886 research outputs found

    Fitting and Interpreting Continuous-Time Latent Markov Models for Panel Data

    Get PDF
    Multistate models are used to characterize disease processes within an individual. Clinical studies often observe the disease status of individuals at discrete time points, making exact times of transitions between disease states unknown. Such panel data pose considerable modeling challenges. Assuming the disease process progresses according a standard continuous-time Markov chain (CTMC) yields tractable likelihoods, but the assumption of exponential sojourn time distributions is typically unrealistic. More flexible semi-Markov models permit generic sojourn distributions yet yield intractable likelihoods for panel data in the presence of reversible transitions. One attractive alternative is to assume that the disease process is characterized by an underlying latent CTMC, with multiple latent states mapping to each disease state. These models retain analytic tractability due to the CTMC framework but allow for flexible, duration-dependent disease state sojourn distributions. We have developed a robust and efficient expectation-maximization (EM) algorithm in this context. Our complete data state space consists of the observed data and the underlying latent trajectory, yielding computationally efficient expectation and maximization steps. Our algorithm outperforms alternative methods measured in terms of time to convergence and robustness. We also examine the frequentist performance of latent CTMC point and interval estimates of disease process functionals based on simulated data. The performance of estimates depends on time, functional, and data-generating scenario. Finally, we illustrate the interpretive power of latent CTMC models for describing disease processes on a data-set of lung transplant patients. We hope our work will encourage wider use of these models in the biomedical setting

    Measurement Error and Misclassification in Interval-Censored Life History Data

    Get PDF
    In practice, data are frequently incomplete in one way or another. It can be a significant challenge to make valid inferences about the parameters of interest in this situation. In this thesis, three problems involving such data are addressed. The first two problems involve interval-censored life history data with mismeasured covariates. Data of this type are incomplete in two ways. First, the exact event times are unknown due to censoring. Second, the true covariate is missing for most, if not all, individuals. This work focuses primarily on the impact of covariate measurement error in progressive multi-state models with data arising from panel (i.e., interval-censored) observation. These types of problems arise frequently in clinical settings (e.g. when disease progression is of interest and patient information is collected during irregularly spaced clinic visits). Two and three state models are considered in this thesis. This work is motivated by a research program on psoriatic arthritis (PsA) where the effects of error-prone covariates on rates of disease progression are of interest and patient information is collected at clinic visits (Gladman et al. 1995; Bond et al. 2006). Information regarding the error distributions were available based on results from a separate study conducted to evaluate the reliability of clinical measurements that are used in PsA treatment and follow-up (Gladman et al. 2004). The asymptotic bias of covariate effects obtained ignoring error in covariates is investigated and shown to be substantial in some settings. In a series of simulation studies, the performance of corrected likelihood methods and methods based on a simulation-extrapolation (SIMEX) algorithm (Cook \& Stefanski 1994) were investigated to address covariate measurement error. The methods implemented were shown to result in much smaller empirical biases and empirical coverage probabilities which were closer to the nominal levels. The third problem considered involves an extreme case of interval censoring known as current status data. Current status data arise when individuals are observed only at a single point in time and it is then determined whether they have experienced the event of interest. To complicate matters, in the problem considered here, an unknown proportion of the population will never experience the event of interest. Again, this type of data is incomplete in two ways. One assessment is made on each individual to determine whether or not an event has occurred. Therefore, the exact event times are unknown for those who will eventually experience the event. In addition, whether or not the individuals will ever experience the event is unknown for those who have not experienced the event by the assessment time. This problem was motivated by a series of orthopedic trials looking at the effect of blood thinners in hip and knee replacement surgeries. These blood thinners can cause a negative serological response in some patients. This response was the outcome of interest and the only available information regarding it was the seroconversion time under current status observation. In this thesis, latent class models with parametric, nonparametric and piecewise constant forms of the seroconversion time distribution are described. They account for the fact that only a proportion of the population will experience the event of interest. Estimators based on an EM algorithm were evaluated via simulation and the orthopedic surgery data were analyzed based on this methodology

    Development of a decision support tool to facilitate primary care management of patients with abnormal liver function tests without clinically apparent liver disease [HTA03/38/02]. Abnormal Liver Function Investigations Evaluation (ALFIE)

    Get PDF
    Liver function tests (LFTs) are routinely performed in primary care, and are often the gateway to further invasive and/or expensive investigations. Little is known of the consequences in people with an initial abnormal liver function (ALF) test in primary care and with no obvious liver disease. Further investigations may be dangerous for the patient and expensive for Health Services. The aims of this study are to determine the natural history of abnormalities in LFTs before overt liver disease presents in the population and identify those who require minimal further investigations with the potential for reduction in NHS costs

    Improving Emergency Department Patient Flow Through Near Real-Time Analytics

    Get PDF
    ABSTRACT IMPROVING EMERGENCY DEPARTMENT PATIENT FLOW THROUGH NEAR REAL-TIME ANALYTICS This dissertation research investigates opportunities for developing effective decision support models that exploit near real-time (NRT) information to enhance the operational intelligence within hospital Emergency Departments (ED). Approaching from a systems engineering perspective, the study proposes a novel decision support framework for streamlining ED patient flow that employs machine learning, statistical and operations research methods to facilitate its operationalization. ED crowding has become the subject of significant public and academic attention, and it is known to cause a number of adverse outcomes to the patients, ED staff as well as hospital revenues. Despite many efforts to investigate the causes, consequences and interventions for ED overcrowding in the past two decades, scientific knowledge remains limited in regards to strategies and pragmatic approaches that actually improve patient flow in EDs. Motivated by the gaps in research, we develop a near real-time triage decision support system to reduce ED boarding and improve ED patient flow. The proposed system is a novel variant of a newsvendor modeling framework that integrates patient admission probability prediction within a proactive ward-bed reservation system to improve the effectiveness of bed coordination efforts and reduce boarding times for ED patients along with the resulting costs. Specifically, we propose a cost-sensitive bed reservation policy that recommends optimal bed reservation times for patients right during triage. The policy relies on classifiers that estimate the probability that the ED patient will be admitted using the patient information collected and readily available at triage or right after. The policy is cost-sensitive in that it accounts for costs associated with patient admission prediction misclassification as well as costs associated with incorrectly selecting the reservation time. To achieve the objective of this work, we also addressed two secondary objectives: first, development of models to predict the admission likelihood and target admission wards of ED patients; second, development of models to estimate length-of-stay (LOS) of ED patients. For the first secondary objective, we develop an algorithm that incorporates feature selection into a state-of-the-art and powerful probabilistic Bayesian classification method: multi-class relevance vector machine. For the second objective, we investigated the performance of hazard rate models (in particual, the non-parametric Cox proportional hazard model, parametric hazard rate models, as well as artificial neural networks for modeling the hazard rate) to estimate ED LOS by using the information that is available at triage or right after as the covariates in the models. The proposed models are tested using extensive historical data from several U.S. Department of Veterans Affairs Medical Centers (VAMCs) in the Mid-West. The Case Study using historical data from a VAMC demonstrates that applying the proposed framework leads to significant savings associated with reduced boarding times, in particular, for smaller wards with high levels of utilization. For theory, our primary contribution is the development of a cost sensitive ward-bed reservation model that effectively accounts for various costs and uncertainties. This work also contributes to the development of an integrated feature selection method for classification by developing and validating the mathematical derivation for feature selection during mRVM learning. Another contribution stems from investigating how much the ED LOS estimation can be improved by incorporating the information regarding ED orderable item lists. Overall, this work is a successful application of mixed methods of operation research, machine learning and statistics to the important domain of health care system efficiency improvement
    • …
    corecore