a broad range of standard LDPC ensembles for transmission over the BEC under the point-to-point setup. By generalizing the method of M\'easson, Montanari, and Urbanke to two edge type LDPC ensembles, we show how the equivocation for the wiretapper can be computed. We find that relatively simple constructions give very good secrecy performance and are close to the secrecy capacity. However finding explicit sequences of two edge type LDPC ensembles which achieve secrecy capacity is a more difficult problem. We pose it as an interesting open problem.Comment: submitted to IEEE Transactions on Information Theory. Updated versio

    Spectral Shape of Doubly-Generalized LDPC Codes: Efficient and Exact Evaluation

    Full text link
    This paper analyzes the asymptotic exponent of the weight spectrum for irregular doubly-generalized LDPC (D-GLDPC) codes. In the process, an efficient numerical technique for its evaluation is presented, involving the solution of a 4 x 4 system of polynomial equations. The expression is consistent with previous results, including the case where the normalized weight or stopping set size tends to zero. The spectral shape is shown to admit a particularly simple form in the special case where all variable nodes are repetition codes of the same degree, a case which includes Tanner codes; for this case it is also shown how certain symmetry properties of the local weight distribution at the CNs induce a symmetry in the overall weight spectral shape function. Finally, using these new results, weight and stopping set size spectral shapes are evaluated for some example generalized and doubly-generalized LDPC code ensembles.Comment: 17 pages, 6 figures. To appear in IEEE Transactions on Information Theor

    Weight distributions of multi-edge type LDPC codes

    No full text
    corecore