This paper analyzes the asymptotic exponent of the weight spectrum for
irregular doubly-generalized LDPC (D-GLDPC) codes. In the process, an efficient
numerical technique for its evaluation is presented, involving the solution of
a 4 x 4 system of polynomial equations. The expression is consistent with
previous results, including the case where the normalized weight or stopping
set size tends to zero. The spectral shape is shown to admit a particularly
simple form in the special case where all variable nodes are repetition codes
of the same degree, a case which includes Tanner codes; for this case it is
also shown how certain symmetry properties of the local weight distribution at
the CNs induce a symmetry in the overall weight spectral shape function.
Finally, using these new results, weight and stopping set size spectral shapes
are evaluated for some example generalized and doubly-generalized LDPC code
ensembles.Comment: 17 pages, 6 figures. To appear in IEEE Transactions on Information
Theor