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Abstract

In practice, data are frequently incomplete in one way or another. It can be a signifi-

cant challenge to make valid inferences about the parameters of interest in this situation.

In this thesis, three problems involving such data are addressed. The first two problems

involve interval-censored life history data with mismeasured covariates. Data of this type

are incomplete in two ways. First, the exact event times are unknown due to censoring.

Second, the true covariate is missing for most, if not all, individuals. This work focuses

primarily on the impact of covariate measurement error in progressive multi-state models

with data arising from panel (i.e., interval-censored) observation. These types of problems

arise frequently in clinical settings (e.g. when disease progression is of interest and patient

information is collected during irregularly spaced clinic visits). Two and three state models

are considered in this thesis. This work is motivated by a research program on psoriatic

arthritis (PsA) where the effects of error-prone covariates on rates of disease progression

are of interest and patient information is collected at clinic visits (Gladman et al. 1995;

Bond et al. 2006). Information regarding the error distributions were available based on

results from a separate study conducted to evaluate the reliability of clinical measurements

that are used in PsA treatment and follow-up (Gladman et al. 2004). The asymptotic bias

of covariate effects obtained ignoring error in covariates is investigated and shown to be

substantial in some settings. In a series of simulation studies, the performance of corrected

likelihood methods and methods based on a simulation-extrapolation (SIMEX) algorithm

(Cook & Stefanski 1994) were investigated to address covariate measurement error. The

methods implemented were shown to result in much smaller empirical biases and empirical

coverage probabilities which were closer to the nominal levels.

The third problem considered involves an extreme case of interval censoring known as

current status data. Current status data arise when individuals are observed only at a

single point in time and it is then determined whether they have experienced the event of

interest. To complicate matters, in the problem considered here, an unknown proportion

of the population will never experience the event of interest. Again, this type of data is

incomplete in two ways. One assessment is made on each individual to determine whether

or not an event has occurred. Therefore, the exact event times are unknown for those
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who will eventually experience the event. In addition, whether or not the individuals will

ever experience the event is unknown for those who have not experienced the event by the

assessment time. This problem was motivated by a series of orthopedic trials looking at the

effect of blood thinners in hip and knee replacement surgeries. These blood thinners can

cause a negative serological response in some patients. This response was the outcome of

interest and the only available information regarding it was the seroconversion time under

current status observation. In this thesis, latent class models with parametric, nonpara-

metric and piecewise constant forms of the seroconversion time distribution are described.

They account for the fact that only a proportion of the population will experience the

event of interest. Estimators based on an EM algorithm were evaluated via simulation and

the orthopedic surgery data were analyzed based on this methodology.
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Chapter 1

Introduction

Life history data are frequently collected for use in investigations within disciplines such

as medicine, epidemiology, biology, sociology, economics, engineering and actuarial science

(Kalbfleisch & Prentice 2002; Lawless 2003). Such data arise when individuals are observed

over time and information on the occurrence of one or more events for these individuals is

collected. Unfortunately, this type of data are often incomplete in practice. Exact event

times are often unknown and the covariate measurements collected may be prone to error.

In this thesis, methodology dealing with different types of incomplete life history data will

be explored.

1.1 Interval Censored Life History Data

Life history data can be represented in two closely related ways. One is the multi-state

framework, in which case a multi-state model is used to feature the data. A multi-state

model is a model for a stochastic process in which a response can occupy one of a set of

possible discrete states at any time. The second way that life history data can be rep-

resented is through the event occurrence framework. Counting processes can be used to

formulate models under this framework. In contrast to the multi-state framework, in this

case it is the number of occurrences of a particular event in a given time interval that

is recorded. Some problems lend themselves naturally to the multi-state framework and

some to the event occurrence framework, although many problems are amenable to both
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(Kalbfleisch & Lawless 1999). Consider recurrent events for example. Recurrent events

arise when transient events can occur repeatedly to an individual over time. Examples

include seizures suffered by persons with epilepsy, damaged joints in a patient suffering

from arthritis and failures of a piece of equipment or software. An even more complex set-

ting involves consideration of multiple events that may occur simultaneously, either once

or repeatedly, to individuals over time (Kalbfleisch & Lawless 1999). The number of states

and the transitions which are possible are dictated by the problem being considered. Under

the multi-state framework, states can be formed by defining categories based on the total

number of events experienced. In an application that will be considered in this research,

the recurrent event is joint damage in a study of arthritis. One way to define states is

by the number of damaged joints so that the states essentially represent the severity of

arthritis (Gladman et al. 1995). The data would then consist of a count of the number of

joints observed to be damaged over a specific time interval. Alternatively, the states could

be defined by different combinations of damaged joints, so that the severity of arthritis

would be classified by the relative importance of groups of damaged joints.

In this thesis the focus will be on the multi-state framework. With an event defined

as a transition between two states, multi-state models provide convenient representations

for most life history problems. The state structure defines the states and illustrates the

possible transitions (Hougaard 1999). Some examples of these structures are given below

in Figures 1.1 to 1.4.

Figure 1.1: Two-state lifetime model involving only one possible transition (i.e. death).

Alive
(State 0)

- Dead
(State 1)

Ideally, the transition times as well as the states will be recorded for all individuals.

However, this is often not the case. For instance, it is rarely the case that all individuals

are observed until they enter an absorbing state, so the transition times are right-censored.
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Figure 1.2: Three-state illness-death model.

Healthy
(State 1)

- Illness
(State 2)

Dead
(State 3)

@
@

@
@R

�
�

�
�	

Right censoring may have an impact on inference if the censoring mechanism is dependent

(or conditionally dependent) on the event occurrence mechanism (i.e. the observed sam-

ple including incomplete observations is not representative of the population in absence of

censoring) (Andersen & Keiding 2002). Other forms of incomplete data can arise when

individuals are excluded from the study based on their stage in the process. For instance,

this may occur if only individuals who experience a precipitating event are included in the

study (truncation) (Matthews & Cook 2005). Again, if this is not going to be accounted

Figure 1.3: Competing risks model (i.e. multiple modes of failure) involving K possible transitions.

Alive
(State 0)

�
�

�
���

Dead-Cause 1
(State 1)

�����:
Dead-Cause 2

(State 2)

HH
HHHj

Dead-Cause K
(State K)

...

...
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Figure 1.4: Progressive model involving 2K +1 possible transitions (including the possibility of transition
to an absorbing state).

State 1 - State 2 - . . . - State K + 1

Dead
(State K + 2)

@
@@R

A
AAU

�
��	

. . .

for explicitly in the analysis, it is important that these individuals do not experience sys-

tematically higher or lower risks of experiencing the event(s) over the unobserved durations

than the population of interest.

Sometimes individuals are observed at prespecified assessment times and their states

are determined only at these times. Information about transitions between successive

observation times is unavailable. This type of data are sometimes referred to as panel

data in the context of multi-state models (Kalbfleisch & Lawless 1989) or interval-censored

lifetime data in survival analysis. This type of data arises naturally in settings such as

clinical trials where patients are examined by physicians periodically and their states are

assessed at those visits. As in the case of censoring and truncation, inference in this case

may be affected if the life history process and the follow-up process are not independent. If

this is the case, the follow-up process may contain information on the life history process so

both processes must be modeled simultaneously to ensure the validity of inference. If they

are independent it is a much simpler problem since only the life history process must be

modeled. Therefore, in the panel data case, it is usually assumed that the follow-up times

are specified in advance or that the follow-up process is independent of the life history

process (Grüger et al. 1991). However, these are often unrealistic assumptions in clinical

settings. Grüger et al. (1991) present additional noninformative assessment schemes under

which standard statistical inferences are still valid:
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• assessment at regularly spaced intervals,

• any assessment scheme (regular or irregular) that has been fixed in advance,

• random assessment times that are independent of the life histories of the subjects

under study, and

• in the case of clinical studies, a doctor’s care assessment scheme where the doctor

monitoring a patient is permitted to set the next assessment time depending on the

state the patient occupies at the current assessment.

Patient self-selection of assessment times may be informative so if this is the case, the

follow-up process must be taken into account in the likelihood to conduct valid statistical

inference (Grüger et al. 1991). Even though we do not obtain complete information

regarding the movements through states for a given individual, the data we do obtain

can still provide valuable information regarding the parameters of interest. Modeling and

inference in the presence of censoring will be discussed in the following sections.

1.1.1 Two-state Models

The simplest state structure involves two states. For example, a mortality model involves

only two states, Alive and Dead. This structure is illustrated in Figure 1.1. The Dead state

is called an absorbing state, as once it is entered an individual cannot move back to the

Alive state. This could represent, for instance, death of an individual or failure of a piece of

equipment. All individuals are expected to eventually make the transition between states.

However, in practice there are situations where this is not necessarily the case. These will

be discussed further for cure rate data in Chapter 4. Under the simpler model, however,

there is only one possible transition to consider and all subjects will eventually make the

transition. It is characterized by a hazard function, λ(t), which is a function of parame-

ter(s) and may also be a function of time and covariates. There has been much work done

in developing methodology to deal with this type of data (Lawless 2003). Analysis in this

situation is referred to as Lifetime Data Analysis or Survival Analysis. A slightly more

complex state structure permits movement back and forth between the two states.



6

Lifetime data can be characterized by certain distributions. First, let T be a non-

negative random variable representing time to failure or death. Depending on how the

data are collected and summarized, it may be continuous (the exact time is collected)

or discrete (the lifetimes are grouped in some way). Considering continuous T , let the

probability density function (p.d.f.), of T be denoted by fT (t). Then the cumulative

distribution function (c.d.f.) is given by

FT (t) = P (T ≤ t) =

∫ t

0

fT (x)dx. (1.1)

From this, we can define the survivor function, which is the probability that an individual

survives to time t.

FT (t) = P (T > t) = 1− FT (t) =

∫ ∞

t

fT (x)dx. (1.2)

FT (t) is a non-increasing continuous function with FT (0) = 1 and limt→∞FT (t) = 0.

An extremely important function in the characterization of life history data is the hazard

function (or transition intensity function, in the case of multi-state models). It is essentially

the instantaneous probability of death, failure or transition between states at time t, given

the individual survives or remains in the current state up to time t. It can be written as

λ(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)

∆t
=
fT (t)

FT (t)
. (1.3)

Equivalently, if we let

N(t) =

{
1, if event occurs at time t

0, otherwise
,

then the hazard function is

λ(t) = lim
∆t→0

P (∆N(t) = 1|T ≥ t)

∆t
, (1.4)

where ∆N(t) = N(t + ∆t) − N(t). This expression is similar to those for the transition

intensities under a multi-state framework. Another function which is of interest when

dealing with life history data is the cumulative hazard function:

Λ(t) =

∫ t

0

λ(s)ds. (1.5)
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Any of the functions, fT (t), FT (t), FT (t), λ(t), or Λ(t) are sufficient to specify the distri-

bution of T (Lawless 2003). Often, however, the hazard function is used as the basis for

analysis.

There are several possible approaches one can take when modeling a lifetime distribu-

tion. These include parametric, semi-parametric and nonparametric models. Parametric

modeling involves specification of the lifetime distribution up to a vector of unknown pa-

rameters θ. The Exponential, Weibull, Log-logistic, Log-normal and Gamma distributions

are but a few of the possible candidates for the distribution of T . A generalization to these

parametric models involves the more flexible weakly parametric models. Rather than the

hazard functions that exist under fully parametric models, a piecewise constant hazard

function may be assumed. Parametric models are attractive because estimation and infer-

ence are relatively straightforward. However, a specific parametric form has to be deemed

appropriate for the data and this is often not a trivial task. An alternative is to carry out

nonparametric estimation. These models do not force a functional form on the data. A

widely used nonparametric estimate in survival analysis is the Kaplan-Meier or product

limit estimate of the survivor function (Kaplan & Meier 1958). This is similar to the stan-

dard empirical estimate of the survivor function with some modifications to account for

the fact that when dealing with censored data, the number of failure times greater than or

equal to a certain time, t, are not usually known exactly (Lawless 2003). Confidence limits

on these estimates can also be obtained. Often these nonparametric estimates are used

to assess the appropriateness of parametric models when performing diagnostics (Lawless

2003; Matthews & Cook 2005).

Interest frequently lies in investigating the effects of covariates, z, on the time to failure

or death. To do so we could adopt a proportional hazards regression model if it is thought

that the covariates have a multiplicative effect on the hazard function:

λ(t) = λ0(t)φ(z), (1.6)

where φ(·) is some specified function. This can be a parametric model if the baseline

transition intensity, λ0(t), is assumed to have a parametric form. Alternatively, a semi-

parametric approach could be taken if this baseline transition intensity is left arbitrary.
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The relative risk function, φ(z), can take on various parametric forms such as:

• log-linear form: φ(z;β) = eβ
′z ,

• linear form: φ(z;β) = 1 + β′z, and

• logistic form: φ(z;β) = log(1 + eβ
′z).

The Cox Model, which is simply a proportional hazards model with a log-linear relative

risk, is widely used in practice.

Inference may be conducted based on the adopted model via maximum likelihood es-

timation. The first step here is to determine the likelihood function based on the prob-

ability of observing the data that were actually collected. This will be a function of

the unknown parameters that we can maximize to determine which values of the param-

eters are most likely to give rise to the observed data. Suppose θ is a p-dimensional

vector of unknown parameters upon which the distribution of random variable Y de-

pends. For p.d.f. f(y;θ), the likelihood function based on a random sample y1, y2, ..., yn

is L(θ) =
∏n

i=1 f(yi;θ). The maximum likelihood estimate, θ̂, is usually found by max-

imizing the log-likelihood function with respect to θ. The log-likelihood function would

be l(θ) = log(L(θ)) =
∑n

i=1 log(f(yi;θ)) and the maximum likelihood estimate would be

obtained by setting the score functions to 0; Uj(θ) = ∂l(θ)/∂θj = 0 for j = 1, 2, ..., p.

Denote the maximum likelihood estimator based on a sample of size n as θ̂n. Then, un-

der certain mild regularity conditions,
√
n
(
θ̂n − θ

)
is asymptotically normally distributed

with mean 0 and covariance matrix I−1(θ). The matrix I(θ) is called the Fisher or ex-

pected information matrix and its (i, j) element is defined as: Iij(θ) = E (−∂2l(θ)/∂θi∂θj),

i, j = 1, 2, ..., p. The estimator θ̂n is consistent for θ and the observed information ma-

trix n−1I(θ̂) is a consistent estimator of n−1I(θ), where the (i, j) element of I(θ̂) is

(−∂2l(θ)/∂θi∂θj) |θ=θ̂
. These and several other asymptotic results involving maximum

likelihood estimators lead to useful inferences (Lawless 2003).

Likelihood functions are presented below for several types of incomplete data that

arise in lifetime data analysis. For the purposes of this development we will assume T
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is continuous. Likelihood function formulation follows in a similar way for discrete time,

T . Assume a parametric form is appropriate so the distribution of T is specified up to

an unknown vector of parameters, θ. Therefore, we have p.d.f. fT (t;θ), c.d.f. FT (t;θ),

survivor function FT (t;θ) and hazard function λ(t;θ). Consider first the case where all

n subjects are observed until their failure time or time to death. Therefore, we observe

t1, t2, t3, ..., tn and the likelihood function is:

L(θ) =
n∏
i=1

fT (ti;θ). (1.7)

Unfortunately complete survival data are usually not obtained for each subject in prac-

tice. Most datasets include complete data on some subjects and incomplete data on others.

The most common type of incomplete data arises due to right censoring. This occurs

when the study ceases or an individual is lost to follow-up prior to experiencing the event of

interest. Type I Censoring describes the situation where each subject has a fixed potential

censoring time ri > 0 such that Ti is observed if Ti ≤ ri (Lawless 2003). Therefore, for

individuals with a right-censored event time (i.e. ri is less than the failure time for subject

i), all we know is that their event time is larger than their censoring time. For each subject

i, i = 1, 2, ..., n, the data collected in the presence of right censoring would be (ui, δi),

where δi = I(Ti ≤ ri) and ui = min(Ti, ri). Then, the likelihood function is:

L(θ) =
n∏
i=1

[fT (ui;θ)]
δi [FT (ui;θ)]

1−δi

=
n∏
i=1

fT (ui;θ) [λT (ui;θ)]
δi−1 .

An extension of this involves a random censoring time, R, rather than a fixed potential

censoring time for each subject. Sometimes the censoring process is linked to the time to

event process and therefore must be taken into account when estimating the parameters

of interest. Another variation of right censoring is Type II Censoring. It involves the

situation where only the s shortest lifetimes are observed where s is chosen in advance.

The objective in these types of schemes is the efficient use of study resources. In this case

t(1) ≤ t(2) ≤ t(3) · · · ≤ t(s) are observed. The study is then stopped and censored event
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times are recorded for the remaining subjects. The likelihood function is then based on

the joint distribution of order statistics (Lawless 2003).

Left-censored data arise when the event is known to have occurred prior to a certain

time, l, but the exact time is unknown. For instance, consider a study investigating the

age at development of a particular health condition. People may enter the study having

already been diagnosed, however, there may be no record of the exact time of onset (Lee

& Wang 2003). Now the data for subject i with left censoring time li would be (ui, ηi),

where ηi = I(li ≤ Ti) and ui = max(Ti, li). For subjects with left-censored event times, the

contribution to the likelihood would be FT (ui;θ). Therefore the likelihood in the presence

of Type I right and left censoring is:

L(θ) =
n∏
i=1

[fT (ui;θ)]
δiηi [FT (ui;θ)]

1−δi [FT (ui;θ)]
1−ηi .

Interval censoring is quite common in survival analysis. This would occur if subjects were

being examined at intermittent times and the event of interest occurred between assessment

times. Sun (2006) provides an excellent survey of methodology for interval-censored life

history data. The exact event time is unknown; it is known only to lie between the two

examination times, ci and di, say. That is, ci ≤ Ti < di for subject i. The contribution

to the likelihood function by this individual will be FT (di;θ) − FT (ci;θ) or equivalently,

FT (ci;θ) − FT (di;θ). Let ∆i = I(Ti ≤ ci) and Γi = I(ci ≤ Ti < di). The other types of

data can be considered as special cases of interval-censored data. Specifically, ci = di when

an exact event time is observed, di = ∞ for right-censored data and ci = 0 for left-censored

data. Given the notation introduced above, we can build a likelihood function for complete

observations and the types of censored data discussed above. With the data for subject i

given as (ci, di,∆i,Γi) for i = 1, 2, 3, ..., n, the likelihood function will be:

L(θ) =
n∏

i=1

[fT (ci;θ)]
∆iΓi [FT (di;θ)− FT (ci;θ)]

(1−∆i)Γi [FT (ci;θ)]
∆i(1−Γi) [FT (di;θ)]

(1−∆i)(1−Γi) . (1.8)

The first contribution is from observed event times, the second from interval-censored event

times, the third from left-censored times (with censoring times, ci) and the fourth from

right-censored times (with censoring times di). Note that these likelihood functions are
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based on the assumption that the censoring times are fixed for each subject. If this is not

reasonable, the censoring process must be modeled and incorporated into the analysis.

Truncation is another form of incomplete data that arise in life history data. In the

presence of truncation, likelihoods are expressed based on conditional distributions. The

data do not appear to be different for censored and truncated data. The main difference

between censoring and truncation is that truncation actually has an impact on the units

selected for the sample, whereas censoring results in incomplete data on the life history

process for a unit in the study (Commenges 2002). Truncated data will not be considered

in this research.

If a semi-parametric approach is taken and the proportional hazards model, (1.6),

deemed appropriate, inference on the parameters of interest can be conducted using the

partial likelihood function rather than the full likelihood function. The partial likelihood

function is obtained by factoring the full likelihood function into conditional probabilities

and discarding the terms which involve nuisance parameters (Lawless 2003). This is much

simpler since the baseline hazard function and any parameters upon which it depends

are not included in the partial likelihood. However, there is usually a loss of information

when this method is used and this loss is difficult to assess (Lawless 2003). Additional

information on the derivation of this partial likelihood can be found in Cox (1975) and

Matthews & Cook (2005) and information on its asymptotic properties can be found in

Andersen et al. (1993).

1.1.2 Multi-state Models

State structures and analyses become more complex as the number of states and possible

transitions increase. Examples of these include illness-death models (Figure 1.2), compet-

ing risks models (Figure 1.3) and progressive models (Figure 1.4). As in the case of the

two-state structure, it is often the intensities associated with the transitions which are of

interest in the analysis. Roughly speaking these represent the instantaneous probability of

transition at time t. The intensities are frequently modeled as a function of covariates that

are believed to be relevant to the process. These covariates may be fixed or time-varying;
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however, if a time-varying covariate process may be influenced by the life history process

(these are known as internal covariates), the covariate process must be modeled in addition

to the life history process and interpretation of model parameters will not be as straight-

forward as in the case of external covariates (Kalbfleisch & Prentice 2002). Transition

intensities can also be modeled as a function of time if it is believed that they vary with

time (Kalbfleisch & Lawless 1999).

Under a general multi-state framework interest often lies in transitions between states

or in the durations of the sojourns in states or times between successive state transitions.

When only panel data are available, the exact transition times are unknown and therefore

an analysis of the durations of the sojourns is not convenient. In this case, it is the

transitions between states that are of interest. There are many different ways to model

data under the multi-state framework. Hougaard (1999) gives a concise review of such

models. We will consider first a single sample problem. The most commonly adopted

model is based on Markov processes. A process {Y (t), t ≥ 0} with state space 1, ..., K can

be modeled as a continuous-time Markov process if for all 0 ≤ s ≤ t and j, k = 1, ..., K,

P {Y (t) = k|Y (s) = j, Y (u) = y(u), 0 ≤ u < s} = P {Y (t) = k|Y (s) = j} . (1.9)

To obtain an expression for the transition intensities for a general multi-state model similar

to the two-state version in (1.4), let

Njk(t) =

{
1, if transition j → k occurs at time t

0, otherwise
,

and N(t) = {Njk(t) : j, k = 1, 2, ..., K}. Then the transition intensities can be written as

λjk(t|H(t)) = lim
∆t→0

P (∆Njk(t) = 1|H(t))

∆t
, (1.10)

where H(t) = {N(s), 0 ≤ s < t} is the state path or history up to time t (Kalbfleisch &

Lawless 1999). It is appropriate to omit the state history of an individual in (1.10) and

write λjk(t|H(t)) = λjk(t) if the Markovian Property assumption given in (1.9) is rea-

sonable. This property holds if the conditional distribution of the future states given the

current and past states depends only on the current state and is independent of the past
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state path (Ross 1993). Under this model, analysis is greatly simplified as the transition

intensities do not depend on the entire state path. A further simplification is achieved

when the intensities are time homogeneous. In this case, λjk(t) = λjk is independent of

t for all j, k = 1, ..., K. It is often the case that the assumption of time-homogeneity is

not appropriate. A useful compromise which still exploits some of the favorable proper-

ties of the time-homogeneous models is the use of piecewise constant transition intensities.

In the presence of covariates, piecewise constant baseline transition intensities with 4-10

pieces have been found to be generally robust even when the true underlying intensities

are smooth functions (Lawless & Zhan 1998). Semi-Markov models are appropriate when

the transition probabilities depend on the time since the last transition as well as the cur-

rent state (Kalbfleisch & Lawless 1999). Again, since the transition times are unknown in

the panel data case, semi-Markov models are not readily adopted. However, some other

general non-Markovian models which do not depend on transition times, can be applied to

panel data. In these models, the transition intensities can be permitted to depend on the

past state path in any way. This can be accommodated for progressive state structures.

However, for non-progressive state structures, these general models are not feasible since

it is often extremely difficult, if not impossible, to write general formulas for the transition

probabilities (Hougaard 1999).

A general multi-state model with state space 1, 2, ..., K can be described via the follow-

ing transition intensity matrix, Q(t):

Q(t) =



−
∑K

j=2 λ1j(t) λ12(t) · · · λ1,K−1(t) λ1K(t)
λ21(t) −

∑K
j=1,j 6=2 λ2j(t) · · · λ2,K−1(t) λ2K(t)

λ31(t) λ32(t) · · · λ3,K−1(t) λ3K(t)

...
...

...
...

...

λK−1,1(t) λK−1,2(t) · · · −
∑K

j=1,j 6=K−1 λK−1,j(t) λK−1,K(t)
λK1(t) λK2(t) · · · λK,K−1(t) −

∑K−1
j=1 λKj(t)


(1.11)

Note from the above matrix, the diagonal elements are given by λkk(t) = −
∑K

j=1,j 6=k λkj(t)

for k = 1, 2, ..., K. It is convention to define these transition intensities in this manner to
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satisfy the constraints
∑K

j=1 λkj(t) = 0, k = 1, 2, ...K (Kalbfleisch & Lawless 1999). Fixed

covariates can be easily incorporated into the formulations by expressing the transition

intensities as a function of time and the covariates, λjk(t) = g(t,z), for some non-negative

function g. A multiplicative model is frequently used in practice. For a given individual

(with subject subscripts suppressed) we often adopt models of the form

λjk(t) = λ0jk(t) exp(β′jkzjk), (1.12)

where λ0ij(t) are the baseline transition intensities which may or may not depend on t and

βjk is a vector of regression coefficients associated with fixed covariates of interest, zjk,

j, k = 1, 2, ..., K. Here, the baseline transition intensities and the regression coefficients are

permitted to vary across the possible transitions. This is analogous to the proportional

hazards model commonly applied in lifetime data analysis (see (1.6)).

A progressive state structure, such as that presented in Figure 1.4, is much simpler than

the general K-state model specified by the transition intensity matrix in (1.11). Consider

K+1 distinct states that individuals may occupy at any given time. These could represent

disease stages, for instance. Suppose the transition intensities between the states are of

interest and the last state in the progression (State K + 1) is an absorbing state and can

only be reached through transition from State K. The state structure associated with this

problem (Figure 1.5) is a slightly simpler version of that given in Figure 1.4. In addition,

Figure 1.5: Progressive model involving K transition intensities.

State 1 -
λ1

State 2 -
λ2 . . . -

λK
State K + 1

suppose that there are n individuals who are monitored periodically over the course of the

study so that for subject i there are mi sets of observations at times {uij; j = 1, ...,mi}.
Each set of observations will include the state occupied by individual i and may also in-

clude measurements on covariates. For the purposes of this work we will consider only fixed
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covariates (i.e. baseline values of covariates). Therefore, for subject i, the data consist of

(uij, yi(uij), zi) for j = 1, 2, ...,mi. We will assume that all subjects enter the study at time

0 (ui0 = 0 for i = 1, 2, ...n) in State 1 (yi(ui0) = 1 for i = 1, 2, ...n).

To model this process, assume a multiplicative model similar to (1.12) is appropriate.

In particular, let

λik(t) = λ0k(t) exp(βk
′zi), (1.13)

for k = 1, ..., K, represent the intensity associated with the k → k+1 transition for subject

i. Suppose λik(t) depends on time via a piecewise constant baseline intensity with R parts:

λ0k(t) =



λ0k1, a0 ≤ t < a1

λ0k2, a1 ≤ t < a2

λ0k3, a2 ≤ t < a3

...
...

λ0kR, aR−1 ≤ t < aR

. (1.14)

Let λ0r represent a vector of the baseline intensities for all transitions for t ∈ [ar−1, ar) so

that λ0,r = (λ01r, λ02r, · · · , λ0Kr)
′ for r = 1, ..., R. An extension of this model may allow

for different numbers of piecewise constant baseline intensities for each transition. That

is, rather than having the same number of intensities for each transition, R, we could have

Rk, a number which depends on the transition, k. Considering the simpler model given in

(1.14), an illustration of what may be observed for a given subject and the time-varying

baseline transition intensities are displayed in Figure 1.6. Clearly the set-up can be quite

complicated so care must be taken when constructing expressions to be used in estimation.

For general multi-state models as outlined above, the data obtained are interval-censored.

To obtain the likelihood function, we require an expression for transition probabilities

rather than the intensities. Unfortunately, in the case of general state structures, there is

often no closed form for the transition probabilities which means a likelihood function can-

not be formulated. Kalbfleisch & Lawless (1985) describe a method to obtain maximum

likelihood estimates with panel data for general state structures under the assumption

of time homogeneous intensities. Consider panel data under a continuous-time Markov
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Figure 1.6: An illustration of the observation process and the underlying baseline intensities in effect
over time for an arbitrary subject, i.

Data
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model with transition intensity matrix given by Q(t) in (1.11). This method is primarily

applicable for time-homogenous models where λjk(t) = λjk although extensions to incor-

porate some simple forms of non-homogeneity are possible (Kalbfleisch & Lawless 1985;

Gentleman et al. 1994). Suppose that a K-state time-homogeneous multi-state model is

appropriate and let the transition intensities be characterized up to a vector of p function-

ally independent parameters, θ, so the transition intensity matrix is Q(θ) = [λjk(θ)](K×K).

Let P (·;θ) = [pjk(·;θ)](K×K) represent the transition probability matrix. Since we are deal-

ing with a time-homogeneous problem, we have P (s, s+ t) = P (0, t) = P (t). Then, solving

the forward Kolmogorov differential equation with s = 0, dP (t;θ)/dt = P (t;θ)Q(θ), with

boundary condition P (0;θ) = I gives the unique solution

P (t;θ) = exp (Q(θ)t) . (1.15)

It is of interest to estimate θ, so suppose a random sample of n individuals is observed

at times u0, u1, ..., um. If we denote the number of individuals that transition from state

j to k between ul−1 and ul by njkl and condition on the initial distribution of individuals

among the states, the likelihood function can be written as

L(θ) =
m∏
l=1

{
K∏

j,k=1

[pjk(ul − ul−1;θ)]
njkl

}
. (1.16)
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The function that we need to maximize with respect to θ is the log-likelihood function:

l(θ) =
m∑
l=1

K∑
j,k=1

njkl log[pjk(ul − ul−1;θ)]. (1.17)

If we were to proceed with the Newton-Raphson algorithm, first and second derivatives of

the log-likelihood function would be required. These are as follows:

Sr(θ) =
∂l(θ)

∂θr
=

m∑
l=1

K∑
j,k=1

[
njkl

∂pjk(ul − ul−1;θ)/∂θr
pjk(ul − ul−1;θ)

]
, r = 1, 2, ..., p, (1.18)

and

∂2l(θ)
∂θr∂θs

=
m∑

l=1

K∑
j,k=1

njkl

{
∂2pjk(ul − ul−1;θ)/∂θr∂θs

pjk(ul − ul−1;θ)
− [∂pjk(ul − ul−1;θ)/∂θr] [∂pjk(ul − ul−1;θ)/∂θs]

p2
jk(ul − ul−1;θ)

}
.

(1.19)

These derivatives can be extremely difficult to obtain analytically since the transition

probabilities are often complex functions of the intensities, if they can be written in closed

form at all. However, given the form of the transition probability matrix in (1.15), we

can take advantage of a canonical decomposition to help calculate these derivatives. If

for a given value of θ, the transition intensity matrix, Q(θ), has distinct eigenvalues

d1, d2, ..., dK and eigenvectors, D1,D2, ...,DK , which are summarized in matrix A such

that A = (D1,D2,D3, · · ·DK), then we can use matrix decomposition to obtain

P (t;θ) = ADA−1, (1.20)

where D = diag(ed1t, ed2t, ..., edKt). The first derivatives can then be calculated as:

∂P (t;θ)

∂θr
= AVrA

−1, (1.21)

where r = 1, 2, ..., p and

Vr =

 g
(r)
jk (edjt−edkt)

dj−dk
j 6= k

g
(r)
jj te

djt j = k
, (1.22)

where j, k = 1, 2, ..., K and g
(r)
jk is the (j, k) entry in G(r) = A−1 [∂Q(θ)/∂θr]A. This

derivation is given in Jennrich & Bright (1976) and Kalbfleisch & Lawless (1985).
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The commonly used Newton-Raphson algorithm requires the second derivatives of the

log-likelihood. Here, however, a quasi-Newton procedure is outlined, where the second

derivative given in (1.19) is replaced with its expectation, leading to an algorithm which

only requires first derivatives. Let Nj(ul−1) =
∑K

k=1 njkl be the number of individuals in

state j at time ul−1. Since
∑K

k=1 ∂
2pjk(ul − ul−1;θ)/∂θr∂θs = 0, then by first taking the

expectation conditional on Nj(ul−1), the (r, s) component of the information matrix is:

E

{
− ∂2l

∂θr∂θs

}
=

m∑
l=1

K∑
j,k=1

[
E (Nj(ul−1))

pjk(ul − ul−1;θ)

∂pjk(ul − ul−1;θ)

∂θr

∂pjk(ul − ul−1;θ)

∂θs

]
. (1.23)

This quantity can be approximated by Mrs(θ), which is simply (1.23) with E (Nj(ul−1))

replaced by Nj(ul−1). These estimates are summarized in matrix M(θ) = [Mrs(θ)](p×p).

Then, the quasi-Newton procedure proceeds in the following way:

• Begin with initial values θ0,

• Obtain an updated estimate by θ(r) = θ(r−1) +M(θ(r−1))−1S(θ(r−1)),

• Repeat until convergence is reached.

Computation of these derivatives is facilitated by (1.15), (1.20) and (1.21). A good ini-

tial estimate, θ0 results in convergence to the maximum likelihood estimate, θ̂ such that

M(θ̂)−1 is an estimate of the asymptotic covariance matrix of θ̂ and if θ is an interior point

of the parameter space,
√
n(θ̂ − θ) will have a multivariate Normal limiting distribution

as n→∞ (Kalbfleisch & Lawless 1985).

This method can also accommodate different observation times for each individual.

However, the amount of computing time increases linearly with the number of distinct

time intervals in the sample (Kalbfleisch & Lawless 1985). The above discussion was based

on all subjects entering at the beginning of the study and remaining under observation

until the end. However, this method is appropriate when people enter and leave at differ-

ent times, as long as their event time distribution does not differ from the other subjects’.

This method also works for some simple non-homogeneous cases as outlined in Kalbfleisch

& Lawless (1985). It is possible to incorporate covariates in the model. However, if interest
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lies in continuous covariates, discrete covariates with many levels or simultaneous consider-

ation of a large number of covariates, this method will require a great deal of computation

and therefore will be very difficult to implement (Kalbfleisch & Lawless 1989). In this case,

covariate values may have to be grouped to apply this method (Kalbfleisch & Lawless 1985).

When considering progressive models, such as that introduced in Figure 1.5, one can

then take advantage of the simplified state-structure to construct a likelihood function.

Fortunately, a closed form for the transition probabilities is available under a progressive,

time-homogeneous Markov model (Satten 1999). Under a K + 1 state model, with the

intensity of moving from state k to state k + 1 denoted as δk and considering the case

where there are no covariates, the probability of being in stage k2 conditional on being in

stage k1 at time zero can be written as

Pk1,k2(t) =


k2∑

k=k1

Ck1,k,k2e
−δkt, k1 ≤ k2

0, k1 > k2,

(1.24)

with the coefficients Ck1,k,k2 given by

Ck1,k,k2 =

k2−1∏
l=k1

δl

k2∏
l=k1
l6=k

(δl − δk)

, k1 ≤ k ≤ k2,

where Ck,k,k = 1. Using the notation introduced previously for the observation times and

the states occupied at these times, under time-homogeneity the likelihood function would

be

L(δ ) =

mi−1∏
j=1

Pyi(uij),yi(ui,j+1)(∆uij),

where ∆uij = ui,j+1 − uij.

This likelihood function cannot be directly applied in the case of the model given in

(1.13) with baseline transition intensities specified in (1.14) since the transition intensi-

ties are not time homogeneous; they are assumed to be piecewise constant over time.



20

However, due to the fact that they are constant over certain time intervals (i.e. the

baseline intensities, λ0r, are constant in [ar−1, ar)), we can use (1.24) to construct the

likelihood function for this problem. As is evident from Figure 1.6, individuals can un-

dergo a wide range of observation patterns. The observation times generally do not fall

on the cut-off points (ar, r = 1, ..., R), so we cannot set up the likelihood assuming con-

stant intensities between visits. However, it is possible to build a complete data likelihood

assuming the states occupied by the individuals at the cut-off points, ar, r = 1, 2, ..., R,

are observed in addition to those at the assessment times. To do this, we must intro-

duce additional notation. Let y∗i (ar) be the (unobserved) state occupied by subject i at

time ar, where r = 1, 2, ..., R. Therefore the complete data for subject i would consist

of {yi(uij), y∗i (ar); j = 0, 1, 2, ...,mi, r = 1, 2, ..., R}. In addition, let Si =
{
si,0, si,1, ...si,m∗

i

}
represent the set of ordered uij’s and ar’s for subject i so assuming no observation time uij

is chosen as a cut-off point ar, m
∗
i = mi +R. Figure 1.6 has been modified to incorporate

this new notation in Figure 1.7. In addition to the above notation, let θ represent the set

Figure 1.7: An illustration of the observation process (including both observed (obs) and unobserved or
missing (mis) data) and the underlying baseline intensities in effect over time for an arbitrary subject, i.
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of all unknown parameters in the model (these could include covariate effects as well as

the unknown baseline intensities) and define

Yi(sij∗)
.
=

{
yi(uij), if sij∗ = uij

y∗i (ar), if sij∗ = ar
, (1.25)
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for i = 1, 2, ..., n, j = 0, 1, ...,mi, j
∗ = 0, 1, 2, ...,m∗

i and r = 1, 2, ..., R. The complete data

likelihood can then be expressed in the following way:

Lcomplete(θ ) = P {yi(uij), y∗i (ar)|yi(0) = 1; i = 1, 2, ..., n, j = 0, 1, ...,mi, r = 1, 2, ..., R}
= P {Yi(sij∗)|Yi(0) = 1; i = 1, 2, ..., n, j∗ = 0, 1, 2, ...,m∗

i }

=
n∏
i=1

m∗
i−1∏

j∗=1

PYi(sij∗ ),Yi(si,j∗+1)(si,j∗+1 − sij∗).

On each interval, [sij∗ , si,j∗+1) for i = 1, 2, ..., n and j∗ = 0, 1, 2, ...,m∗
i , the set of baseline

transition intensities is constant at λ∗
0j∗ =

(
λ∗01j∗ , λ

∗
02j∗ , · · · , λ∗0Kj∗

)′
, with values equal to

one of the R pieces, λ0r , r = 1, 2, ..., R. Specifically,

λ∗
0j∗ = λ0r , when [sij∗ , si,j∗+1) ⊆ [ar−1, ar).

When the covariates included in the model are fixed or it is assumed that the covariate

remains constant between visits, we have essentially divided up the problem into R smaller

ones, each based on a time-homogeneous Markov model. This revised observation timeline

is displayed in Figure 1.8.

Figure 1.8: An illustration of the complete observation process and the underlying baseline intensities in
effect over time for an arbitrary subject, i.
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The complete data likelihood, conditional on all subjects being in state 1 at time 0,

can be expressed in a closed form using (1.24) and the model for the intensities given in

(1.13) and (1.14):

Lcomplete(θ ) =
n∏
i=1

m∗
i−1∏

j∗=0


Yi(si,j∗+1)∑
l=Yi(sij∗ )

CYi(sij∗ ),l,Yi(si,j∗+1) exp
{[
λ∗0,l,j∗ exp(βl

′zi)
]
(si,j∗+1 − sij∗)

} ,

(1.26)

with the coefficients, CYi(sij∗ ),l,Yi(si,j∗+1) equal to

CYi(sij∗ ),l,Yi(si,j∗+1) =

Yi(si,j∗+1)−1∏
h=Yi(sij∗ )

λ∗0,h,j∗ exp(βh
′zi)

Yi(si,j∗+1)∏
h=Yi(sij∗ )

h6=l

[
λ∗0,h,j∗ exp(βh

′zi)− λ∗0,l,j∗ exp(βl
′zi)
] ,

for Yi(sij∗) ≤ l ≤ Yi(si,j∗+1). Since this likelihood involves missing data (i.e. the states

occupied at the cut-off points), a natural way to proceed with the maximization is via the

EM Algorithm.

One can obtain maximum likelihood estimates by way of the EM algorithm by using

an iterative two step approach (Dempster et al. 1977). After selecting reasonable initial

values for the parameters of interest, θ̂(0), and letting obs indicate the observed data and

mis indicate the missing data, the algorithm proceeds in the following manner:

1. Expectation Step (E-Step)

Define Q
(
θ; θ̂(r−1)

)
.
= Emis|obs

{
log
[
Lcomplete(θ̂ )

]
; θ̂(r−1)

}
.

2. Maximization Step (M-Step)

Obtain θ̂(r) through maximization of Q
(
θ; θ̂(r−1)

)
with respect to θ for r = 1, 2, ....

Steps 1 and 2 are repeated until convergence is reached.

In order to use this method to obtain maximum likelihood estimates from (1.26), we can

express the complete data likelihood in an equivalent, yet more convenient manner based
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on additional notation. Let Vi = (Vi,1, Vi,2, ..., Vi,m∗
i
)′ be a m∗

i - dimensional random vector

representing the state path for subject i. At the same time, let vi = (vi,1, vi,2, ..., vi,m∗
i
)′ be

an observed state path. Since not all m∗
i states are observed, let Pi be the set of all possible

paths for subject i. All values in positions of vi ∈ Pi corresponding to the observed states

will be equal to the actual observed states while other positions can be any state greater

than or equal to the last observed state and less than or equal to the next observed state in

this progressive model. Finally, we can express the complete data likelihood, conditional

on the initial state occupied, as follows:

Lcomplete(θ ) =
n∏
i=1


∏
vi ∈Pi

 m∗
i∏

j∗=1

P (Yi(sij∗) = vij∗|Yi(si,j∗−1) = vi,j∗−1)

I(Vi =vi )
 ,

(1.27)

where I(·) is an indicator function. It then follows that the log-likelihood is:

lcomplete(θ ) =
n∑
i=1

 ∑
vi ∈Pi

I(Vi = vi )
m∗

i∑
j∗=1

log (P (Yi(sij∗) = vij∗ |Yi(si,j∗−1) = vi,j∗−1))

 .

(1.28)

Now, the only random quantity in this expression consists of the n indicator variables given

by I(Vi = vi ), i = 1, 2, ..., n. It follows then, that the E-Step first involves finding the

expectation of these indicators with respect to their distribution, given what was observed,

and based on the estimate of θ from the previous iteration. Since (1.28) is linear in the

indicators, Q
(
θ;θ(r−1)

)
is obtained by replacing I(V i = vi), i = 1, 2, ..., n with their

corresponding expectations in (1.28).
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E[I(Vi = vi )|yi(uij), zi ; θ̂(r−1)]

= P
[
V i = vi|yi(uij), zi ; θ̂(r−1)

]
=

P [V i=vi;θ̂
(r−1)]

P [V i∈Pi;θ̂(r−1)]

=

m∗
iQ

j∗=1

P [Yi(sij∗ )=vij∗ |Yi(si,j∗−1)=vi,j∗−1;θ̂(r−1)]

P
vi∈Pi

8<:
m∗

iQ
j∗=1

P [Yi(sij∗ )=vij∗ |Yi(si,j∗−1)=vi,j∗−1;θ̂(r−1)]

9=;

Therefore, for this problem the EM Algorithm is as follows:

1. Expectation Step (E-Step)

Q
“
θ; θ̂(r−1)

”
.
=

nP
i=1

8>>><>>>:
P

vi ∈Pi

26664
m∗

iQ
j∗=1

P [Yi(sij∗ )=vij∗ |Yi(si,j∗−1)=vi,j∗−1;θ̂(r−1)]

P
vi∈Pi

8<:
m∗

iQ
j∗=1

P [Yi(sij∗ )=vij∗ |Yi(si,j∗−1)=vi,j∗−1;θ̂(r−1)]

9=;
m∗

iP
j∗=1

log
ˆ
P (Yi(sij∗ ) = vij∗ |Yi(si,j∗−1) = vi,j∗−1)

˜
37775

9>>>=>>>;.

2. Maximization Step (M-Step)

Obtain θ̂(r) through maximization of Q
(
θ; θ̂(r−1)

)
with respect to θ for r = 1, 2, ....

Steps 1 and 2 are repeated until convergence is reached (i.e. when the difference between

successive estimates drops below a specified tolerance).

1.2 Mismeasured Covariates

Data collected in health research frequently involve measurement error in covariates. Study

designs can involve either retrospective data collection or prospective data collection. In

the former, it is often difficult, if not impossible to determine past exposure levels to a
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potential toxin or to accurately determine covariate values which rely on a subject’s recall.

In prospective studies, it may be difficult to collect accurate covariate information due

to practical considerations and cost (Yi & Cook 2005). Sometimes investigators must

settle for an imperfect measurement because it is impossible to measure the true value.

In other situations it may be possible to obtain a better measurement of the covariate

but it is more costly so a less accurate measurement is collected. When the covariates

subject to mismeasurement are discrete, they are referred to as misclassified ; whereas if

they are continuous, we are dealing with measurement error. Generally, naive estimation

approaches which ignore the presence of either result in biased estimates for the parameters

of interest. Therefore, it is important that the presence of mismeasured covariates be

recognized and accounted for in estimation. Considerable research has been devoted to

addressing this issue and accounting for this error. A detailed description of the methods

available are described in Fuller (1987) for linear regression models and in Carroll et al.

(2006) for nonlinear models. In the following sections, the general effects of mismeasured

covariates will be discussed and available methods to address mismeasurement will be

briefly described.

1.2.1 General Effects of Mismeasured Covariates

For the purposes of this discussion, let

• Y be a response variable,

• X be a vector of covariates subject to error (true values unknown),

• W be the mismeasured version of X, and

• Z be a vector of covariates measured without error.

Suppose, the distribution of the response Y given (X,Z) is specified up to unknown pa-

rameters β = (βX ,βZ) by a model given by m (Y,X,Z;β). In addition, suppose that the

dependence of Y on (X,Z) is characterized by the linear predictor, βX
′X+βZ

′Z. Direct

use of W in place of X results in biased estimates for βX and can even affect estima-

tion of βZ , the parameters associated with the correctly measured covariates (Yi & Cook
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2005). The simple linear regression model has been used quite extensively in literature

to demonstrate the effect of a mismeasured covariate on estimation of the parameter of

interest. It is well known that under this model and assuming the Classical Error Model,

which will be introduced shortly, a mismeasured covariate results in an estimate of the

slope parameter which is biased toward the null. This phenomenon is referred to as atten-

uation. In addition, the standard error of this estimator based on a naive analysis is often

an underestimate of the true standard error (Fuller 1987) and there will be a loss of power

to detect significant covariate effects and relationships among the variables (Carroll et al.

2006).

The situation gets much more complicated for more complex regression models. For

instance, even in the case of multiple linear regression, any relationship that exists between

a covariate measured with error and others measured with or without error can induce

bias in the parameter estimators. In fact, there is a tendency for covariate effects based

on mismeasured values to be shifted toward those measured with less error (Reeves &

Cox 1998). When there are covariates measured with error as well as those without, the

presence of error in some may cause bias in the parameter estimates associated with the

error-free covariates. In general, the coefficient estimate for an error-free covariate will

be biased unless the covariate is independent of the one measured with error (Carroll

1998; Buonaccorsi et al. 2005). For even more complex models, one may find the true

effects masked in the presence of additional covariates, absent effects may appear to be

significant and estimates may even appear to exhibit an effect which is opposite to the

truth. The latter potential was described in the case of a two group ANCOVA where the

treatment groups were defined based on an error-free covariate, Z, and a covariate subject

to error, X, was measured on all individuals. This problem was due to the fact that the

design was not balanced. That is, the mean of X differed across treatments defined by

Z or was dependent on Z (Carroll et al. 1995). In the case of binary regression, the

presence of measurement error often results in estimates of relative risk that are biased

toward 1 (Raboud 1991; Stefanski & Carroll 1985). However, when the majority of subjects

experience extreme risks, either very high or very low, relative risk estimates may be biased

away from 1 (Stefanski & Carroll 1985). In general, the effects of mismeasured covariates



Introduction 27

depend on the model under consideration and the joint distribution of the error process

and the variables (i.e. the response variable and covariate(s) measured with and without

error) (Carroll 1998). Clearly, mismeasured covariates can have a large and unpredictable

impact on estimation and therefore, they must be accounted for in estimation.

1.2.2 Approaches for Mismeasured Covariates

When dealing with measurement error, one must first consider the error distribution or

the relationship of W to the unobserved X. There are three different approaches that can

be taken with respect to the measurement error distribution: parametric, semi-parametric

and nonparametric. A nonparametric approach was taken by Pepe & Fleming (1991) when

they empirically estimated the likelihood in the presence of mismeasured covariates. Huang

& Wang (2000) also took a nonparametric approach to deal with mismeasured covariates

in the Cox model with replicate data available. Tsiatis & Davidian (2001) and Kulich &

Lin (2000) considered semi-parametric approaches of dealing with mismeasured covariates

in survival analysis.

For a parametric approach dealing with continuous covariates, two types of additive

error models have been developed that have quite different interpretations. Considering

first the simplest of the two, and letting X = X, W = W and Z = Z represent scalars

rather than vectors for this formulation, the classical error model can be expressed as:

W = X + U, (1.29)

where U is independent of X. Often in practice the random error component U is assumed

to have a normal distribution with mean 0, which means the measurement error is unbiased,

and variance, σ2
U . This model is appropriate in situations where an attempt is made to

measure X directly, but the measurement is subject to error (Carroll et al. 1995). For

instance, this model would be reasonable in the case of an observational study in which

the covariates naturally vary from subject to subject and there is no manipulation of the

covariate values by the investigator (i.e. an uncontrolled study) (Raboud 1991). Sources

of error may include the measurement device and method, the data entry process and even

time of day or seasonal variations. In contrast, the Berkson error model is appropriate in



28

controlled studies where the outcome of interest is measured at given levels of the covariate

(Carroll et al. 2006). It is of the form:

X = W + U, (1.30)

where, for a given individual, W is viewed as fixed and U , the measurement error, is viewed

as random. This model would be reasonable in a laboratory study in which it was intended

to expose subjects to certain fixed levels of a suspected risk factor. There may be error

about the intended nominal level of exposure, W .

In the case of discrete covariates, the measurement error process is specified through

misclassification probabilities. For dichotomous covariates, taking on 0 − 1 values, there

are two such probabilities:

• P (W = 0|X = 1) = 1− P (W = 1|X = 1) = π01 (1-Sensitivity), and

• P (W = 1|X = 0) = 1− P (W = 0|X = 0) = π10 (1-Specificity).

Supplementary information regarding the measurement error or misclassification distribu-

tions can be obtained from data either internal or external to the study, but related to the

investigation at hand. They can be in the form of validation studies where X is observed

directly for some subjects, replication studies where replicate measurements of X (i.e. W )

are available, providing information regarding variability in the error process, or instru-

mental data where information on another variable T is observed in addition to W (Carroll

et al. 1995). Another aspect of the measurement error process must be considered at this

point. We refer to the error as nondifferential when W provides no information about Y

in addition to that provided by (X,Z). Another way of expressing this is to state that the

distribution of Y given (X,Z,W ) depends only on (X,Z). Nondifferential measurement

error is much more straightforward to deal with, as will be clear shortly.

There are two fundamentally different interpretations of the unobserved true values of

the covariates, X. In functional modeling, the X’s are considered as a sequence of fixed

unknown vectors, whereas in structural modeling the X’s are regarded as random and a

model for their joint distribution is assumed. In Carroll et al. (1995), the definition of
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functional models is extended to include those for randomX’s where minimal assumptions

about their distributional form are made in addition to fixedX. Both modeling approaches

will be outlined below.

Structural Modeling

As stated previously, structural modeling views the unobserved true covariate X as ran-

dom so distributional assumptions are required when using this approach. Likelihood and

Bayesian methods fall into this category. Likelihood methods are useful in many situations,

including those with misclassified covariates. As is the case with maximum likelihood, the

resulting estimators will exhibit the favorable asymptotic properties of consistency and effi-

ciency. It is possible to develop expanded likelihood expressions incorporating an assumed

specific form for the measurement error distribution. Often it is required that the distribu-

tion of the true covariate X to be known (or assumed) in these formulations (Nakamura

1990). However, Aitkin & Rocci (2002) describe a maximum likelihood approach for gener-

alized linear models and general error models using an EM algorithm. The distribution of

X is approximated by a discrete distribution of a finite number of mass-points determined

as part of the model. Even though maximum likelihood estimators have such favorable

characteristics, the complicated form of the likelihood function, especially in the case of

continuous covariates, often makes implementation difficult and computationally intensive.

In addition, likelihood methods exhibit a lack of robustness in general to misspecification

of the model (Reeves & Cox 1998). However, in some problems dealing with measurement

error, they may be the more flexible, efficient or reliable method (Schafer & Purdy 1996).

Likelihood function formulation is very much problem specific (Stefanski & Carroll

1985). As an illustration of this, we will consider the likelihood function for three different

situations (Carroll et al. 1995). For the sake of these formulations, we consider continuous

covariates, but similar expressions hold for discrete covariates with the integrals replaced

by sums.

Case I: The first is the case where the true value of X is unobserved and there are no
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validation data accessible to characterize the conditional distribution of W given X and

Z. Say we are interested in estimating parameters β in the model fY |X,Z(y|x, z;β). Since

X is measured with error, a model based on the observed data is fY |W,Z(y|w, z;θ), where

θ is a vector of parameters including β, the parameters of interest. If we are dealing

with nondifferential error, then for a particular subject the likelihood function could be

expressed as: L(θ) = fY,W |Z(y,w|z;θ), where

fY,W |Z(y,w|z;θ) =

∫
fY,W,X|Z(y,w,x|z;θ)dx

=

∫
fY |X,Z(y|x, z;β)fW |X,Z(w|x, z; δ)fX|Z(x|z;λ)dx

Here, δ and λ are assumed to be known (Reeves & Cox 1998).

Case II: Consider now the situation whereX is unobserved and the Berkson error model is

appropriate. To obtain an expression for the likelihood in this case for a particular subject,

we condition on W to obtain:

L(θ) = fY |W,Z(y|w, z;θ)

=

∫
fY |X,Z(y|x, z;β)fX|W,Z(x|w, z; δ)dx.

Appropriate supplementary data can be used to estimate δ and then the likelihood func-

tion will just be in terms of the unknown parameter(s) of interest, β.

Case III: Finally, consider the case where there is a validation study comprised of subjects

for whom in addition to W , X is observed. In other words, there are internal validation

data available. Analogous to missing data problems, it is critical here that the probability

X is measured for a particular subject can depend on (Y,Z,W ), but not X itself (Carroll

et al. 1995). To formulate this likelihood function first let

∆i =

{
1, if subject i is selected for validation study

0, otherwise
. (1.31)
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A likelihood function based on all observed data would have the following form:

L(θ) =
n∏

i=1

{[∫
fY |X,Z(yi|x,zi;β)fW |X,Z(wi|x,zi; δ)fX|Z(x|wi;λ)dx

]1−∆i

·
[
fY |X,Z(yi|xi,zi;β)fW |X,Z(wi|xi,zi; δ)

]∆i
}

.

There are many more situations that could arise in practice. Regardless of how complex

the situation becomes, in the maximum likelihood approach incorporating measurement

error, the objective is to express fY,W |Z in terms of the “true” model, fY |X,Z .

Pan et al. (2006) took a structural modeling approach based on maximum likelihood

for a general linear mixed model for a continuous response and for a linear logistic mixed

model for a binary response. In their models, the response was permitted to depend on

the response at the previous assessment time as is the value of the true covariate, X.

They assumed that the classical error model given in (1.29) was appropriate and that the

error variance, σ2
U , was known. They investigated naive models that correctly specified

the structure of the response model, but misspecified the structure of the covariate effect

model. Asymptotic biases based on the naive model were investigated and a maximum

likelihood approach, incorporating measurement error in a continuous covariate was imple-

mented using an EM algorithm. When direct implementation of the likelihood approach

is computationally intensive, one may instead base inference on a simpler, approximate

function called the pseudo-likelihood function (Yi & Cook 2005).

Bayesian methods assume both the variables and the parameters are random and fol-

low probability distributions. The first step in this approach involves determining the joint

probability density function of the data and parameters. From this, the posterior density,

or the conditional probability distribution of the parameters given the data, can be ob-

tained based on Bayes Rule. Inference can then be conducted based on this distribution.

Computation involving this distribution usually requires high-dimensional numerical in-

tegration (Carroll 1998). Therefore, to perform calculations using this distribution often

Markov Chain Monte Carlo (MCMC) algorithms such as the Gibbs’ Sampler are used.

Gustafson (2004) provides a thorough description of the effects of covariate measurement

error and misclassification and presents the Bayesian approach of addressing the problem.
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Clearly, both likelihood and Bayesian methods require strong distributional assumptions.

To relax some of these assumptions, one could instead adopt a functional modeling ap-

proach such as those which will be discussed in the next subsection.

Functional Modeling

Functional modeling involves few or no assumptions regarding the distribution of the un-

known covariate X. For this reason, much of the literature has tended to concentrate

on this approach. For general nondifferential error problems, two simple, approximate

methods to deal with mismeasured covariates include regression calibration and simulation

extrapolation (SIMEX).

Regression calibration was first suggested by Prentice (1982) for use in survival analysis,

specifically for the proportional hazards model. It involves approximating the unknown

value of X by the regression of X on (W ,Z). Ideally, information on the joint behavior

of (X,W ,Z) can be obtained through validation data. If validation data are unavailable,

then information regarding the value ofX can be extracted from replication or instrumental

variable data (Carroll et al. 1995). The algorithm proceeds as follows:

• using additional data, whether it be replication, validation or instrumental data,

obtain the calibration function by estimating the regression of X on (W ,Z),

• replace X by its approximation from the calibration function and proceed with anal-

ysis as if X were measured correctly, and

• adjust the naive standard errors using resampling or asymptotic methods (Carroll

1998).

Carroll et al. (2006) describe the algorithm in detail, giving extensions to the model and

providing examples.

Simulation Extrapolation (SIMEX) was first proposed in 1994 by Cook and Stefanski.

This procedure is based on the key idea that the effect of measurement error can be in-

vestigated and therefore adjusted for using simulation techniques (Carroll et al. 1995).
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Estimates are obtained by first inducing bias in parameter estimates by adding additional

measurement error using resampling methods, establishing a trend in this induced bias as a

function of the error variance and extrapolating back to the case of no measurement error.

This method is suitable for use for additive or multiplicative measurement error models and

if the model is correctly specified, it will result in improved parameter estimates (Carroll

et al. 1995). Implementation of regression calibration and SIMEX is relatively straight-

forward. However, except in the cases of linear and log-linear models, estimators obtained

using these methods are only approximately consistent in general.

Considerable literature involves the use of estimating equations to address the prob-

lem of mismeasured covariates. Unbiased estimating equations are often based on fewer

distributional assumptions than required for the structural approaches, and computation

is generally more straightforward (Yi & Cook 2005). There are three types of estimating

equation approaches to deal with the mismeasured covariate problem: conditional score

equations, corrected-score equations and general unbiased estimating equations (Carroll et

al. 1995). Conditional score equations are derived by conditioning on sufficient statis-

tics. The objective is to reduce the number of parameters that need to be estimated by

removing dependence of the estimating equations on nuisance parameters through condi-

tioning. Carroll et al. (1995) illustrate this procedure for distributions which belong to the

exponential family. Relatively straightforward results are available using this method for

models that belong to this family, although the solution may involve extensive numerical

integration or summation (Carroll et al. 1995).

The corrected-score equation method is not restricted to models belonging to the

exponential family and is in fact, applicable for most generalized linear models. This

method was proposed by Nakamura (1990). In this paper, he described the corrected

score function as “one whose expectation with respect to the measurement error distri-

bution coincides with the usual score function based on the unknown true independent

variables”. Let U(θ,X,Z, Y ) denote the score function when all covariates are measured

precisely. Now suppose X is mismeasured as W . Then the naive score equation is given

by U(θ,W ,Z, Y ). Use of this naive score equation can result in inconsistent estimates
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of θ since E [U(θ,W ,Z, Y )] 6= 0. Therefore this naive score function should be adjusted

to provide the correct estimates. To accomplish this, one must first find an adjusted log-

likelihood function, l∗, and provided it is twice differentiable, a corrected-score function,

U∗ = ∂l∗/∂θ, and a corrected observed information function, I∗ = ∂U∗/∂θ. These will

all be functions of Y , W and Z, but not X, and provided E∗ and ∂/∂θ are interchange-

able, will satisfy E∗ [l∗(θ,W ,Z, Y )] = l(θ,X,Z, Y ), for all θ, where the expectation,

E∗, is taken with respect to the distribution of W |X, Y,Z. From this, it follows that

E∗ [U∗(θ,W ,Z, Y )] = U(θ,X,Z, Y ), and E∗ [I∗(θ,W ,Z, Y )] = I(θ,X,Z, Y ). Then,

the value of θ which satisfies U∗(θ,W ,Z, Y ) = 0 with I∗(θ,W ,Z, Y ) positive definite

is an estimate of θ accounting for the mismeasured covariate(s). The estimator obtained

using this method is asymptotically unbiased (Nakamura 1990). Estimates are usually

obtained through numerical iteration using the naive maximum likelihood estimates as

initial values (Nakamura 1990). The main disadvantage of this approach is that it is often

difficult to determine the appropriate adjusted log-likelihood function, l∗.

Finally, the method of general unbiased estimating equations was described by Robins

et al. (1994). This approach is suitable for situations where there are validation data

available for a subset of the subjects in the study. The goal of this approach is to incor-

porate additional information into the analysis without making assumptions regarding the

joint distribution of (X,W ) given Z. As is evident from above, there are many possible

approaches to choose from when faced with a mismeasured covariate problem, each with

advantages and limitations. For the purposes of this research, we will concentrate on the

maximum likelihood approach and will also implement the SIMEX method approach for

comparison purposes.

Problems with mismeasured covariates involve incomplete data in the sense that the

true values of X are not measured. Instead, an error prone version of X, W , is measured.

In the next section, another form of incomplete data will be introduced; current status

data.
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1.3 Current Status Data

An extreme case of interval censoring is current status data. Current status data arise when

individual i is examined only once at inspection time bi > 0 so that the event of interest

is known to occur in either (0, bi] or (bi,∞] . This type of data can arise if the method of

observation is destructive or costly. For example, in animal carcinogenicity experiments,

animals are sacrificed to obtain information on tumors through autopsy (Lawless 2003).

Let bi be the observation time for subject i and δi = I(ti ≤ bi). The data for subject i

would then be (bi, δi) and the likelihood function for current status data would be:

L(θ) =
n∏
i=1

[FT (bi;θ)]
δi [FT (bi;θ)]

1−δi (1.32)

The function that will actually be maximized with respect to the unknown parameters is

the log-likelihood function which is given by

l(θ) =
n∑
i=1

{δi log [FT (bi;θ)] + (1− δi) log [FT (bi;θ)]} . (1.33)

There are various approaches one could take in estimation. A parametric approach would

involve adopting a parametric form for the distribution of the event time (i.e. assume an

exponential or Weibull distribution, for instance). If interest lies in examining covariate

effects, one could take either a parametric or semi-parametric approach by characterizing

the event time distribution in terms of regression models such as additive hazards models

(Shiboski 1998), proportional hazards models or proportional odds models (Jewell & van

der Laan 2002). Maximum likelihood techniques could then be applied to make inferences

regarding the parameters of interest.

Estimation is simplified through the use of parametric models, where a distributional

form is specified. Alternatively, a nonparametric approach avoids parametric assumptions.

Let

• m=the number of distinct test or observation times,

• b(j)=the jth ordered test time,
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• Dj=the set of patients tested at time b(j)

• nj=the number of patients tested at time b(j)

• dj =
∑

i∈Dj
δi

Then, as in Lawless (2003) and Sun (2006), the nonparametric maximum likelihood esti-

mate (NPMLE ) of FT is

F̂T (b(j)) =
max

u ≤ j

min

v ≥ j

(∑v
l=u dl∑v
l=u nl

)
(1.34)

To implement this, we could use a procedure called Pool-Adjacent-Violators Algorithm

(PAVA) outlined in Ayer et al. (1955). To proceed with this algorithm we let p∗j = dj/nj

for j=1,...,m. Then, the NPMLE of FT = 1 − FT is a step function with up to m jumps

and is given by:

If 0 ≤ p∗1 ≤ · · · ≤ p∗m ≤ 1, F̂ (t(j)) = p∗j , j = 1, ...,m, or

If p∗k > p∗k+1 for some k = 1, ...,m− 1,

F̂ (t(k)) =
dk + dk+1

nk + nk+1

,

F̂ (t(k+1)) =
dk + dk+1

nk + nk+1

This algorithm is repeated until a monotone non-decreasing set of ratios is obtained.

1.4 Cure Rate Data

In lifetime data analysis all individuals in the population are assumed to be at risk of

experiencing the event of interest and are expected to eventually make the transition be-

tween states if they are observed indefinitely (Maller & Zhou 1996). However, there are

situations where this may not be the case. Consider a study on the recurrence of cancer

in patients who have gone into remission. There are two states in this set-up: cancer-free

and recurrence of cancer. Hopefully, most patients will never experience a recurrence. The

proportion of immunes or those who will never experience a recurrence, and the effects that
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certain covariates (treatments, age at onset, etc.) have on this proportion would be of great

interest to investigators. Another example arises in criminology. Consider an investigation

of the risk of reoffending for those who have been released from prison. It is reasonable

to model the time to the next arrest for these individuals. However, not all ex-convicts

will commit another crime and be arrested again (Maller & Zhou 1996). Clearly, there are

many situations where it may be appropriate to assume there is an immume component

in the population.

In the motivating study for the work in Chapter 4, only about 5% of patients are

believed to experience seroconversion, the event of interest. Therefore, it does not make

sense to model the time to seroconversion without taking into account that most of the

event times will essentially be infinite because the event will not occur for these individuals.

Farewell (1977) suggests a way to determine a distribution that allows for immunes in

addition to those subject to failure. First, let Xi ∼ BIN(1, π). Xi is a Bernoulli random

variable which represents whether or not individual i will experience the event of interest.

When Xi = 1, individual i is said to be susceptible or subject to the event of interest

and when Xi = 0 the individual is immune or will never experience the event of interest.

Since we cannot observe the subjects indefinitely, we do not know whether an individual

is immune so Xi is unobserved. The individuals who are subject to the event of interest

(the susceptibles) have a distribution of the time to the event, T , which is characterized by

FT (t). Assuming this is a proper distribution function, FT (0) = 0 and limt→∞ FT (t) = 1.

Those with Xi = 0 are considered to have failure times ti = ∞. Therefore, the c.d.f. of T

corresponding to this immune group is GT (t) = 0, 0 ≤ t <∞ since T is degenerate at ∞.

Therefore, F (t), the distribution function for the entire population, can be expressed as a

mixture of the distributions given by FT (t) and GT (t):

F (t) =

{
FT (t) with probability P (X = 1) = π

0 with probability P (X = 0) = 1− π
.

for 0 ≤ t < ∞. The event time distribution can be specified parametrically or semi-

parametrically and covariate effects on either the event time or the immunity status can

be investigated by specifying the appropriate regression model for either the survival dis-

tribution or π, respectively.
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Cure rate models for right-censored data have received some attention in the literature.

Farewell (1982; 1986) took a parametric approach considering a logistic model for the

probability of experiencing the event and a Weibull model for the time to event distribution.

He notes that nonidentifiability may be an issue because a long-tailed survival curve could

mean there is a large cure rate or it could arise simply due to the shape of the true

underlying survival curve for the susceptible group. Therefore, under his parametric model

it can be difficult to distinguish between the location parameter in the logistic model and

the Weibull shape parameter. To relax some of the parametric assumptions under the

logistic/Weibull model, Taylor (1995) took a semi-parametric approach by also assuming a

logistic model for the probability of experiencing the event but estimating the event time

distribution nonparametrically using a Kaplan-Meier estimator. He suggested restricting

the survivor function to 0 after a certain time to improve the performance of the estimators

under his model. Farewell (1982; 1986) and Taylor (1995) both allowed the incidence to

depend on covariates. Other semi-parametric methods have since been investigated that

allow the event time distribution rather than the event probability to depend on covariates.

Peng & Dear (2000) and Sy & Taylor (2000) proposed logistic/proportional hazards models

and used the EM algorithm to obtain maximum likelihood estimates. To investigate the

effects of covariates on both the event probability and the time to event, Li & Taylor

(2002) assume a logistic/accelerated failure time (AFT) model, fitting covariates to both

components. These methods have all been proposed and implemented for right-censored

data. Modeling and methodology for cure rate models in the context of current status data

will be discussed further in Chapter 4.

1.5 Outline of Thesis

Methodology incorporating mismeasurement for three types of problems involving interval-

censored life history data will be investigated in the following chapters. Chapter 2 involves

mismeasured covariates with interval-censored survival data. In Chapter 3, this work is

extended to include progressive multi-state processes. In both chapters asymptotic biases

of naive estimators will be displayed, a naive estimation approach will be compared to two

methods incorporating the mismeasurement (i.e. a correct maximum likelihood approach
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and SIMEX) via simulation and the methodology will be applied to data arising from a

motivating study on Psoriatic Arthritis progression. In Chapter 4, estimation of a cure

rate model based on current status data will be explored. The methodology will be applied

to orthopedic surgery data. Finally, Chapter 5 will briefly summarize overall findings and

outline future work.



Chapter 2

Interval-censored Lifetime Data with

Mismeasured Covariates

2.1 Overview

It has been well established that the presence of measurement error or misclassification in

covariates affects the properties of estimators for many different types of models. Consider

the Cox model with the form (1.6):

λ(t;x, z) = λ0(t) exp (β′xx+ β′zz) . (2.1)

True values of the covariates X and Z are required to use partial likelihood methods to

obtain accurate estimates. Prentice (1982) investigated the effect of errors that follow the

Berkson model, (1.30), on relative risk estimates under the proportional hazards model.

This approach was later extended to the case of classical error models, (1.29). Pepe et

al. (1989) give an expression for β∗, the limiting value of the estimator for the regression

coefficient based on a naive analysis using the mismeasured version of X in place of its

true value under the proportional hazards model and when the classical measurement error

model, (1.29), holds. They found β∗ has the form:

β∗ = β
i(β)

i(β) + σ2
U

, (2.2)

40
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where i(β) = E [−n−1∂2l(β;X)/∂β2]. This result is derived by Raboud (1991) and is

similar to the expression of the naive estimator given by Fuller (1987) in the context of

simple linear regression with one covariate measured with error under the classical error

model (1.29):

β∗ = β
σ2
X

σ2
X + σ2

U

.

It has also been demonstrated that the magnitude of the bias in coefficients associated

with mismeasured covariates may increase if another covariate is included in the model,

even when it is error-free. If two or more covariates are mismeasured, then it is difficult

to know in which direction the bias will be (Armstrong 1990). Adjustments are therefore

appealing when one or more covariates are measured with error.

Likelihood based approaches are useful because they result in consistent estimators

whose asymptotic distributions are known. Gong et al. (1990) illustrate how misclassi-

fication in discrete covariates can be accounted for based on a likelihood approach using

an EM algorithm. Other papers using likelihood approaches are DeGruttola & Tu (1994),

Wulfsohn & Tsiatis (1997), Henderson et al. (2000) and Xu & Zeger (2001). Zucker

(2005) describes a pseudo-partial likelihood approach where a Breslow-type expression is

substituted in place of the baseline cumulative hazard function and the resulting partial

log-likelihood function is maximized with respect to all parameters. The measurement er-

ror distribution is assumed known or estimated from validation data (internal or external)

or from replicate measurements. Disadvantages of the likelihood approach in mismeasured

covariate problems are that distributional assumptions for the true unknown covariate and

the error must be made and often very complex numerical integration is required. There-

fore, researchers have tended to concentrate more on functional methods, relaxing some

of the distributional assumptions and easing the computational burden. Semi-parametric

likelihood approaches such as those applied in Hu et al. (1998) and Song et al. (2002)

relax distributional assumptions on the true underlying covariate. However, these methods

can still involve intensive computation (Song & Huang 2005).

Functional methods can be parametric, semi-parametric or nonparametric, depending
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on the assumptions made regarding the error distribution. Nakamura (1992) took a para-

metric approach for which he described an approximate corrected score estimating equation

assuming normal errors to obtain estimates of β in the proportional hazards models. A

similar approach was taken by Buzas (1998). Later, consistency of this estimator under a

normal error distribution was demonstrated (Kong & Gu 1999). Huang & Wang (2000)

took a nonparametric approach to derive a corrected score estimating equation. In this

case, no distributional assumptions were required regarding the true underlying covariate

or error distributions but additional information regarding the error was assumed to be

available via replication data. Improvements to these parametric and nonparametric cor-

rected score methods were proposed in Song & Huang (2005). These estimators tend to

perform better for small sample sizes and large measurement error. Additional data in

the form of validation or replication data are required (Song & Huang 2005). Hu & Lin

(2002) extended the work in Nakamura (1992) and Huang & Wang (2000) to estimate the

baseline cumulative hazard function, Λ0(t) =
∫ t

0
λ0(s)ds, in addition to β. A symmetric

error distribution is assumed for this method (Hu & Lin 2002). This work, along with that

of Huang & Wang (2000) and Xie et al. (2001), have recently been extended to the strat-

ified Cox model, where the baseline hazard is permitted to differ between groups (Gorfine

et al. 2004). Yi & Lawless (2007) proposed a method based on the ideas in Nakamura

(1990) and a weakly parametric piecewise constant baseline hazard function to estimate

all parameters in the model. This method is simpler than others which rely on the par-

tial likelihood function, and as the number of pieces in the baseline hazard increases, the

estimator approaches that which results from other more complicated approaches (Yi &

Lawless 2007). Augustin (2004) derived an exact corrected log-likelihood function, also

based on proportional hazards with piecewise constant baseline hazards and the classical

error model. A conditional score estimator was given by Tsiatis & Davidian (2001). The

estimators of the corrected and conditional score approaches have been shown to be con-

sistent and equivalent for the case where the errors are normally distributed.

There have been some approximate methods developed to deal with mismeasured co-

variates in survival analysis as well. As mentioned earlier Prentice (1982) introduced the re-

gression calibration estimator for use in proportional hazards models when the Berkson er-
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ror model is employed and validation data are available. In this case E {exp [β′XX + β′ZZ]}
is approximated by exp

[
β′X|W,ZE (X|W ,Z) + β′ZZ

]
(Kalbfleisch & Prentice 2002). Later,

asymptotic results were developed for the regression calibration estimator in Wang et al.

(1997). Xie et al. (2001) extended this method to the setting where the classical error

model is used and replicate data are available to estimate parameters of the measurement

error model. Although their method introduced some small asymptotic bias, based on

simulation studies, their approach was shown to be robust to some misspecification of the

true underlying covariate and error distributions when they are symmetric (Gorfine et al.

2004). Zucker & Speigelman (2004) proposed a method to deal with misclassified discrete

covariates when there are validation data available. Their method first estimates the sur-

vival function to obtain information regarding the parameters of interest. The estimator

involves least squares analysis of weighted averages of transformed Kaplan-Meier curves for

the different possible values of W . Other approximate methods involve estimation of the

partial likelihood. Zhou & Pepe (1995) took this approach in the presence of misclassified

discrete covariates with a validation sample. Later, Zhou & Wang (2000) extended this to

the situation where there was measurement error in continuous covariates. These approxi-

mate methods are successful in reducing bias in the estimates for β but the estimators may

not be consistent in general. Most of the work to date has concentrated on mismeasured

covariates with right-censored data. This thesis addresses the mismeasured covariate prob-

lem with interval-censored lifetime data. The study discussed in the next section was the

motivation for the work described in this chapter as well as that on multi-state progressive

models presented in the next chapter.

2.2 Motivating Study

Psoriasis is a chronic disease that causes scaling and swelling of the skin. Unfortunately

about 10− 42% of those who suffer from this disease also develop psoriatic arthritis (PsA)

which is characterized by pain, stiffness, swelling and tenderness in and around the joints.

This secondary disease was first described in 1818 by Alibert, a French physician, but it

was not until the 1950’s when it was recognized as a distinct form of arthritis. In the past,
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aggressive treatment regimes have been avoided due to potential adverse effects. However,

PsA is a progressive disease in the sense that without treatment, it can increase in severity

causing disability through deformity and destruction of the joints (Gladman et al. 1995).

There are five types of PsA:

• Symmetric Arthritis, which can affect multiple symmetric pairs of joints and behaves

similarly to a mild form of Rheumatoid Arthritis,

• Asymmetric Arthritis, which can involve any number of joints, but does not neces-

sarily involve symmetric pairs,

• Distal Interphalangeal Predominant (DIP), which involves the joints closest to the

nails on the fingers and toes,

• Spondylitis, which involves inflammation of the spinal column, impairing movement,

and

• Arthritis Mutilans, which is the most severe form, involving deformity and destruc-

tion of the joints (Kelley et al. 1981; National Psoriasis Foundation 2004).

It is of interest to determine prognostic factors that relate to disease severity (Gladman et

al. 1995). The objective would be to treat individuals who are considered more likely to

develop severe PsA early to help prevent or slow progression of the disease. It has been

found that early indicators of disease severity include young age at onset, spinal involve-

ment and having a large number of joints affected (National Psoriasis Foundation 2004).

Gladman et al. (1995) concluded that high numbers of joints having an accumulation

of fluid (effusions) and high past medications predict disease progression. Their analysis

was based on data obtained from the University of Toronto PsA clinic at the Toronto

Western Hospital which was established in 1978 and is currently the largest prospective

cohort of PsA patients (Husted et al. 2005). In this cohort, patients are scheduled to

be assessed every six months at which point extensive information is recorded regarding

clinical and laboratory tests. The data used in their analysis consisted of 143 women and

162 men; the average age being 42.2 years and the average duration of PsA, 6.9 years at
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clinic entry. They assumed a multi-state Markov model with four states defined by the

number of damaged joints determined by clinical assessment. The rationale behind this

state structure was that larger numbers of damaged joints reflect disease severity. Figure

2.1 illustrates this model. The states represent 0, 1-4, 5-9 and 10 or more damaged joints,

respectively. A proportional hazards model similar to (1.13) was adopted with constant

Figure 2.1: Progressive model for PsA based on number of damaged joints assumed in Gladman et al.
(1995).

State 1 -
λ1

State 2 -
λ2

State 3 -
λ3

State 4

baseline hazards. Covariates were discretized and grouped so that they could be coded as

binary variables to apply the likelihood method of Kalbfleisch & Lawless (1985). Investi-

gated covariates included functional class, number of actively inflamed joints, number of

effused joints, Lansbury index, rheumatoid factor, erythrocyte sedimentation rate (ESR)

and whether or not the patient was on medication in the past and if so, the medication

level. It was assumed that the covariates had common coefficients across the three transi-

tions. This assumption, along with the time-homogeneity assumption, was assessed using

likelihood ratio tests. Based on this analysis, it was concluded that high numbers of effu-

sions, actively inflamed joints and some past medications were associated with progression

of PsA. ESR level appeared to have a protective effect on PsA progression in the sense

that those with a low ESR were less likely to progress through the states to develop severe

PsA (Gladman et al. 1995).

Values of the covariates were obtained through clinical, radiological and serological

tests performed during patient assessments, however, only baseline covariate values were

considered in their analysis. The covariates were treated as error-free but it is quite reason-

able to suspect that there is some degree of error present in some of these measurements.

Recorded values may vary between physicians, serological tests are known to be prone



46

to error in general, and information on medications appears to be based primarily upon

patient recall. A more prudent analysis would take this potential uncertainty into account.

Information regarding the extent of measurement variability in some of these clinical mea-

surements has recently been gathered by way of reliability studies carried out on patients

from this clinic. The results are described in Gladman et al. (1990) and Gladman et al.

(2004). These studies demonstrate that there are often imperfect covariate assessments

in patients with PsA so valuable information regarding the measurement process in these

predictors can be used to improve the analyses. We consider an analysis which accounts

for measurement error later in this chapter and compare the results to a naive maximum

likelihood approach. We begin by considering a simpler two state model in this chapter

to demonstrate the effects of measurement error with interval-censored lifetime data. The

outcome that will be considered is the development of the first damaged joint identified by

way of clinical examination.

2.3 Impact of Ignoring Error in Covariates

Assume that the true underlying process is represented by Figure 2.2. We consider tran-

Figure 2.2: Time homogeneous two-state progressive model.

State 1
-

κρ (ρt)κ−1 exp (β′XX + β′ZZ) State 2

sition times which follow a proportional hazards Weibull regression model with hazard

function,

λT (t|X,Z;θ) = κρ (ρt)κ−1 exp (β′XX + β′ZZ)

and hence, survivor function,

FT (t|X,Z;θ) = exp {− (ρt)κ exp (β′XX + β′ZZ)} .
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The following notation will be used throughout this chapter.

• i = 1, 2, ..., n indexes subjects in the study,

• the assessment times for subject i are uij, j = 1, 2, ...,mi,

• ti is the transition time for subject i which is unobserved,

• if ui,j−1 < ti ≤ uij then ci = ui,j−1, di = uij and δi = 1 to indicate the transition time

is interval-censored,

• if ti > uimi
then ci = uimi

and δi = 0 to indicate the transition time is right-censored,

• wi is a mismeasured version of the true unobserved (px × 1) fixed covariate vector,

xi, and

• zi is a perfectly measured (pz × 1) covariate vector.

If a standard Weibull regression model were fit to the data, the naive likelihood function

would be:

L (θ∗) =
n∏
i=1

[F∗
T (ci|wi, zi;θ

∗)−F∗
T (di|wi, zi;θ

∗)]δi [F∗
T (ci|wi, zi;θ

∗)]1−δi , (2.3)

A “∗” is attached to the parameters in this model to emphasize that they differ from the

true model parameters in Figure 2.2. In this formulation, we assume the assessment scheme

is noninformative and the structure of the hazard function is specified correctly.

Maximization of (2.3) will result in estimates for θ∗, not the parameters of interest, θ.

Since the estimators for θ∗ are based on mismeasured covariates, we would expect them

to be inconsistent for θ. Determination of the limiting values can provide insight into the

effects of mismeasured covariates and illustrate their impact. White (1982) described the

asymptotic properties of maximum likelihood estimators under misspecified models which

we now briefly review.

In the current setting, the response, Y consists of a vector of the observed states (i.e.

1 or 2) at each of the assessment times. Let f (y|x, z;θ) be the distribution from which
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the data are generated (i.e. the true distribution) and let f (y|w, z;θ∗) be the assumed

distribution. In practice, naive maximum likelihood estimates are obtained based on the

naive probability distribution and hence the naive likelihood function given by

lnaive (θ∗) =
n∑
i=1

log f (yi|wi, zi;θ
∗) .

Estimates are obtained by solving

Snaive (θ∗) =
∂lnaive (θ∗)

∂θ∗
= 0,

and White (1982) showed that the resulting naive “maximum likelihood estimator” is a

strongly consistent estimator for θ∗, the parameter value which minimizes the Kullback-

Leibler Information Criterion (KLIC) given by

I (θ,θ∗) = EY,W,X,Z

{
log
[

f (y|x,z;θ)
f (y|w,z;θ∗)

]}
= EW,X,Z

{
EY |W,X,Z

[
log
(

f (y|x,z;θ)
f (y|w,z;θ∗)

)]}
,

(2.4)

where the expectation is taken with respect to the true underlying distribution. Assuming

nondifferential measurement error, the inside expectation of (2.4) can be rewritten as∫
log f (y|x, z;θ) dF (y|x, z;θ)−

∫
log f (y|w, z;θ∗) dF (y|w, z;θ) .

Intuitively, the KLIC is a measure of ignorance about the true structure of the distribution

when f (y|w, z;θ∗) is used to model data generated from f (y|x, z;θ) (note that when

model is correctly specified the KLIC is 0). To obtain the value of θ∗ which minimizes

(2.4), we first take its derivative with respect to θ∗ and set it to 0:

∂I (θ,θ∗)

∂θ∗
=

∂EY,W,X,Z

[
log

f(y|x,z;θ)
f(y|w,z;θ∗)

]
∂θ∗

= 0. (2.5)

Given certain regularity conditions hold (White 1982), (2.5) is equivalent to

EW,X,Z

EY |W,X,Z
∂

(
log

f(y|x,z;θ)
f(y|w,z;θ∗)

)
∂θ∗


 = 0,
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giving

EW,X,Z

{
∂
∫

log f (y|x,z;θ) dF (y|x,z;θ)
∂θ∗

−
∂
∫

log f (y|w,z;θ∗) dF (y|w,z;θ)
∂θ∗

}
= 0.

Since the expectation of the first term is zero (
∫

log f (y|x, z;θ) dF (y|x, z;θ) does not

depend on θ∗), we note that

EY,W,X,Z [Snaive (θ∗) ;θ] = 0. (2.6)

As can be seen from the expression, (2.6) implies a relation θ∗ = g (θ) but g may be a very

complicated function. Turnbull et al. (1997) use this idea to develop adjustments to the

naive maximum likelihood estimators in the presence of measurement error in covariates

for a mixed effects Poisson regression model for data involving recurrent events. If it is

difficult to derive an explicit expression for θ in terms of θ∗ (or vice versa), (2.6) can be

solved numerically.

Here we apply a similar approach to investigate the asymptotic bias in the case of

measurement error with interval-censored failure time data. Assuming the mild regularity

conditions outlined in White (1982) hold, the derivative and the expectation operators in

(2.6) can be interchanged such that

∂EY,W,X,Z [lnaive (θ∗)]

∂θ∗ = 0,

where Y represents the states (1 or 2) occupied at each assessment time. For the purpose

of this investigation, all subjects were assumed to enter the study at time 0 in state 1 and

to be assessed at five equally spaced times in addition to the baseline assessment (i.e. m=5

and there are a total of six assessments for each subject) . The study duration, τ , was se-

lected such that P (T < τ) was at least 0.6 or 0.8 for all values of (X,Z) (binary covariates)

or such that P (T < τ) was 0.6 or 0.8 at µ′ = (µX , µZ)′ = (0, 0)′ (continuous (X,Z)). The

vectors (Y , X,W,Z)′ were assumed to be independent and identically distributed across

individuals so that we could focus on the contributions from a single individual. Suppose

FT (t|X,Z;θ) represents the survivor function for the true underlying distribution, con-

sidered to be a Weibull regression model here, and F∗
T (t|W ,Z;θ∗) represents the survivor
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distribution for naive model. The naive survivor function may be equal to FT (t|W ,Z;θ∗)

if the model is specified correctly aside from using W in place of X. Denote the state

occupied by individual i at time uij, i = 1, 2, ...,m, as yi(uij) and let

P ∗
yi(ui,j−1),yi(ui,j−1)

(uij − ui,j−1|wi,zi;θ∗) = P ∗ (Yij = yi(uij)|Yi,j−1 = yi(ui,j−1),wi,zi;θ∗) ,

so

P ∗
1,1 (uij − ui,j−1|wi, zi;θ

∗) =
F∗
T (uij|wi, zi;θ

∗)

F∗
T (ui,j−1|wi, zi;θ

∗)
, (2.7)

P ∗
1,2 (uij − ui,j−1|wi, zi;θ

∗) =
F∗
T (ui,j−1|wi, zi;θ

∗)−F∗
T (uij|wi, zi;θ

∗)

F∗
T (ui,j−1|wi, zi;θ

∗)
, and

P ∗
2,2 (uij − ui,j−1|wi, zi;θ

∗) = 1.

Based on this notation the likelihood given in (2.3) can be re-expressed as:

L (θ∗) =
n∏
i=1

m∏
j=1

P ∗
yi(ui,j−1),yi(ui,j−1) (uij − ui,j−1|wi, zi;θ

∗) . (2.8)

Subject i contributes F∗
T (τ |wi, zi;θ

∗) to the naive likelihood if Ti is right-censored (i.e.

Ti > τ) and F∗
T (ui,j−1|wi, zi;θ

∗)−F∗
T (uij|wi, zi;θ

∗) if the transition time occurs between

ui,j−1 and uij for some j = 1, 2, ...,m. Let P represent the set of all possible values of Y (i.e.

all possible state paths) and v be a six dimensional vector. Then the function equivalent to

(2.6) that should be maximized with respect to θ∗ in this setting is EY,W,X,Z|Y0 [lnaive (θ∗)]

which is given by:
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EY,W,X,Z|Y0

{
n∑
i=1

m∑
j=1

log
[
P ∗
vj−1,vj

(uij − ui,j−1|Wi,Zi;θ
∗)
]I(Yi=v)

}

= EY,W,X,Z|Y0

{
n∑
i=1

5∑
j=1

I(Yi = v) log
[
P ∗
vj−1,vj

(τ/5|Wi,Zi;θ
∗)
]}

= nEW,X,Z

{
EY |W,X,Z,Y0

[
5∑
j=1

I(Y = v) log
(
P ∗
vj−1,vj

(τ/5|W ,Z;θ∗)
)]}

= nEW,X,Z

{∑
v∈P

P (Y = v|W ,X,Z, Y0;θ)
5∑
j=1

log
(
P ∗
vj−1,vj

(τ/5|W ,Z;θ∗)
)}

= nEW,X,Z

{∑
v∈P

5∏
j=1

Pvj−1,vj
(τ/5|X,Z;θ)

5∑
j=1

log
(
P ∗
vj−1,vj

(τ/5|W ,Z;θ∗)
)}

.

In the above expression, Pvj−1,vj
(τ/5|X,Z;θ) represents the true model version of (2.7).

Specifically

P1,1 (uij − ui,j−1|xi, zi;θ) =
FT (uij|xi, zi;θ)

FT (ui,j−1|wi, zi;θ)
, (2.9)

P1,2 (uij − ui,j−1|xi, zi;θ) =
FT (ui,j−1|xi, zi;θ)−FT (uij|xi, zi;θ)

FT (ui,j−1|xi, zi;θ)
, and

P2,2 (uij − ui,j−1|xi, zi;θ) = 1.

Naive models given by a Weibull regression model (correctly specified aside from the mis-

measured covariate) and a robust piecewise constant baseline hazards model will be con-

sidered in the following sections. Graphical displays are presented which illustrate the bias

in naive maximum likelihood estimators as functions of misclassification or measurement

error for the two-state models discussed here.

2.3.1 Binary Covariates

The function maximized with respect to θ∗ is∑1
x=0

∑1
w=0

∑1
z=0 P (X = x,W = w,Z = z)

·
{∑

v∈P
∏5
j=1 Pvj−1,vj (τ/5|X,Z;θ)

∑5
j=1 log

[
P ∗
vj−1,vj

(τ/5|W ,Z;θ∗)
]}

,
(2.10)
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where Pvj−1,vj
(·) and P ∗

vj−1,vj
(·) are given by (2.9) and (2.7), respectively, the true under-

lying model is

FT (t|X,Z;θ) = exp [− (ρt)κ exp (βXX + βZZ)]

and the naive fitted model based on a Weibull regression model is

F∗
T (t|W,Z;θ∗) = exp

[
− (ρ∗t)κ

∗
exp (β∗XW + β∗ZZ)

]
.

The piecewise constant baseline hazards (PCBH) model is

F∗
T (t|W,Z;θ∗) = exp [−λ0(t) exp (β∗XW + β∗ZZ)] ,

with

λ0(t) =


λ01, 0 ≤ t < τ/4

λ02, τ/4 ≤ t < τ/2

λ03, τ/2 ≤ t < 3τ/4

λ04, 3τ/4 ≤ t < τ

.

Misclassification of X is characterized by the misclassification probabilities,

π01 = P (W = 0|X = 1) and π10 = P (W = 1|X = 0) or equivalently, by the specificity

(i.e. π11 = 1 − π01) and the sensitivity (i.e. π00 = 1 − π10). Optimization of (2.10) was

carried out via PROC NLP in SAS based on a quasi-Newton algorithm. Figure 2.3 con-

tains a plot of the asymptotic bias of the four naive estimators in the Weibull regression

model for a representative parameter configuration. Similar trends were observed for the

other parameter configurations investigated. In practice, concern often lies in the covariate

effects rather than the parameters associated with the baseline hazard, so Figures 2.4 to

2.8 display and compare the asymptotic bias in βX and βZ estimators based on Weibull

regression and PCBH models.

It is clear from Figure 2.3 that even if the structure of the model is specified correctly,

using a misclassified version of the true covariate in the model leads to asymptotic bias

in the four estimators. As expected, the magnitude of the bias increases as the degree of

misclassification present increases and it appears to be greatest for the estimator associated

with the misclassified covariate. Values of κ investigated were 0.5, 1 and 2 to represent a
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Figure 2.3: Plot of the asymptotic bias of naive maximum likelihood estimators for a proportional hazards
Weibull regression model with a misclassified binary covariate; m = 5 equally spaced assessments; ρ = 0.2,
κ = 0.5, βX = log (2), βZ = log (1.25); maximum right censoring rate at τ is 20%; P (Z = 1) = 0.5 and
logit [P (X = 1|Z = z)] = log (2) z.
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range of plausible values. Since the plots appeared quite similar for different values of κ,

plots corresponding to κ = 1 are presented in Figures 2.4 to 2.8.

Based on these figures, the asymptotic biases of the naive estimators of the covariate

effects appear to be similar for the Weibull and PCBH models. This suggests that the

PCBH model provides a robust approach for structural model misspecification but a simi-

lar effect of covariate misclassification can be expected. Its performance for finite samples,

and for use in methods accounting for misclassification, will be examined in the simulation

study summarized in Section 2.5.1.
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Figure 2.4: Plot of the asymptotic bias of naive maximum likelihood estimators for a proportional haz-
ards Weibull regression model and a piecewise baseline hazard (PCBH) model with a misclassified binary
covariate; m = 5 equally spaced assessments; ρ = 0.2, κ = 1, βX = log (2), βZ = log (1.25); maximum
right censoring rate at τ is 20%; P (Z = 1) = 0.5 and logit [P (X = 1|Z = z)] = log (2) z.
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In addition to the apparent effects of the misclassification rates, the magnitude of the

bias in estimators for both βX and βZ appears to be driven by the true underlying value

of βX . It seems to increase as the true underlying effect of X increases in magnitude

and based on the parameter configurations investigated here, the estimator for βZ appears

to exhibit smaller asymptotic bias even when βX and βZ are the same (see Figure 2.5).

This is possibly because X and Z are positively correlated for Figures 2.3 to 2.7. When

they are uncorrelated, as in Figure 2.8, there appears to be negligible asymptotic bias in

the estimator for βZ . Upon comparison of Figure 2.6 to the other plots, it appears that

the sign of the true underlying X effect can impact the direction of the asymptotic bias.
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Figure 2.5: Plot of the asymptotic bias of naive maximum likelihood estimators for a proportional haz-
ards Weibull regression model and a piecewise baseline hazard (PCBH) model with a misclassified binary
covariate; m = 5 equally spaced assessments; ρ = 0.2, κ = 1, βX = log (1.25), βZ = log (1.25); maximum
right censoring rate at τ is 20%; P (Z = 1) = 0.5 and logit [P (X = 1|Z = z)] = log (2) z.
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Asymptotically, the naive estimator for βX underestimates the magnitude of the true effect

(i.e. there appears to be an attenuation effect) and although the true value for βZ remains

unchanged, its asymptotic bias is in the other direction.

Now we consider current status data which is a special case of interval-censored lifetime

data when a single inspection time is available. The equation to be maximized in this

setting is∑1
x=0

∑1
w=0

∑1
z=0 P (X = x,W = w,Z = z) {FT (b|X,Z;θ) log [F∗

T (b|W ,Z;θ∗)]
+ [1−FT (b|X,Z;θ)] log [1−F∗

T (b|W ,Z;θ∗)]} ,
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Figure 2.6: Plot of the asymptotic bias of naive maximum likelihood estimators for a proportional haz-
ards Weibull regression model and a piecewise baseline hazard (PCBH) model with a misclassified binary
covariate; m = 5 equally spaced assessments; ρ = 0.2, κ = 1, βX = log (0.75), βZ = log (1.25); maximum
right censoring rate at τ is 20%; P (Z = 1) = 0.5 and logit [P (X = 1|Z = z)] = log (2) z.
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where b is the assessment time. Suppose that τ is determined as in the general interval-

censored situation above (i.e. such that min (T < τ |x, z) = 0.8), and that patients are

observed once at assessment time 0.75τ . Figures 2.9 to 2.10 illustrate the asymptotic

bias in the estimators for a representative parameter configuration. Only two plots were

included here since the asymptotic bias exhibited in all plots created appeared to be pretty

much consistent with the general interval censoring context. Since more information can

be ascertained about the transition time as the number of assessments increases, it seems

reasonable to suspect that there will be a difference in the performance of current status

data versus general interval censoring for finite samples. This will be examined in the
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Figure 2.7: Plot of the asymptotic bias of naive maximum likelihood estimators for a proportional haz-
ards Weibull regression model and a piecewise baseline hazard (PCBH) model with a misclassified binary
covariate; m = 5 equally spaced assessments; ρ = 0.2, κ = 1, βX = log (2), βZ = log (1.25); maximum
right censoring rate at τ is 40%; P (Z = 1) = 0.5 and logit [P (X = 1|Z = z)] = log (2) z.
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supplementary simulation results presented later in this chapter for binary covariates.
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Figure 2.8: Plot of the asymptotic bias of naive maximum likelihood estimators for a proportional haz-
ards Weibull regression model and a piecewise baseline hazard (PCBH) model with a misclassified binary
covariate; m = 5 equally spaced assessments; ρ = 0.2, κ = 1, βX = log (2), βZ = log (1.25); maximum
right censoring rate at τ is 40%; P (Z = 1) = 0.5 and logit [P (X = 1|Z = z)] = 0.5.
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Figure 2.9: Plot of the asymptotic bias of naive maximum likelihood estimators for a proportional hazards
Weibull regression model with a misclassified binary covariate based on current status data; assessment
time 0.75τ ; ρ = 0.2, κ = 0.5, βX = log (2), βZ = log (1.25); maximum right censoring rate at τ is 40%;
P (Z = 1) = 0.5 and logit [P (X = 1|Z = z)] = log (2) z.
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Figure 2.10: Plot of the asymptotic bias of naive maximum likelihood estimators for a proportional
hazards Weibull regression model and a piecewise baseline hazard (PCBH) model with a misclassified binary
covariate based on current status data; assessment time 0.75τ ; ρ = 0.2, κ = 0.5, βX = log (2), βZ =
log (1.25); maximum right censoring rate at τ is 40%; P (Z = 1) = 0.5 and logit [P (X = 1|Z = z)] =
log (2) z.
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2.3.2 Continuous Covariates

The function maximized with respect to θ∗ here is∫∞
−∞

∫∞
−∞

∫∞
−∞ fX,W,Z (x, w, z)

·
{∑

v∈P
∏5
j=1 Pvj−1,vj (τ/5|X,Z;θ)

∑5
j=1 log

[
P ∗
vj−1,vj

(τ/5|W ,Z;θ∗)
]}

dwdxdz,
(2.11)

where Pvj−1,vj
(·) and P ∗

vj−1,vj
(·) are given by (2.9) and (2.7), respectively. In addition,

fW |X,Z (w|x, z) is the probability density function (p.d.f.) of a N (x, σ2
U) distribution (σ2

U is

the measurement error variance), fX|Z (x|z) is the p.d.f. of a N
(
ξZZ, σ

2
X|Z

)
distribution,

fZ (z) is the p.d.f. of a N (0, σ2
Z) distribution, and

fX,W,Z (x,w, z) = fW |X,Z (w|x, z) fX|Z (x|z) fZ (z) .

As in the binary case, the true underlying model was specified as

FT (t|X,Z;θ) = exp [− (ρt)κ exp (βXX + βZZ)]

and the naive fitted model was either

F∗
T (t|W,Z;θ∗) = exp

[
− (ρ∗t)κ

∗
exp (β∗XW + β∗ZZ)

]
or

F∗
T (t|W,Z;θ∗) = exp [−λ0(t) exp (β∗XW + β∗ZZ)] ,

with

λ0(t) =


λ01, 0 ≤ t < τ/4

λ02, τ/4 ≤ t < τ/2

λ03, τ/2 ≤ t < 3τ/4

λ04, 3τ/4 ≤ t < τ

,

depending on whether a Weibull regression model or a piecewise constant baseline hazards

(PCBH) model was assumed. This optimization was conducted in PROC NLMIXED in

SAS based on a quasi-Newton algorithm. Numerical integration of the integrals in (2.11)

was conducted using adaptive Gaussian quadrature based on the default settings in PROC

NLMIXED.
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Figure 2.11: Plot of the asymptotic bias of naive maximum likelihood estimators for a proportional haz-
ards Weibull regression model with a mismeasured continuous covariate; m = 5 equally spaced assessments;
ρ = 0.2, κ = 2, βZ = log (1.25); right censoring rate at τ is 20% when evaluated at the means of X and Z;
Z ∼ N (0, 1) and X|Z ∼ N (0, 1) such that ρXZ = 0.
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Figures 2.11 to 2.14 summarize the asymptotic bias for a couple of representative

parameter configurations. Measurement error is characterized by the reliability ratio,

γ = σ2
X|Z/(σ

2
X|Z + σ2

U), with γ ranging from 0.5 to 1 to represent varying degrees of

measurement error. Based on these plots, bias tends to increase as the measurement error

becomes more severe (i.e. as γ decreases). The bias in the estimators for ρ appears to

be negligible, at least for the parameter configuration considered in Figure 2.11. How-

ever, estimation of κ seems to be affected and the resulting bias appears to depend on the

magnitude of the regression coefficient corresponding to the error-prone covariate. The

estimator for βZ does not appear to exhibit bias if X and Z are uncorrelated, but does

when they are correlated. As in the binary covariate setting, the magnitude of the true
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Figure 2.12: Plot of the asymptotic bias of naive maximum likelihood estimators for a proportional
hazards Weibull regression model and a piecewise baseline hazard (PCBH) model with a mismeasured
continuous covariate; m = 5 equally spaced assessments; ρ = 0.2, κ = 2, βZ = log (1.25); right censoring
rate at τ is 20% when evaluated at the means of X and Z; Z ∼ N (0, 1) and X|Z ∼ N (0, 1) such that
ρXZ = 0.
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underlying value for βX seems to impact the asymptotic bias in the estimators for βX and

βZ . The asymptotic bias based on the PCBH model looks to be shifted downward slightly

from the bias based on a Weibull model when κ = 2. Since this does not appear to be the

case when κ = 1, it may be due to the piecewise constant approximation to the baseline

hazard. Although not presented here, the asymptotic biases based on current status data

seemed to exhibit similar trends as the general interval-censored data as was the case in

the binary covariate setting.
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Figure 2.13: Plot of the asymptotic bias of naive maximum likelihood estimators for a proportional
hazards Weibull regression model and a piecewise baseline hazard (PCBH) model with a mismeasured
continuous covariate; m = 5 equally spaced assessments; ρ = 0.2, κ = 2, βZ = log (1.25); right censoring
rate at τ is 20% when evaluated at the means of X and Z; Z ∼ N (0, 1) and X|Z ∼ N (1.33Z, 1) such
that ρXZ = 0.8.
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Figure 2.14: Plot of the asymptotic bias of naive maximum likelihood estimators for a proportional
hazards Weibull regression model and a piecewise baseline hazard (PCBH) model with a mismeasured
continuous covariate; m = 5 equally spaced assessments; ρ = 0.2, κ = 1, βZ = log (1.25); right censoring
rate at τ is 20% when evaluated at the means of X and Z; Z ∼ N (0, 1) and X|Z ∼ N (1.33Z, 1) such that
ρXZ = 0.8.
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2.4 Correcting for Mismeasured Covariates

It has been demonstrated that mismeasured covariates induce bias in parameter estimators

even when the model is specified correctly otherwise. We now describe and evaluate meth-

ods accounting for this error. SIMEX and likelihood approaches will be investigated both

for Weibull regression models and models with piecewise constant baseline hazards. These

approaches are applicable and can be implemented in a similar way for other lifetime data

models although models with piecewise constant baseline hazards are broadly applicable

due to their robustness. First we introduce some additional notation.

Continuous X

In the case of continuous covariates, we will also assume the following:

• an error model similar to the classical additive error model in (1.29) is appropriate so

that the conditional distribution of Wi given Xi and Zi is MVN(µW |X,Z ,Σ), where

µW |X,Z = ζ0 + ζ ′XX i + ζ ′ZZi, and the Wi are conditionally independent given Xi

and Zi for i = 1, 2, ..., n,

• Σ is known or information has been obtained regarding this via supplementary data

consisting of repeated measurements on Wi or validation data, and

• we are dealing with nondifferential measurement error, that is, the distributions of

Y |W ,X,Z and Y |X,Z are equivalent.

Binary X

For the sake of illustration, assume that Xi = Xi and Wi = Wi are fixed one-dimensional

binary covariates and that

• π10 = P (Wi = 1|Xi = 0, zi), or π00 = 1− π10 is the so-called specificity,

• π01 = P (Wi = 0|Xi = 1, zi), or π11 = 1− π01 is the so-called sensitivity,

• π10 and π01 are known or can be estimated from supplementary data, and
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• we are dealing with nondifferential misclassification, that is, the distributions of

Y |W,X,Z and Y |X,Z are equivalent.

Based on the notation and model setup outlined above, we will describe two inference

procedures accounting for misclassification or measurement error in covariates that can

be used in the case of a progressive multi-state model with interval-censored data. The

first approach that will be introduced, Simulation Extrapolation (SIMEX), is a functional

modeling approach; whereas, the second, maximum likelihood, is a structural modeling

approach.

2.4.1 SIMEX

As mentioned in Chapter 1 SIMEX is a simulation-based method of dealing with mismea-

sured covariates. Estimates are obtained by first inducing more bias in parameter estimates

by adding measurement error using simulation, establishing a trend in this induced bias

as a function of the induced error variance, and then extrapolating back to the case of no

measurement error (Cook & Stefanski 1994). This method is suitable for use for additive or

multiplicative measurement error models and if this model is correctly specified, will result

in improved parameter estimates (Carroll et al. 2006). Since this method was originally

developed for continuous covariates subject to error, the SIMEX algorithm and variance

estimation will first be described for the case of measurement error in a continuous covari-

ate and then for the situation involving a misclassified binary covariate.

Measurement error in continuous covariates:

Rather than considering a vector of mismeasured continuous covariates, for purposes of

this description, consider the simpler case where X is one-dimensional. Assume that the

classical error model given in (1.29) holds such that the random variable U representing

measurement error is N (0, σ2
U). It follows that W |X,Z ∼ N

(
µW |X,Z , σ

2
U

)
, where µW |X,Z =

X. It is important to note however, that normality is not required in order to apply SIMEX

and in fact, this method can be easily extended to more complex error models (Carroll et

al. 2006). Let θ be the vector of the parameters of interest. Assume that σ2
U is known,
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or at least a good estimate is available from supplementary data, and an estimator which

is consistent in the absence of measurement error is available. Then, for a given dataset,

the SIMEX algorithm would proceed as outlined in Carroll et al. (1995) which we now

summarize.

Simulation Step

• Choose M constants, νm, i = 1, 2, ...,M , such that 0 = ν1 < ν2 < · · · < νM . Common

choices for these constants include {0, 0.5, 1, 1.5, 2} (Cook & Stefanski 1994; Li & Lin

2003; Wang et al. 1998) and

{0, 0.0625, 0.125, 0.25, 0.375, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2} (Greene & Cai 2004).

• Generate M sets of B datasets from the original, each time modifying the error-prone

covariate values by including additional variability in the form of

V ARm (W |X,Z) = (1 + νm)σ2
U

for m = 1, 2, ....,M . All data will remain the same except for the revised wi’s which

are generated from the original wi’s according to Wbi(νm) = Wi + ν
1
2
mUbi, where

i = 1, 2, ..., n, b = 1, 2, ..., B and m = 1, 2, ...,M . The Ubi’s are mutually independent,

independent of {Y i, Xi,Wi,Zi} for all b and i and are generated from a N(0, σ2
U)

distribution. Values for B that have been suggested in the literature include 50 (Li

& Lin 2003), 100 (Cook & Stefanski 1994; Li & Lin 2003), and 200 (Greene & Cai

2004).

• For each of the M × B datasets, estimate θ using Wbi(νm), for i = 1, 2, ..., n based

on a naive method, ignoring the measurement error, to obtain θ̂b(νm),

• Calculate the average of the naive parameter estimates for each of the M sets of data

as

θ̂(νm) =

∑B
b=1 θ̂b(νm)

B
, (2.12)

for m = 1, 2, ...,M . Wang et al. (1998) suggest using the median of the B estimates

for m = 1, 2, ...,M rather than the mean to calculate θ̂(νm).
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• Plot (νm, θ̂(νm)) for m = 1, 2, ...,M . Wang et al. (1998) refer to this plot as a

partial bias plot since the part of the relationship between the parameter estimates

and ν < ν1 (or equivalently, the error variance less than σ2
U) is hidden.

Extrapolation Step

• Model each component of the estimated parameter vector, θ̂(νm), as a function of ν.

The shape of the partial bias plot will provide insight into the type of model which

may be appropriate. Typical extrapolation functions that may be fit include:

– linear models (Cook & Stefanski 1994; Li & Lin 2003),

– quadratic models (Cook & Stefanski 1994; Li & Lin 2003; Wang et al. 1998),

– rational linear extrapolant models such as θ(ν) = a + b
c+ν

(Carroll et al. 2006;

Li & Lin 2003), and

– cubic models (Li & Lin 2003).

These models could be fit using least squares regression methods (Carroll et al. 1996).

• The SIMEX estimate of θ, θ̂SIMEX , is obtained by extrapolating the fitted models

back to the case where ν = −1 for each component of θ. This represents the situation

where X is error-free.

Carroll et al. (1996) develop asymptotic distribution theory for SIMEX estimators

based on unbiased estimating equations. They show that they are unbiased when the ex-

trapolation function is known and give an expression for the asymptotic variance, both

for the case where the measurement error variance is known and for the case when it is

estimated. Most of the time, however, the extrapolant is not known exactly; it is an ap-

proximation. Therefore, the resulting SIMEX estimator is only approximately consistent

in general. By approximately consistent, we mean that it converges in probability to a

constant that is only approximately equal to the true value of the parameter (Cook &

Stefanski 1994).
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When the measurement error variance is known, or a good estimate of it is available,

Stefanski & Cook (1995) describe a simple method to obtain SIMEX standard errors that

is related to Tukey’s jackknife variance estimation. Carroll et al. (2006) indicate that this

variance estimation procedure is valid for large samples and small measurement error. Let

• T (·) be an estimator for θ,

• θ̂b(ν) = T (Y ,Wb(ν),Z), where Wb(ν) is the bth W generated with measurement

error variance given by (1 + ν)σ2
U ,

• τ 2
b (ν) = V AR(θ̂b(ν)).

The following identity will be used to derive an estimate of the variance of the SIMEX

estimator:

θ̂(ν) = EU |Y,W,Z

[
θ̂b(ν)

]
. (2.13)

Here θ̂b(ν) depends on {Y ,Wb(ν),Z}, where Wb(ν) involves the random variables Ub.

Therefore, this expectation is taken with respect to the distribution of U . The SIMEX

estimator for θ is θ̂SIMEX = θ̂(−1). From (2.13) and as indicated in Stefanski & Cook

(1995), it follows that

V AR(θ̂b(ν)− θ̂(ν)) ≈ V AR(θ̂b(ν))− V AR(θ̂(ν)),

which will be used to approximate V AR(θ̂SIMEX):

V AR(θ̂SIMEX) = V AR(θ̂(−1))

= lim
ν→−1

V AR(θ̂(ν))

= lim
ν→−1

{
V AR(θ̂(ν)) + V AR(θ̂b(ν))− V AR(θ̂b(ν))

}
= lim

ν→−1

{
V AR(θ̂b(ν))−

[
V AR(θ̂b(ν))− V AR(θ̂(ν))

]}
≈ lim

ν→−1

{
V AR(θ̂b(ν))− V AR

[
θ̂b(ν)− θ̂(ν)

]}
.

The first term in this expression represents sampling variability in θ̂(ν) and can be esti-

mated by τ 2 (ν) =
PB

b=1 τ 2
b(ν)

B
, where τ 2

b (ν) is estimated by the naive model-based variance
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of θ̂b(ν). The second term represents the variability due to the presence of measurement

error. An unbiased estimator for this term is given by s2 (ν), the sample covariance ma-

trix calculated based on the B estimates of θ for a given ν. The variance estimates for

the SIMEX estimators can then be obtained by fitting a model to the components of the

differences, τ 2 (ν) − s2 (ν), and extrapolating back to ν = −1. These variance estimates

are referred to as the SIMEX Information when the naive model-based variances, τ 2
b (ν),

are estimated by the inverse of the information matrix (Carroll et al. 2006).

When SIMEX is based on an estimate of the measurement error variance and the vari-

ation associated with this estimator is suspected to be substantial, bootstrap or jackknife

resampling methods or a sandwich-type estimator based on unbiased estimating equation

theory can be used to estimate the standard errors of the SIMEX estimators (Carroll et al.

2006). The resampling methods tend to be computationally burdensome due to the nested

nature of the required resampling. The unbiased estimating equation approach requires

additional programming, but less computation. A detailed description of this variance

estimation approach is given in Carroll et al. (2006).

Misclassification in dichotomous covariates:

Küchenhoff et al. (2005) extended this approach to misclassified discrete covariates by

introducing the “Misclassification SIMEX ”. Consider the situation where we are dealing

with one misclassified covariate and for simplicity, assume that it can take on two values,

0 and 1, as outlined in the assumptions in the previous section. Let the misclassification

be represented by matrix Π,

Π =

(
π00 π01

π10 π11

)
, (2.14)

where π00 = P (W = 0|X = 0,Z) is the specificity and π11 = P (W = 1|X = 1,Z) is the

sensitivity. Let θ be the vector of parameters of interest and assume both π00 and π11 are

known or can be estimated from supplementary data. The naive estimator θ̂
∗
, ignoring

misclassification has a limit which depends on the degree of misclassification present which

is characterized by the misclassification matrix, Π. This limit is denoted by θ∗(θ,Π). If
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θ̂
∗

is a consistent estimator in the absence of misclassification, then θ∗(θ, I2×2) = θ where

I2×2 is a 2×2 identity matrix. For a given dataset, the Misclassification SIMEX algorithm

would proceed as follows:

Simulation Step

• Choose M constants, νm, such that 0 = ν1 < ν2 < · · · < νM .

• For each m, m = 1, 2, ...,M , generate B datasets from the original data, each time

modifying the already misclassified Wi’s by adding misclassification given by Πνm to

generate new Wbi(νm)’s for i = 1, 2, ..., n. Using matrix decomposition, Πνm can be

rewritten as Πνm = EΛνmE, where Λ = diag(e1, e2) and E = (E1,E2), with e1, e2,

the eigenvalues of Π, and E1 and E2, their associated eigenvectors (Küchenhoff et al.

2005). To ensure Πνm is a well-defined misclassification matrix, Det(Π) = π00+π11−1

must be greater than 0. This is true for π00 > 0.5 and π11 > 0.5. These values make

sense as any sensitivities and specificities 0.5 or less would suggest W is not a very

reasonable measurement of X (Küchenhoff et al. 2005). Küchenhoff et al. (2005)

suggest using B = 100.

• For each of the M × B datasets, estimate θ using Wbi(νm), for i = 1, 2, ..., n, based

on the naive method which ignored misclassification to obtain θ̂b(νm).

• Calculate the average of the naive parameter estimates for each of the M sets of data

as

θ̂(νm) =

∑B
b=1 θ̂b(νm)

B
, (2.15)

for m = 1, 2, ...,M .

• Plot
(
νm, θ̂(νm)

)
for m = 1, 2, ...,M .

Extrapolation Step

• Model each component of the estimated parameter vector, θ̂(νm), as a function of ν.

The shape of the partial bias plot will provide insight into the type of model which

may be appropriate. Candidate extrapolant functions that may be fit include:
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– linear models,

– quadratic models, and

– log-linear models (Küchenhoff et al. 2005).

• The SIMEX estimate of θ, θ̂SIMEX , is obtained by extrapolating the fitted models

back to the case where ν = −1 for each component of θ. This approximates the

situation whereX is error-free. If the fitted model is a good approximation to the true

underlying extrapolation function, this SIMEX procedure produces approximately

consistent estimators.

Küchenhoff et al. (2005) also applied the approximate method (described in Stefanski

& Cook (1995) for continuous measurement error) in their simulations for misclassified

binary covariates, and it appeared to perform well. This method was outlined in further

detail earlier in this section for the case of continuous X and W . It gives approximate stan-

dard errors in the case that the misclassification probabilities are known or are estimated

reasonably well in the sense that the sampling variability is presumed to be negligible. Us-

ing this variance approximation, they conducted simulations based on logistic regression

with a misclassified covariate and permitted the misclassification to be differential as well

as nondifferential. They demonstrated that the SIMEX approach performs well in both

situations. For the case where the misclassification probabilities are estimated, Küchenhoff

et al. (2006) describe a variance estimator based on unbiased estimating equation approach

that parallels the approach for continuous measurement error given in Carroll et al. (1996).

Their approach assumes the availability of an independent validation study to estimate the

misclassification matrix.

The SIMEX method can be readily extended to the situation where X is a vector for

both continuous and binary covariates. In this case, vectors W bi(νm), rather than the

scalars described above, can be generated in the simulation step for b = 1, 2, ..., B and

i = 1, 2, ..., n. The main advantage of SIMEX over other methods available to deal with

mismeasured covariates is the relative ease of implementation. Since it involves repeated

analysis of a dataset, existing software can be used to obtain estimates. Also, there is

no need to specify a distribution for the underlying true covariate, X, and it involves a
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built-in simulation study which demonstrates the effect of measurement error on parameter

estimation for a given set of data. Since it is a generally applicable method, it is often

useful in cases for which methodology has not been yet fully developed to deal with mea-

surement error or misclassification (Cook & Stefanski 1994). Computation, however, may

become burdensome if M and B are chosen to be large and estimation for the problem

at hand is complicated. Disadvantages include the requirement that the error variance or

misclassification matrix be known and the potential of obtaining inaccurate results due

to poor extrapolation (Gustafson 2004). In some cases, the variance of SIMEX estima-

tors can actually be much larger than that of the correct maximum likelihood estimators

(Küchenhoff & Carroll 1997).

Further Remarks on SIMEX

Since SIMEX estimators are only approximately consistent in general, SIMEX may

seem like a somewhat ad-hoc method of addressing covariate measurement error. However

there is some theoretical support for its use. Provided the true extrapolation function

is known, SIMEX estimators have been shown to be consistent and asymptotically nor-

mally distributed (Carroll et al. 1996; Küchenhoff et al. 2006). The difficulty lies in the

identification of the true extrapolation function. Cook & Stefanski (1994) identified exact

extrapolants for several models assuming normally distributed measurement errors. The

SIMEX estimator in these settings is consistent. Consider the simple case of estimation of

the variance of X based on W . The linear extrapolant is exact in this case. Extrapolation

to ν = −1 gives the methods-of-moments estimator (i.e. θSIMEX = s2
W − σ2

U , where s2
W

is the sample variance and σ2
U is the measurement error variance). They also showed that

estimators for the regression coefficients in multiple linear regression models and log-linear

mean models are consistently estimated by SIMEX estimators based on the rational linear

extrapolant θ(ν) = a+ b
c+ν

(Cook & Stefanski 1994).

For general problems such as those considered in this chapter and the next, the true

extrapolation function is unknown. Carroll et al. (2006) suggest that the rational linear or

quadratic extrapolation functions are usually adequate for small measurement error. How-
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ever, nonconvergence is often an issue with the rational linear extrapolant. Küchenhoff

et al. (2005) conclude that the quadratic and exponential extrapolants are adequate in

the case of misclassified covariates. Greene & Cai (2004) investigate SIMEX using linear,

quadratic, cubic and rational linear extrapolation functions in the context of a marginal

hazards model for multivariate failure time data. Based on their simulations, they observe

that the quadratic, cubic and rational linear extrapolants perform pretty well; although as

is the case for other problems, convergence problems can be encountered when fitting the

rational linear model. Regardless of whether you are dealing with measurement error in

continuous covariates or misclassified covariates, standard model building techniques and

diagnostics (e.g. residual analyses) should be conducted to help with the selection of an

extrapolant. Even if the model is carefully selected in this way, it is difficult to extrapolate

to ν = −1 based on data simulated for ν ∈ (0, 2]. This is a disadvantage of the SIMEX

approach.

The SIMEX approach as outlined earlier in this section treats the estimated mea-

surement error variance or misclassification probabilities as known even though they are

estimated based on supplementary data. The variance approximation of Stefanski & Cook

(1995) assumes that the measurement error variance is known, so it may tend to under-

estimated standard errors, especially if the size of the supplementary dataset is small. In

the case of misclassified covariates, Küchenhoff et al. (2005) suggest using a two-stage

bootstrap procedure to estimate the variance of the SIMEX estimator in the case where

Π is estimated. In the first stage, a bootstrap sample is drawn from a validation study

to estimate Π. Then, using this estimate, the above procedure is performed on a boot-

strap sample from the primary data to obtain a SIMEX estimate. This is repeated a large

number of times and the variance of the SIMEX estimator is estimated by the sample

variance of the bootstrapped SIMEX estimates. The similar bootstrap procedure could be

conducted in the case of continuous covariates to incorporate uncertainty in the measure-

ment error variance estimator based on supplementary data. However, this approach can

be computationally burdensome, so it is difficult to investigate the performance of these

standard error estimators via simulation.
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2.4.2 Correct Likelihood Approach

Misclassification in dichotomous covariates:

We will first discuss the likelihood formulation when the true covariate, X, is a dichoto-

mous, one-dimensional variable. We are taking a structural approach so we will assume a

distribution for X. Let Xi|Zi ∼ BIN (1, p(zi)), where p(zi) = eφ0+φ′
Zzi/

[
1 + eφ0+φ′

Zzi

]
so when φZ = 0, X and Z are uncorrelated. In addition, assume the Xi are conditionally

independent given Zi for all i = 1, 2, ..., n. Let θ represent the unknown parameters to be

estimated. Then the contribution to the likelihood by the ith subject is

Li(θ) = fY,W |Z (yi,wi|zi) . (2.16)

Assuming that we are dealing with nondifferential misclassification and noninformative

assessment times, this contribution becomes

Li(θ) = fY,W |Z (yi,wi|zi)

=
∑
x

fY |X,Z (yi|x, zi;θ) fW |X,Z (wi|x, zi;Π) fX|Z (x|zi;φ) ,

where

• fY |X,Z (yi|xi, zi) is based on either a Weibull regression model or a piecewise constant

hazards model (Note that the distribution of Y , or the state path, conditional on X

and Z can be thought of in terms of the distribution of T given X and Z. The

probability of a transition occurring between assessment times c and d, such that

yc = 1 and yd = 2, is FT (c|x, z;θ)−FT (d|x, z;θ).),

• the Wi’s are conditionally independent given Xi and Zi and fW |X,Z is specified by

the misclassification probabilities as

fW |X,Z (wi|xi, zi;Π) =
[
πwi

10 (1− π10)
(1−wi)

](1−xi)
[
π

(1−wi)
01 (1− π01)

wi

]xi

, and

• fX|Z (xi|zi;φ) ∝ p(zi)
xi (1− p(zi))

1−xi .
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Then the full likelihood function is given by

L(θ) =
n∏

i=1

1∑
x=0

fY |X,Z (yi|x,zi) fW |X,Z (wi|x,zi) fX|Z (x|zi)

=
n∏

i=1

1∑
x=0

[FT (ci|x,zi;θ)−FT (di|x,zi;θ)]
δi [FT (ci|x,zi;θ)]

1−δi

[
πwi

10 (1− π10)(1−wi)
](1−x) [

π
(1−wi)
01 (1− π01)wi

]x [eφ0+φ
′
Zzi

]x
1 + eφ0+φ

′
Zzi

. (2.17)

Inference for θ can then be conducted based on maximization of the above likelihood func-

tion with respect to the unknown parameters. This can be readily extended to categorical

covariates with more than two levels.

Measurement error in continuous covariates:

Now we consider the likelihood formulation for continuous covariates, X. In addition

to the assumptions previously outlined, since this maximum likelihood approach is based

on structural modeling, we must make assumptions regarding the distribution of the true

underlying covariates,X. For the sake of this illustration, we will consider one-dimensional

X and allow its distribution to depend on Z as follows: Xi|Zi ∼ N(µX|Z , σ
2
X|Z), where

µX|Z and σX|Z are known (or can be readily estimated using supplementary data). We

will also assume that the Xi are conditionally independent given Zi for i = 1, 2, ..., n. To

construct the likelihood, we need to consider the observed data. The contribution to the

likelihood function from subject i would be as follows:

Li(θ) = fY,W |Z (yi,wi|zi)

=

∫ ∞

−∞
fY |W,X,Z (yi|wi, x, zi;θ) fW |X,Z

(
wi|x, zi;θW |X,Z

)
fX|Z

(
x|zi;θX|Z

)
dx

=

∫ ∞

−∞
fY |X,Z (yi|x, zi;θ) fW |X,Z

(
wi|x, zi;θW |X,Z

)
fX|Z

(
x|zi;θX|Z

)
dx.

The third line follows from the assumption of nondifferential error. The functions in the last

line above are all known, at least up to some unknown parameters, due to the assumptions

presented earlier. The functions appearing in the above likelihood are:
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• fY |X,Z (yi|x, zi;θ), which is based on a Weibull regression model, or a piecewise

constant baseline hazards model that is a function of unknown parameters θ =

(λ0k,βxk,βzk) for k = 1, 2, ..., K,

• fW |X,Z
(
wi|x, zi;θW |X,Z

)
, which is given by the classical error model, (1.29), with the

measurement error variance assumed known or estimated via supplementary data,

and

• fX|Z
(
x|zi;θX|Z

)
, which is assumed known since we have taken a structural approach

and assumed Xi|Zi ∼ N
(
µX|Z , σ

2
X|Z

)
; information regarding this distribution can

be obtained from prior knowledge or data collected on X and Z in the current

investigation.

Then the full likelihood function is

L (θ) =
n∏
i=1

∫ ∞

−∞
fY |X,Z (yi|x, zi;θ) fW |X,Z

(
wi|x, zi;θW |X,Z

)
fX|Z

(
x|zi;θX|Z

)
dx

=
n∏
i=1

∫ ∞

−∞

{
[FT (ci|x, zi;θ)−FT (di|x, zi;θ)]δi [FT (ci|x, zi;θ)]1−δi

1√
2πσU

e
−(wi−x)2

2σ2
U

1√
2πσX|Z

e

−(x−µX|Z)
2

2σ2
X|Z

 dx. (2.18)

Due to the potential complexity of the integrand, the integrals in the above likelihood

function can be approximated numerically. One strategy involves the use of numerical

techniques such as Monte Carlo Methods. Let N be a large prespecified number. Then

this method proceeds in the following way. Given zi, for each i, simulate N values of xi

from the N
(
µX|Z , σ

2
X|Z

)
distribution to obtain

(
x

(1)
i , x

(2)
i , ..., x

(N)
i

)
. Then

L̂i ≈ ÊX|Z
(
fY |X,Z (yi|xi, zi;θ) fW |X,Z

(
wi|xi, zi;θW |X,Z

))
=

1

N

N∑
r=1

fY |X,Z

(
yi|x(r)

i , zi;θ
)
fW |X,Z

(
wi|x(r)

i , zi;θW |X,Z

)
,

and inference regarding θ can be conducted based on L̂ =
∏n

i=1 L̂i.
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Another way to numerically approximate the integrals in (2.17) is via Gaussian Quadra-

ture. For a given integer N , we can determine abscissas, xj and a set of weights, wj such

that ∫ b

a

W (x) f (x) dx ≈
N−1∑
j=0

wjf (xj) (2.19)

For low dimensional X, this approach is a recommended numerical integration technique

by Evans & Swartz (2000). Throughout this thesis when X is continuous, X|Z is assumed

to follow a normal distribution. Therefore, Gauss-Hermite quadrature will be used. In this

case, the integral to be approximated has the form
∫∞
−∞ f (x) exp (−x2) dx. The abscissas

and weights can be determined based on a recurrence relation involving Hermite polyno-

mials which have the form Hj+1 = 2xHj − 2jHj−1. These polynomials are the solutions to

the differential equation y′′ − 2xy′ + 2nHy = 0, nH = 0, 1, 2, ... (Press et al. 2002). This

numerical integration approach was used in the simulation studies and the application pre-

sented later in this chapter. The maximum likelihood approach would proceed in a similar

manner for higher dimensional X or for more complex distributions for the error and the

true underlying covariates. However, the numerical integration approach would need to be

revisited and revised accordingly.

2.4.3 Estimation of Mismeasurement and Covariate Distribution

Parameters

To implement both the SIMEX and the correct likelihood approaches, supplementary

data is required to estimate parameters associated with distributions other than those

for Y |X,Z, the distribution of interest. Internal validation data, where X is recorded in

addition to W , for a subset of the study participants is ideal. It provides information on the

structure of the error distribution and often leads to greater precision in estimation (Car-

roll et al. 2006). However, reliability data and external validation data can still be used

to collect information on the error distribution, but the assumption of “transportability”

must be made when using external data. A model is transportable if it and its associated

parameters can be applied in the context of another problem without introducing bias
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(Carroll et al. 2006). It is common in practice to assume that the same classical error

model holds across populations. However, it is important to keep in mind that using a

model which is not transportable in an errors-in-variables analysis may actually introduce

bias (Carroll et al. 2006). Measurement error and misclassification can have a substantial

impact on parameter estimation. Therefore, if the associated parameters are assumed or

estimated via external data, it is good practice to augment the analysis with a sensitivity

study to demonstrate uncertainty of departures from the assumed values in the estimates

and investigate the impact of departures from the assumed values on parameter estimation

(Aitkin & Rocci 2002). For SIMEX, we need to estimate the parameters associated with

the mismeasurement distribution (i.e. W |X, or possibly W |X,Z if the mismeasurement

distribution also depends on the error-free covariates) and for the correct likelihood ap-

proach, we also require estimates of the parameters of the conditional covariate distribution

(i.e. X|Z).

First consider the case where X, and therefore W, are one-dimensional binary variables.

For both the SIMEX and maximum likelihood approaches, π01 and π10 must be estimated.

With validation data, maximizing the likelihood function

L (π01, π10) = πn01
01 (1− π01)

n1−n01 πn10
10 (1− π10)

n0−n10

results in the maximum likelihood estimates π̂01 = n01/n1 and π̂10 = n10/n0, where n01 is

the number of subjects in the validation study with X = 1 and W = 0, n10 is the number

of subjects in the study with X = 0 and W = 1, and n1 and n0 are the number of subjects

with X = 1 and X = 0, respectively.

When X is not observed, the misclassification probabilities can also be estimated with

reliability data by latent class analysis (Goodman 1974). If there were ri replicated ob-

servations for subject i, a likelihood contribution from the ith subject would be based on∑
Xi
P (Xi)P (W i|Xi) and given by

Li (π, π01, π10) = π

ri∏
j=1

{
(1− π01)

wij π
1−wij

01

}
+ (1− π)

ri∏
j=1

{
(1− π10)

1−wij π
wij

10

}
, (2.20)
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where π = P (Xi = 1).

We also need to specify a distribution for X|Z to proceed with the maximum likelihood

approach. If external validation data are available with Z measured in addition to X and

W, a logistic regression of X on Z can be performed to estimate this distribution.

If there are internal validation data available and ∆i = 1 when subject i is in the

validation study, the likelihood could be specified as follows:

Li(θ) =

{ ∑1
x=0 fY |X,Z (yi|x,zi;θ) fW |X (wi|x;Φ) fX|Z (x|zi;Ψ) , ∆i = 0

fY |X,Z (yi|xi,zi;θ) fW |X (wi|xi;Φ) , ∆i = 1
, (2.21)

where Φ and Ψ are the parameters associated with the measurement error and conditional

covariate distributions, respectively. Then the misclassification and conditional covariate

distribution parameters can be estimated along with the parameters of interest. With re-

liability data, if the misclassification probabilities do not depend on Z, an estimate of the

X|Z distribution could be obtained by the logistic regression of W on Z. If the assumption

is made that X does not depend on Z, an estimate of π = P (X = 1) could be obtained

directly from (2.20).

Now consider the case where X, and therefore W , are one-dimensional continuous

variables. Reliability data, or data consisting of repeated measurements of W , can be used

to estimate σ2
U when the classical error model, (1.29), is appropriate. Suppose there are

nr subjects in the reliability study and there are ri replicate measurements of Wij, j =

1, 2, ..., ri, for each subject, i. Based on a component of variance analysis, this measurement

error variance can then be estimated by

σ2
U =

∑nr

i=1

∑ri
j=1 (wij − w̄i.)

2∑nr

i=1 (ri − 1)
,

where w̄i. = 1
ri

∑ri
j=1wij. Validation data, or data containing measurements of both X

and W on the same subjects, could also be used to estimate σ2
U . A simple linear regres-

sion analysis could be used both to verify the reasonableness of the classical error model

assumption as well as to provide an estimate for σ2
U by the estimated residual variance.
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If the measurement error distribution depends on Z in addition to X these variables can

be included in the regression analysis. However, if the validation data is external to the

primary data, it would have to contain measurements on the error-free covariates, Z in

addition to those on X and Z.

For the SIMEX approach, estimation of σ2
U would follow in a similar manner regardless

of whether the supplementary data arose from external data or were included in the pri-

mary data. If the variation in these estimates is not negligible, the variability associated

with these estimates can then be incorporated in the SIMEX variance estimation based

on resampling methods or unbiased estimating equations (Carroll et al. 2006). When

no supplementary data are available to characterize the measurement error distribution,

a sensitivity analysis could be performed to investigate the impact of varying degrees of

measurement error (Li & Lin 2003). For the correct likelihood approach, σ2
U could be

estimated in the manner outlined above if we were dealing with external supplementary

data. However, with internal supplementary data the likelihood function can be expressed

in terms of σ2
U and it can be estimated along with the other parameters rather than simply

imputing an estimate into the likelihood function.

Parameter estimates associated with the distribution of X|Z are also needed to im-

plement the likelihood approach. Again, ideally the data would consist of an internal

validation subset. With internal validation data and with ∆i = 1 when subject i is in the

validation study, the contribution of the ith subject to likelihood function would be

Li(θ) =

{ ∫∞
−∞ fY |X,Z (yi|x,zi;θ) fW |X (wi|x;Φ) fX|Z (x|zi;Ψ) dx, ∆i = 0

fY |X,Z (yi|xi,zi;θ) fW |X (wi|xi;Φ) ∆i = 1
(2.22)

We can also obtain information about the distribution of X|Z via reliability data or ex-

ternal validation data. With an external validation subset that includes measurements

on Z in addition to X and W , a simple linear regression of X on Z could be used to

estimate the conditional covariate distribution and the estimated parameters can be used

in the likelihood function for Y ,W |Z. With reliability data, either external or internal,

we have no measurements of X, just repeated measurements of W . However, if we assume

the classical error model (1.29) is appropriate, we can still estimate the measurement error
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variance as above. Then, considering the case where there are no error-free covariates, Z,

measured or the case where the measurement error and the X distributions do not depend

on Z, it follows from W = X + U , U ∼ N (0, σ2
U) that µX = µW and σ2

X = σ2
W − σ2

U , so

estimates could be obtained from µ̂X = µ̂W and σ̂2
X = σ̂2

W − σ̂2
U .

2.5 Simulation Study

The objective of these simulations is to compare the performance of the naive and correct

estimation approaches in the presence of measurement error and misclassification. Two-

state models (Figure 2.2) were investigated. Values for the hazard function parameters

were selected so that the simulations represent situations encountered in practice and so

that they would be consistent with those used in the next chapter on three state models. In

these simulations, W is the mismeasured version of X that will be used to fit models and Z

is a perfectly measured covariate. Parameters associated with λT (t|x, z;θ) are denoted by

θ = (ρ, κ, βX , βZ). All simulations were conducted in SAS using PROC NLP and PROC

IML.

2.5.1 Binary Covariates

DATA GENERATION

Data were generated based on the true models and the joint distribution of (X,W ) as

follows:

• Number of datasets: N = 500,

• Number of subjects per dataset: n = 500,

• Years of follow-up: τ was selected such that the probability of transition to state

2 from state 1 by time τ (i.e. P1,2 (τ |X,Z)) was at least 0.8 based on all possible

values of (X,W ),
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• Average number of follow-ups: µ = 5 (20 was also investigated for a small number

of parameter configurations),

• Baseline hazards: ρ = 0.2 and κ = 0.5, 1, 2,

• Covariate effects: eβX = 1.25, 2 and eβZ = 1.25, and

• SIMEX parameters: M = 5 with {ν1, ν2, ν3, ν4, ν5} = {0, 0.5, 1, 1.5, 2} and B = 100.

For each subject, first the number of follow-up times were generated as mi ∼ POI(µ). The

assessment times, uij, j = 1, 2, ...,mi were then generated frommi independent UNIF (0, τ)

random variables. The transition times for each individual were simulated by generating

values of Ti ∼ EXP (λT (t|xi, zi,θ)). The transition times were then compared to the as-

sessment times. If the transition time was interval-censored and fell between ui,j−1 and uij

for some j = 1, ...,mi, then ci = ui,j−1, di = uij and δi = 1. Otherwise, if the transition

time was right-censored, ci = uimi
and δi = 0.

Misclassification was characterized by the probabilities, π01 = 1−π11 and π10 = 1−π00,

or equivalently, by π00 and π11 (i.e. specificity and sensitivity). Covariate values were

generated by the following steps:

• Z ∼ BIN(1, pZ), with pZ = 0.5.

• X|Z ∼ BIN(1, eξ0+ξZZ

1+eξ0+ξZZ ), with ξ0 = 0 for a 50% baseline probability X=1, and

ξZ = − log(2), log(2), which represent negative and positive effects of Z on X.

• π11 = P (W = 1|X = 1) = 0.7, 1 (sensitivity), and

• π00 = P (W = 0|X = 0) = 0.7, 0.9, 1 (specificity).

These values were selected to represent minor to severe misclassification. The pa-

rameter configurations also allow us to investigate the situations when only false

negatives are possible (π11 = 1 and π00 < 1) and only false positive are possible

(π00 = 1 and π01 < 1). As is clear from these expressions, in these simulations, we

are assuming the misclassification probabilities do not depend on Z.
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Two validation samples (one of size 50 and one of size 200) were randomly selected

from the n = 500 subjects to estimate the misclassification probabilities and for the cor-

rect maximum likelihood approach, the X|Z distribution.

ESTIMATION

Estimates of π01 and π10 were obtained by fitting a logistic regression of W on X based on

the validation data:

π̂01 =
1

1 + eφ̂0+φ̂X

and π̂10 =
eφ̂0

1 + eφ̂0
.

These estimates of the misclassification probabilities were used to generate inflated misclas-

sification in the SIMEX approach and were used in the likelihood function for the maximum

likelihood approach (i.e. ignoring the sampling variability). A logistic regression of X on

Z provided estimates of ξ0 and ξZ to provide an estimate for P (X = 1|z) also for use in

the correct likelihood function:

p̂X|Z =
eξ̂0+ξ̂ZZ

1 + eξ̂0+ξ̂ZZ
.

Both Weibull models and piecewise constant baseline hazard (PCBH) models were fit to

the data.

SIMEX involved repeated estimation based on the naive likelihood function. For a

multiple of the original misclassification given by νm, m = 2, 3, 4, 5, B = 100 revised

wb’s were generated and each time, θ̂b(νm) =
(
ρ̂0b(νm), κ̂0b(νm), β̂Xb(νm), β̂Zb(νm)

)′
was

obtained by maximizing the following likelihood function:

Lnaive (θ(νm)) =
500∏
i=1

[FT (ci|wi, zi;θ(νm))−FT (di|wi, zi;θ(νm))]δi [FT (ci|wi, zi;θ(νm))]1−δi .

(2.23)

Since ρ and κ must be larger than 0, they were reparametrized as ρ = er and κ = ek to

avoid imposing constraints in the optimization procedure. Then the log-likelihood function

was maximized with respect to θ = (r, k, βX , βZ). By the invariance property of maximum

likelihood estimators, estimates of ρ and κ were obtained by ρ̂ = er̂ and κ̂ = ek̂. Their
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respective variances were estimated by

V̂AR (ρ) =
(
er̂, ek̂, 0, 0

)t
I−1

(
θ̂
)(

er̂, ek̂, 0, 0
)

[1,1]
, and

V̂AR (κ) =
(
er̂, ek̂, 0, 0

)t
I−1

(
θ̂
)(

er̂, ek̂, 0, 0
)

[2,2]
,

where I−1
(
θ̂
)

was the inverse of the observed information function evaluated at the max-

imum likelihood estimate, θ̂ =
(
r̂, k̂, β̂X , β̂Z

)′
. Although SAS’s PROC NLP was used to

conduct the maximum likelihood estimation and the likelihood function was coded, exist-

ing software (such as PROC LIFEREG in SAS) could have been employed to maximize

(2.23).

At each νm, θ̂(νm) was obtained by taking the average of the B = 100 parameter es-

timates. The estimate θ̂(ν1) is simply the original naive maximum likelihood estimate.

Then, a model was fit to these five values and the SIMEX estimates were obtained by

extrapolating back to the case where ν = −1 based on this model. The simple variance

approximation approach as described in Stefanski & Cook (1995) for continuous measure-

ment error and used in Küchenhoff et al. (2005) for misclassification was applied here.

Therefore, variance estimates for the SIMEX estimators were obtained by first fitting a

model to the differences, τ 2 (νm)− s2 (νm), m = 1, ..., 5, where τ 2 (νm) is the average of the

B = 100 model-based variance estimates at each νm (which were based on the inverse of

the information matrix here) and s2 (νm) is the sample variance of the B = 100 parameter

estimates at νm. The SIMEX variance estimates were then obtained by extrapolating this

relationship back to ν = −1. As in Küchenhoff et al. (2005), quadratic (θ = a+ bν + cν2)

and exponential (θ = aebν) extrapolation functions were considered and fit using least

squares in SAS (PROC REG and PROC NLIN, respectively). For the purposes of these

simulations the same extrapolation function was used to obtain the SIMEX parameter and

variance estimates. However, there is no requirement that the parameter and variance

estimate extrapolants be the same. In practice, extrapolant function selection would not

be automated in this way. Usual model building techniques would be used and diagnostics

based on residuals would provide information regarding the adequacy of the models. It

is difficult to implement this in simulation studies. However, in an attempt to automate
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this model building process, two other approaches were considered in the simulation based

on quadratic and exponential functions. First, the optimal model of the two based on

adjusted R2 (i.e. R2
adj = 1− SSE/(n−p)

SSTO/(n−1)
) was selected to estimate the parameters and the

variances. Second, since both extrapolation models appeared to perform reasonably well,

the average of the estimates arising from the two models was considered.

The maximum likelihood approach accommodating misclassification was based on the

following likelihood function (see (2.17)).

L(θ) =
n∏
i=1

1∑
x=0

[FT (ci|x, zi;θ)−FT (di|x, zi;θ)]
δi [FT (ci|x, zi;θ)]

1−δi

·


(
eφ̂0+φ̂Xx

)wi

1 + eφ̂0+φ̂Xx


(
eξ̂0+ξ̂Zzi

)x
1 + eξ̂0+ξ̂Zzi

 .

Again, as in the SIMEX case, ρ and κ were reparameterized as ρ = er and κ = ek and

the log-likelihood function was maximized to obtain estimates for θ = (r, k, βX , βZ). Even

though existing software could have been used for the SIMEX analyses, for the sake of con-

sistency in implementation, for both the SIMEX and the maximum likelihood approaches,

the objective functions were maximized based on a quasi-Newton algorithm using PROC

NLP in SAS. Quasi-Newton approaches require computation of the first derivative of the

log-likelihood function, but not the second derivative, which is approximated. This re-

duces the computing required compared to Newton’s method where the second derivatives

must be computed in addition to the first derivatives. Typically though, quasi-Newton

approaches require more iterations than Newton’s method. In developing the code used to

conduct the simulations throughout this thesis, both optimization approaches were tried

and it was found that the quasi-Newton approach seemed to be much more efficient than

Newton’s method in terms of computation time. All simulations are based on the default

QUANEW procedure in SAS’s PROC NLP and initial values for the parameters were ran-

domly generated by PROC NLP. The default quasi-Newton procedure in SAS is based on a

dual quasi-Newton algorithm that updates the Cholesky factor of the approximate Hessian

based on the BFGS update (Broyden 1969; Fletcher 1970; Goldfarb 1970; Shanno 1970).

According to the SAS documentation (SAS 9.1.3 OnlineDoc 2006), the default line-search
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method is based on quadratic interpolation and cubic extrapolation functions which are

used to obtain a step length that adheres to Goldstein’s conditions. Further details are

available in the SAS 9.1.3 online documentation, Martinez (2000) and Schoenberg (2001).

Fitting the models involving piecewise constant baseline hazards followed in a similar

way. However, cut-points had to be selected before the log-likelihood could be maximized.

Models with four pieces were considered in these simulations. The cut-points were chosen

to be the quartiles of the true underlying distribution. In practice, these cut-points could

be selected based on empirical distribution quantiles or they could be equally spaced over

the length of the study. Representative results are displayed in Tables 2.1 to 2.4. These

tables summarize the results corresponding to effects on X and Z compare results based

on the Weibull model and the piecewise constant baseline hazards (PCBH) model. In

practice, it is usually the covariate effects that are of interest rather than the baseline haz-

ards. “Sample I” refers to estimation with supplementary data in the form of a validation

sample of size 50 while “Sample II” refers to a validation sample of size 200. The “known”

results under the correct maximum likelihood approach were based on full knowledge of

the misclassification and conditional covariate distributions. This is meant to represent the

best case scenario when X is unobserved for all subjects in the study. Comparison of these

results to those using validation data can provide an indication of how well the method

performs when parameters associated with those distributions need to be estimated in ad-

dition to the model parameters of interest. SIMEX results based on a small validation

sample and using quadratic and exponential extrapolation functions are also presented in

the tables.

DISCUSSION

There did not seem to be any major problems with convergence (convergence rates ranged

from about 97% to 100% of the simulation replications). Upon examination of the tabulated

results for the parameter configurations investigated, the following general observations can

be made.

• For both models the naive maximum likelihood biases and coverage probabilities

(based on the model-based standard errors) exhibit poorer performance as the mis-
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Table 2.1: Empirical performance of estimators of the regression parameters associated with binary X

and Z; Number of assessments are POI (5); ρ = 0.2, κ = 1, βX = βZ = log (1.25), π11 = 0.7, pz = 0.5
and logit

(
px|z

)
= log (2) z.

Mismeasured covariate (βX) Error-free covariate (βZ)
Method π00 = 0.7 π00 = 0.9 π00 = 0.7 π00 = 0.9

Weibull PCBH Weibull PCBH Weibull PCBH Weibull PCBH

Naive Bias -0.1350 -0.1356 -0.1064 -0.0924 0.0320 0.0337 0.0270 0.0239
SE1 0.1042 0.1043 0.1043 0.1046 0.1040 0.1042 0.1043 0.1044
SE2 0.1041 0.1043 0.1082 0.1057 0.1018 0.1017 0.1021 0.1035
ECP 0.7460 0.7470 0.8533 0.8567 0.9460 0.9458 0.9500 0.9517

Likelihood
Known Bias 0.0073 0.0078 0.0034 -0.0003 0.0043 0.0047 0.0004 0.0005

SE1 0.2749 0.2789 0.1794 0.1979 0.1144 0.1146 0.1084 0.1084
SE2 0.2830 0.2826 0.1801 0.1821 0.1135 0.1137 0.1068 0.1078
ECP 0.9499 0.9580 0.9525 0.9497 0.9579 0.9620 0.9576 0.9549

Sample I Bias 0.0268 0.0356 0.0807 0.0944 0.0019 -0.0023 -0.0107 0.0944
SE1 0.3078 0.3295 0.2439 0.2565 0.1278 0.1318 0.1180 0.1199
SE2 0.3695 0.4650 0.3195 0.4715 0.1399 0.1534 0.1310 0.1369
ECP 0.9319 0.9220 0.9280 0.9296 0.9539 0.9500 0.9365 0.9433

Sample II Bias 0.0182 0.0251 0.0072 0.0039 0.0025 0.0012 -0.0010 -0.0015
SE1 0.2944 0.3030 0.1840 0.1844 0.1203 0.1218 0.1095 0.1095
SE2 0.3266 0.3452 0.1916 0.1924 0.1300 0.1310 0.1103 0.1118
ECP 0.9419 0.9540 0.9457 0.9437 0.9639 0.9640 0.9559 0.9542

SIMEX
Quadratic Bias -0.0464 -0.0509 -0.0359 -0.0512 0.0196 0.0203 0.0276 0.0120

SE1 0.2025 0.1633 0.2866 0.1435 0.1317 0.1040 0.2503 0.1045
SE2 0.2317 0.2109 0.3799 0.1626 0.1051 0.1026 0.3665 0.1028
ECP 0.8922 0.8804 0.8747 0.8801 0.9578 0.9505 0.9575 0.9532

Exponential Bias 0.0637 0.0524 -0.0384 -0.0377 0.0326 0.0322 0.0243 0.0249
SE1 0.3224 0.3239 0.1709 0.1696 0.1044 0.1042 0.1044 0.1046
SE2 0.5545 0.6094 0.1768 0.1752 0.1023 0.1034 0.1021 0.1021
ECP 0.9244 0.9185 0.9139 0.9221 0.9511 0.9464 0.9553 0.9533

SE1 and SE2 : average model-based and empirical standard errors, respectively

ECP: empirical coverage probability (proportion of 95% CI’s that include true parameter value)

Sample I and Sample II: small (50) and large (200) validation samples, respectively (SIMEX based on Sample I)

Known: based on using the true parameter values for misclassification and X|Z distributions
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Table 2.2: Empirical performance of estimators of the regression parameters associated with binary X

and Z; Number of assessments are POI (5); ρ = 0.2, κ = 0.5 , βX = βZ = log (1.25), π11 = 0.7, pz = 0.5
and logit

(
px|z

)
= log (2) z.

Mismeasured covariate (βX) Error-free covariate (βZ)
Method π00 = 0.7 π00 = 0.9 π00 = 0.7 π00 = 0.9

Weibull PCBH Weibull PCBH Weibull PCBH Weibull PCBH

Naive Bias -0.1400 -0.1404 -0.0937 -0.0931 0.0319 0.0331 0.0395 0.0334
SE1 0.1027 0.1029 0.1030 0.1033 0.1025 0.1027 0.1028 0.1031
SE2 0.1069 0.1056 0.1062 0.1064 0.1007 0.1010 0.1946 0.1016
ECP 0.7120 0.7160 0.8280 0.8353 0.9480 0.9440 0.9420 0.9438

Likelihood
Known Bias -0.0075 0.0027 -0.0024 0.0014 0.0048 0.0044 0.0100 0.0106

SE1 0.2716 0.2796 0.1764 0.1777 0.1129 0.1136 0.1069 0.1070
SE2 0.2794 0.2976 0.1812 0.1838 0.1115 0.1132 0.1050 0.1055
ECP 0.9578 0.9620 0.9500 0.9500 0.9598 0.9560 0.9560 0.9580

Sample I Bias 0.0386 0.0439 0.0705 0.0663 -0.0032 -0.0032 0.0015 0.0024
SE1 0.3187 0.3486 0.2360 0.2423 0.1271 0.1310 0.1155 0.1172
SE2 0.4383 0.5507 0.3501 0.3870 0.1411 0.1541 0.1258 0.1312
ECP 0.9260 0.9096 0.9376 0.9198 0.9460 0.9398 0.9497 0.9479

Sample II Bias -0.0053 0.0210 0.0029 0.0080 0.0049 0.0026 0.0090 0.0095
SE1 0.2850 0.2976 0.1794 0.1812 0.1172 0.1186 0.1078 0.1079
SE2 0.3575 0.3583 0.2068 0.2169 0.1255 0.1287 0.1075 0.1083
ECP 0.9440 0.9478 0.9540 0.9540 0.9440 0.9398 0.9600 0.9560

SIMEX
Quadratic Bias -0.0733 -0.0643 -0.0395 -0.0347 0.0048 0.0207 0.0076 0.0163

SE1 0.2134 0.1621 0.1669 0.1428 0.2346 0.1621 0.1693 0.1032
SE2 0.2267 0.2114 0.1681 0.1657 0.1639 0.2114 0.1385 0.1022
ECP 0.8367 0.8381 0.9091 0.9091 0.9532 0.8381 0.9514 0.9515

Exponential Bias -0.0062 0.0193 -0.0221 -0.0183 0.0259 0.0322 0.0290 0.0304
SE1 0.3257 0.3159 0.1747 0.1766 0.1023 0.1028 0.1031 0.1032
SE2 0.3463 0.3802 0.1799 0.1802 0.1022 0.1011 0.1015 0.1017
ECP 0.9111 0.9133 0.9212 0.9286 0.9502 0.9433 0.9398 0.9414

SE1 and SE2 : average model-based and empirical standard errors, respectively

ECP: empirical coverage probability (proportion of 95% CI’s that include true parameter value)

Sample I and Sample II: small (50) and large (200) validation samples, respectively (SIMEX based on Sample I)

Known: based on using the true parameter values for misclassification and X|Z distributions
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Table 2.3: Empirical performance of estimators of the regression parameters associated with binary X

and Z; Number of assessments are POI (5); ρ = 0.2, κ = 2, βX = βZ = log (1.25), π11 = 0.7, pz = 0.5
and logit

(
px|z

)
= log (2) z.

Mismeasured covariate (βX) Error-free covariate (βZ)
Method π00 = 0.7 π00 = 0.9 π00 = 0.7 π00 = 0.9

Weibull PCBH Weibull PCBH Weibull PCBH Weibull PCBH

Naive Bias -0.1294 -0.1308 -0.0855 -0.0861 0.0426 0.0402 0.0222 0.0209
SE1 0.1113 0.1114 0.1114 0.1115 0.1112 0.1113 0.1114 0.1115
SE2 0.1184 0.1130 0.1105 0.1100 0.1191 0.1142 0.1176 0.1170
ECP 0.7840 0.7892 0.9060 0.9038 0.9300 0.9257 0.9320 0.9299

Likelihood
Known Bias 0.0158 0.0093 0.0026 0.0103 0.0105 0.0107 -0.0132 -0.0027

SE1 0.2932 0.2903 0.1916 0.1915 0.1219 0.1215 0.1153 0.1157
SE2 0.2973 0.2872 0.1911 0.1873 0.1242 0.1229 0.1246 0.1208
ECP 0.9519 0.9618 0.9467 0.9558 0.9519 0.9538 0.9316 0.9357

Sample I Bias 0.0539 0.0236 0.0735 0.0577 -0.0062 0.0138 -0.0232 -0.0117
SE1 0.3248 0.3382 0.2540 0.2629 0.1364 0.1383 0.1285 0.1315
SE2 0.3886 0.3992 0.3132 0.3594 0.1521 0.1513 0.1546 0.1816
ECP 0.9399 0.9498 0.9400 0.9538 0.9459 0.9478 0.9220 0.9217

Sample II Bias 0.0251 0.0143 0.0188 0.0139 0.0082 0.0093 -0.0028 -0.0031
SE1 0.3058 0.3048 0.1971 0.1966 0.1263 0.1257 0.1168 0.1167
SE2 0.3306 0.3073 0.1974 0.1926 0.1332 0.1282 0.1236 0.1225
ECP 0.9460 0.9639 0.9519 0.9580 0.9440 0.9518 0.9359 0.9400

SIMEX
Quadratic Bias -0.0438 -0.0433 -0.0196 -0.0227 0.0280 0.0270 0.0063 0.0024

SE1 0.1819 0.1735 0.2130 0.1517 0.1226 0.1110 0.1974 0.1116
SE2 0.2281 0.2256 0.2015 0.1695 0.1164 0.1144 0.1773 0.1179
ECP 0.8648 0.8727 0.9320 0.9316 0.9362 0.9394 0.9339 0.9296

Exponential Bias 0.0082 0.0220 -0.0070 -0.0077 0.0407 0.0391 0.0159 0.0163
SE1 0.3574 0.3323 0.1894 0.1802 0.1116 0.1113 0.1159 0.1117
SE2 0.5474 0.4978 0.1896 0.1897 0.1148 0.1142 0.1184 0.1190
ECP 0.9189 0.9140 0.9496 0.9431 0.9265 0.9253 0.9372 0.9356

SE1 and SE2 : average model-based and empirical standard errors, respectively

ECP: empirical coverage probability (proportion of 95% CI’s that include true parameter value)

Sample I and Sample II: small (50) and large (200) validation samples, respectively (SIMEX based on Sample I)

Known: based on using the true parameter values for misclassification and X|Z distributions
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Table 2.4: Empirical performance of estimators of the regression parameters associated with binary X

and Z; Number of assessments are POI (5); ρ = 0.2, κ = 1, βX = log (2), βZ = log (1.25), π11 = 0.7,
pz = 0.5 and logit

(
px|z

)
= log (2) z.

Mismeasured covariate (βX) Error-free covariate (βZ)
Method π00 = 0.7 π00 = 0.9 π00 = 0.7 π00 = 0.9

Weibull PCBH Weibull PCBH Weibull PCBH Weibull PCBH

Naive Bias -0.4327 -0.4339 -0.2882 -0.2892 0.0893 0.0881 0.0601 0.0592
SE1 0.1021 0.1022 0.1026 0.1028 0.1017 0.1018 0.1021 0.1022
SE2 0.1023 0.1019 0.1000 0.1001 0.1015 0.1010 0.1061 0.1056
ECP 0.0120 0.0100 0.1940 0.1864 0.8640 0.8657 0.9180 0.9178

Likelihood
Known Bias -0.0029 0.0058 0.0017 0.0028 0.0103 0.0103 -0.0011 -0.0006

SE1 0.2688 0.2938 0.1769 0.1812 0.1153 0.1160 0.1101 0.1102
SE2 0.2624 0.2889 0.1720 0.1771 0.1133 0.1142 0.1141 0.1142
ECP 0.9559 0.9660 0.9500 0.9618 0.9519 0.9500 0.9420 0.9378

Sample I Bias -0.0020 0.0608 0.0785 0.1195 0.0113 0.0073 -0.0036 -0.0034
SE1 0.2705 0.3098 0.2086 0.2287 0.1217 0.1258 0.1151 0.1165
SE2 0.3445 0.4389 0.2648 0.3764 0.1574 0.1697 0.1417 0.1465
ECP 0.8818 0.8820 0.9116 0.9095 0.9018 0.9020 0.9056 0.8974

Sample II Bias -0.0026 0.0288 0.0075 0.0105 0.0167 0.0140 0.0000 -0.0000
SE1 0.2691 0.3010 0.1788 0.1845 0.1177 0.1200 0.1107 0.1109
SE2 0.2867 0.3545 0.1827 0.1886 0.1251 0.1340 0.1189 0.1194
ECP 0.9360 0.9218 0.9479 0.9580 0.9400 0.9359 0.9359 0.9320

SIMEX
Quadratic Bias -0.1931 -0.1940 -0.0956 -0.0940 0.0604 0.0594 0.0176 0.0202

SE1 0.1620 0.1601 0.2411 0.1421 0.1051 0.1022 0.2020 0.1037
SE2 0.2067 0.2058 0.1708 0.1584 0.1064 0.1059 0.1289 0.1111
ECP 0.6822 0.6809 0.8660 0.8717 0.8966 0.9024 0.9380 0.9399

Exponential Bias 0.0089 0.0052 -0.0530 -0.0530 0.0868 0.0849 0.0518 0.0512
SE1 0.3324 0.3195 0.1740 0.1719 0.1017 0.1018 0.1022 0.1023
SE2 0.4606 0.4553 0.1990 0.1993 0.1015 0.1010 0.1084 0.1076
ECP 0.8674 0.8611 0.8600 0.8617 0.8653 0.8699 0.9212 0.9218

SE1 and SE2 : average model-based and empirical standard errors, respectively

ECP: empirical coverage probability (proportion of 95% CI’s that include true parameter value)

Sample I and Sample II: small (50) and large (200) validation samples, respectively (SIMEX based on Sample I)

Known: based on using the true parameter values for misclassification and X|Z distributions
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classification increases in severity. This is especially the case for estimates of βX .

• Consistent with the asymptotic bias results, the performance of the naive approach

seems to depend on the value of βX . When βX = log (2) the magnitude of the biases

are much greater and the empirical coverage probabilities are much lower than when

βX = log (1.25). The impact on estimation of βZ also appears to be greater for

βX = log (2) versus βX = log (1.25). These results are based on positively correlated

X and Z. It is plausible that the impact would change if the correlation between X

and Z were different.

• For both models the correct maximum likelihood approach results in estimated biases

close to 0 and empirical coverage probabilities close to the nominal value of 0.95.

Maximum likelihood based on a large validation sample tends to perform better than

with a small validation sample.

• The SIMEX approach appears to perform much better for minor misclassification.

It only provides a partial correction for misclassification in the presence of severe

misclassification. SIMEX is an approximate method in general since the exact ex-

trapolation function is unknown. Also, the same extrapolation function is used in

these simulations to obtain both the parameter and variance estimates. An exponen-

tial extrapolation function appears to perform better for estimation of the parameters

associated with the misclassified variable, X and the quadratic extrapolation func-

tion seems to work well for estimation of the other parameters. Interestingly, the vast

majority of the optimal extrapolation functions chosen based on adjusted R2 were

quadratic for κ, ρ, and βZ ; however, an exponential extrapolant was selected more

frequently in the estimation for βX . However, neither the selection of the “optimal”

extrapolant based on adjusted R2 or the average of the exponential and quadratic

estimates appeared to consistently perform better than the quadratic or exponential

models. For that reason these results are not presented here.

• There does not appear to be much of a difference between the results based on a

Weibull model and the piecewise constant baseline hazards model regardless of the

model used or for the value of κ.
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• The results based on κ = 0.5, κ = 1 and κ = 2 were fairly consistent in terms of

empirical biases, estimated standard errors and empirical coverage probabilities. The

similarity in the biases is not surprising due to the trends observed in the asymptotic

bias plots in the previous section.

• Two standard error estimates were provided in the tables. SE1 is the average model-

based standard error and SE2 is the empirical standard deviation of the parameter

estimates. For the most part, these two values are close. This suggests that the actual

variation in the parameter estimates obtained based on these likelihood functions is

what we would expect based on the model-based standard errors estimated by the

inverse of the observed information matrix. However, there appears to be a difference

between these two values for the correct likelihood approach based on validation

data. The empirical standard errors tend to be larger than the average model-

based ones and this difference is greater for the small validation sample than for the

large validation sample. This is likely due to the excess variability introduced when

parameters associated with misclassification and the X|Z distribution are estimated

and then treated as known in the likelihood function. This did not appear to be

as much of an issue for the standard errors associated with the estimator for the

Z effect. The SIMEX results presented are based on an estimated misclassification

matrix using a small validation sample. The empirical standard errors for the βX

estimator also appear to be larger than the extrapolated model-based ones.

• The standard errors based on the naive approach are smaller than those calculated

based on both of the approaches accounting for misclassification. This is consistent

with the findings in other mismeasured covariate contexts that a naive approach

leads to underestimated standard errors. This difference is especially dramatic for

the standard errors associated with the estimator for βX . For both the βX and βZ

estimators, this difference appears to shrink as the misclassification decreased. Based

on these results, it is difficult to draw conclusions regarding the relative size of the

SIMEX or the correct likelihood standard errors. The relative size of the standard

errors appear to depend on which SIMEX extrapolant is used and which parameter

is being considered.
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• The results summarized in Tables 2.1 to 2.4 were based on data generated such that

the average number of assessments was 5 (i.e. µ = 5). A small number of simulations

were conducted with this mean set to 20. However, this did not appear to have much

of an impact on the empirical biases, empirical coverage probabilities and standard

errors (the results closely resembled those presented here).

A small number of simulations involving current status data where all subjects were

only observed once were also performed. Here, a sample size of n = 2000 was considered

rather than the sample size of n = 500 that was used for the general censoring scheme

simulations above. It is not uncommon for large clinical databases that collect infor-

mation on patients prospectively to contain more than 500 patients. Therefore, n=2000

is likely a reasonable sample size to investigate here. The maximum assessment time τ

was first selected such that P (T < τ) was 0.6. Then, the individual assessment times,

bi, were generated according to an EXP (λB) distribution, where λB was the solution to

p (Y = 1) = P (T < min (B, τ)) = 0.6. This ensured that there would be an ample num-

ber of transitions prior to assessment or the end of the study to provide information on

the parameters in the model depicted in Figure 2.2 (or in the parameters associated with

piecewise constant baseline hazards). Table 2.5 summarizes the simulation results for one

parameter configuration. Upon comparison to the results in Table 2.1, the empirical biases

appear to be similar. However, the estimated standard errors appear to be much smaller

for the current status data simulations. This is likely due to the sample size (n = 2000 in

Table 2.5 versus the n = 500 used in the simulations which are summarized in Table 2.1).

The empirical coverage probabilities are slightly less in Table 2.5. Otherwise, similar trends

can be observed for the current status data situation. The naive parameter estimates are

biased and the empirical coverage probabilities are less than the nominal 0.95. The cor-

rect likelihood approach seems to be successful in reducing bias and bringing the ECP’s

closer to the nominal levels and SIMEX provides only a partial correction in general for

the misclassified covariate. The PCBH model resulted in several extreme estimates for βX

(i.e. 4 < β̂X < 5) in the current status case. The empirical biases, coverage probabilities

and standard errors reflect this. This did not appear to be an issue for the general interval

censoring situation.
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Table 2.5: Empirical performance of estimators of the regression parameters associated with binary X

and Z based on current status data; Assessment times B ∼ EXP (λB) where λB is chosen such that P (T <

min(B, τ)) = 0.6; ρ = 0.2, κ = 1, βX = βZ = log (1.25), π11 = 0.7, pz = 0.5 and logit
(
px|z

)
= log (2) z.

Mismeasured covariate (βX) Error-free covariate (βZ)
Method π00 = 0.7 π00 = 0.9 π00 = 0.7 π00 = 0.9

Weibull PCBH Weibull PCBH Weibull PCBH Weibull PCBH

Naive Bias -0.1388 -0.1402 -0.0900 -0.0919 0.0285 0.0282 0.0276 0.0272
SE1 0.0606 0.0609 0.0610 0.0614 0.0606 0.0609 0.0606 0.0610
SE2 0.0638 0.0633 0.0661 0.0664 0.0605 0.0606 0.0610 0.0612
ECP 0.3660 0.3622 0.6580 0.6646 0.9240 0.9256 0.9320 0.9329

Likelihood
Known Bias -0.0058 0.0108 0.0001 0.0005 -0.0002 -0.0005 0.0042 0.0049

SE1 0.1582 0.1591 0.1030 0.1034 0.0660 0.0661 0.0631 0.0632
SE2 0.1644 0.3195 0.1114 0.1123 0.0674 0.0683 0.0636 0.0634
ECP 0.9355 0.9333 0.9374 0.9425 0.9456 0.9454 0.9556 0.9548

Sample I Bias 0.0317 0.0853 0.0093 0.0250 -0.0108 -0.0144 0.0032 0.0034
SE1 0.1925 0.2121 0.1070 0.1070 0.0755 0.0781 0.0645 0.0643
SE2 0.2556 0.4879 0.1277 0.2904 0.0956 0.1057 0.0669 0.0670
ECP 0.9034 0.9165 0.9058 0.8998 0.9195 0.9145 0.9399 0.9305

Sample II Bias -0.0015 0.0097 0.0019 0.0109 -0.0015 -0.0020 0.0029 0.0036
SE1 0.1626 0.1643 0.1040 0.1040 0.0674 0.0675 0.0635 0.0635
SE2 0.1775 0.2715 0.1134 0.2268 0.0716 0.0725 0.0651 0.0654
ECP 0.9336 0.9331 0.9359 0.9351 0.9477 0.9473 0.9499 0.9432

SIMEX
Quadratic Bias -0.0595 -0.0614 -0.0177 -0.0276 0.0305 0.0204 0.0288 0.0160

SE1 0.1436 0.0960 0.0963 0.0844 0.1199 0.0612 0.0899 0.0616
SE2 0.1343 0.1273 0.1135 0.1036 0.1160 0.0625 0.0832 0.0616
ECP 0.8388 0.8111 0.8654 0.8649 0.9076 0.9240 0.8953 0.9480

Exponential Bias 0.0228 0.0179 -0.0021 -0.0186 0.0456 0.0270 0.0427 0.0247
SE1 0.1875 0.1900 0.0970 0.0987 0.0611 0.0609 0.0619 0.0611
SE2 0.3312 0.2893 0.1178 0.1157 0.0551 0.0611 0.0566 0.0604
ECP 0.9107 0.8917 0.8980 0.8815 0.9024 0.9261 0.9173 0.9376

SE1 and SE2 : average model-based and empirical standard errors, respectively

ECP: empirical coverage probability (proportion of 95% CI’s that include true parameter value)

Sample I and Sample II: small (50) and large (200) validation samples, respectively (SIMEX based on Sample I)

Known: based on using the true parameter values for misclassification and X|Z distributions
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2.5.2 Continuous Covariates

DATA GENERATION

To be consistent with the simulations involving binary covariates, data were generated

based on the true models and the joint distribution of (X,W ) as outlined in Section 2.5.1.

The true measurement error and covariate distributions had the following forms:

• Z ∼ N (µZ , σ
2
Z), where

– µZ = 0 without loss of generality since Z could be a centered version of the

covariate of interest, and

– σ2
Z =

{
0.1

1
to represent low and high variability in Z.

• X|Z ∼ N
(
µX|Z , σ

2
X|Z

)
, where

– µX|Z = ξ0 + ξZZ, where ξ0 = 0 and ξZ = 0, 1.33 to represent two plausible

relationships between X and Z (i.e. when ξZ = 0, X and Z are independent

and when ξZ = 1.33, CORR (X,Z) = ρXZ = ξZσZ/
√
σ2
X|Z + ξ2

Zσ
2
Z = 0.8), and

– σ2
X|Z = 0.1, 1 to represent low and high variability in X given Z. Note that we

are making the simplifying assumption that the distribution of X only depends

on Z through its mean. In other words, σ2
X|Z does not depend on Z.

• W |X,Z ∼ N
(
µW |X,Z , σ

2
W |X,Z

)
, where

– µW |X,Z = ζ0 + ζXX, where ζ0 = 0 and ζX = 1 (this is the classical error model

(1.29)), and

– σ2
W |X,Z , which is the measurement error variance σ2

U , will be selected to give val-

ues of 0.5 and 0.8 for the reliability ratio, which is defined as γ = σ2
X|Z/

(
σ2
X|Z + σ2

u

)
.

These values of γ were selected to represent low and moderate reliability of W

as a measure for X. Values for σ2
U are summarized in the following table based

on the selected simulation values for σ2
X|Z and γ:
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σ2
U

σ2
X|Z = 0.1 σ2

X|Z = 1

γ = 0.5 0.1 1

γ = 0.8 0.025 0.25

When working with measurement error problems, the above hierarchical distributions

are usually considered separately. However, given that each of these distributions are

Normal here, we can consider the joint distribution of (W,X,Z)′ as follows: X

W

Z

 ∼MVN


 µX

µW

µZ

 ,

 σ2
X σWX σXZ

σWX σ2
W σWZ

σXZ σWZ σ2
Z


 . (2.24)

To generate the covariate data in the simulations all parameters in (2.24) were expressed

in terms of the simulation parameters from the hierarchical distribution specification de-

scribed previously.

µX = ξ0 + ξZµZ

µW = ζ0 + ζXξ0 + µZ (ζXξZ + ζZ)

µZ = µZ (as specified above)

σ2
X = σ2

X|Z + ξ2
Zσ

2
Z

σ2
W = σ2

U + ζ2
Xσ

2
X + ζ2

Zσ
2
Z − 2ζXζZσXZ

σ2
Z = σ2

Z (as specified above)

σWX = (ζXξZ + ζZ)σ2
Z

σXZ = ξZσ
2
Z

σWZ = ζXσ
2
X|Z +

(
ζXξ

2
Z + ζZξZ

)
σ2
Z

As in the binary case, two validation samples were randomly selected from the 500 subjects

in each dataset to estimate the measurement error and conditional covariate distributions.

The small validation study was of size 50 and the large, of size 200.
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ESTIMATION

Based on the validation data, the measurement error distribution was modeled as W =

ζ0 + ζXX + ζZZ and estimates for ζ0, ζX and ζZ were obtained using least squares. The

model X = ξ0 + ξZZ was also fit using least squares to obtain ξ̂0 and ξ̂Z to substitute

into the likelihood function for the correct maximum likelihood approach. The lifetime

models fit to the data were of the same structure as the models used to generate the data

so there was no model misspecification other than the mismeasurement in X. However,

robust models with piecewise constant baseline hazards (weakly parametric) models were

also considered here.

The SIMEX approach was implemented in the same way as described for the case of

binary covariates. It involved repeated maximization of the likelihood function given in

(2.23). The same simple variance approximation approach was used as described in Ste-

fanski & Cook (1995) for continuous measurement error. Linear (θ(ν) = a+ bν), quadratic

(θ(ν) = a+bν+cν2), cubic (θ(ν) = a+bν+cν2+dν3), exponential (θ(ν) = aebν) and rational

linear (θ(ν) = a+ b
c+ν

) extrapolation functions were considered and fit using least squares

in SAS with PROC REG and PROC NLIN. Again, for the purposes of these simulations

the same extrapolant was used to obtain the SIMEX parameter and variance estimates,

although there is no requirement that the parameter and variance estimate extrapolants be

the same. However, as for the binary covariate case, in an attempt to automate this model

building process, two other approaches were considered in this simulation study. First, the

optimal model of the five fitted based on adjusted R2 (i.e. R2
adj = 1 − SSE/(n−p)

SSTO/(n−1)
) was

selected to estimate the parameters and the variances. Second, since both the quadratic

and exponential extrapolation models appeared to perform reasonably well, the average

of the estimates arising from the two models were considered. Again, PROC LIFEREG

could have been used to obtain the naive maximum likelihood estimates, however, PROC

NLP was used here to be consistent with the other simulations.
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The correct maximum likelihood approach was based on the following likelihood func-

tion (see (2.18)):

L(θ) =
n∏
i=1

∫ ∞

−∞
[FT (ci|x, zi;θ)−FT (di|x, zi;θ)]

δi [FT (ci|x, zi;θ)]
1−δi

1√
2πσ̂U

e
−(wi−x)2

2σ̂2
U

1√
2πσ̂X|Z

e

−(x−µ̂X|Z)2

2σ̂2
X|Z dx.

This function was maximized with respect to θ = (r, k, βX , βZ)′, again with ρ = er and

κ = ek. Gaussian quadrature was used to numerically approximate the integrals. In line

with practice, the abscissas and weights were determined based on 20 points (Aitkin &

Rocci 2002; Zucker 2005). These were generated in SAS based on code adapted from C++

code (Press et al. 2002). For both SIMEX and the maximum likelihood approaches the

objective functions were maximized based on a quasi-Newton algorithm using PROC IML

in SAS. Representative results from this simulation study are displayed in Tables 2.6 to

2.11.

DISCUSSION

As in the binary simulation results summarized in Section 2.5.1, the convergence rates

were high (approximately 95% to 100%). Upon examination of the results, based on the

parameter configurations considered, the following observations can be made regarding the

finite sample behavior of the naive and adjusted covariate effect estimators.

• For all parameter configurations investigated, bias in the naive estimators appears to

be greater in magnitude and the empirical coverage probabilities tend to be farther

away from the nominal value of 0.95 for severe measurement error (i.e. γ = 0.5)

versus moderate measurement error (i.e. γ = 0.8).

• The naive estimator for βZ exhibits bias and low empirical coverage probabilities

when X and Z are correlated (see Tables 2.6, 2.8 and 2.10). However, when they are

uncorrelated, there appears to be negligible bias associated with the naive Z effect

estimator and the associated empirical coverage probabilities are much closer to 0.95

(see Tables 2.7, 2.9 and 2.11). Interestingly however, when βX = log(2) and γ = 0.5
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Table 2.6: Empirical performance of estimators of the regression parameters associated with continuous
X and Z; Number of assessments are POI (5); ρ = 0.2, κ = 1, βX = βZ = log (1.25), Z ∼ N (0, 1) and
X|Z ∼ N (1.33Z, 1) such that ρXZ = 0.8.

Mismeasured covariate (βX) Error-free covariate (βZ)
Method γ = 0.5 γ = 0.8 γ = 0.5 γ = 0.8

Weibull PCBH Weibull PCBH Weibull PCBH Weibull PCBH

Naive Bias -0.1137 -0.1138 -0.0435 -0.0437 0.1433 0.1437 0.0575 0.0571
SE1 0.0393 0.0394 0.0500 0.0500 0.0776 0.0777 0.0868 0.0868
SE2 0.0377 0.0377 0.0523 0.0526 0.0768 0.0773 0.0948 0.0949
ECP 0.1760 0.1809 0.8240 0.8255 0.5480 0.5447 0.8860 0.8850

Likelihood
Known Bias -0.0015 -0.0017 0.0016 0.0018 0.0008 0.0011 0.0003 -0.0004

SE1 0.0821 0.0822 0.0636 0.0636 0.1184 0.1183 0.0997 0.0997
SE2 0.0793 0.0790 0.0664 0.0664 0.1170 0.1168 0.1089 0.1085
ECP 0.9663 0.9641 0.9512 0.9485 0.9600 0.9599 0.9214 0.9227

Sample I Bias 0.0086 0.0090 0.0055 0.0055 -0.0137 -0.0141 -0.0045 -0.0046
SE1 0.0862 0.0864 0.0646 0.0646 0.1234 0.1235 0.1008 0.1008
SE2 0.0964 0.0966 0.0710 0.0711 0.1392 0.1395 0.1121 0.1121
ECP 0.9428 0.9388 0.9424 0.9378 0.9364 0.9283 0.9232 0.9185

Sample II Bias 0.0011 0.0012 0.0023 0.0023 -0.0025 -0.0025 -0.0008 -0.0008
SE1 0.0832 0.0834 0.0637 0.0638 0.1197 0.1197 0.0998 0.0997
SE2 0.0827 0.0826 0.0668 0.0670 0.1226 0.1228 0.1092 0.1093
ECP 0.9557 0.9578 0.9507 0.9528 0.9515 0.9494 0.9208 0.9270

SIMEX
Quadratic Bias -0.0639 -0.0610 -0.0093 -0.0021 0.0672 0.0658 0.0027 0.0021

SE1 0.0779 0.0549 0.0753 0.0959 0.1200 0.0908 0.1019 0.0959
SE2 0.0639 0.0566 0.0667 0.1050 0.0977 0.0936 0.1057 0.1050
ECP 0.7844 0.7799 0.9413 0.9259 0.8785 0.8763 0.9234 0.9259

Cubic Bias -0.0543 -0.0460 -0.0161 -0.0099 0.0271 0.0248 -0.0174 -0.0181
SE1 0.1229 0.0616 0.0931 0.0613 0.1390 0.0969 0.1089 0.0963
SE2 0.0865 0.0666 0.0991 0.0694 0.1492 0.1034 0.1146 0.1080
ECP 0.8469 0.8379 0.9287 0.9155 0.9312 0.9202 0.8988 0.9031

SE1 and SE2 : average model-based and empirical standard errors, respectively

ECP: empirical coverage probability (proportion of 95% CI’s that include true parameter value)

Sample I and Sample II: small (50) and large (200) validation samples, respectively (SIMEX based on Sample I)

Known: based on using the true parameter values for misclassification and X|Z distributions
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Table 2.7: Empirical performance of estimators of the regression parameters associated with continuous
X and Z; Number of assessments are POI (5); ρ = 0.2, κ = 1, βX = βZ = log (1.25), Z ∼ N (0, 1) and
X|Z ∼ N (0, 1) such that ρXZ = 0.

Mismeasured covariate (βX) Error-free covariate (βZ)
Method γ = 0.5 γ = 0.8 γ = 0.5 γ = 0.8

Weibull PCBH Weibull PCBH Weibull PCBH Weibull PCBH

Naive Bias -0.1138 -0.1138 -0.0439 -0.0436 0.0021 0.0023 0.0050 0.0050
SE1 0.0387 0.0388 0.0492 0.0492 0.0550 0.0550 0.0551 0.0552
SE2 0.0370 0.0373 0.0506 0.0502 0.0557 0.0560 0.0570 0.0570
ECP 0.1463 0.1496 0.8417 0.8454 0.9619 0.9570 0.9439 0.9464

Likelihood
Known Bias -0.0005 -0.0009 0.0027 0.0023 0.0058 0.0060 0.0065 0.0065

SE1 0.0809 0.0810 0.0626 0.0625 0.0560 0.0560 0.0555 0.0555
SE2 0.0772 0.0772 0.0648 0.0648 0.0566 0.0568 0.0568 0.0569
ECP 0.9487 0.9531 0.9372 0.9370 0.9615 0.9616 0.9498 0.9496

Sample I Bias 0.0074 0.0074 0.0039 0.0041 0.0058 0.0059 0.0066 0.0069
SE1 0.0842 0.0843 0.0631 0.0632 0.0569 0.0569 0.0557 0.0557
SE2 0.0918 0.0919 0.0676 0.0680 0.0627 0.0629 0.0587 0.0589
ECP 0.9339 0.9318 0.9411 0.9370 0.9403 0.9382 0.9432 0.9475

Sample II Bias -0.0002 -0.0006 0.0025 0.0024 0.0065 0.0065 0.0062 0.0062
SE1 0.0813 0.0814 0.0626 0.0627 0.0562 0.0563 0.0555 0.0556
SE2 0.0789 0.0786 0.0652 0.0654 0.0591 0.0592 0.0572 0.0572
ECP 0.9574 0.9616 0.9391 0.9391 0.9488 0.9531 0.9412 0.9412

SIMEX
Quadratic Bias -0.0633 -0.0622 -0.0089 -0.0086 -0.0041 -0.0009 0.0013 0.0016

SE1 0.0711 0.0537 0.0627 0.0587 0.0781 0.0551 0.0604 0.0551
SE2 0.0595 0.0579 0.0626 0.0619 0.0648 0.0556 0.0561 0.0563
ECP 0.7684 0.7651 0.9256 0.9248 0.9614 0.9585 0.9483 0.9520

Cubic Bias -0.0516 -0.0458 -0.0143 -0.0096 -0.0136 -0.0095 -0.0107 -0.0075
SE1 0.1035 0.0603 0.0799 0.0601 0.0822 0.0544 0.0817 0.0542
SE2 0.0929 0.0685 0.0772 0.0656 0.0711 0.0543 0.0704 0.0539
ECP 0.8548 0.8420 0.9243 0.9290 0.9673 0.9522 0.9429 0.9457

SE1 and SE2 : average model-based and empirical standard errors, respectively

ECP: empirical coverage probability (proportion of 95% CI’s that include true parameter value)

Sample I and Sample II: small (50) and large (200) validation samples, respectively (SIMEX based on Sample I)

Known: based on using the true parameter values for misclassification and X|Z distributions
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Table 2.8: Empirical performance of estimators of the regression parameters associated with continuous
X and Z; Number of assessments are POI (5); ρ = 0.2, κ = 0.5, βX = βZ = log (1.25), Z ∼ N (0, 1) and
X|Z ∼ N (1.33Z, 1) such that ρXZ = 0.8.

Mismeasured covariate (βX) Error-free covariate (βZ)
Method γ = 0.5 γ = 0.8 γ = 0.5 γ = 0.8

Weibull PCBH Weibull PCBH Weibull PCBH Weibull PCBH

Naive Bias -0.1137 -0.1130 -0.0412 -0.0399 0.1481 0.1499 0.0612 0.0628
SE1 0.0392 0.0392 0.0498 0.0499 0.0773 0.0774 0.0861 0.0862
SE2 0.0397 0.0399 0.0483 0.0488 0.0762 0.0765 0.0898 0.0906
ECP 0.1751 0.1888 0.8853 0.8902 0.5292 0.5241 0.8833 0.8841

Likelihood
Known Bias 0.0019 0.0052 0.0071 0.0092 0.0030 0.0018 0.0002 0.0006

SE1 0.0825 0.0832 0.0637 0.0639 0.1179 0.1184 0.0990 0.0991
SE2 0.0849 0.0867 0.0630 0.0638 0.1185 0.1204 0.1038 0.1048
ECP 0.9439 0.9413 0.9550 0.9525 0.9416 0.9390 0.9459 0.9389

Sample I Bias 0.0126 0.0171 0.0103 0.0125 -0.0119 -0.0145 -0.0024 -0.0022
SE1 0.0871 0.0881 0.0647 0.0649 0.1236 0.1245 0.0996 0.0999
SE2 0.0985 0.1018 0.0656 0.0663 0.1378 0.1411 0.1071 0.1081
ECP 0.9249 0.9155 0.9527 0.9548 0.9343 0.9296 0.9369 0.9276

Sample II Bias 0.0042 0.0077 0.0080 0.0100 -0.0003 -0.0019 -0.0006 -0.0000
SE1 0.0836 0.0844 0.0640 0.0641 0.1193 0.1199 0.0991 0.0992
SE2 0.0870 0.0891 0.0638 0.0645 0.1217 0.1238 0.1056 0.1064
ECP 0.9482 0.9390 0.9548 0.9548 0.9482 0.9460 0.9389 0.9389

SIMEX
Quadratic Bias -0.0603 -0.0603 -0.0053 -0.0033 0.0706 0.0731 0.0052 0.0066

SE1 0.0743 0.0546 0.0706 0.0600 0.0981 0.0902 0.1026 0.0951
SE2 0.0611 0.0605 0.0594 0.6000 0.0959 0.0951 0.0986 0.0995
ECP 0.7967 0.7805 0.9602 0.9546 0.8665 0.8600 0.9563 0.9381

Cubic Bias -0.0500 -0.0460 -0.0064 -0.0046 0.0311 0.0337 -0.0198 -0.0130
SE1 0.0879 0.0618 0.0932 0.0612 0.1101 0.0962 0.1332 0.0956
SE2 0.0859 0.0728 0.0703 0.0625 0.1083 0.1070 0.1142 0.1002
ECP 0.8180 0.8004 0.9494 0.9443 0.9106 0.9065 0.9478 0.9402

SE1 and SE2 : average model-based and empirical standard errors, respectively

ECP: empirical coverage probability (proportion of 95% CI’s that include true parameter value)

Sample I and Sample II: small (50) and large (200) validation samples, respectively (SIMEX based on Sample I)

Known: based on using the true parameter values for misclassification and X|Z distributions
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Table 2.9: Empirical performance of estimators of the regression parameters associated with continuous
X and Z; Number of assessments are POI (5); ρ = 0.2, κ = 0.5, βX = βZ = log (1.25), Z ∼ N (0, 1) and
X|Z ∼ N (0, 1) such that ρXZ = 0.

Mismeasured covariate (βX) Error-free covariate (βZ)
Method γ = 0.5 γ = 0.8 γ = 0.5 γ = 0.8

Weibull PCBH Weibull PCBH Weibull PCBH Weibull PCBH

Naive Bias -0.1125 -0.1123 -0.0454 -0.0446 -0.0009 -0.0001 0.0014 0.0023
SE1 0.0382 0.0381 0.0486 0.0487 0.0543 0.0543 0.0544 0.0544
SE2 0.0382 0.0382 0.0493 0.0494 0.0523 0.0526 0.0521 0.0525
ECP 0.1697 0.1707 0.8477 0.8482 0.9576 0.9593 0.9519 0.9474

Likelihood
Known Bias 0.0039 0.0078 0.0001 0.0019 0.0041 0.0055 0.0043 0.0055

SE1 0.0801 0.0808 0.0619 0.0621 0.0554 0.0555 0.0547 0.0548
SE2 0.0803 0.0817 0.0623 0.0630 0.0534 0.0537 0.0512 0.0516
ECP 0.9523 0.9545 0.9538 0.9581 0.9523 0.9545 0.9582 0.9558

Sample I Bias 0.0148 0.0192 0.0032 0.0051 0.0051 0.0064 0.0040 0.0053
SE1 0.0843 0.0853 0.0629 0.0630 0.0563 0.0564 0.0549 0.0550
SE2 0.0974 0.1001 0.0656 0.0663 0.0594 0.0598 0.0532 0.0537
ECP 0.9371 0.9264 0.9536 0.9470 0.9328 0.9329 0.9448 0.9426

Sample II Bias 0.0063 0.0100 0.0002 0.0020 0.0053 0.0063 0.0040 0.0052
SE1 0.0812 0.0820 0.0620 0.0622 0.0556 0.0557 0.0548 0.0548
SE2 0.0822 0.0836 0.0630 0.0636 0.0540 0.0546 0.0508 0.0512
ECP 0.9674 0.9610 0.9536 0.9536 0.9500 0.9524 0.9581 0.9492

SIMEX
Quadratic Bias -0.0609 -0.0596 -0.0105 -0.0079 -0.0028 -0.0032 -0.0017 -0.0010

SE1 0.0740 0.0526 0.0656 0.0586 0.0704 0.0543 0.0636 0.0543
SE2 0.0593 0.0578 0.0612 0.0608 0.0539 0.0523 0.0518 0.0518
ECP 0.7578 0.7469 0.9384 0.9427 0.9567 0.9568 0.9550 0.9509

Cubic Bias -0.0466 -0.0443 -0.0141 -0.0112 -0.0139 -0.0114 -0.0130 -0.0105
SE1 0.0947 0.0591 0.0697 0.0589 0.0899 0.0538 0.0677 0.0534
SE2 0.0827 0.0692 0.0710 0.0659 0.0860 0.0509 0.0561 0.0497
ECP 0.8361 0.8333 0.9180 0.9182 0.9733 0.9712 0.9487 0.9489

SE1 and SE2 : average model-based and empirical standard errors, respectively

ECP: empirical coverage probability (proportion of 95% CI’s that include true parameter value)

Sample I and Sample II: small (50) and large (200) validation samples, respectively (SIMEX based on Sample I)

Known: based on using the true parameter values for misclassification and X|Z distributions
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Table 2.10: Empirical performance of estimators of the regression parameters associated with continuous
X and Z; Number of assessments are POI (5); ρ = 0.2, κ = 1, βX = log (2), βZ = log (1.25),
Z ∼ N (0, 1) and X|Z ∼ N (1.33Z, 1) such that ρXZ = 0.8.

Mismeasured covariate (βX) Error-free covariate (βZ)
Method γ = 0.5 γ = 0.8 γ = 0.5 γ = 0.8

Weibull PCBH Weibull PCBH Weibull PCBH Weibull PCBH

Naive Bias -0.3784 -0.3772 -0.1634 -0.1637 0.3954 0.3956 0.1703 0.1709
SE1 0.0445 0.0445 0.0594 0.0594 0.0865 0.0865 0.0951 0.0952
SE2 0.0457 0.0460 0.0557 0.0551 0.0877 0.0876 0.0910 0.0911
ECP 0.0000 0.0000 0.2224 0.2090 0.0060 0.0064 0.5691 0.5736

Likelihood
Known Bias 0.0162 0.0130 0.0039 0.0026 0.0010 0.0032 0.0035 0.0041

SE1 0.1225 0.1200 0.0863 0.0855 0.1363 0.1355 0.1126 0.1123
SE2 0.1262 0.1232 0.0798 0.0796 0.1400 0.1385 0.1050 0.1044
ECP 0.9421 0.9462 0.9525 0.9548 0.9464 0.9462 0.9676 0.9742

Sample I Bias 0.0511 0.0419 0.0147 0.0134 -0.0230 -0.0166 -0.0063 -0.0057
SE1 0.1333 0.1276 0.0879 0.0871 0.1434 0.1410 0.1138 0.1137
SE2 0.1925 0.1752 0.0978 0.0972 0.2075 0.1978 0.1317 0.1311
ECP 0.8777 0.8817 0.9312 0.9355 0.8369 0.8430 0.9269 0.9247

Sample II Bias 0.0232 0.0185 0.0071 0.0059 -0.0075 -0.0043 -0.0015 -0.0010
SE1 0.1245 0.1214 0.0868 0.0861 0.1383 0.1371 0.1131 0.1130
SE2 0.1401 0.1334 0.0849 0.0845 0.1545 0.1519 0.1098 0.1096
ECP 0.9206 0.9290 0.9419 0.9298 0.9206 0.9183 0.9505 0.9527

SIMEX
Quadratic Bias -0.2164 -0.2165 -0.0403 -0.0430 0.2092 0.2101 0.0264 0.0273

SE1 0.0689 0.0643 0.0808 0.0759 0.1020 0.0983 0.1093 0.1059
SE2 0.0760 0.0771 0.0804 0.0795 0.1074 0.1081 0.1068 0.1077
ECP 0.1377 0.1373 0.8934 0.8985 0.4216 0.4423 0.9398 0.9417

Cubic Bias -0.1568 -0.1588 -0.0403 -0.0432 0.1117 0.1125 -0.0110 -0.0103
SE1 0.0884 0.0755 0.0887 0.0810 0.1163 0.1056 0.1143 0.1093
SE2 0.1078 0.1017 0.0928 0.0922 0.1286 0.1241 0.1157 0.1171
ECP 0.4636 0.4423 0.8765 0.8528 0.7798 0.7582 0.9416 0.9394

SE1 and SE2 : average model-based and empirical standard errors, respectively

ECP: empirical coverage probability (proportion of 95% CI’s that include true parameter value)

Sample I and Sample II: small (50) and large (200) validation samples, respectively (SIMEX based on Sample I)

Known: based on using the true parameter values for misclassification and X|Z distributions
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Table 2.11: Empirical performance of estimators of the regression parameters associated with continuous
X and Z; Number of assessments are POI (5); ρ = 0.2, κ = 1, βX = log (2), βZ = log (1.25), Z ∼ N (0, 1)
and X|Z ∼ N (0, 1) such that ρXZ = 0.

Mismeasured covariate (βX) Error-free covariate (βZ)
Method γ = 0.5 γ = 0.8 γ = 0.5 γ = 0.8

Weibull PCBH Weibull PCBH Weibull PCBH Weibull PCBH

Naive Bias -0.3803 -0.3805 -0.1594 -0.1586 -0.0203 -0.0198 -0.0071 -0.0069
SE1 0.0414 0.0415 0.0551 0.0553 0.0562 0.0562 0.0567 0.0567
SE2 0.0434 0.0435 0.0574 0.0576 0.0570 0.0575 0.0546 0.0543
ECP 0.0000 0.0000 0.1868 0.2008 0.9218 0.9208 0.9604 0.9626

Likelihood
Known Bias 0.0088 0.0101 0.0101 0.0097 0.0056 0.0062 0.0034 0.0033

SE1 0.1149 0.1157 0.0803 0.0806 0.0643 0.0644 0.0601 0.0602
SE2 0.1228 0.1238 0.0822 0.0824 0.0644 0.0643 0.0574 0.0573
ECP 0.9386 0.9362 0.9384 0.9360 0.9534 0.9553 0.9642 0.9640

Sample I Bias 0.0481 0.0503 0.0193 0.0189 0.0019 0.0024 0.0056 0.0060
SE1 0.1261 0.1269 0.0817 0.0819 0.0669 0.0670 0.0605 0.0605
SE2 0.1973 0.1991 0.1053 0.1054 0.1069 0.1072 0.0764 0.0758
ECP 0.8771 0.8617 0.8924 0.9000 0.8199 0.8128 0.8765 0.8800

Sample II Bias 0.0155 0.0161 0.0079 0.0075 0.0090 0.0095 0.0033 0.0033
SE1 0.1167 0.1177 0.0800 0.0802 0.0648 0.0649 0.0602 0.0602
SE2 0.1270 0.1285 0.0863 0.0862 0.0700 0.0703 0.0603 0.0604
ECP 0.9363 0.9426 0.9361 0.9400 0.9257 0.9577 0.9521 0.9520

SIMEX
Quadratic Bias -0.2233 -0.2214 -0.0361 -0.0354 -0.0140 -0.0133 -0.0022 -0.0025

SE1 0.0721 0.0593 0.0795 0.0706 0.0661 0.0584 0.0704 0.0588
SE2 0.0740 0.0724 0.0801 0.0796 0.0608 0.0614 0.0582 0.0567
ECP 0.1107 0.0840 0.8651 0.8690 0.9363 0.9308 0.9691 0.9583

Cubic Bias -0.1742 -0.1680 -0.0408 -0.0385 -0.0166 -0.0181 -0.0113 -0.0109
SE1 0.1058 0.0696 0.1005 0.0758 0.0928 0.0595 0.0792 0.0590
SE2 0.1307 0.0951 0.1104 0.0898 0.1149 0.0630 0.0633 0.0566
ECP 0.3931 0.3585 0.8511 0.8413 0.9293 0.9203 0.9574 0.9504

SE1 and SE2 : average model-based and empirical standard errors, respectively

ECP: empirical coverage probability (proportion of 95% CI’s that include true parameter value)

Sample I and Sample II: small (50) and large (200) validation samples, respectively (SIMEX based on Sample I)

Known: based on using the true parameter values for misclassification and X|Z distributions
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(Table 2.11), the naive βZ estimator demonstrates slight bias and empirical coverage

probability of 0.92 even though ρXZ = 0.

• The value of κ does not appear to have much of an impact on the results. The

empirical biases and coverage probabilities appear to be similar for the three different

values of κ investigated.

• Again, as in the binary situation, results based on Weibull and piecewise constant

baseline hazards models are similar suggesting that the piecewise model may be a

robust model to adopt in practice.

• The results in Tables 2.6 to 2.11 are based on an average of five assessments per

patient. A small number of simulations based on an average of 20 assessments were

also run for severe measurement error (γ = 0.5). These results were consistent with

those summarized here.

• The performance of all approaches tends to deteriorate somewhat as the magnitude

of the true underlying effect of X increases. Even in relative terms, the naive and

SIMEX empirical biases tend to be larger in magnitude when βX = log(2) versus

βX = log(1.25) (compare Tables 2.8 and 2.9 to 2.10 and 2.11). Since there does not

seem to be much of a difference between the naive and SIMEX standard errors for the

two values of βX , it is not surprising that the empirical coverage probabilities are less

for the larger (in magnitude) βX as well. The correct maximum likelihood approach

is still successful in reducing bias and results in empirical coverage probabilities which

are closer to the nominal value of 0.95, however, the empirical standard errors appear

to be substantially larger when βX = log(2) than when βX = log(1.25) and hence

the empirical coverage probabilities are a little smaller. This is especially the case

for the small validation study.

• The two standard errors, SE1 (average model-based standard error) and SE2 (empir-

ical standard error), generally tended to be close with the largest difference resulting

from the correct maximum likelihood approach with a small validation study. There-

fore the observed variability in the estimates was larger than the expected variability
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under the models. Since this does not appear to be as much of an issue for the cor-

rect maximum likelihood approach based on a large validation study, the difference

in observed and expected variability is most likely a reflection of the variability in the

estimates of the measurement error and conditional covariate distribution parameters

which are treated as known in the likelihood function.

• For the SIMEX approach, although five extrapolation functions were fit along with

an optimal choice of extrapolant and an average extrapolant, the cubic and quadratic

functions appeared to perform the best overall. The cubic extrapolant was selected

most often when choosing the optimal function based on adjustedR2 for all estimators

and the rational linear and quadratic models were selected next. The rational linear

model appeared to result in the lowest biases and empirical coverage probabilities

closest to 0.95, especially for the βX estimator; however, convergence problems were

often encountered when fitting this model. Therefore, results based on this extrap-

olant were not summarized here. In practice, however, when faced with measurement

error in a continuous covariate it is an important candidate model to consider in the

extrapolation step.

• The estimated variability of the SIMEX procedure estimates is much smaller than

for the correct likelihood procedures. This may be due in part to the fact that the

correct likelihood procedure requires estimation of more parameters (e.g. the distri-

bution of X given Z). Alternatively, it could be that the SIMEX variance estimates

are underestimated because the variance approximation of Stefanski & Cook (1996)

assumes known measurement error variance and extrapolant. However, given the ob-

served difference between the variability of estimators under the two methods, if one

were able to obtain accurate variance estimates for SIMEX, then narrower confidence

intervals might be obtained.

Based on the simulation results for misclassified binary covariates and continuous covari-

ates, it is clear that the presence of mismeasured covariates can have a substantial impact

on inference. Therefore, steps must be taken to incorporate measurement uncertainty in

the analysis. This is especially so if it is suspected that there is severe misclassification

or measurement error present. SIMEX and correct likelihood approaches can be used to
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address such a problem. Each approach has strengths and weaknesses. Based on the

extrapolation functions investigated here (i.e. linear, quadratic, cubic, exponential and

rational linear), the SIMEX approach seems to work reasonably well when there is minor

misclassification or measurement error present. However, it only provides a partial bias

correction in the presence of large measurement error or misclassification probabilities.

This is likely due to the fact that we do not know the true extrapolation function. The

SIMEX variance approximation used in the simulation studies assumes that the measure-

ment error (or misclassification probabilities) are known so the standard errors presented

with the simulation results are underestimated. A two-stage bootstrap procedure could

be used to estimate standard errors if it is believed that there is substantial variability

associated with the mismeasurement distribution parameter estimators.

The correct likelihood approach appears to perform well for different levels of mismea-

surement and for both small and large validation studies. However, the empirical coverage

probabilities were observed to be smaller for estimators based on the small validation study

than those based on the large validation study. This is probably due to the fact that the

sampling variability in the mismeasurement and covariate distribution parameter estima-

tors is ignored because they are estimated based on external supplementary data and used

in the likelihood function. Estimators of these parameters would be expected to be more

variable for a small validation sample than for a large validation sample. Therefore, if

their sampling variability was incorporated, we would expect larger standard errors asso-

ciated with the estimators of interest based on a small validation sample compared to a

large validation sample. Bootstrapping could be used to incorporate this additional vari-

ability. Estimates for the mismeasurement and covariate distribution parameters could be

obtained from a bootstrap sample drawn from the external validation study. Then the

correct likelihood function based on a bootstrap sample from the primary dataset could be

maximized. After repeating this a large number of times, the variability in the estimators

of interest could be estimated by their respective sample variances. If the supplementary

data were included in the primary dataset, the mismeasurement and covariate distributions

could be modeled and estimated along with the other parameters in the likelihood function.
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In terms of computation, SIMEX involves repeated analyses using existing software,

while the likelihood approach has to be programmed based on the problem at hand and

maximized using general optimization software. The SIMEX approach tends to take longer

to run, but the likelihood approach requires the development of problem-specific code.

The piecewise constant models resulted in biases and empirical coverage probabilities that

closely resembled those under a Weibull model. This is not surprising because PCBH

models are considered to be robust. In practice, we do not know the underlying model, so

PCBH models are an attractive choice because they require fewer assumptions regarding

the distributional form of the failure time distribution. In the next section, the naive max-

imum likelihood, correct maximum likelihood and the SIMEX approaches will be applied

and compared based on data arising from the motivating study which was described in

Section 2.2. Both Weibull models and PCBH models will be fit to these data.

2.6 Application: Psoriatic Arthritis Data

Based on reliability study results, the presence of measurement error and misclassification

has been confirmed in factors that are commonly included in investigations on the pro-

gression of PsA. A multi-center reliability study was conducted by Gladman et al. (2004)

investigating variation between physician’s assessments performed on PsA patients. Ten

PsA patients were selected to represent a broad range of joint damage, joint inflammation

and spinal involvement. As well, ten rheumatologists who are members of the Spondy-

loarthritis Research Consortium of Canada thoroughly assessed each of the ten patients.

A combination of continuous and categorical variables involving evaluation of peripheral

joint disease, spinal involvement and enthesitis were included in the investigation. After

examination of the reliability coefficients, it was concluded that the variables associated

with the evaluation of peripheral joint disease demonstrated moderate to substantial reli-

ability. However, those involving evaluation of spinal involvement and enthesitis did not

perform as well (Gladman et al. 2004).

The objective in the application presented here is to incorporate the information avail-

able from this reliability study into an analysis similar to that of Gladman et al. (1995).
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An obvious indication of the progression of PsA is the development of damaged joints.

Therefore, we will consider a two-state model as in Figure 2.2 with State 1 defined as no

damaged joints and State 2, one or more damaged joints. In addition, we will assume that

the number of damaged joints determined via clinical assessment is a perfectly measured

variable.

This analysis was based on data extracted from the PsA clinic database as of early

2005. For the purposes of this analysis, we will restrict attention to the 378 patients

who entered the study in State 1 (i.e. with no damaged joints); the transition times for

these 378 patients are either interval-censored or right-censored. Table 2.12 summarizes

the demographics for this group of patients (Table 3.10 summarizes the demographics of

the entire group of patients which will be included in the application in Chapter 3). The

covariates labeled as Z are considered perfectly measured for the purposes of this analysis

and those labeled as W are those which are prone to error. The purpose of these analyses

is to demonstrate the effects of mismeasured covariates in practice. Information regard-

ing the distribution of the W variables is available from the reliability study. One of the

models which will be investigated involves one binary variable subject to misclassification

along with several baseline (i.e. fixed) variables which are assumed to be precisely mea-

sured. A second model will include a continuous covariate subject to error which will be

fit along with the precisely measured variables. No interactions will be considered at this

time. In both cases SIMEX involved repeated estimation using naive maximum likelihood

(B = 150, here) for different multiples of mismeasurement given by ν = {0, 0.5, 1, 1.5, 2}.
Candidate extrapolation functions that were considered for both the parameter estimates

and the variance estimates included linear, quadratic, exponential and rational linear (or

nonlinear) functions. Error sums of squares and adjusted R2 (R2
adj = 1− SSE/(n−p)

SSTO/(n−1)
) were

considered to determine the extrapolation function that provided the best fit. Likelihood

ratio tests were used for the naive and correct likelihood approach to determine the final

models. To determine the final model based on SIMEX, variables were omitted if their

coefficients did not appear to be significantly different from zero based on individual t-tests.
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Table 2.12: Patient demographics and covariates at clinic entry (patients entering in State 1).

Gender (ZG) Women

Men

n = 378

163

215

Age at PsA Diagnosis (ZAP )
Average

Range

35.3

(10-79)

PsA Duration (years) (ZDP )
Average

Range

5.3

(0-47.3)

Number of Effused Joints (ZE)
Average

Range

2.6

(0-33)

Presence of Dactylitis (WD)
Yes

No

129

249

Back Measurements

Upper Back (WU)
Average

Range

2.2

(0-4.5)

Middle Back (WM)
Average

Range

3.3

(0.4-6)

Lower Back (WL)
Average

Range

4.0

(0-8.5)
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2.6.1 Misclassification in a Binary Covariate

Based on the reliability study, the observed value of XD, the presence of dactylitis variable

is prone to misclassification. Gladman et al. (2004) define dactylitis as the diffuse swelling

of an entire digit. Dactylitis was coded as 1 if this swelling was observed in at least

one digit. The misclassification probabilities along with the prevalence of dactylitis (i.e.

π = P (X = 1)) were estimated using the reliability data based on the likelihood function

given in (2.20). The resulting estimates were π̂ = 0.61, π̂01 = 0.31 and π̂10 = 0.12. The

misclassification probabilities will be required for both the correct maximum likelihood

and the SIMEX approaches. The prevalence estimate, π̂, will also be used in the correct

likelihood approach. For this analysis, WD, along with several other variables assumed to

be perfectly measured: gender (ZG), age at PsA onset (ZAP ), duration of PsA at clinic

entry (ZDP ), and the number of effused joints at clinic entry (ZE) will be fit using both

Weibull and piecewise constant baseline hazard (PCBH) regression models for comparison

purposes. These variables were chosen because they are relevant factors in the study of

PsA. The cut-points used in estimation of the PCBH model, a1, a2 and a3, were calculated

as the 25th, 50th and 75th percentiles of all the observation times, respectively (6, 11 and

17 years).
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First consider the full model, the results of which are summarized in Table 2.13. The

estimates of the four “Z” variables appear to be quite similar for the three approaches. For

the most part, the estimated standard errors tend to agree across the three methods with

the exception of the SIMEX standard error estimates corresponding to βZAP
and βZDP

based

on a Weibull regression model; these are much larger than those based on the maximum

likelihood approaches, most likely due to the approximate nature of the SIMEX approach

(i.e. we do not know the exact form of the extrapolant). For the misclassified variable, the

correct likelihood and SIMEX estimates and standard errors are larger in magnitude than

the naive ones. Therefore, the presence of misclassification in XD appears to induce the

attenuation phenomenon in the naive estimators that has been observed in other covariate

measurement error problems. The Weibull and PCBH regression models give more or less

similar estimates and standard errors. Although the estimates and standard errors based

on the SIMEX approach differ slightly from the correct maximum likelihood approach, the

directions and the significance of the effects appear to be consistent for the two approaches.

Since the effect of XD on the time to damage of at least one joint does not appear to be

significant, the final models based on the naive and correct likelihood and the SIMEX

approaches are the same and are summarized in Table 2.14.

Table 2.14: Final model estimates obtained by fitting naive and correct Weibull regression and piecewise
constant models and applying the SIMEX procedure to the PsA clinic data without a misclassified binary
covariate (XD).

Estimate SE P-value
Weibull PsA duration (βZDP

) -0.1016 0.0126 <0.0001
Effused joint count (βZE

) 0.0590 0.0156 0.0002
PCBH PsA duration (βZDP

) -0.0980 0.0126 <0.0001
Effused joint count (βZE

) 0.0548 0.0156 0.0005

There is no need to conduct an analysis incorporating covariate measurement error

when the covariate subject to error is not included in the model. Based on these results,

it appears that the duration of Psoriatic Arthritis (ZDP ) and the number of swollen joints

at clinic entry (ZE) are associated with the time to development of at least one dam-
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aged joint. The variable ZDP appears to exhibit a protective effect. Therefore, for each

additional year of PsA duration at clinic entry, the relative risk of developing damaged

joints is RR=0.9034 [95% CI (0.8814,0.9260)] based on a Weibull model and RR=0.9066

[95% CI (0.8845,0.9293)] under a piecewise constant model. For each additional swollen

joint observed at clinic entry, the relative risk of joint damage is RR=1.0608 [95% CI

(1.0288,1.0937)] and RR=1.0563 [95% CI (1.0245,1.0891)] based on Weibull and PCBH

models, respectively. Note that the relative risk estimates and associated confidence inter-

vals are very close for the Weibull and PCBH models. Since PCBH models are considered

to be robust, this suggests that the Weibull model seems to be appropriate for these data.

2.6.2 Measurement Error in a Continuous Covariate

Consider the back measurement variables in Table 2.12. These measurements are based on

the Smythe test (Gladman et al. 2004). With the patient in full flexion (i.e. bent forward

as far as possible), a line is drawn on the patient’s lower back at the level of the dimples

of Venus. Three additional lines are drawn 10 cm apart. The back measurements are then

recorded as the differences (in cm) between 10 cm (at full flexion) and the length of the

three segments created by the four lines when the patient stands upright. Based on the

reliability data, Gladman et al. (2004) report 95% confidence intervals for the intraclass

correlation coefficient (ICC) corresponding to these variables as (−0.01, 0.38), (0.06, 0.53)

and (−0.01, 0.37), respectively. Based on the confidence intervals, these measurements

appear to exhibit only moderate to poor reliability. However, since these measurements

gauge patient mobility there is most likely substantial variability even in repeated mea-

surements on the same patient by the same physician. To incorporate measurement error

in an analysis, we first need to use the reliability data to estimate the measurement error

distribution. No “true” values of the back variables are measured. What are available,

however, are repeated measurements on 10 patients by 10 physicians. These patients were

selected from the PsA clinic. However, there was no identifier contained in the reliability

data to link them with the primary data from the PsA database. Therefore, this sup-

plementary data was treated as an external dataset. As discussed in Section 2.4.3, these

repeated measurements can be used to obtain information about the measurement error

variance. Assuming the classical error model in (1.29) is appropriate, with i = 1, 2, ..., 10
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Table 2.15: Measurement error and covariate distributions.

X, Z Independent X, Z Dependent
Covariate σ̂2

U µ̂X σ̂2
X γ̂X µ̂X|Z σ̂2

X|Z γ̂X|Z

Upper Back 0.6199 2.1977 0.3141 0.3363 2.9390− 0.0153ZAP − 0.0264ZDP 0.2566 0.2328
Middle Back 0.5882 3.1225 0.4930 0.4560 4.0558− 0.0201ZAP − 0.0297ZDP 0.4087 0.4100
Lower Back 0.6153 3.8556 0.4058 0.3374 4.8565− 0.0207ZAP − 0.0359ZDP 0.2981 0.3264

and j = 1, 2, ..., 10, we can use the following random effects model to estimate σ2
U for each

variable:

Wij = µx + αi + eij, where eij ∼ N
(
0, σ2

U

)
and αi ∼ N

(
µi, σ

2
)
. (2.25)

Here Xi is represented by two components; an unknown fixed effect, µx, and a random

effect associated with patient i, αi. In this analysis, the patient effect means are assumed

to differ between patients, however the corresponding variances are assumed to be constant

across patients. This model was fit to the reliability data using PROC MIXED in SAS.

The resulting measurement error variance estimates, σ̂2
U , are displayed in Table 2.15.

For the correct likelihood approach, we also must assume a distributional form for the

conditional distribution of X, the true covariate, given Z, the precisely measured covari-

ates. As is often assumed in practice, we assume that X|Z follows a normal distribution,

X|Z ∼ N(µX|Z , σ
2
X|Z). The back measurements were selected for consideration here in part

due to the symmetric, bell-shaped pattern exhibited in their histograms, suggesting that

normality is probably not an unreasonable assumption for these variables. Moreover, there

is an increasing interest in rheumatology on the impact of back involvement on disease

course. When validation data are available, where X is measured along with Z on a group

of patients possibly included in the study, estimation of the parameters of this distribution

is straightforward. However, in this situation, X is not actually measured for any of the

patients and the reliability data do not include measurements on Z in addition to those on

W . However, the classical error model (1.29) can be used to determine expressions for µX|Z

and σ2
X|Z in terms of quantities that can be estimated using the primary and reliability data.
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Suppose, first that the distribution of X does not depend of Z. Then, by taking the expec-

tation with respect to X of both sides of E (W |X) = X, it follows that µX = µW . Also, from

(1.29), V AR (W |X) = σ2
U so V AR (W ) = E [V AR (W |X)] + V AR [E (W |X)] = σ2

U + σ2
X .

Therefore, an estimate of µX is given by µ̂W and σ2
X could be estimated by the differ-

ence, σ̂2
W − σ̂2

U . The primary data could be used to estimate µW and σ2
W , whereas only

the reliability data would be of use to estimate σ2
U . Alternatively, we could use only the

reliability data to estimate the X|Z distribution parameters based on the random effects

model introduced above to estimate the measurement error variance. The only source of

variability in µX + αi is in the random effect αi. Therefore an estimate for σ2
X would be

σ̂2 in this random effects model.

Instead, if the distribution of X depends on Z, since measurements of Z are not in-

cluded in the reliability study, a random effects model such as this one cannot be used to

estimate these quantities. Assume that (1.29) holds and the distribution of U does not

depend on Z. Then if W = X+U = β0 +β′ZZ+ ε, where ε ∼ N
(
0, σ2

W |Z

)
, it follows that

µ̂X|Z = β̂0 + β̂
′
ZZ and σ̂2

X|Z = σ̂2
W |Z − σ̂2

U . Table 2.15 summarizes the parameter estimates

associated with the back variable distributions. All Z variables in Table 2.12 were fit in a

linear regression, but only the effects of ZAP and ZDP appeared to be significantly different

from 0. These represent age at PsA onset and PsA duration at clinic entry, respectively.

For this analysis, X will be permitted to depend on Z is this way. One error-prone vari-

able, the middle back variable (WM), along with several other variables assumed to be

perfectly measured: gender (ZG), age at PsA onset (ZAP ), duration of PsA at clinic entry

(ZDP ), and the number of effused joints at clinic entry (ZE) will be fit using both Weibull

and piecewise constant baseline hazard regression models. These variables were selected

to be investigated because they have been identified as relevant factors in the study of PsA.

Table 2.16 summarizes the results based on fitting the full model. The error-prone

variable, XM appears to be significant based on the three approaches, although the esti-

mate and standard error appear to be underestimated in the naive maximum likelihood

approach. As in the binary case, the presence of measurement error appears to induce at-

tenuation. The SIMEX standard error estimate for the PCBH regression model is smaller
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than the naive estimate. However, this is likely a result of the true extrapolation function

being unknown. The estimates associated with the other variables and their corresponding

standard error estimates also appear to be smaller in magnitude for the naive maximum

likelihood approach compared to the other two methods. As was observed in the binary

case, the Weibull and PCBH regression models tend to agree. The final model results are

summarized in Table 2.17. Figures 2.15 to 2.17 illustrate the SIMEX approach based on

Weibull and PCBH regression models. The results based on the likelihood and SIMEX

approaches and the two models tend to be more or less consistent, suggesting that the

magnitude of the estimates and standard errors appear to be underestimated by the naive

approach.

In addition to the two variables that were observed to be associated with time to dam-

age of at least one joint in Section 2.6.1, the error-prone variable, XM also appears to be

associated with the outcome of interest here. This suggests that the more middle back

mobility a patient has, the lower the risk of developing at least one damaged joint. An-

other way of interpreting this is that back mobility is protective for the development of

damaged joints. Based on a Weibull model, the correct likelihood approach results in an

estimate of the relative risk (of joint damage with a 1 cm increase in middle back mobil-

ity) of RR=0.1351 [95% CI (0.0208,0.8755)], while the SIMEX procedure gives RR=0.1202

[95% CI (0.0680,0.2122)]. Similarly, based on the piecewise constant model, RR=0.3216

[95% CI (0.1313,0.7874)] and RR=0.0693 [95% CI (0.0474,0.1013)] for the likelihood and

SIMEX approaches, respectively. Although these relative risk estimates differ, they sug-

gest there is a reduction of joint damage risk with increased back mobility. This reduction

appears to be underestimated by the naive approach. Note that the SIMEX estimate for

the effect of duration of PsA at clinic entry is not significant under the piecewise constant

model and is therefore not included in Table 2.17. In this application, treating the back

measurement as precisely measured appears to underestimate the magnitude of its effect

(and overestimate the corresponding relative risk) as well as those corresponding to the

correctly measured variables. Therefore, if it is of interest to learn about the true underly-

ing effects, it is critical that an analysis that incorporates measurement error be conducted.
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Figure 2.15: Final model estimates of parameters obtained by applying the SIMEX procedure to the PsA
clinic data based on a Weibull model with an error-prone continuous covariate (XM ).
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Figure 2.16: Final model estimates of parameters obtained by applying the SIMEX procedure to the PsA
clinic data based on a Weibull model with an error-prone continuous covariate (XM ).
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Figure 2.17: Final model estimates of parameters obtained by applying the SIMEX procedure to the PsA
clinic data based on a piecewise constant model with an error-prone continuous covariate (XM ).
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2.6.3 Discussion

Based on the application presented above, parameter estimates and standard errors ap-

pear to differ between the correct maximum likelihood approach and the SIMEX approach.

The covariate effects have the same signs, but the maximum likelihood estimates often ap-

pear to be larger (in magnitude) than the SIMEX estimators. In addition, the likelihood

standard errors often seem to be larger than those based on SIMEX. These differences

could be due to the fact that the SIMEX estimators are only approximately consistent

since we do not know the exact form of the extrapolation function. Also, the variance

approximation procedure used is valid for small, known measurement error (Carroll et

al. 2006). The measurement error and misclassification were estimated from a reliability

sample for this application and the mismeasurement does not appear to be minor based

on these estimates. Therefore, we would expect that the SIMEX standard errors are un-

derestimated and that SIMEX would provide only a partial correction for mismeasurement.

Another reason why there may be a difference between results based on the maximum

likelihood approach and SIMEX is that, unlike the likelihood approach, SIMEX does not

require any assumptions regarding the underlying distribution of X|Z. If the maximum

likelihood estimators are affected by misspecification of this distribution, then we would

expect the SIMEX and likelihood estimates to differ when the X|Z distribution is mis-

specified. Interestingly enough, Huang et al. 2006 describe a procedure that is similar to

SIMEX to examine the sensitivity of assumptions in structural measurement error models

(e.g. likelihood approach). They argue that if the assumed distribution of X|Z is not

appropriate in that it introduces asymptotic bias in the estimators of the parameters of

interest, then as σ2
U increases, the resulting bias will increase in magnitude. This can

be investigated empirically by assuming different measurement error variances and, as in

SIMEX, taking the average of B maximum likelihood estimates at each level of σ2
U and

plotting the average of these estimates against σ2
U . A nonconstant relationship would sug-

gest that the assumed model for X|Z is not robust.

Ideally, supplementary data in the form of internal validation data would be available

for a large number of subjects. Ten patients assessed by ten physicians is not a very
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large dataset. However, this study was not originally designed for use in an errors-in-

variables analysis, but rather was designed to provide information on the extent to which

different rheumatologists could agree on the measurements of different signs or symptoms

of patients. With a high degree of agreement on particular measures there is rationale for

considering these as the basis for outcomes in multi-center trials. Even though it was not

conducted for this purpose, data arising from this study are useful in providing information

regarding the error distribution as was demonstrated above. To study this claim, Table

2.18 summarizes the results of a small simulation study which compares the performance

of the correct likelihood and SIMEX methods based on a small external reliability study

generated similarly to that which was available in this application. The SAS code from the

simulations discussed earlier in this chapter was used, but the parameter configurations

were chosen to be close to the values that were observed in the PsA application.

These results demonstrate much poorer performance than those based on simulations

using larger supplementary datasets. The biases are larger here and the empirical cover-

age probabilities are considerably farther away from the nominal values of 0.95. Although

estimators based on a correct likelihood approach do appear to result in smaller biases

and larger empirical coverage probabilities, there still appears to be some bias present and

the empirical coverage probabilities are less than 0.95. Based on these results, the SIMEX

approach only provides a partial correction for the bias. This is consistent with the simu-

lation results. Estimators based on a correct likelihood approach and SIMEX would likely

demonstrate better performance for larger reliability studies. As in the validation data

generated for the simulations, the larger the reliability sample, the less sampling variabil-

ity will be present in the estimators for the mismeasurement and covariate distribution

parameters. The PsA reliability study was not designed with this purpose in mind. In

planning similar studies in the future, it would be best to strive to obtain a large internal

validation sample. If this is not feasible, a large reliability dataset would also provide

valuable information regarding the mismeasurement and covariate distributions required

to account for measurement error or misclassification in covariates.

In this chapter, it has been demonstrated that mismeasured covariates induce bias
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Table 2.18: Empirical performance of estimators of the regression parameters associated with X and Z

based on parameter values close to those observed in PsA application; Number of assessments are POI (10);
ρ = 0.06, κ = 1.75, βX = −2, βZ = −1.5, reliability sample of 10 independent observations on 10 subjects
Binary X: P (Z = 1) = 0.5, P (X = 1|Z) = 0.6, π00 = 0.9 and π11 = 0.7 Continuous X: Z ∼ N (0, 1.5),
X|Z ∼ N (−0.03Z, 0.41), γ = 0.41.

Binary X Continuous X

Method βX βZ βX βZ

Weibull PCBH Weibull PCBH Weibull PCBH Weibull PCBH

Naive Bias 1.2206 1.2339 0.3585 0.3844 1.3870 1.3986 0.3957 0.4157
SE1 0.1184 0.1187 0.1209 0.1219 0.0812 0.0808 0.0820 0.0807
SE2 0.1331 0.1197 0.1455 0.1294 0.0880 0.0875 0.0895 0.0834
ECP 0.0000 0.0000 0.1901 0.1604 0.0000 0.0000 0.0183 0.0028

Likelihood Bias -0.1811 0.0453 -0.0701 0.0562 -0.2206 0.3272 -0.0553 0.1749
SE1 0.2895 0.3258 0.1820 0.1714 0.4918 0.2884 0.2123 0.1302
SE2 0.4814 0.4883 0.2187 0.1798 1.1177 0.6831 0.3401 0.1370
ECP 0.8489 0.8912 0.9151 0.9163 0.7862 0.5449 0.8839 0.6597

SIMEX Exponential Cubic
Bias -1.0184 -1.2156 0.3426 0.3763 -0.5977 0.8628 -0.4158 0.3285
SE1 0.7257 0.5871 0.1363 0.1207 0.2755 0.1096 2.6196 0.1111
SE2 1.5740 1.6592 0.1358 0.1319 0.2972 0.2260 4.0708 0.1241
ECP 0.5387 0.4494 0.2744 0.1582 0.3672 0.0299 0.9938 0.1851

SE1 and SE2 : average model-based and empirical standard errors, respectively

ECP: empirical coverage probability (proportion of 95% CI’s that include true parameter value)

in estimators which treat them as precisely measured when modeling interval-censored

lifetime data. The performance of likelihood and SIMEX approaches accounting for the

mismeasurement have been examined and applied to data from a study on PsA. In the

next chapter, this work will be extended to a progressive three-state model.



Chapter 3

Interval-censored Three-state Data

with Mismeasured Covariates

3.1 Overview

Clinical trials of progressive diseases (e.g., HIV-AIDS) are often conducted to estimate

rates of transitions between disease states and the effects of covariates on these transi-

tion rates. Consider the multi-state model in Figure 3.1 representing the progression of

HIV-AIDS (Toronto General Hospital University Health Network 2005). Information on

covariates such as CD4 cell count or viral load may be collected in a study of this disease,

but measurements on both are known to be error-prone. It has been well established that

naive regression analyses based on measured values can lead to seriously biased estima-

tors and misleading standard errors in generalized linear models and survival models with

right-censored data. In Chapter 2 we considered the impact of covariate mismeasurement

on interval-censored lifetime data. To date there does not appear to be much research that

specifically addresses mismeasured covariates in the context of interval-censored multi-state

models.

The purpose of this chapter is to explore the effects of covariate mismeasurement on

the estimation of regression parameters and to propose and evaluate methods to account

for this mismeasurement problem. This methodology will be applied to the motivating

128
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study described in Chapter 2.

Figure 3.1: Progressive model for HIV-AIDS involving three transition intensities.

Primary

HIV Infection

-
λ1 Clinically

Asymptomatic

-
λ2 Symptomatic

HIV Infection

-
λ3

AIDS

3.2 Impact of Ignoring Error in Covariates

The following notation will be used throughout this discussion. Let

• i = 1, 2, ..., n index the subjects under observation,

• j = 1, 2, ...,mi index the observation times for subject i,

• k = 1, 2 index the different transitions,

• yi = (yi(ui1), yi(ui2), yi(ui3), ..., yi(uimi
))′ represent the observed states at the mi

observation times, ui1, ui2, ..., uimi
for subject i,

• xi be a (px × 1) covariate vector which is imperfectly measured,

• wi be the mismeasured version of xi, and

• zi be a perfectly measured (pz × 1) covariate vector.

For simplicity, we will consider the effects of mismeasured covariates on estimation for

a progressive three-state model given in Figure 3.2 rather than the four-state model of

Gladman et al. (1995). However, extensions to models with more than three states are

straightforward. Also, we will restrict our attention to one-dimensional X, W , and Z here.
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Figure 3.2: A time homogeneous three-state progressive model with multiplicative covariate effects.

State 1
-

eα0+αXx+αZz
State 2

-
eβ0+βXx+βZz

State 3

If modeling is based on the structure of Figure 3.2, a naive maximum likelihood function

would be as follows:

L (θ∗) =
n∏
i=1

mi∏
j=1

Pyi(ui,j−1),yi(uij)(uij − ui,j−1|wi, zi;θ∗), (3.1)

where the transition probabilities are given by (1.24). Specifically, for this three state

model, the probabilities are as follows:

P1,1(t;θ
∗) = exp [− exp (α∗0 + α∗Xwi + α∗Zzi) t] ,

P1,2(t;θ
∗) =

exp (α∗0 + α∗Xwi + α∗Zzi)

exp (β∗0 + β∗Xwi + β∗Zzi)− exp (α∗0 + α∗Xwi + α∗Zzi)
·

{exp [− exp (α∗0 + α∗Xwi + α∗Zzi) t]− exp [− exp (β∗0 + β∗Xwi + β∗Zzi) t]} ,
P1,3(t;θ

∗) = 1− P1,1(t;θ
∗)− P1,2(t;θ

∗),

P2,2(t;θ
∗) = exp [− exp (β∗0 + β∗Xwi + β∗Zzi) t] ,

P2,3(t;θ
∗) = 1− exp [− exp (β∗0 + β∗Xwi + β∗Zzi) t] ,

P3,3(t;θ
∗) = 1.

A “∗” is attached to the parameters in this model to emphasize that they differ from the

true model parameters in Figure 3.2 when the true covariate xi is replaced by the measured

version, wi. We note that in this formulation, we assume the assessment scheme is nonin-

formative as outlined in Grüger et al. (1991) and the form of the transition intensities is

specified correctly with the exception of the mismeasured covariates.

Maximization of (3.1) will result in estimates for θ∗, a vector of parameters that are

possibly different from the parameters of interest, θ. Since the estimators for θ∗ are based
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on mismeasured covariates, they will potentially be biased for θ. Asymptotic biases pro-

vide insight regarding the impact of mismeasured covariates. Since the asymptotic biases

are complicated functions of θ and the covariate and measurement error distributions it is

difficult to derive closed-form expressions. We can investigate the relationship graphically

as in Chapter 2 for different parameter configurations (White 1982). Note that the multi-

state formulation means that some unique measurement error problems can arise when

dealing with interval-censored transition times. For example, if βX = 0 in the model for

Figure 3.2, then with right-censored data we would not expect any bias in the estimator for

βZ because the likelihood can be factorized. With interval-censored transition times this

factorization is not possible and the measurement error in X can even impact parameter

estimation in transition rates where X does not appear in the linear predictor. For this

reason, covariate measurement error or misclassification can have a wide ranging impact

in these more involved models.

In creating the following plots, all subjects are assumed to begin in state 1 at t = ui0 = 0

(i.e. yi (ui0) = 1) and to be assessed at five equally spaced assessment times. The study

duration, τ , was selected such that P13 (τ |X,Z;θ) was at least 0.6 for all combinations of

(X,Z) (binary covariates) or such that P13 (τ |X,Z;θ) = 0.6 at µ′ = (µX , µZ)′ = (0, 0)′

(continuous (X,Z)). With Y representing the states occupied at the assessment times, the

data (Y , X,W,Z)′ are assumed to be i.i.d. across patients. The equations to be solved to

determine the limiting values of the naive maximum likelihood estimators were determined

based on (2.6) and (3.1) as follows. The regularity conditions outlined in White (1982),

including that the derivative and the expectation operators can be interchanged, lead to

the equation

∂EY,W,X,Z|Y0 [lnaive (θ∗)]

∂θ∗ = 0 (3.2)

following from (2.6). The value of θ∗ satisfying (3.2) can be equivalently obtained by

determining the value of θ∗ that maximizes EY,W,X,Z|Y0 [lnaive (θ∗)], provided some condi-

tions are satisfied. As in Section 2.3 let P represent the set of all possible values of Y

(i.e. all possible state paths) and v be a six dimensional vector. Then, the function to be

maximized with respect to θ∗ can be written as follows:
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EY,W,X,Z|Y0 [lnaive (θ∗)]

= EY,W,X,Z|Y0

{
n∑
i=1

m∑
j=1

log
[
Pvj−1,vj

(uij − ui,j−1|Wi,Zi;θ
∗)
]I(Yi=v)

}

= EY,W,X,Z|Y0

{
n∑
i=1

I (Yi = v)

{
5∑
j=1

log
[
Pvj−1,vj

(τ/5|Wi,Zi;θ
∗)
]}}

(3.3)

= nEW,X,Z

{
EY |W,X,Z,Y0

{
I (Y = v)

[
5∑
j=1

log
[
Pvj−1,vj

(τ/5|W ,Z;θ∗)
]]}}

= nEW,X,Z

{∑
v∈P

[
P (Y = v|X,Z, Y0;θ

∗)
5∑
j=1

log
[
Pvj−1,vj

(τ/5|W ,Z;θ∗)
]]}

= nEW,X,Z

{∑
v∈P

[
5∏
j=1

Pvj−1,vj
(τ/5|X,Z;θ)

5∑
j=1

log
(
Pvj−1,vj

(τ/5|W ,Z;θ∗)
)]}

.

The sixth line follows from the fact that we are considering nondifferential mismeasure-

ment here so fY |Y0,W,X,Z (·) = fY |Y0,X,Z (·). Also, in the above formulation, it is assumed

that the distribution of (W,X,Z) does not depend on Y0. The expectation EW,X,Z , and

therefore, the form of the objective function depend on whether we are dealing with binary

or continuous covariates. This expectation is simply a sum for the binary covariates, but

is an integral that has no closed form in general for the continuous covariates. In creating

the plots that will follow, these functions were maximized using PROC NLP and PROC

NLMIXED in SAS for binary and continuous covariates, respectively.

3.2.1 Binary Covariates

Here we let X, Z and W be binary covariates so, (3.3) becomes

1∑
x=0

1∑
w=0

1∑
z=0

P (X = x, W = w,Z = z)
∑
v∈P


5∏

j=1

Pvj−1,vj (τ/5|X = x, Z = z;θ)

·
5∑

j=1

log
[
Pvj−1,vj (τ/5|W = w,Z = z;θ∗)

] ,
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where P (X = x,W = w,Z = z) = P (Z = z)P (X = x|Z = z)P (W = w|X = x, Z = z),

P (Z = 1) = 0.5, P (X = x|Z = z) = elog(2)z/
(
1 + elog(2)z

)
and P (W = w|X = x, Z = z) =

P (W = w|X = x) is defined by the misclassification probabilities, π01 = P (W = 0|X = 1)

and π10 = P (W = 1|X = 0). Maximization of this function with respect to

θ∗ = (α∗0, α
∗
X , α

∗
Z , β

∗
0 , β

∗
X , β

∗
Z)′

will give the limiting values of the naive estimators.

Figures 3.3 to 3.6 illustrate the asymptotic bias based on several parameter configu-

rations that may be encountered in practice. As one would expect, it is clear from these

plots and the simulation results that follow that the magnitude of the bias increases as the

misclassification increases in severity. However, from these plots it appears that π00 (or

equivalently, π10) appears to have less of an impact on bias than π11 (or π01). For instance,

the asymptotic bias summarized in the plots is larger in magnitude when π00 = 1 and

π11 = 0.7 than when π00 = 0.7 and π11 = 1.

The difference between the asymptotic bias summarized in Figures 3.3 and 3.4 appears

to be negligible based on these scales for this parameter configuration. This suggests that

the relative magnitude of β0 to α0 does not have a substantial impact on the asymptotic

bias in the naive estimators. Based on Figures 3.3 and 3.5, it appears that the under-

lying true values of αX and βX appear to affect the extent of the bias observed in the

six naive estimators; the bias is larger in magnitude for αX = βX = log(2) than for

αX = βX = log(1.25). This relationship is examined further in Figure 3.6 where the

asymptotic biases in the naive estimators are plotted against αX = βX . Based on this plot,

bias in the naive estimators for α0 and β0 appears to be more severe when αX = βX < 0

than when αX = βX > 0 and increases as the magnitude of the true underlying effects

increase. Not surprisingly, the magnitude of biases in the naive estimators for αX and

βX , the effects associated with the misclassified covariate, increase as the magnitude of

αX = βX increases. When αX = βX < 0, the bias in these estimators is positive; whereas,

when αX = βX > 0, the bias is negative, suggesting that, as has been observed in other

mismeasured covariate problems, regression estimates are attenuated. Based on Figure 3.6,

this attenuation appears to become larger as the magnitude of αX = βX increases. Figure
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3.6 also suggests the asymptotic bias associated with naive estimators for effects on the

error-free covariates is much smaller in magnitude than the bias in the naive estimators

associated with the error-prone covariate effects for this particular configuration. However,

there does appear to be a larger asymptotic bias present when αX = βX < 0 than when

αX = βX > 0. It may also be of interest to investigate the effect on bias when only one

quantity, either αX or βX , is varied. However, in practice often the simpler model assuming

common covariate effects across transitions is adopted.

Since we are considering interval-censored data, one question that arises is whether

a bias is introduced for estimation of the coefficient of Z in the second transition if the

misclassified covariate only affects the first transition under the true and assumed model.

Figures 3.7 and 3.8 illustrate the asymptotic bias of the estimators based on a naive model

of the same form as the true underlying model (but with W used in place of X). These

plots suggest that bias is introduced in the estimator of the effect of Z on the second

transition when X does not have an effect on this transition under the true model. The

magnitude of the bias depends on the true effect of X on the first transition and appears

to be less than that we would observe if X had an effect on the second transition.

Another interesting question involves the impact of m, the number of assessments,

on the asymptotic bias. Figures 3.9 and 3.10 compare the asymptotic bias for the naive

estimators for a specific parameter configuration based on two and six equally spaced

assessments. Based on these plots, there does not appear to be much of a difference in

the asymptotic bias between the two assessment schemes. This is slightly counter-intuitive

since the more frequent the assessments, the closer the data are to right-censored data

where the factorization would suggest negligible bias would result. This could be explored

further by increasing the number of inspections and assessing whether the bias decreases

in the parameters associated with the second transition intensity.



Interval-censored Three-state Data with Mismeasured Covariates 135

F
ig

u
re

3.
3:

P
lo

t
of

th
e

as
ym

pt
ot

ic
bi

as
of

na
iv

e
m

ax
im

um
lik

el
ih

oo
d

es
ti
m

at
or

s
fo

r
a

pr
op

or
ti
on

al
tr
an

si
ti
on

in
te

ns
it
ie

s
m

od
el

w
it
h

a
m

is
cl

as
si

fie
d

bi
na

ry
co

va
ri

at
e;

m
=

5
eq

ua
lly

sp
ac

ed
as

se
ss

m
en

ts
;

α
0

=
lo

g
(0

.2
),

β
0

=
lo

g
(0

.4
),

α
X

=
β

X
=

lo
g

(2
),

α
Z

=
β

Z
=

lo
g

(1
.2

5)
;
m

ax
im

um
ri

gh
t
ce

ns
or

in
g

ra
te

at
τ

is
40

%
;
P

(Z
=

1)
=

0.
5

an
d

lo
gi

t[
P

(X
=

1|
Z

=
z
)]

=
lo

g
(2

)z
.

0.
6

0.
7

0.
8

0.
9

1.
0

−0.4−0.20.00.2

π 0
0

α0* − α0

π 1
1=

0.
7

π 1
1=

0.
8

π 1
1=

0.
9

π 1
1=

1

0.
6

0.
7

0.
8

0.
9

1.
0

−0.4−0.20.00.2

π 0
0

αx* − αx

0.
6

0.
7

0.
8

0.
9

1.
0

−0.4−0.20.00.2

π 0
0

αz* − αz
0.

6
0.

7
0.

8
0.

9
1.

0

−0.4−0.20.00.2

π 0
0

β0* − β0

0.
6

0.
7

0.
8

0.
9

1.
0

−0.4−0.20.00.2

π 0
0

βx* − βx

0.
6

0.
7

0.
8

0.
9

1.
0

−0.4−0.20.00.2

π 0
0

βz* − βz



136
F
igu

re
3.4:

P
lot

of
the

asym
ptotic

bias
of

naive
m

axim
um

likelihood
estim

ators
for

a
proportionaltransition

intensities
m

odel
w
ith

a
m

isclassified
binary

covariate;
m

=
5

equally
spaced

assessm
ents;

α
0

=
log

(0.2),
β

0
=

log
(0
.22)

,
α

X
=

β
X

=
log

(2),
α

Z
=

β
Z

=
log

(1.25);
m

axim
um

right
censoring

rate
at

τ
is

40%
;
P

(Z
=

1)
=

0.5
and

logit[P
(X

=
1|Z

=
z)]=

log
(2)

z.

0.6
0.7

0.8
0.9

1.0

−0.4 −0.2 0.0 0.2

π
00

α0* − α0

π
11 =

0.7
π

11 =
0.8

π
11 =

0.9
π

11 =
1

0.6
0.7

0.8
0.9

1.0

−0.4 −0.2 0.0 0.2

π
00

αx* − αx

0.6
0.7

0.8
0.9

1.0

−0.4 −0.2 0.0 0.2

π
00

αz* − αz

0.6
0.7

0.8
0.9

1.0

−0.4 −0.2 0.0 0.2

π
00

β0* − β0

0.6
0.7

0.8
0.9

1.0

−0.4 −0.2 0.0 0.2

π
00

βx* − βx

0.6
0.7

0.8
0.9

1.0

−0.4 −0.2 0.0 0.2

π
00

βz* − βz



Interval-censored Three-state Data with Mismeasured Covariates 137

F
ig

u
re

3.
5:

P
lo

t
of

th
e

as
ym

pt
ot

ic
bi

as
of

na
iv

e
m

ax
im

um
lik

el
ih

oo
d

es
ti
m

at
or

s
fo

r
a

pr
op

or
ti
on

al
tr
an

si
ti
on

in
te

ns
it
ie

s
m

od
el

w
it
h

a
m

is
cl

as
si

fie
d

bi
na

ry
co

va
ri

at
e;

m
=

5
eq

ua
lly

sp
ac

ed
as

se
ss

m
en

ts
;

α
0

=
lo

g
(0

.2
),

β
0

=
lo

g
(0

.4
),
α

X
=
β

X
=
α

Z
=

β
Z

=
lo

g
(1
.2

5)
;
m

ax
im

um
ri

gh
t
ce

ns
or

in
g

ra
te

at
τ

is
40

%
;
P

(Z
=

1)
=

0.
5

an
d

lo
gi

t[
P

(X
=

1|
Z

=
z
)]

=
lo

g
(2

)z
.

0.
6

0.
7

0.
8

0.
9

1.
0

−0.4−0.20.00.2

π 0
0

α0* − α0

π 1
1=

0.
7

π 1
1=

0.
8

π 1
1=

0.
9

π 1
1=

1

0.
6

0.
7

0.
8

0.
9

1.
0

−0.4−0.20.00.2

π 0
0

αx* − αx

0.
6

0.
7

0.
8

0.
9

1.
0

−0.4−0.20.00.2

π 0
0

αz* − αz
0.

6
0.

7
0.

8
0.

9
1.

0

−0.4−0.20.00.2

π 0
0

β0* − β0

0.
6

0.
7

0.
8

0.
9

1.
0

−0.4−0.20.00.2

π 0
0

βx* − βx

0.
6

0.
7

0.
8

0.
9

1.
0

−0.4−0.20.00.2

π 0
0

βz* − βz



138
F
igu

re
3.6:

P
lot

of
the

asym
ptotic

bias
of

naive
m

axim
um

likelihood
estim

ators
for

a
proportionaltransition

intensities
m

odel
w
ith

a
m

isclassified
binary

covariate;
m

=
5

equally
spaced

assessm
ents;

α
0

=
log

(0.2),
β

0
=

log
(0.4),

α
Z

=
β

Z
=

log
(1.25);

m
axim

um
right

censoring
rate

at
τ

is
40%

;
P

(Z
=

1)
=

0.5,
π

0
0

=
0.7

and
logit[P

(X
=

1|Z
=

z)]=
log

(2)
z.

−
3

−
2

−
1

0
1

2
3

−2 −1 0 1 2

α
x  =

 β
x

α0* − α0

π
11 =

0.7
π

11 =
0.8

π
11 =

0.9
π

11 =
1

−
3

−
2

−
1

0
1

2
3

−2 −1 0 1 2

α
x  =

 β
x

αx* − αx

−
3

−
2

−
1

0
1

2
3

−2 −1 0 1 2

α
x  =

 β
x

αz* − αz

−
3

−
2

−
1

0
1

2
3

−2 −1 0 1 2

α
x  =

 β
x

β0* − β0

−
3

−
2

−
1

0
1

2
3

−2 −1 0 1 2

α
x  =

 β
x

βx* − βx

−
3

−
2

−
1

0
1

2
3

−2 −1 0 1 2

α
x  =

 β
x

βz* − βz



Interval-censored Three-state Data with Mismeasured Covariates 139

F
ig

u
re

3.
7:

P
lo

t
of

th
e

as
ym

pt
ot

ic
bi

as
of

na
iv

e
m

ax
im

um
lik

el
ih

oo
d

es
ti
m

at
or

s
fo

r
a

pr
op

or
ti
on

al
tr
an

si
ti
on

in
te

ns
it
ie

s
m

od
el

w
it
h

a
m

is
cl

as
si

fie
d

bi
na

ry
co

va
ri

at
e

aff
ec

ti
ng

on
ly

th
e

fir
st

tr
an

si
ti
on

;
m

=
5

eq
ua

lly
sp

ac
ed

as
se

ss
m

en
ts

;
α

0
=

lo
g

(0
.2

),
β

0
=

lo
g

(0
.4

),
α

Z
=

β
Z

=
lo

g
(2

);
m

ax
im

um
ri

gh
t

ce
ns

or
in

g
ra

te
at

τ
is

40
%

;
P

(Z
=

1)
=

0.
5,

π
0
0

=
0.

7
an

d
lo

gi
t[

P
(X

=
1|

Z
=

z
)]

=
lo

g
(2

)z
.

−
3

−
2

−
1

0
1

2
3

−2−1012

α x

α0* − α0

π 1
1=

0.
7

π 1
1=

0.
8

π 1
1=

0.
9

π 1
1=

1

−
3

−
2

−
1

0
1

2
3

−2−1012

α x

αx* − αx

−
3

−
2

−
1

0
1

2
3

−2−1012

α x

αz* − αz

−
3

−
2

−
1

0
1

2
3

−0.2−0.10.00.10.2

α x

β0* − β0

−
3

−
2

−
1

0
1

2
3

−0.2−0.10.00.10.2

α x

βz* − βz



140
F
igu

re
3.8:

P
lot

of
the

asym
ptotic

bias
of

naive
m

axim
um

likelihood
estim

ators
for

a
proportional

transition
intensities

m
odelw

ith
a

m
isclassified

binary
covariate

aff
ecting

only
the

first
transition;

m
=

5
equally

spaced
assessm

ents;
α

0
=

log
(0.2),

β
0

=
log

(0
.4),

α
Z

=
β

Z
=

log
(2);

m
axim

um
right

censoring
rate

at
τ

is
40%

;
P

(Z
=

1)
=
P

(X
=

1|Z
=
z)

=
0
.5

and
π

0
0

=
0.7.

−
3

−
2

−
1

0
1

2
3

−2 −1 0 1 2

α
x

α0* − α0

π
11 =

0.7
π

11 =
0.8

π
11 =

0.9
π

11 =
1

−
3

−
2

−
1

0
1

2
3

−2 −1 0 1 2

α
x

αx* − αx

−
3

−
2

−
1

0
1

2
3

−2 −1 0 1 2

α
x

αz* − αz

−
3

−
2

−
1

0
1

2
3

−0.2 −0.1 0.0 0.1 0.2

α
x

β0* − β0

−
3

−
2

−
1

0
1

2
3

−0.2 −0.1 0.0 0.1 0.2

α
x

βz* − βz



Interval-censored Three-state Data with Mismeasured Covariates 141

F
ig

u
re

3.
9:

C
om

pa
ri

so
n

of
th

e
as

ym
pt

ot
ic

bi
as

of
na

iv
e

m
ax

im
um

lik
el

ih
oo

d
es

ti
m

at
or

s
fo

r
a

pr
op

or
ti
on

al
tr
an

si
ti
on

in
te

ns
it
ie

s
m

od
el

w
it
h

a
m

is
cl

as
si

fie
d

bi
na

ry
co

va
ri

at
e

fo
r

m
=

2
an

d
6

eq
ua

lly
sp

ac
ed

as
se

ss
m

en
ts

;
α

0
=

lo
g

(0
.2

),
β

0
=

lo
g

(0
.4

),
α

Z
=

β
Z

=
lo

g
(2

);
m

ax
im

um
ri

gh
t
ce

ns
or

in
g

ra
te

at
τ

is
40

%
;
P

(Z
=

1)
=

0.
5,

π
0
0

=
0.

7
an

d
lo

gi
t[

P
(X

=
1|

Z
=

z
)]

=
lo

g
(2

)z
.

−
3

−
2

−
1

0
1

2
3

−2−1012

m
=2

α x
 =

 β
x

α0* − α0

π 1
1=

0.
7

π 1
1=

0.
8

π 1
1=

0.
9

π 1
1=

1

−
3

−
2

−
1

0
1

2
3

−2−1012

m
=2

α x
 =

 β
x

αx* − αx

−
3

−
2

−
1

0
1

2
3

−2−1012

m
=2

α x
 =

 β
x

αz* − αz
−

3
−

2
−

1
0

1
2

3

−2−1012

m
=6

α x
 =

 β
x

α0* − α0

−
3

−
2

−
1

0
1

2
3

−2−1012

m
=6

α x
 =

 β
x

αx* − αx

−
3

−
2

−
1

0
1

2
3

−2−1012

m
=6

α x
 =

 β
x

αz* − αz



142
F
igu

re
3.10:

C
om

parison
of

the
asym

ptotic
bias

of
naive

m
axim

um
likelihood

estim
ators

for
a

proportionaltransition
inten-

sities
m

odel
w
ith

a
m

isclassified
binary

covariate
for

m
=

2
and

6
equally

spaced
assessm

ents;
α

0
=

log
(0.2),

β
0

=
log

(0.4),
α

Z
=

β
Z

=
log

(2);
m

axim
um

right
censoring

rate
at

τ
is

40%
;
π

0
0

=
0
.7

and
P

(Z
=

1)
=
P

(X
=

1|Z
=
z)

=
0
.5.

−
3

−
2

−
1

0
1

2
3

−2 −1 0 1 2

m
=2

α
x  =

 β
x

β0* − β0

π
11 =

0.7
π

11 =
0.8

π
11 =

0.9
π

11 =
1

−
3

−
2

−
1

0
1

2
3

−2 −1 0 1 2

m
=2

α
x  =

 β
x

βx* − βx

−
3

−
2

−
1

0
1

2
3

−2 −1 0 1 2

m
=2

α
x  =

 β
x

βz* − βz

−
3

−
2

−
1

0
1

2
3

−2 −1 0 1 2

m
=6

α
x  =

 β
x

β0* − β0

−
3

−
2

−
1

0
1

2
3

−2 −1 0 1 2
m

=6

α
x  =

 β
x

βx* − βx

−
3

−
2

−
1

0
1

2
3

−2 −1 0 1 2

m
=6

α
x  =

 β
x

βz* − βz



Interval-censored Three-state Data with Mismeasured Covariates 143

3.2.2 Continuous Covariates

The function maximized with respect to θ∗ = (α∗0, α
∗
X , α

∗
Z , β

∗
0 , β

∗
X , β

∗
Z)′ when X, W and Z

are continuous is∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
fX,W,Z (x,w, z)

{∑
v∈P

[
5∏
j=1

Pvj−1,vj
(τ/5|X = x, Z = z;θ)

·
5∑
j=1

log
[
Pvj−1,vj

(τ/5|W = w,Z = z;θ∗)
]]}

dxdwdz.

Here fX,W,Z (x,w, z) denotes the probability density function of a trivariate normal distri-

bution specified by the conditional distributions:

• Z ∼ N (0, σ2
Z),

• X|Z ∼ N
(
ξZZ, σ

2
X|Z

)
, and

• W |X,Z ∼ N
(
µW |X,Z , σ

2
U

)
.

The specific parameter values used for each plot are outlined in the titles of the figures.

The parameter ξZ was fixed such that ρXZ was 0 or 0.8 when σ2
X|Z = σ2

Z = 1 based on the

expression ρXZ = ξZσZ/
√
σ2
X|Z + ξ2σ2

Z . Adaptive Gaussian quadrature, as implemented

in PROC NLMIXED (SAS), was used to approximate the integrals for each parameter

configuration.
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As expected, the plots given in Figures 3.11 to 3.14 demonstrate that the asymptotic

biases in the naive estimators increase in magnitude as the reliability ratio, γ, decreases

(or equivalently, as the measurement error increases). There appears to be substantial

asymptotic biases in the naive estimators associated with X and Z, but a lesser degree of

bias for the baseline intensity estimators. As was observed in the binary covariate case, it

appears that the magnitude of the asymptotic bias depends on the magnitude of αX = βX .

The biases look to be smaller when αX = βX = log (1.25) ≈ 0.2231 than they are when

αX = βX = log (0.5) ≈ −0.6931. When the error-free covariate, Z, is uncorrelated with X,

the asymptotic biases in the estimators of effects on Z seem to be relatively small. However,

there still appears to be some bias present in the estimators corresponding to the Z effects

which increases in magnitude as γ decreases and as the magnitude of the true values of αX

and βX increase. When X and Z are highly correlated, there appears to be considerable

bias in the estimators associated with Z in addition to those associated with X. Based on

the parameter configurations explored, αX and βX seem to be underestimated (in absolute

value) by the naive maximum likelihood approach; whereas, the magnitude of the Z effect

parameters seem to be overestimated sometimes and underestimated sometimes. Figures

3.13 and 3.14 address the question of whether estimation of the effect of Z on the second

transition is affected when X has an effect on the first, but not the second transition for

a particular configuration. Based on these plots, there does appear to be asymptotic bias

in the naive estimators of both the intercept and the effect of Z on the second transition,

although it appears to be quite small. This bias appears to be present regardless of whether

ρXZ = 0 or ρXZ = 0.8.

3.3 Correcting for Mismeasured Covariates

The notation and methodology for a progressive multi-state model with panel data in the

absence of mismeasured covariates were outlined in Chapter 1. When model (1.13) is

appropriate, an illustration of the observation and state path for an arbitrary individual is

given in Figure 1.7 and the complete data likelihood is given in (1.26). Again, we assume

a multiplicative model for the transition intensities model to relate the intensities to the
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true covariates of interest:

λik(t) = λ0k(t) exp {β′xkxi + β′zkzi} , (3.4)

where λik(t) is the transition intensity associated with the k → k+1 transition for subject i

at time t and the baseline intensity, λ0k(t), is piecewise constant as in (1.14). As before we

assume the assessment scheme is noninformative as outlined in Grüger et al. (1991). The

necessary notation and the description of the SIMEX procedure and maximum likelihood

approaches are given in Section 2.4. The maximum likelihood and SIMEX approaches

follow similar steps here. However, since we are now considering three states the likelihood

function is more complicated. The fY |X,Z term, which is needed to proceed with the

SIMEX procedure and appears in the correct likelihood function, is now given by (3.1).

The SIMEX approach will involve repeated maximization of (3.1) based on simulated data.

Suppose we know the parameters of the mismeasurement and conditional distribution of

X given Z and let the transition probabilities be given by (1.24). As mentioned previously,

for a three-state progressive model these would be given as follows:

P1,1(t;θ) = exp [− exp (α0 + αXx+ αZzi) t] ,

P1,2(t;θ) =
exp (α0 + αXx+ αZzi)

exp (β0 + βXx+ βZzi)− exp (α0 + αXx+ αZzi)

· {exp [− exp (α0 + αXx+ αZzi) t]− exp [− exp (β0 + βXx+ βZzi) t]} ,
P1,3(t;θ) = 1− P1,1(t;θ)− P1,2(t;θ),

P2,2(t;θ) = exp [− exp (β0 + βXx+ βZzi) t] ,

P2,3(t;θ) = 1− exp [− exp (β0 + βXx+ βZzi) t] ,

P3,3(t;θ) = 1.
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Then, the correct likelihood function involving a misclassified binary covariate obtained by
conditioning on Z is

L(θ) =
n∏

i=1

1∑
x=0

fY |X,Z (yi|x, zi) fW |X,Z (wi|x, zi) fX|Z (x|zi)

=
n∏

i=1

1∑
x=0


mi∏
j=1

Pyi(ui,j−1),yi(uij)(uij − ui,j−1|x, zi;θ)

[
πwi

10 (1− π10)(1−wi)
](1−x) [

π
(1−wi)
01 (1− π01)wi

]x [eφ0+φ
′
Zzi

]x
1 + eφ0+φ

′
Zzi

 ,

and the likelihood function based on a continuous covariate is

L (θ) =
n∏
i=1

∫ ∞

−∞
fY |X,Z (yi|x, zi;θ) fW |X,Z

(
wi|x, zi;θW |X,Z

)
fX|Z

(
x|zi;θX|Z

)
dx

=
n∏
i=1

∫ ∞

−∞

{
mi∏
j=1

Pyi(ui,j−1),yi(uij)(uij − ui,j−1|x, zi;θ)

1√
2πσU

e
−(wi−x)2

2σ2
U

1√
2πσX|Z

e

−(x−µX|Z)
2

2σ2
X|Z

 dx.

In practice the measurement error parameters and the parameters of the distribution of X

given Z must be estimated. This can be achieved with data from a so-called validation or

reliability sample. The resulting estimates can then be used in the appropriate likelihood

expressions and maximization with respect to the remaining parameters can be carried

out. The empirical performance of these approaches will be compared to a naive maximum

likelihood approach in the next section.

3.4 Simulation Studies

The objective of these simulations was to compare the performance of the naive and cor-

rect estimation approaches in the presence of measurement error and misclassification.

Three-state progressive models with time homogeneous transition intensities, λ1(x, z,α)

and λ2(x, z,β) were investigated. Values for the baseline transition intensities and the
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covariate effects were selected to represent a range of situations that may be encountered

in practice. Consider the model given in Figure 3.2 as representing the “true” model. The

variable W is the mismeasured version of X and will be used to fit models along with

Z, a perfectly measured covariate. As before, parameters associated with λ1(x, z,α) are

denoted by α = (α0, αX , αZ)′, and those associated with the second transition are denoted

by β = (β0, βX , βZ)′. In practice, interest often lies in covariate effects on transitions rather

than the baseline transition intensities. Therefore, attention will be primarily directed at

the estimators of the regression coefficients for X and Z in this section. All simulations

were conducted in SAS using PROC NLP and PROC IML and the plots were generated

in R.

3.4.1 Binary Covariates

DATA GENERATION

Data have been generated based on the true models and the joint distribution of (X,W )

as follows:

• Number of datasets: N = 500,

• Number of subjects per dataset: n = 500,

• Years of follow-up: τ was selected such that P1,3 (τ) was at least 0.6 based on all

possible values of (X,W ),

• Average number of assessments was: µ = 5,

• Baseline intensities: eα0 = 0.1, 0.2 and eβ0 was set such that eβ0

eα0
= 1.02, 2 (Note that

1.02 was chosen to set α0 and β0 to be close. If 1 had been used, the expression for

the transition probabilities in Section 3.3 would have involved division by 0 when

X=Z=0.),

• Covariate effects: eαX = eβX = 1.25, 2 and eαZ = eβZ = 1.25, and

• SIMEX parameters: M = 5 with {ν1, ν2, ν3, ν4, ν5} = {0, 0.5, 1, 1.5, 2} and B = 100.
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The transition times for each individual were simulated independently as

T1 ∼ EXP (λ1(x, z,α)) and T2 ∼ EXP (λ2(x, z,β)), respectively. The time of the first

transition was denoted as t1 and the second was t1 + t2. The number of follow-up times

were generated as mi ∼ POI(µ). The assessment times, uij, j = 1, 2, ...,mi were then gen-

erated from mi independent UNIF (0, τ) random variables. The ith subject’s contribution

to the dataset was obtained by recording the state occupied at each of the mi assessment

times.

With binary covariates, misclassification is characterized by misclassification probabil-

ities, π01 = 1 − π11 and π10 = 1 − π00, or equivalently, by π00 = P (W = 0|X = 0) and

π11 = P (W = 1|X = 1). Covariate values were generated by the following steps:

• Z ∼ BIN(1, pZ), with pZ = 0.5.

• X|Z ∼ BIN(1, expit (ξ0 + ξZZ)), where expit (x) = ex/ (1 + ex) and with ξ0 =

− log(3), 0 and ξZ = − log(2), log(2), representing negative and positive effects of

Z on X.

• π11 = P (W = 1|X = 1) = 0.7, 1 (sensitivity), and

• π00 = P (W = 0|X = 0) = 0.7, 0.9, 1 (specificity). These values were selected to

represent minor to moderate misclassification. These configurations also allow us to

investigate the situation when only false negatives are possible (π11 = 1 and π00 < 1)

or only false positive are possible (π00 = 1 and π01 < 1). As implied by the above

expressions, we assume here that the misclassification probabilities do not depend on

Z.

Validation samples (one of size 50 and one of size 200) were randomly selected to esti-

mate the misclassification probabilities and for the corrected maximum likelihood approach,

the conditional distribution of X given Z. Analyses were based on models consistent in

structure to those from which the data were generated (i.e. a proportional transition in-

tensities model was assumed) so there was no misspecification other than the mismeasured

covariates to complicate the situation.
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ESTIMATION

Estimates of π01 and π10 were obtained by fitting a logistic regression of W on X in the

validation sample:

π̂01 =
1

1 + eφ̂0+φ̂X

and π̂10 =
eφ̂0

1 + eφ̂0
.

As is customary in measurement error models, the misclassification probabilities were

treated as if they were “known” (or at least that there was negligible variation in the

corresponding estimators) so π̂01 and π̂10 were used to generate the misclassification in the

SIMEX approach and in the likelihood function for the maximum likelihood approach. A

logistic regression of X on Z provided estimates of ξ0 and ξZ for P (X = 1|z) for use in

the likelihood function:

P (X = 1|z) = p̂X|Z =
eξ̂0+ξ̂ZZ

1 + eξ̂0+ξ̂ZZ
.

The SIMEX approach involved repeated simulations and estimation based on the naive

likelihood function. The original misclassification was increased by factors given by νm,

m = 2, 3, 4, 5. For each level of induced misclassification, B = 100 revised wb’s were

generated and each time,

θ̂b(νm) =
(
α̂0b(νm), α̂Xb(νm), α̂Zb(νm), β̂0b(νm), β̂Xb(νm), β̂Zb(νm)

)′
was obtained by maximizing the following likelihood function:

Lnaive (θ(νm)) =
500∏
i=1

mi∏
j=1

Pyi(ui,j−1),yi(uij) (uij − ui,j−1|wi, zi;θ(νm)) (3.5)

At each νm, θ̂(νm) was obtained by taking the average of the B = 100 naive maximum

likelihood estimates. θ̂(ν1) is simply the original naive maximum likelihood estimate.

An extrapolation model was then fit to these five values and the SIMEX estimates were

obtained by extrapolating back to the case where ν = −1 as described in Section 2.4.1.

The simple variance approximation approach described in Stefanski & Cook (1995) for

continuous measurement error was used in Küchenhoff et al. (2005) for misclassification

and so it was applied here. Variance estimates for the SIMEX estimators were obtained
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by first fitting a model to the differences, τ 2 (νm) − s2 (νm), m = 1, 2, ..., 5, where τ 2 (νm)

is the average of the B = 100 model-based variance estimates at each νm (based on the

inverse of the naive information matrix here) and s2 (νm) is the sample variance of the

B = 100 parameter estimates at νm. The SIMEX variance estimate was then obtained

by extrapolating this relationship back to ν = −1. Quadratic (θ(ν) = a + bν + cν2)

and exponential (θ(ν) = aebν) extrapolation functions were considered and fit using least

squares in SAS (using PROC REG and PROC NLIN, respectively), as in Küchenhoff et

al. (2005).

For simplicity, the same extrapolation function was used to obtain the SIMEX pa-

rameter and variance estimates. In practice, extrapolation function selection would not

necessarily be automated in this way and model building techniques could be used along

with diagnostic checks based on residuals to assess the adequacy of the models. Moreover

the parameter and variance estimates need not have the same extrapolant. It is difficult to

imitate this in simulation studies, but two alternative approaches were considered in the

simulation based on quadratic and exponential functions. First, the optimal model of the

two based on adjusted R2 (i.e. R2
adj = 1− SSE/(n−p)

SSTO/(n−1)
) was selected to estimate the param-

eters and the variances. Second, since both extrapolation functions appeared to perform

reasonably well, the average of the estimates arising from the two functions were considered.

The maximum likelihood approach accommodating misclassification was based on the

following likelihood function:

L(θ) =
n∏
i=1

1∑
x=0

mi∏
j=1

Pyi(ui,j−1),yi(uij) (uij − ui,j−1|x, zi;θ)


(
eφ̂0+φ̂Xx

)wi

1 + eφ̂0+φ̂Xx


(
eξ̂0+ξ̂Zzi

)x
1 + eξ̂0+ξ̂Zzi

 . (3.6)

This function was maximized with respect to θ = (α0, αX , αZ , β0, βX , βZ)′. For both

SIMEX and the maximum likelihood approaches, as in the simulations for the two-state

problem, the objective functions were maximized based on a quasi-Newton algorithm using

PROC NLP in SAS which was described in Chapter 2. For each set of parameter esti-

mates, approximate 95% confidence intervals using the model-based standard errors were

constructed and compared to the true parameter values. Empirical coverage probabilities
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(ECPs) were then calculated as the proportion of the 500 95% confidence intervals con-

taining the true value of the parameter of interest. Error bars were included in the plots

by constructing approximate 95% confidence intervals for these proportions based on the

observed ECPs. However, if the true confidence level associated with these intervals is 0.95,

then we would expect the empirical coverage probabilities to be close to 0.95. Further we

would expect the ECPs to fall between 0.95 ± 1.96
√

(0.95)(0.05)
500

or 0.9309 and 0.9691 ap-

proximately 95% of the time. A visual comparison can be made between the ECP intervals

and the nominal coverage probability of 0.95 in the plots. Representative results from this

simulation study are displayed in Figures 3.15 to 3.22.

DISCUSSION

As expected, the biases from the naive analyses were larger in magnitude for the estimators

associated with the covariate subject to misclassification, X. In addition, the ECPs cor-

responding to these estimators were generally farther from the nominal value of 0.95 than

those corresponding to Z, the error-free covariate. Both the correct likelihood approach

and the SIMEX approach exhibit smaller biases and ECPs which are closer to the nominal

level. Also, the biases tended to be smaller and the ECPs were better for estimation based

on a large validation sample (size 200). This seems reasonable because the more validation

data we have, the more information is available about the misclassification matrix and

for the distribution of X given Z. The SIMEX approach, which was presented based on a

quadratic extrapolation function for both parameter and variance estimates, is only a mod-

erate improvement over the naive maximum likelihood approach. There is still some bias

present and quite a few of the 95% confidence intervals for the true coverage probability lie

below 0.95. Based on the parameter configurations explored in this study, the exponential

extrapolation function performed better for estimation of the parameters associated with

X (i.e. αX and βX), but not as well for the other parameters; the quadratic results are

therefore displayed.

Consistent with the asymptotic bias plots presented in Figures 3.3 to 3.6, the impact of

misclassification does not appear to be symmetric. The situation with only false negatives

did not appear to induce the same magnitude of bias and decrease in ECP for the naive
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Ê
C

P
)/500).

● ●

● ●● ●

● ● ●●●

E
M

P
IR

IC
A

L B
IA

S

S
P

E
C

IF
IC

IT
Y

 (π
00 )

EMPIRICAL BIAS IN   β̂x (β̂x−βx)

●●●● ●● ●●●● ●● ● ●● ●● ● ●●●● ●

● ●● ● ● ●● ●

● ●● ● ● ●●● ●●●● ●

●●● ● ● ●●●●● ●● ●● ●●

● ●●● ●● ●●●●

●● ● ●● ●●● ●●

0.7
0.9

1

−4 −2 0 2 4

● ●●

● ●● ● ●● ● ●●

●● ● ●●

●● ● ●

●● ●●
●● ● ● ● ●●●

N
aive

C
orrect (I)

C
orrect (II)

S
IM

E
X

 (I)
S

IM
E

X
 (II)

●

●

●

E
M

P
IR

IC
A

L C
O

V
E

R
A

G
E

 P
R

O
B

A
B

ILIT
IE

S

S
P

E
C

IF
IC

IT
Y

 (π
00 )

EMPIRICAL COVERAGE PROBABILITY (   βx)

●
●

●
●

●
●

0.7
0.9

1

0.0 0.2 0.4 0.6 0.8 1.0

●

●

●

●

●

●

●●●●●

N
aive

C
orrect (I)

C
orrect (II)

S
IM

E
X

 (I)
S

IM
E

X
 (II)



Interval-censored Three-state Data with Mismeasured Covariates 159

F
ig

u
re

3.
18

:
E
m

pi
ri

ca
l
pe

rf
or

m
an

ce
of

es
ti
m

at
or

s
fo

r
th

e
re

gr
es

si
on

pa
ra

m
et

er
as

so
ci

at
ed

w
it
h

a
co

rr
ec

tly
cl

as
si

fie
d

bi
na

ry
co

va
ri

at
e

on
th

e
se

co
nd

tr
an

si
ti
on

;
N

um
be

r
of

as
se

ss
m

en
ts

ar
e

P
O

I
(5

);
α

0
=

lo
g

(0
.2

),
β

0
=

lo
g

(0
.4

),
α

X
=

β
X

=
lo

g
(2

),
α

Z
=

β
Z

=
lo

g
(1

.2
5)

;
P

(Z
=

1)
=

0.
5

an
d

lo
gi

t[
P

(X
=

1|
Z

=
z
)]

=
lo

g(
2)

z
;

π
1
1

=
P

(W
=

1|
X

=
1)

=
0.

7
(e

m
pi

ri
ca

l

co
ve

ra
ge

pr
ob

ab
ili

ti
es

ar
e

sh
ow

n
as

Ê
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Ê
C

P
)/

50
0)

.

●●

●

● ● ●● ●● ●● ●

E
M

P
IR

IC
A

L 
B

IA
S

S
P

E
C

IF
IC

IT
Y

 (
π 0

0)

EMPIRICAL BIAS IN   α̂z (α̂z−αz)

● ●●● ● ●●● ● ● ● ●

●●

●●● ●●●

●●● ● ●●● ● ●

●
●●● ●●●

0.
7

0.
9

1

−1.0−0.50.00.51.0

●●

●

● ● ● ●●● ●

●●

●

● ● ●●●● ●

N
ai

ve
C

or
re

ct
 (

I)
C

or
re

ct
 (

II)
S

IM
E

X
 (

I)
S

IM
E

X
 (

II)

●

●

●

E
M

P
IR

IC
A

L 
C

O
V

E
R

A
G

E
 P

R
O

B
A

B
IL

IT
IE

S

S
P

E
C

IF
IC

IT
Y

 (
π 0

0)

EMPIRICAL COVERAGE PROBABILITY (   αz)

●

●

●

●
●

●

0.
7

0.
9

1

0.880.900.920.940.960.981.00

●
●

●

●

●

●

● ● ● ● ●

N
ai

ve
C

or
re

ct
 (

I)
C

or
re

ct
 (

II)
S

IM
E

X
 (

I)
S

IM
E

X
 (

II)



162

F
igu

re
3.21:

E
m

piricalperform
ance

ofestim
ators

for
the

regression
param

eter
associated

w
ith

a
m

isclassified
binary

covariate
on

the
second

transition;
N

um
ber

of
assessm

ents
are

P
O

I
(5);

α
0

=
log

(0.2),
β

0
=

log
(0.4),

α
X

=
β

X
=
α

Z
=
β

Z
=

log
(1
.25);

P
(Z

=
1)

=
0
.5

and
logit[P

(X
=

1|Z
=

z)]
=

log(2)z;
π

1
1

=
P

(W
=

1|X
=

1)
=

0
.7

(em
pirical

coverage

probabilities
are

show
n

as
Ê
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Table 3.1: Comparison of naive maximum likelihood results for π00 = 0.7, π11 = 1 and π00 = 1, π11 = 0.7.

π00 = 0.7, π11 = 1 π00 = 1, π11 = 0.7
X Z X Z

Configuration Transition Bias ECP Bias ECP Bias ECP Bias ECP
1 1 → 2 -0.1457 0.750 0.0500 0.906 -0.1866 0.548 0.0536 0.916

2 → 3 -0.1199 0.858 0.0460 0.892 -0.2243 0.576 0.0480 0.912
2 1 → 2 -0.0405 0.938 0.0160 0.938 -0.0642 0.918 0.0166 0.938

2 → 3 -0.0483 0.942 0.0230 0.958 -0.0644 0.932 0.0208 0.952
3 1 → 2 -0.0477 0.936 0.0149 0.946 -0.1350 0.750 0.0334 0.934

2 → 3 -0.0390 0.946 0.0290 0.940 -0.1375 0.818 0.0291 0.952

1 α0 = log(0.2), β0 = log(0.4), αX = βX = log(2), αZ = βZ = log(1.25)
2 α0 = log(0.2), β0 = log(0.4), αX = βX = αZ = βZ = log(1.25)
3 α0 = log(0.2), β0 = log(0.22), αX = βX = αZ = βZ = log(1.25)

maximum likelihood estimation approach as the situation with only false positives. The

setting with π00 = 0.7, π11 = 1 (false positives only) was consistently observed to result in

lower estimated biases and ECPs closer to 0.95 than when π00 = 1, π11 = 0.7 (false negatives

only); this was particularly true for the estimates of αX and βX . Table 3.1 illustrates this

for several parameter configurations; two for which the full simulation results are given in

Figures 3.15 to 3.22. Although not summarized in this table, the naive estimated standard

errors associated with α0, αX , β0 and βX also tended to be slightly smaller when π00 = 1,

π11 = 0.7 as compared to when π00 = 0.7, π11 = 1. The same pattern seemed to be

apparent in the two-state simulations (Chapter 2) although the difference was not nearly

as dramatic.

For the parameter configurations investigated in this simulation study, SEnaive <

SESIMEX < SEcorrect. This was also somewhat apparent in the two-state simulations

in Chapter 2 but the difference did not appear to be as great, and whether the SIMEX or

the correct standard errors were larger very much depended on the form of the assumed

extrapolation function. The difference observed in the three-state model-based standard

error estimates may have been partially due to the way the programming was carried

for these simulation studies. For the maximum likelihood approach, although internal

validation data were generated, the analysis was performed as if the estimates for the



Interval-censored Three-state Data with Mismeasured Covariates 165

misclassification probabilities and the X|Z distribution were obtained from an external

data source. When internal validation data are available, the following likelihood function

should be maximized with respect to all parameters; (α0, αX , αZ , β0, βX , βZ , φ0, φX , ξ0, ξZ).

Let ∆i = 1 when subject i is in the validation study.

Li(θ) =


∑1

x=0 Pyi(ui,j−1),yi(uij) (uij − ui,j−1|x, zi;θ)
[
(eφ0+φXx)wi

1+eφ0+φXx

] [
(eξ0+ξZzi)x

1+eξ0+ξZz

]
, ∆i = 0

Pyi(ui,j−1),yi(uij) (uij − ui,j−1|xi, zi;θ)
[
(eφ0+φXxi)wi

1+eφ0+φXxi

]
, ∆i = 1

(3.7)

To confirm that similar results would be observed if external validation data were available

and to compare results based on (3.6) to (3.7) based on an internal validation sample, a

small numerical study was conducted. Table 3.2 summarizes results based on the param-

eter configuration in Figures 3.15 to 3.18 with π00 = π11 = 0.7. “Correct 1” represents

the correct likelihood approach based on treating an internal validation study as external,

“Correct 2” represents correct maximum likelihood using an external validation study and

“Correct 3”, the correct likelihood based on an internal validation sample. The likelihood

function (3.6) was maximized for “Correct 1” and “Correct 2”; whereas (3.7) was maxi-

mized to obtain results for “Correct 3”. The reported bias is the difference between the

average of the estimates from 500 samples and the true value and the SE is the average of

the 500 model-based standard errors for each of the six parameters.

The results based on (3.6) appear to be pretty much consistent regardless of whether

external or internal validation data are used to estimate the parameters associated with

the error and covariate distributions. This is probably due to the fact that in both cases

point estimates for these parameters are substituted into (3.6) which is then maximized

with respect to θ. Although the standard errors based on the likelihood function in (3.7)

appear to be smaller than those based on (3.6), the likelihood function used in the simu-

lations, and this difference seems to be largest for the estimators of the effects associated

with the misclassified covariate, they are still larger than the SIMEX standard errors. How-

ever, the SIMEX variance estimates were based on an approximate method that assumes

the misclassification probabilities and extrapolants are known. Since the variability in the

estimated misclassification rates was not taken into account, it may be the case that an-

other variance estimation procedure, such as bootstrap variance estimation, would result
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in larger standard error estimates; this may also improve the SIMEX empirical coverage

probabilities.
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3.4.2 Continuous Covariates

DATA GENERATION

Data were generated as in Section 3.4.1. We assumed Z ∼ N (µZ , σ
2
Z), where without

loss of generality we set µZ = 0 and considered σ2
Z = 0.1 and 1 to represent low and high

variability in Z. We let X|Z ∼ N
(
µX|Z , σ

2
X|Z

)
, where µX|Z = ξ0 + ξZZ, with ξ0 = 0

and ξZ = 0 and 1.33 to represent a couple of plausible relationships between X and Z

(i.e. when ξZ = 0, X and Z are independent and when ξZ = 1.33, ρXZ = CORR (X,Z) =

ξZσZ/
√
σ2
X|Z + ξ2

Zσ
2
Z = 0.8). The parameter σ2

X|Z was set to 0.1 and 1 to represent low and

high variability in X given Z. Note that we are making the simplifying assumption that the

distribution of X only depends on Z through its mean. We are considering the situation

where σ2
X|Z does not depend on Z. The classical error model given by µW |X,Z = ζ0 + ζXX

was considered where ζ0 = 0 and ζX = 1, and σ2
W |X,Z = σ2

U was selected to result in values

of 0.5 and 0.8 for the reliability ratio, which is defined as γ = σ2
X|Z/

(
σ2
X|Z + σ2

u

)
. These

values of γ were selected to represent low to moderate reliability of W as a measure for

X. Values for σ2
U are summarized in the following table based on the selected simulation

values for σ2
X|Z and γ:

σ2
U

σ2
X|Z = 0.1 σ2

X|Z = 1

γ = 0.5 0.1 1

γ = 0.8 0.025 0.25

Values of the covariates were generated from a trivariate normal distribution given by

(2.24). Again, two validation samples were randomly selected from the 500 subjects in

each dataset to estimate the measurement error and conditional covariate distributions.

ESTIMATION

Based on the validation data, the measurement error distribution was modeled as W =

ζ0 + ζXX+ ζZZ+ ε and estimates for ζ0, ζX and ζZ were obtained using least squares. The

model X = ξ0 + ξZZ + ε was also fit using least squares to obtain ξ̂0 and ξ̂Z to substitute

into the likelihood function for the correct maximum likelihood approach. The models fit

to the data had the same structure as the models used to generate the data so there was
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no model misspecification other than the mismeasurement in X.

The SIMEX approach was implemented as in Section 3.4.1 and involved repeated max-

imization of the likelihood function in (3.5). PROC NLP in SAS was used here to obtain

the maximum likelihood estimates. The correct maximum likelihood approach was based

on the following likelihood function:

L(θ) =
n∏
i=1

∫ ∞

−∞

mi∏
j=1

Pyi(ui,j−1),yi(uij) (uij − ui,j−1|x, zi;θ) fW |X (wi|x) fX|Z (x|zi) dx, (3.8)

where fW |X (w|x) = 1√
2πσ̂U

e
−(w−x)2

2σ̂2
U and fX|Z (x|z) = 1√

2πσ̂X|Z
e

−(x−µ̂X|Z)
2

2σ̂2
X|Z . This function was

maximized with respect to θ = (α0, αX , αZ , β0, βX , βZ)′. Gaussian quadrature was used to

numerically approximate the integrals; an abscissas and weights based on 20 points were

used. For both SIMEX and the maximum likelihood approaches, the objective functions

were maximized based on a quasi-Newton algorithm using PROC NLP in SAS. Represen-

tative results from this simulation study are displayed in Tables 3.3 to 3.8.

In these tables, the term “known” indicates that the measurement error and the distri-

bution of X given Z were known exactly (i.e. the true values are used). Essentially, these

represent the best case scenarios in terms of bias and estimated standard errors based on

the correct maximum likelihood function. “Sample I” refers to the results based on the

small validation sample and “Sample II” refers to the results with a large validation sample.

Linear (θ(ν) = a+ bν), quadratic (θ(ν) = a+ bν + cν2), cubic (θ(ν) = a+ bν + cν2 + dν3),

exponential (θ(ν) = aebν) and rational linear or nonlinear functions (θ(ν) = a+ b
c+ν

) were

fit to obtain the SIMEX parameter and variance estimates. The nonlinear extrapolation

function looked to provide the best results in terms of estimated bias and empirical cov-

erage probabilities for all parameters for the cases which convergence was reached. There

were often convergence problems or negative extrapolated variance estimates. Therefore,

the quadratic and cubic extrapolation function results are presented. There did not ap-

pear to be much of a difference in the SIMEX results based on measurement error variance

estimates from a small versus large validation study, so the results are summarized based

on a small validation study. The small validation study was chosen since it was thought it
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Table 3.3: Empirical performance of estimators of the regression parameters associated with continuous
X and Z; Number of assessments are POI (5); α0 = log (0.1), β0 = log (0.2), αX = βX = log (2),
αZ = βZ = log (1.25); Z ∼ N (0, 1) and X|Z ∼ N (1.33Z, 1) such that ρXZ = 0.8.

αX αZ βX βZ

Method γ = 0.5 γ = 0.8 γ = 0.5 γ = 0.8 γ = 0.5 γ = 0.8 γ = 0.5 γ = 0.8

Naive Bias -0.3690 -0.1550 0.4174 0.1798 -0.3880 -0.1600 0.3910 0.1676
SE1 0.0439 0.0578 0.0856 0.0952 0.0607 0.0829 0.1187 0.1291
SE2 0.0453 0.0620 0.0944 0.1040 0.0625 0.0826 0.1304 0.1361
ECP 0.0000 0.2325 0.0000 0.5190 0.0000 0.4709 0.0820 0.7415

Likelihood
Known Bias 0.0081 -0.0006 -0.0015 0.0033 -0.0043 0.0091 0.0153 0.0033

SE1 0.0997 0.0792 0.1309 0.1512 0.1411 0.1158 0.1712 0.1512
SE2 0.0965 0.0824 0.1303 0.1503 0.1367 0.1115 0.1709 0.1503
ECP 0.9619 0.9460 0.9479 0.9540 0.9399 0.9620 0.9399 0.9540

Sample I Bias 0.0085 0.0105 -0.0025 -0.0021 -0.0057 0.0184 0.0147 -0.0040
SE1 0.0997 0.0804 0.1314 0.1138 0.1410 0.1174 0.1719 0.1524
SE2 0.1262 0.1057 0.1751 0.1565 0.1590 0.1217 0.2077 0.1668
ECP 0.8896 0.8840 0.8795 0.8700 0.8956 0.9440 0.8876 0.9340

Sample II Bias 0.0090 0.0020 -0.0019 0.0067 -0.0033 0.0113 0.0153 0.0022
SE1 0.0999 0.0795 0.1311 0.1130 0.1413 0.1162 0.1715 0.1514
SE2 0.1025 0.0866 0.1363 0.1237 0.1420 0.1127 0.1738 0.1524
ECP 0.9559 0.9200 0.9339 0.9140 0.9339 0.9620 0.9379 0.9500

SIMEX
Quadratic Bias -0.2038 -0.0251 0.2318 0.0350 -0.2246 -0.0221 0.2298 0.0332

SE1 0.0621 0.0721 0.0985 0.1063 0.0869 0.1051 0.1326 0.1427
SE2 0.0749 0.0854 0.1161 0.1233 0.1039 0.1108 0.1537 0.1526
ECP 0.1303 0.8968 0.3627 0.8947 0.3046 0.9332 0.5611 0.9190

Cubic Bias -0.1353 -0.0062 0.1554 0.0153 -0.1590 0.0029 0.1651 0.0093
SE1 0.0719 0.0759 0.1059 0.1092 0.1017 0.1107 0.1420 0.1468
SE2 0.0993 0.0945 0.1374 0.1298 0.1350 0.1268 0.1769 0.1662
ECP 0.4790 0.8765 0.6333 0.8968 0.5731 0.9211 0.7395 0.9231

SE1 and SE2 : average model-based and empirical standard errors, respectively

ECP: empirical coverage probability (proportion of 95% CI’s that include true parameter value)

Sample I and Sample II: small (50) and large (200) validation samples, respectively (SIMEX based on Sample I)

Known: based on using the true parameter values for misclassification and X|Z distributions
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Table 3.4: Empirical performance of estimators of the regression parameters associated with continuous
X and Z; Number of assessments are POI (5); α0 = log (0.1), β0 = log (0.2), αX = βX = log (2),
αZ = βZ = log (1.25); Z ∼ N (0, 1) and X|Z ∼ N (0, 1) such that ρXZ = 0.

αX αZ βX βZ

Method γ = 0.5 γ = 0.8 γ = 0.5 γ = 0.8 γ = 0.5 γ = 0.8 γ = 0.5 γ = 0.8

Naive Bias -0.3726 -0.1555 -0.0141 -0.0035 -0.3921 -0.1671 -0.0291 -0.0141
SE1 0.0415 0.0544 0.0567 0.0571 0.0556 0.0757 0.0735 0.0748
SE2 0.0443 0.0567 0.0581 0.0571 0.0581 0.0777 0.0758 0.0742
ECP 0.0000 0.1920 0.9299 0.9540 0.0000 0.3820 0.9359 0.9520

Likelihood
Known Bias -0.0003 0.0025 0.0036 0.0040 0.0101 0.0082 0.0045 0.0005

SE1 0.0965 0.0752 0.0637 0.0602 0.1380 0.1082 0.0845 0.0797
SE2 0.0971 0.0769 0.0632 0.0589 0.1390 0.1071 0.0837 0.0775
ECP 0.9460 0.9440 0.9600 0.9560 0.9640 0.9500 0.9620 0.9680

Sample I Bias 0.0028 0.0072 0.0071 0.0045 0.0127 0.0128 0.0072 0.0012
SE1 0.0968 0.0758 0.0647 0.0604 0.1385 0.1090 0.0858 0.0801
SE2 0.1256 0.0923 0.0978 0.0717 0.1677 0.1192 0.1181 0.0870
ECP 0.8540 0.8916 0.8260 0.8957 0.9100 0.9378 0.8700 0.9337

Sample II Bias 0.0027 0.0025 0.0023 0.0060 0.0130 0.0082 0.0030 0.0030
SE1 0.0969 0.0753 0.0639 0.0603 0.1385 0.1082 0.0846 0.0799
SE2 0.1023 0.0814 0.0707 0.0616 0.1464 0.1086 0.0882 0.0813
ECP 0.9400 0.9319 0.9320 0.9459 0.9400 0.9499 0.9420 0.9559

SIMEX
Quadratic Bias -0.2079 -0.0272 -0.0069 0.0030 -0.2277 -0.0272 -0.0167 -0.0025

SE1 0.0585 0.0675 0.0581 0.0960 0.0795 0.0960 0.0759 0.0772
SE2 0.0725 0.0770 0.0628 0.1072 0.0982 0.1072 0.0805 0.0777
ECP 0.1167 0.8831 0.9336 0.8891 0.2455 0.8891 0.9316 0.9617

Cubic Bias -0.1410 -0.0086 -0.0038 0.0048 -0.1567 -0.0024 -0.0108 -0.0001
SE1 0.0677 0.0710 0.0591 0.0589 0.0929 0.1018 0.0776 0.0780
SE2 0.0959 0.0866 0.0655 0.0609 0.1268 0.1210 0.0859 0.0790
ECP 0.4507 0.8851 0.9256 0.9516 0.5352 0.8931 0.9235 0.9536

SE1 and SE2 : average model-based and empirical standard errors, respectively

ECP: empirical coverage probability (proportion of 95% CI’s that include true parameter value)

Sample I and Sample II: small (50) and large (200) validation samples, respectively (SIMEX based on Sample I)

Known: based on using the true parameter values for misclassification and X|Z distributions
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Table 3.5: Empirical performance of estimators of the regression parameters associated with continuous
X and Z; Number of assessments are POI (5); α0 = log (0.2), β0 = log (0.4), αX = βX = log (2),
αZ = βZ = log (1.25); Z ∼ N (0, 1) and X|Z ∼ N (1.33Z, 1) such that ρXZ = 0.8.

αX αZ βX βZ

Method γ = 0.5 γ = 0.8 γ = 0.5 γ = 0.8 γ = 0.5 γ = 0.8 γ = 0.5 γ = 0.8

Naive Bias -0.3685 -0.1499 0.4152 0.1720 -0.3851 -0.1580 0.3963 0.1588
SE1 0.0440 0.0577 0.0852 0.0946 0.0607 0.0823 0.1187 0.1286
SE2 0.0455 0.0579 0.0932 0.0959 0.0636 0.0842 0.1268 0.1319
ECP 0.0000 0.2540 0.0000 0.5460 0.0000 0.4800 0.0800 0.7740

Likelihood
Known Bias 0.0024 0.0053 0.0026 -0.0003 -0.0031 0.0095 0.0241 -0.0065

SE1 0.0989 0.0790 0.1299 0.1123 0.1408 0.1149 0.1703 0.1507
SE2 0.0952 0.0787 0.1302 0.1110 0.1416 0.1135 0.1665 0.1473
ECP 0.9600 0.9438 0.9520 0.9478 0.9620 0.9478 0.9600 0.9538

Sample I Bias 0.0173 0.0163 -0.0219 -0.0156 0.0101 0.0207 0.0026 -0.0204
SE1 0.1011 0.0804 0.1332 0.1138 0.1438 0.1170 0.1746 0.1529
SE2 0.1223 0.0936 0.1742 0.1370 0.1583 0.1234 0.1968 0.1672
ECP 0.8898 0.9160 0.8637 0.9120 0.9399 0.9440 0.9259 0.9340

Sample II Bias 0.0111 0.0066 -0.0105 -0.0028 0.0066 0.0108 0.0108 -0.0091
SE1 0.1002 0.0791 0.1315 0.1125 0.1427 0.1151 0.1724 0.1511
SE2 0.1011 0.0819 0.1379 0.1139 0.1486 0.1185 0.1714 0.1538
ECP 0.9439 0.9337 0.9419 0.9538 0.9499 0.9378 0.9619 0.9478

SIMEX
Quadratic Bias -0.1996 -0.0195 0.2269 0.0273 -0.2185 -0.0201 0.2323 0.0240

SE1 0.0623 0.0719 0.0980 0.1053 0.0870 0.1042 0.1325 0.1420
SE2 0.0778 0.0830 0.1180 0.1182 0.1051 0.1133 0.1504 0.1523
ECP 0.1747 0.9056 0.3594 0.9217 0.3133 0.9116 0.5562 0.9317

Cubic Bias -0.1310 0.0008 0.1519 0.0042 -0.1481 0.0060 0.1634 -0.0015
SE1 0.0719 0.0765 0.1054 0.1093 0.1016 0.1100 0.1415 0.1464
SE2 0.1064 0.0955 0.1432 0.1283 0.1386 0.1281 0.1741 0.1645
ECP 0.4819 0.8775 0.6325 0.9157 0.5964 0.9116 0.7329 0.9197

SE1 and SE2 : average model-based and empirical standard errors, respectively

ECP: empirical coverage probability (proportion of 95% CI’s that include true parameter value)

Sample I and Sample II: small (50) and large (200) validation samples, respectively (SIMEX based on Sample I)

Known: based on using the true parameter values for misclassification and X|Z distributions
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Table 3.6: Empirical performance of estimators of the regression parameters associated with continuous
X and Z; Number of assessments are POI (5); α0 = log (0.2), β0 = log (0.4), αX = βX = log (2),
αZ = βZ = log (1.25); Z ∼ N (0, 1) and X|Z ∼ N (0, 1) such that ρXZ = 0.

αX αZ βX βZ

Method γ = 0.5 γ = 0.8 γ = 0.5 γ = 0.8 γ = 0.5 γ = 0.8 γ = 0.5 γ = 0.8

Naive Bias -0.3711 -0.1603 -0.0132 -0.0068 -0.3995 -0.1693 -0.0411 -0.0166
SE1 0.0415 0.0542 0.0565 0.0569 0.0553 0.0851 0.0728 0.0743
SE2 0.0427 0.0545 0.0582 0.0580 0.0608 0.0750 0.0804 0.0717
ECP 0.0000 0.1584 0.9220 0.9505 0.0000 0.3802 0.8960 0.9545

Likelihood
Known Bias 0.0032 -0.0050 0.0048 0.0002 -0.0075 0.0060 -0.0101 -0.0025

SE1 0.0965 0.0747 0.0635 0.0600 0.1361 0.1072 0.0834 0.0791
SE2 0.0926 0.0730 0.0637 0.0597 0.1352 0.1043 0.0854 0.0742
ECP 0.9613 0.9444 0.9505 0.9603 0.9527 0.9603 0.9333 0.9722

Sample I Bias 0.0137 -0.0050 0.0071 0.0002 -0.0021 0.0063 -0.0076 -0.0024
SE1 0.0975 0.0748 0.0644 0.0601 0.1378 0.1073 0.0846 0.0794
SE2 0.1288 0.0840 0.0905 0.0674 0.1602 0.1167 0.1099 0.0856
ECP 0.8520 0.9105 0.8584 0.9205 0.9070 0.9463 0.8816 0.9264

Sample II Bias 0.0104 -0.0031 0.0041 -0.0025 -0.0036 0.0083 -0.0081 -0.0051
SE1 0.0972 0.0750 0.0638 0.0600 0.1374 0.1077 0.0839 0.0792
SE2 0.1024 0.0746 0.0686 0.0623 0.1432 0.1079 0.0921 0.0756
ECP 0.9514 0.9505 0.9323 0.9545 0.9493 0.9604 0.9112 0.9663

SIMEX
Quadratic Bias -0.2033 -0.0344 -0.0146 0.0001 -0.2282 -0.0328 -0.0100 -0.0060

SE1 0.0584 0.0671 0.0581 0.0582 0.0793 0.0950 0.0757 0.0767
SE2 0.0748 0.0740 0.0645 0.0598 0.0976 0.1054 0.0852 0.0744
ECP 0.1320 0.8628 0.9160 0.9543 0.2340 0.8966 0.9060 0.9642

Cubic Bias -0.1340 -0.0144 -0.0117 0.0013 -0.1578 -0.0111 -0.0041 -0.0048
SE1 0.0672 0.0696 0.0592 0.0586 0.0927 0.1008 0.0774 0.0774
SE2 0.1030 0.0835 0.0673 0.0617 0.1291 0.1202 0.0893 0.0772
ECP 0.4540 0.8767 0.9120 0.9443 0.5120 0.9006 0.9000 0.9583

SE1 and SE2 : average model-based and empirical standard errors, respectively

ECP: empirical coverage probability (proportion of 95% CI’s that include true parameter value)

Sample I and Sample II: small (50) and large (200) validation samples, respectively (SIMEX based on Sample I)

Known: based on using the true parameter values for misclassification and X|Z distributions
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Table 3.7: Empirical performance of estimators of the regression parameters associated with continuous
X and Z; Number of assessments are POI (5); α0 = log (0.2), β0 = log (0.22), αX = βX = log (2),
αZ = βZ = log (1.25); Z ∼ N (0, 1) and X|Z ∼ N (1.33Z, 1) such that ρXZ = 0.8.

αX αZ βX βZ

Method γ = 0.5 γ = 0.8 γ = 0.5 γ = 0.8 γ = 0.5 γ = 0.8 γ = 0.5 γ = 0.8

Naive Bias -0.3690 -0.1417 0.4165 0.1592 -0.3882 -0.1561 0.3863 0.1597
SE1 0.0429 0.0566 0.0834 0.0925 0.0572 0.0773 0.1110 0.1211
SE2 0.0449 0.0615 0.0884 0.0985 0.0632 0.0814 0.1137 0.1295
ECP 0.0000 0.3220 0.0000 0.5800 0.0020 0.4420 0.0661 0.7160

Likelihood
Known Bias 0.0001 0.0154 0.0042 -0.0165 -0.0076 0.0178 0.0184 -0.0067

SE1 0.0959 0.0774 0.1267 0.1099 0.1335 0.1092 0.1603 0.1422
SE2 0.0934 0.0825 0.1269 0.1143 0.1352 0.1118 0.1574 0.1474
ECP 0.9609 0.9362 0.9568 0.9300 0.9547 0.9547 0.9588 0.9403

Sample I Bias 0.0106 0.0219 -0.0174 -0.0235 0.0019 0.0252 -0.0032 -0.0162
SE1 0.0972 0.0782 0.1295 0.1108 0.1356 0.1103 0.1643 0.1433
SE2 0.1363 0.1020 0.1895 0.1478 0.1605 0.1238 0.2019 0.1722
ECP 0.8569 0.8765 0.8487 0.8745 0.8916 0.9218 0.8978 0.9053

Sample II Bias 0.0039 0.0167 -0.0019 -0.0185 -0.0054 0.0205 0.0144 -0.0103
SE1 0.0963 0.0776 0.1273 0.1102 0.1341 0.1094 0.1611 0.1426
SE2 0.0986 0.0864 0.1385 0.1229 0.1399 0.1178 0.1646 0.1521
ECP 0.9501 0.9136 0.9335 0.9280 0.9439 0.9486 0.9480 0.9486

SIMEX
Quadratic Bias -0.2038 -0.0115 0.2314 0.0144 -0.2254 -0.0173 0.2301 0.0259

SE1 0.0609 0.0708 0.0959 0.1036 0.0817 0.0979 0.1239 0.1334
SE2 0.0773 0.0874 0.1109 0.1198 0.1062 0.1087 0.1393 0.1473
ECP 0.1443 0.8838 0.3232 0.9118 0.2703 0.9158 0.5244 0.9118

Cubic Bias -0.1390 0.0100 0.1606 -0.0080 -0.1574 0.0068 0.1655 0.0030
SE1 0.0709 0.0745 0.1034 0.1068 0.0955 0.1037 0.1322 0.1378
SE2 0.1034 0.0990 0.1346 0.1311 0.1367 0.1240 0.1611 0.1595
ECP 0.4460 0.8537 0.5662 0.8918 0.5508 0.9034 0.6965 0.9215

SE1 and SE2 : average model-based and empirical standard errors, respectively

ECP: empirical coverage probability (proportion of 95% CI’s that include true parameter value)

Sample I and Sample II: small (50) and large (200) validation samples, respectively (SIMEX based on Sample I)

Known: based on using the true parameter values for misclassification and X|Z distributions
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Table 3.8: Empirical performance of estimators of the regression parameters associated with continuous
X and Z; Number of assessments are POI (5); α0 = log (0.2), β0 = log (0.22), αX = βX = log (2),
αZ = βZ = log (1.25); Z ∼ N (0, 1) and X|Z ∼ N (0, 1) such that ρXZ = 0.

αX αZ βX βZ

Method γ = 0.5 γ = 0.8 γ = 0.5 γ = 0.8 γ = 0.5 γ = 0.8 γ = 0.5 γ = 0.8

Naive Bias -0.3686 -0.1536 -0.0143 -0.0109 -0.3973 -0.1659 -0.0344 -0.0140
SE1 0.0401 0.0525 0.0546 0.0550 0.0532 0.0724 0.0706 0.0716
SE2 0.0416 0.0543 0.0583 0.0581 0.0518 0.0760 0.0730 0.0744
ECP 0.0000 0.1860 0.9215 0.4300 0.0000 0.3540 0.9095 0.9200

Likelihood
Known Bias 0.0063 0.0051 0.0043 -0.0033 -0.0010 0.0121 -0.0007 -0.0005

SE1 0.0918 0.0728 0.0621 0.0583 0.1338 0.1039 0.0805 0.0760
SE2 0.0901 0.0713 0.0631 0.0605 0.1394 0.1067 0.0798 0.0765
ECP 0.9474 0.9485 0.9453 0.9320 0.9352 0.9526 0.9636 0.9526

Sample I Bias 0.0182 0.0108 0.0037 -0.0041 0.0142 0.0179 0.0017 0.0004
SE1 0.0932 0.0734 0.0631 0.0585 0.1363 0.1049 0.0821 0.0764
SE2 0.1219 0.0883 0.0936 0.0776 0.1715 0.1196 0.1125 0.0885
ECP 0.8793 0.9145 0.8384 0.8676 0.8873 0.9124 0.8545 0.9063

Sample II Bias 0.0088 0.0068 0.0008 -0.0038 0.0010 0.0153 -0.0041 -0.0004
SE1 0.0920 0.0731 0.0622 0.0584 0.1336 0.1045 0.0806 0.0762
SE2 0.0984 0.0745 0.0666 0.0636 0.1415 0.1098 0.0863 0.0805
ECP 0.9300 0.9381 0.9280 0.9258 0.9259 0.9464 0.9383 0.9464

SIMEX
Quadratic Bias -0.1967 -0.0237 -0.0059 -0.0050 -0.2318 -0.0252 -0.0199 -0.0029

SE1 0.0567 0.0656 0.0562 0.0565 0.0763 0.0918 0.0728 0.0738
SE2 0.0716 0.0759 0.0623 0.0604 0.0939 0.1029 0.0776 0.0779
ECP 0.1263 0.8956 0.9165 0.9257 0.1914 0.9118 0.9185 0.9299

Cubic Bias -0.1238 -0.0039 -0.0027 -0.0038 -0.1588 0.0020 -0.0134 0.0002
SE1 0.0662 0.0687 0.0574 0.0570 0.0901 0.0979 0.0747 0.0748
SE2 0.0974 0.0856 0.0661 0.0618 0.1207 0.1158 0.0810 0.0794
ECP 0.4969 0.8855 0.9145 0.9217 0.4929 0.8978 0.9206 0.9256

SE1 and SE2 : average model-based and empirical standard errors, respectively

ECP: empirical coverage probability (proportion of 95% CI’s that include true parameter value)

Sample I and Sample II: small (50) and large (200) validation samples, respectively (SIMEX based on Sample I)

Known: based on using the true parameter values for misclassification and X|Z distributions
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would be more feasible to obtain in practice.

DISCUSSION

As is clear from the results, the correct maximum likelihood approach performs much better

than the naive maximum likelihood approach. The biases are close to 0 and the empirical

coverage probabilities are much closer to the nominal level of 0.95 (with both large and

small validation samples). The large validation sample results appear to demonstrate im-

proved performance over the small validation study results. This is not surprising because

there is more information about the error and covariate distributions with a larger valida-

tion sample. SIMEX performs much better for moderate measurement error (γ=0.8) than

for major measurement error (γ=0.5). It is a preferred method over the naive maximum

likelihood approach. It is important to recognize that SIMEX is an easy way to imple-

ment correction for measurement error and it performs best when the measurement error

is low. A drawback, however, is the difficulty in specifying the appropriate extrapolation

function. When X and Z are uncorrelated, the measurement error in X does not appear

to have a significant impact on estimation of the parameters associated with Z. However,

when they are correlated, there can be substantial bias introduced. Consistent with the

asymptotic bias plots, on average, the magnitudes of αX and βX tend to be underestimated

by the naive maximum likelihood method; whereas, the magnitudes of αZ and βZ tend to

be overestimated. Also, the true underlying values of α0 and β0 do not appear to affect

the estimated bias and coverage probabilities, at least for the parameter configurations

investigated.

As in the binary case, these correct maximum likelihood simulations were based on the

likelihood function given in (3.8) rather than a continuous version of (3.7). The difference

between the estimated standard errors for the SIMEX, naive and correct maximum like-

lihood estimators did not appear to be as pronounced for the continuous covariate case

compared to the binary covariate case. However, based on the parameter configurations

investigated in this simulation study, SEnaive < SESIMEX < SEcorrect with quadratic and

cubic SIMEX extrapolants. SIMEX performance may be improved if the extrapolation

model fitting process was not automated as in these simulations or another standard error
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estimation approach such as the bootstrap was used.

A small number of simulations were also performed by setting the average number

of assessments to 20 rather than µ = 5 which resulted in the above results. Table 3.9

summarizes the results comparing two simulations for a particular parameter configuration;

one with µ = 5 and one with µ = 20. Upon inspection of the results, there does not appear

to be much of a difference in the empirical biases and estimated standard errors for the

three approaches between an average of five assessments and twenty assessments.



178

Table 3.9: Comparison of the empirical performance of estimators of the regression parameters associated
with continuous X and Z when µ = 5 and µ = 20; α0 = log (0.2), β0 = log (0.4), αX = βX = log (2),
αZ = βZ = log (1.25); γ = 0.5, Z ∼ N (0, 1) and X|Z ∼ N (1.33Z, 1) such that ρXZ = 0.8.

αX αZ βX βZ

Method µ = 5 µ = 20 µ = 5 µ = 20 µ = 5 µ = 20 µ = 5 µ = 20

Naive Bias -0.3685 -0.3691 0.4152 0.4204 -0.3851 -0.3877 0.3963 0.3875
SE1 0.0440 0.0437 0.0852 0.0853 0.0607 0.0599 0.1187 0.1171
SE2 0.0455 0.0474 0.0932 0.0939 0.0636 0.0632 0.1268 0.1218
ECP 0.0000 0.0000 0.0000 0.0021 0.0000 0.0000 0.0800 0.0951

Likelihood
Known Bias 0.0024 0.0023 0.0026 0.0078 -0.0031 -0.0078 0.0241 0.0154

SE1 0.0989 0.0983 0.1299 0.1301 0.1408 0.1391 0.1703 0.1690
SE2 0.0952 0.1014 0.1302 0.1364 0.1416 0.1414 0.1665 0.1635
ECP 0.9600 0.9322 0.9520 0.9384 0.9620 0.1271 0.9600 0.9554

Sample I Bias 0.0173 0.0112 -0.0219 -0.0092 0.0101 -0.0004 0.0026 0.0012
SE1 0.1011 0.0998 0.1332 0.1323 0.1438 0.1403 0.1746 0.1718
SE2 0.1223 0.1374 0.1742 0.1915 0.1583 0.1622 0.1968 0.1964
ECP 0.8898 0.8726 0.8637 0.8323 0.9399 0.8917 0.9259 0.9214

Sample II Bias 0.0111 0.0079 -0.0105 -0.0042 0.0066 -0.0007 0.0108 0.0022
SE1 0.1002 0.0993 0.1315 0.1316 0.1427 0.1399 0.1724 0.1708
SE2 0.1011 0.1068 0.1379 0.1432 0.1486 0.1486 0.1714 0.1705
ECP 0.9439 0.9577 0.9419 0.9387 0.9499 0.9345 0.9619 0.9493

SIMEX
Quadratic Bias -0.1996 -0.2024 0.2269 0.2324 -0.2185 -0.2246 0.2323 0.2267

SE1 0.0623 0.0619 0.0980 0.0984 0.0870 0.0858 0.1325 0.1311
SE2 0.0778 0.0806 0.1179 0.1217 0.1051 0.1048 0.1504 0.1438
ECP 0.1747 0.1588 0.3594 0.3584 0.3133 0.2983 0.5562 0.5644

Cubic Bias -0.1310 -0.1324 0.1519 0.1539 -0.1481 -0.1566 0.1634 0.1593
SE1 0.0719 0.0717 0.1054 0.1060 0.1016 0.1003 0.1415 0.1400
SE2 0.1064 0.1099 0.1432 0.1507 0.1386 0.1315 0.1741 0.1647
ECP 0.4819 0.4700 0.6325 0.6052 0.5964 0.5558 0.7329 0.7232

SE1 and SE2 : average model-based and empirical standard errors, respectively

ECP: empirical coverage probability (proportion of 95% CI’s that include true parameter value)

Sample I and Sample II: small (50) and large (200) validation samples, respectively (SIMEX based on Sample I)

Known: based on using the true parameter values for misclassification and X|Z distributions
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3.5 Application: Psoriatic Arthritis Data

This analysis was based on data extracted from the PsA clinic database as of early 2005

but assuming a three-state model similar to Figure 3.2. Extending the methodology pre-

sented here to models with a larger number of states is straightforward. As in Gladman

et al. (1995), the states were determined based on a clinical assessment; the number of

deformed joints. State 1, State 2 and State 3 were defined to represent 0, 1 − 4 and 5+

deformed joints, respectively. For the purposes of this analysis, we will assume that the

response (i.e. damaged joint count) is perfectly measured. Gladman et al. (1990) assessed

the reliability of the actively inflamed and deformed joint counts based on the American

College of Rheumatology (ACR) joint count within the clinic and report these counts as

reliable in Gladman et al. (1995). In the available dataset 383 patients entered the PsA

Clinic in State 1, 130 in State 2 and 106 in State 3. Along with the demographics of the

patients included in these analyses, Table 3.10 presents variables which have been identi-

fied as factors potentially associated with PsA progression. The presence of dactylitis and

the back measurements were among the variables that were investigated in the reliability

study (Gladman et al. 2004). Although information on these and the perfectly measured

variables are collected at each clinic visit, we use baseline covariate data only in the regres-

sion models. Two models are fit to these data. One includes a binary covariate subject

to misclassification which will be fit along with several fixed, precisely measured variables.

The second involves a continuous variable subject to error along with several variables as-

sumed to be precisely measured. In both cases, stratification based on state at clinic entry

is done by including the indicator variable ZS2 in the second transition intensity. However

no interactions are considered in these analyses. The parameters of the misclassification

or measurement error process and the conditional covariate distribution were estimated as

outlined in Sections 2.6.1 and 2.6.2.
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Table 3.10: Patient demographics and covariates at clinic entry.

Gender (ZG) Women

Men

n = 619

270

349

Age at PsA Diagnosis (ZAP )
Average

Range

35.8

(9-86)

PsA Duration (years) (ZDP )
Average

Range

7.4

(0-47.7)

Number of Effused Joints (ZE)
Average

Range

3.2

(0-33)

Presence of Dactylitis (WD)
Yes

No

214

405

Back Measurements

Upper Back (WU)
Average

Range

2.2

(0-9)

Middle Back (WM)
Average

Range

3.2

(0-7.8)

Lower Back (WL)
Average

Range

3.9

(0-8.5)
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3.5.1 Misclassification in a Binary Covariate

The results for the full model in which covariate effects vary across transitions are sum-

marized in Table 3.11. Likelihood ratio tests based on 5 degrees of freedom were carried

out for both the naive and correct maximum likelihood approaches, comparing the full

model to a model which assumes common effects across transitions. Both tests suggest

that the simpler model is reasonable (p=0.5334 for the naive model, p=0.6101 for the

correct model). Table 3.12 summarizes the common effects model. There does not appear

to be a substantial difference between the parameter estimates and estimated standard

errors across the methods. This is most likely due to the apparent lack of effect for the

dactylitis variable. The estimated dactylitis effect and corresponding standard error are

larger for the correct likelihood approach compared to the other methods, but the effect

does not appear to be significantly different from zero. The SIMEX approach, however,

does suggest that the dactylitis effect is significantly different from zero.

For SIMEX, backwards elimination was performed based on the variance approxima-

tion of Stefanski & Cook (1995). After the insignificant variables were dropped from each

of the naive and correct likelihood models via likelihood ratio tests, results were obtained

as summarized in Table 3.13. The dactylitis variable is included in the naive and correct

likelihood approaches for comparison purposes even though its effect was not significant

under either model. Figure 3.23 contains the SIMEX plots associated with the final model

based on the SIMEX procedure. It is interesting to note the trend in the parameter es-

timates obtained by increasing the degree of misclassification on the already misclassified

variable, W . For the most part, the quadratic extrapolant appears to provide the best fit

here for both parameter and variance estimates.

In all three approaches, the number of effused joints at clinic entry appears to be as-

sociated with the progression of PsA; the larger the number of effused joints at clinic

entry, the higher the risk of progressing to the next state. The relative risk estimates

of PsA progression with each additional swollen joint at clinic entry are RR=1.0525

[95% CI (1.0208,1.0852)], RR=1.0522 [95% CI (1.0197,1.0857)] and RR=1.0491 [95% CI

(1.0255,1.0732)] for the naive and correct likelihood approaches and SIMEX, respectively.
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There appears to be little difference between the three estimates, probably because the

effect of the misclassified variable does not differ significantly from 0 (at least based on the

likelihood approaches).

The SIMEX approach suggests a marginally significant effect of the presence of dactyli-

tis on PsA progression. The resulting relative risk estimate is RR=1.3015

[95% CI (1.0110,1.6756)], suggesting that patients with at least one swollen digit at clinic

entry are at a higher risk of developing damaged joints. The analyses in Chapter 2, as

well as the naive and correct likelihood approaches here found the dactylitis effect to be

insignificant. The SIMEX standard error may be underestimated here since the validity of

the variance approximation of Stefanski & Cook (1995) depends on known misclassification

probabilities and extrapolation function. Based on R2
adj, the cubic extrapolant appeared

to provide the best fit to the variance approximations at each ν. However, as shown in

Figure 3.23, the resulting extrapolation function is not monotonic which raises questions

regarding its appropriateness here. Under the next best model, a quadratic extrapolant,

the standard error was 0.1847. When compared to the estimated dactylitis effect of 0.2635,

a p-value of approximately 0.1547 is obtained based on a quadratic extrapolant.
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Figure 3.23: SIMEX estimates obtained by applying the SIMEX procedure (based on selection of an
extrapolant and the variance approximation procedure of Stefanski & Cook (1995)) to the PsA clinic data
with a misclassified binary covariate (XD) assuming common effects across transitions (Table 3.13).
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3.5.2 Measurement Error in a Continuous Covariate

Here we will fit one error-prone variable, the range of motion variable corresponding to the

middle back, along with several other variables assumed to be perfectly measured: gender,

age at PsA onset, duration of PsA at clinic entry, the number of effused joints at clinic

entry and the extent of the joint damage (i.e. the state) at clinic entry. As in Section

3.5.1, the first model fit was general in the sense that it permits the covariate effects to

differ across the two transitions. The second, reduced model that will be fit assumes that

the covariate effects are the same for both transitions.

The results for the three estimation approaches; naive maximum likelihood, correct

maximum likelihood and SIMEX, are summarized in Tables 3.14 and 3.15. As in the sim-

ulation studies, the SIMEX approach involved repeated estimation using naive maximum

likelihood (B = 150, here) for different multiples of induced measurement error accord-

ing to ν = {0, 0.5, 1, 1.5, 2}. Candidate extrapolation functions that were considered for

both the parameter estimates and the variance estimates included linear, quadratic, ex-

ponential and nonlinear (rational linear) functions. Error sums of squares and adjusted

R2 (R2
adj = 1 − SSE/(n−p)

SSTO/(n−1)
) were considered to determine the extrapolation function that

provided the best fit.

Since the reliability data is external, both the correct likelihood approach and SIMEX

treat the measurement error variance as known. The likelihood approach also treats the

parameters associated with the conditional covariate distribution as known. If the sam-

pling variability of the estimators of these parameters was incorporated into the correct

likelihood and SIMEX analyses (using the bootstrap for example), we would expect that

the standard errors would increase. This may prevent us from identifying truly significant

variables since their effects would be masked by large standard errors. The corresponding

relative risk confidence intervals would also be wider. This supports the use of large sup-

plementary datasets. We would expect the variability associated with the measurement

error and covariate distribution parameters to decrease as the size of the supplementary

dataset increases.
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Likelihood ratio tests were used for the naive and correct likelihood approaches to de-

termine the final models. To determine the final model based on the SIMEX approach,

variables were omitted if they did not appear to be significantly different from zero. Es-

timates from the final models for the three approaches are summarized in Table 3.16 and

the corresponding SIMEX plots are displayed in Figures 3.24 and 3.25. Note the effect of

the increase in measurement error on parameter estimation in this setting.

Based on the final model, the number of swollen joints has an effect on PsA progression

similar to that which was observed in the binary case. In addition, the error-prone vari-

able, XM , appears to have a significant effect on the second transition, but not the first.

Although the naive likelihood approach does suggest that it is significantly different from

zero, the magnitude of the effect appears to be underestimated. In terms of relative risk

estimates, the naive likelihood approach results in RR=0.8437 [95% CI (0.7186,0.9906)],

the correct likelihood approach gives RR=0.5597 [95% CI (0.5278,0.5936)] and for the

SIMEX approach, RR=0.7578 [95% CI (0.7195,0.7982)]. Therefore patients who have one

additional centimeter of middle back mobility at clinic entry and who have at least one

damaged joint are at lower risk of developing a total of five or more damaged joints. The

naive likelihood approach appears to understate this risk reduction. The difference that we

observe between the correct likelihood approach and SIMEX could be a result of misspec-

ification of the underlying conditional covariate distribution. This would affect only the

correct likelihood approach. Sensitivity analyses could be conducted to explore the effects

of such misspecification on parameter estimation.
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Figure 3.24: Final model estimates of parameters corresponding to the first transition obtained by apply-
ing the SIMEX procedure (based on selection of an extrapolant and the variance approximation procedure
of Stefanski & Cook (1995)) to the PsA clinic data with an error-prone continuous covariate (XM ).

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

SIMEX estimates for αZE
 (NONLINEAR)

ν

α̂ZE

−1.0 0.0 0.5 1.0 1.5 2.0

0.050

0.052

0.054

0.056

0.058

●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

SIMEX estimates for VARαZE
 (NONLINEAR)

ν

VAR^
αZE

−1.0 0.0 0.5 1.0 1.5 2.0

0.000230

0.000232

0.000234

0.000236

0.000238

0.000240

●●●●●●●●●●●●●●●●●
●

●

●



Interval-censored Three-state Data with Mismeasured Covariates 193

Figure 3.25: Final model estimates of parameters corresponding to the second transition obtained by ap-
plying the SIMEX procedure (based on selection of an extrapolant and the variance approximation procedure
of Stefanski & Cook (1995)) to the PsA clinic data with an error-prone continuous covariate (XM ).
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Chapter 4

Current Status Data with a

Susceptible Fraction

4.1 Overview

In the analysis of lifetime data, individuals who do not experience the event of interest by

the end of the study are typically treated as having right-censored event times. However,

if a subgroup of the individuals will never experience the event of interest (i.e. there is a

non-susceptible fraction of the population), their event times are undefined, but are often

taken to be infinite. This was briefly discussed in Section 1.4. Another complication arises

when it is very difficult or costly in terms of time or money to assess individuals repeatedly

over time as discussed in Chapters 2 and 3. If this is the case, a single follow-up assessment

is sometimes planned, leading to event times that are either left-censored or right-censored.

Such data are called type I interval-censored data; or sometimes current status data (Sun

2006). This chapter is concerned with estimation of the parameters associated with the

probability of experiencing an event (i.e. being susceptible), as well as the lifetime distri-

bution for the susceptible subpopulation. Lam & Xue (2005) considered a similar problem

and proposed a semi-parametric mixture model involving a logistic model for the event

probability and a semi-parametric accelerated failure time model for the event time distri-

bution for the susceptible group. They allowed for covariates to affect both components

(i.e. event probability and event time distribution) and used sieve maximum likelihood to

194
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obtain estimates of the parameters (Lam & Xue 2005). For the event time distribution

here, standard parametric and piecewise constant hazards models will be considered along

with a nonparametric approach. The methods developed will be applied to data arising

from a series of studies involving orthopedic surgery patients.

4.2 Motivating Study

Patients undergoing orthopedic surgery such as hip or knee replacement are at increased

risk of developing thrombosis or potentially fatal blood clots. To prevent the formation of

these blood clots heparin-based blood thinners are currently administered to patients un-

dergoing these surgeries. Unfortunately some patients (reported to be approximately 5%)

develop an adverse reaction to surgery and treatment known as Heparin-induced throm-

bocytopenia (HIT). This is characterized by the development of antibodies of the IgG

class and a rapid drop in platelet counts which increases the risk of bleeding. A series

of international orthopedic surgical trials were recently conducted looking into alternative

medications for the prevention of blood clots: in North America, the Pentamaks study

which involved knee replacement (Bauer et al. 2001), the Pentathlon study which involved

hip replacement (Turpie et al. 2002), and in Europe, the Ephesus (Lassen et al 2002) and

Pentifra (Eriksson et al. 2001) studies, both involving hip surgeries. Only the Pentifra

study dealt with hip surgery due to fractures. The primary objective of these studies

was to evaluate the relative performance of a new anticoagulant (Fondaparinux) versus

the standard drug therapy (low molecular weight heparin-based enoxaparin) in the pre-

vention of venographically-documented thrombosis. Some of the patients treated with the

heparin-based drug enoxaparin will experience seroconversion and it is also of interest to

understand the factors associated with such a response.

Antibodies usually develop, if they do at all, between five and ten days after surgery.

In these studies, injections were not given at the same time for all patients. Some patients

received their first dose of medication prior to surgery, while others received it after surgery.

Patients recovered in the hospital and blood tests were conducted upon discharge to assess

seroconversion status. Figure 4.1 illustrates the scenario for a subject receiving the medi-
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cation post-surgery. Here it is of interest to characterize the probability of seroconversion

in patients following surgery and heparin-based anticoagulation therapy so we focus on the

3150 patients (1904 women, 1246 men) who received enoxaparin in the four studies. Most

of the patients underwent hip surgery (88.4%) while the others were having knee surgery

and the first injection was administered prior to surgery for 67.9% of the patients. Figure

4.2 displays the empirical distributions of the injection times and the discharge (i.e. blood

test) times with respect to the surgery times. The median time between surgery and the

first postsurgical injection was 0.517 days and the median recovery period following surgery

was 5.934 days. The irregular shape of the empirical cumulative distribution function for

the time to the blood test reflects the fact that patients were not discharged, and hence

blood samples were not taken, during the night.

Figure 4.1: An illustration of the underlying process over time t for an arbitrary subject.

t|
Surgery

|
Injection

|
Blood Test

→
Antibodies Developing for “Seroconverters”

→
Variable Recovery Time

•

•

Interest primarily lies in whether or not patients develop HIT antibodies rather than when

these antibodies develop. In other words, it is of interest to investigate factors related to

the probability that an individual will experience the event (seroconversion) rather than

related to the timing of the event. In the following sections, we first consider issues related

to model misspecification. This is motivated by the fact that early analyses of this data

were based on naive models involving a binary analysis of the seroconversion status at

the time of testing. This analysis fails to address the fact that individuals recovering from
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Figure 4.2: Empirical distributions of time from surgery to i) injection after surgery and ii) blood sample,
for the 3150 patients receiving enoxaparin.
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surgery and tested early do not have as much time to develop antibodies as individuals who

were tested much later following surgery. Alternative analyses involve the use of standard

current status models which assume all subjects will eventually seroconvert. Instead we

propose a simple latent class model which gives estimates of parameters more closely related

to the question of primary interest. An EM algorithm is proposed for parameter estimation,

and profile likelihood intervals are used for the construction of confidence intervals. This

method of estimation is assessed via simulation and applied to the motivating data from

the orthopedic surgery studies.
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4.3 Statistical Methodology

The following notation will be used throughout this discussion. Let

• Xi =

{
1, if patient i is a seroconverter

0, otherwise
,

• π = probability of seroconversion for a one sample problem such that P (Xi = 1) = π

and P (Xi = 0) = 1− π,

• Si = time to seroconversion (Si →∞ if Xi = 0),

• FS(·) = survival function of time to seroconversion for subpopulation of patients who

will experience this event (i.e. those with Xi = 1),

• Bi = random variable which represents the time from surgery to the blood test for

individual i,

• Wi =

{
1, if seroconversion occurred for individual i by time Bi

0, otherwise
, and

• Zi = a covariate of interest.

Note then, thatXi is unobserved because of the inspection scheme andWi = I(Si < Bi).

Interest lies in identifying prognostic variables for seroconversion and estimating their

effects. To this end, we consider logistic regression models such as

log

(
π(Zi)

1− π(Zi)

)
= ψ0 + ψ1Zi. (4.1)

4.3.1 Model Misspecification

Since we are interested in modeling the probability of seroconversion and the seroconver-

sion status has been determined at hospital discharge, it might be tempting to fit a naive

model, treating Wi as the true binary response, ignoring the seroconversion time distri-

bution. For a one sample problem (i.e. no covariates), based on White (1982), we can

solve (2.6) to obtain expressions relating the limiting values of the naive estimator to the
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parameter(s) of the “true” distribution.

For the purpose of this discussion, we will consider assessment times that follow a

GAM(γ1, γ2) with mean µ = γ1γ2, variance φ = γγ2
2 and p.d.f.

gB(b∗) =
(b∗)γ1−1 exp(−b∗/γ2)

Γ(γ1)γ
γ2
1

. (4.2)

To avoid unrealistic situations with extremely large inspection times however, if b∗ > 1, we

set the inspection time to 1, B = min(B∗, 1). We consider exponentially distributed sero-

conversion times (i.e. Si ∼ EXP (λ)) and let ρ = P (Si < Bi|Xi = 1). We consider a naive

analysis based on the assumption that Wi ∼ BIN(1, π∗). Then if X = (X1, X2, ..., Xn)
′,

B = (B1, B2, ..., Bn)
′ and (Xi, Bi) are i.i.d.,

E [Snaive (π∗) ;π, λ, γ1, γ2] = E

[
n∑

i=1

(
Wi

π∗
− 1−Wi

1− π∗

)]

= E

[
n∑

i=1

(
Wi

π∗(1− π∗)
− 1

1− π∗

)]

= EBi

{
n∑

i=1

EWi|Bi

(
Wi

π∗(1− π∗)
− 1

1− π∗
|Bi

)}

= EBi

[
n∑

i=1

(
EWi|Bi

(Wi|Bi)
π∗(1− π∗)

− 1
1− π∗

)]

= nEBi

[
P (Wi = 1|Bi)

π∗(1− π∗)
− 1

1− π∗

]
= nEBi

[
P (Si < Bi|Xi = 1)P (Xi = 1)

π∗(1− π∗)
− 1

1− π∗

]
= nEBi

[
(1− exp(−λBi))π

π∗(1− π∗)
− 1

1− π∗

]
= n

∫ τ

0

gB(u)
[
(1− exp(−λu))π

π∗(1− π∗)
− 1

1− π∗

]
du

+n

∫ ∞

τ

gB(u)
[
(1− exp(−λτ))π

π∗(1− π∗)
− 1

1− π∗

]
du

=
π

π∗(1− π∗)

{∫ τ

0

gB(u) [1− exp(−λu)] du + [1− exp(−λτ)]
∫ ∞

τ

gB(u)du

}
− 1

1− π∗
.
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Setting this to 0 and solving for π∗ gives

π∗ = π

[
1− (1−G(τ)) exp(−λτ)−

(
1

(1/γ2 + λ) γ2

)γ1
H(τ)

]
, (4.3)

where G(·) is the c.d.f. of the GAM(γ1, γ2) distribution and H(·) is the c.d.f. of the

GAM(γ1, 1/ (1/γ2 + λ)) distribution.

The parameters γ1 and γ2 are associated with the inspection time distribution as in

(4.2). Given a specific value for φ = γ1γ
2
2 , we can calculate µ = γ1γ2 for a certain ρ. Then,

these values can be used to calculate the asymptotic bias for a given π. Figure 4.3 illus-

trates the asymptotic bias, π∗ − π, for different values of π with π∗ given in (4.3). Based

on this plot, the naive estimator for π appears to underestimate the true value of π, which

is as expected since treating Wi as the true seroconversion status will incorrectly classify

the response as zero for those who did not develop antibodies before their assessment time.

The magnitude of this bias appears to increase with the true underlying value of π. This

is not surprising since the bias is proportional to π in (4.3). The bias appears to decrease

in severity as ρ = P (Si < Bi|Xi = 1) increases. This is reasonable since the higher ρ,

the more likely seroconversion is to occur prior to assessment. Therefore, as ρ increases, a

larger number of responses will be correctly classified, leading to smaller asymptotic bias in

the naive estimator for π. Interestingly, it can be shown that the expression in the square

brackets in (4.3) is simply ρ = P (Si < Bi|Xi = 1) in this case (see (4.11)).

The asymptotic bias in the estimator for a covariate effect on the probability of sero-

conversion can be derived in a similar way. Suppose the true underlying model is given as

in Section 4.3 and a logistic regression model is assumed for π∗ such that

logit(π∗(Zi)) = ψ∗0 + ψ∗1Zi.

Noting that

π∗(Zi = 0) = exp(ψ∗0)/ (1 + exp(ψ∗0))

and

π∗(Zi = 1) = exp(ψ∗0 + ψ∗1)/ (1 + exp(ψ∗0 + ψ∗1)) ,
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based on (4.3), we conclude that

ψ∗1 = log


π(ψ|Zi=1)

1−π(ψ|Zi=1)
h
1−(1−G(τ)) exp(−λτ)−

“
1

(1/γ2+λ)γ2

”γ1
H(τ)

i
π(ψ|Zi=0)

1−π(ψ|Zi=0)
h
1−(1−G(τ)) exp(−λτ)−

“
1

(1/γ2+λ)γ2

”γ1
H(τ)

i
 (4.4)

Figure 4.4 illustrates the asymptotic bias in the naive estimator for the covariate effect given

by ψ∗−ψ for different values for ψ with ψ∗ according to (4.4). As was the case in (4.3), the

expressions in the square brackets in (4.4) is ρ = P (Si < Bi|Xi = 1). Again, the magnitude

of the asymptotic bias increases as the true underlying value of ψ1 increases. The direction

of this asymptotic bias depends on the sign of the true covariate effect. However, in both

cases, the naive estimator underestimates the magnitude of the true covariate effect. This

provides compelling evidence of the need to fit models such as the proposed latent class

current status model if there is good scientific rationale for such a formulation. There is no

asymptotic bias present when the true underlying covariate effect is zero. Clearly, ignoring

the seroconversion time distribution in a naive analysis can lead to substantial asymptotic

bias in the estimators associated with the seroconversion probability, especially when a

small proportion of individuals in the susceptible sub-population develop antibodies before

their assessment times.



202

Figure 4.3: Asymptotic bias in the naive estimator for the probability of experiencing the event (ρ =
P (Si < Bi|Xi = 1) and φ = 0.5).
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Figure 4.4: Asymptotic bias in the naive estimator for a covariate effect on the probability of experiencing
the event (ρ = P (Si < Bi|Xi = 1) and φ = 0.5).
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4.3.2 Likelihood with a Non-susceptible Fraction

In the absence of covariates the observed data for individual i is (bi, wi). The variable Xi

is called a latent variable because it is unobserved for many individuals. If Wi = 1, then

by the definition of Xi, we know that it must be 1 but for those with Wi = 0, the true

value of Xi is unknown. To proceed with the likelihood approach, the following probability

expressions are required. For the purposes of this formulation, we consider the one sample

problem, but note that extensions to deal with covariates are straightforward.

A likelihood contribution from a subject testing positive is proportional to

P (Wi = 1|Bi = bi) = P (S ≤ bi|Xi = 1)P (Xi = 1) + 0× P (Xi = 0)

= (1−FS(bi))× π + 0× (1− π),

but for an individual testing negative it is

P (Wi = 0|Bi = bi) = P (S > bi|Xi = 1)P (Xi = 1) + 1× P (Xi = 0)

= FS(bi)× π + 1× (1− π).

Assuming the inspection times (times of blood test) are uninformative, the likelihood

function can be constructed based on these probabilities alone and is

L(θ) =
n∏
i=1

[(1−FS(bi))π]wi [FS(bi)π + (1− π)]1−wi . (4.5)

A “complete data” likelihood function can be constructed by including xi in the data, so

if we observe (xi, bi, wi), for i = 1, 2, ..., n, we write

Lc(θ) =
n∏
i=1

[(1−FS(bi))π]xiwi
{
[FS(bi)π]xi [1− π]1−xi

}1−wi
, (4.6)

and if lc = logLc,

lc(θ) =
n∑
i=1

{xiwi [log (1−FS(bi)) + log π]

+ xi(1− wi) [logFS(bi) + log π] + (1− xi) log (1− π)} .

Since this involves “missing data” (the xi’s here), the natural approach is to apply the EM

Algorithm (Dempster et al. 1977).
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4.3.3 An EM Algorithm for Missing Xi

To illustrate how the EM algorithm can be applied to obtain maximum likelihood estimates

for this problem, we consider the one sample problem and let θ = {π,FS(·)}. At the rth

iteration we denote the estimate of θ obtained by maximization, θ̂
(r)

, and write FS(s; θ̂
(r)

)

as F̂ (r)
S . Then the EM algorithm proceeds as follows:

1. Expectation Step (E-Step)

Because the complete data log-likelihood function is linear inXi we can write Q
(
θ; θ̂

(r−1)
)

.=
lc(θ)|xi=x

(r)
i

,

x
(r)
i

.= E
(
Xi|Bi = bi,Wi = wi; θ̂

(r−1)
)

= P
(
Xi = 1|Bi = bi,Wi = wi; θ̂

(r−1)
)

= wi × P
(
Xi = 1|Bi = bi,Wi = 1; θ̂

(r−1)
)

+ (1− wi)× P
(
Xi = 1|Bi = bi,Wi = 0; θ̂

(r−1)
)

= wi + (1− wi)×
π̂(r−1)F̂(r−1)

S (bi)

π̂(r−1)F̂(r−1)
S (bi)+(1−π̂(r−1))

. (4.7)

2. Maximization Step (M-Step)

Obtain θ̂(r) through maximization of Q
(
θ; θ̂(r−1)

)
with respect to θ for r = 1, 2, ....

Steps 1 and 2 are repeated until convergence is reached (i.e. when the difference be-

tween successive parameter estimates drops below a specified tolerance).

Fortunately, the function we need to maximize in Step 2, Q
(
θ;θ(r−1)

)
= lc1(π)|

xi=x
(r)
i

+

lc2(FS(·))|xi=x
(r)
i

, breaks down into two familiar problems. We need to maximizeQ
(
θ;θ(r−1)

)
with respect to θ, where

lc1(π)|
xi=x

(r)
i

=
n∑
i=1

{
x

(r)
i log π + (1− x

(r)
i ) log(1− π)

}
, (4.8)

and
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lc2(FS(·))|xi=x
(r)
i

=
n∑
i=1

x
(r)
i {wi log(1−FS(bi)) + (1− wi) logFS(bi)} . (4.9)

The expression (4.8) is simply the familiar binomial log-likelihood function with work-

ing response x
(r)
i , for which there are many software packages available. The specific

form of (4.9) depends on the model assumed for the seroconversion time distribution for

the sub-population of susceptible patients. If we assume a Weibull model for the se-

roconversion time distribution (i.e. S ∼ WEI(λ, κ)), the survivor function would be

FS(b) = exp [− (λb)κ]. Since

log (− log (FS(bi))) = κ log λ+ κ log bi, (4.10)

if we let vi = 1− wi, then (4.9) is simply

lc2(FS(bi;λ, κ))|xi=x
(r)
i

=
n∑
i=1

x
(r)
i {vi log(FS(bi)) + (1− vi) log(1−FS(bi))} .

This is also a binomial log-likelihood function with weights given by x
(r)
i , i = 1, 2, ..., n. To

incorporate covariates, we could assume a proportional hazards Weibull regression model,

in which case, the linear predictor would be added to the expression given in (4.10). Ex-

isting software could then be used to fit a binary regression model for Wi with the comple-

mentary log-log link and weights given by x
(r)
i . In addition to any covariates that appear in

the assumed proportional hazards model, a supplementary covariate given by log bi should

be included when fitting this model. When κ is assumed to be one (i.e. S ∼ EXP (λ)),

log bi should be treated as an offset rather than a covariate.

4.3.4 Relative Efficiency

We now consider the precision of the estimators based on latent class models with current

status data and explore the factors that influence this precision. This is important to help

identify settings where it is and is not sensible to consider models for a non-susceptible

fraction with current status data. To carry out this investigation we derive expressions for

the relative efficiency of the estimators based on the Fisher information matrix. To obtain
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the Fisher information, the expectation of S(θ)S ′(θ) with respect to (W,B) is required.

We consider the one sample problem (i.e. no covariates) and assume P (Xi = 1) = π

and that the seroconversion time follows an EXP (λ) distribution with P (Si > s|Xi =

1;λ) = exp(−λs). With θ = (π, λ)′, the ith individual’s contribution to the observed data

log-likelihood function (suppressing the subscript i) is

l(θ) = w log (1− exp(−λb)) + w log π + (1− w) log [exp(−λb)π + (1− π)] .

Based on the reparametrization θ1 = logit(π) and θ2 = log λ to avoid parameter constraints,

the score function is (S1(θ), S2(θ))
′ , where

S1(θ) = wa (θ, b) + b (θ, b)

and

S2(θ) = wg (θ, b) + h (θ, b) ,

with

a (θ, b) = (1− π) +
π(1− π)(1− exp(−λb))
exp(−λb)π + (1− π)

b (θ, b) =
π(1− π)(exp(−λb)− 1)

exp(−λb)π + (1− π)

g (θ, b) = bλ exp(−λb)
[

1

1− exp(−λb)
+

π

exp(−λb)π + (1− π)

]
h (θ, b) = − bπλ exp(−λb)

exp(−λb)π + (1− π)
.

To construct the S(θ)S ′(θ) matrix, expressions for S2
1(θ), S

2
2(θ), and S1(θ)S2(θ) are re-

quired:

S2
1(θ) = w2a2 (θ, b) + 2wa (θ, b) b (θ, b) + b2 (θ, b)

S2
2(θ) = w2g2 (θ, b) + 2wg (θ, b)h (θ, b) + h2 (θ, b)

S1(θ)S2(θ) = w2a (θ, b) g (θ, b) + w [a (θ, b)h (θ, b) + b (θ, b) g (θ, b)] + b (θ, b)h (θ, b) .
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Then, the Fisher information matrix, I(θ), is the expectation with respect to W,B of
S(θ)S ′(θ) or I(θ) = EB

{
EW |B [S(θ)S ′(θ)|B]

}
. It has the following entries.

I(θ)[1,1] =

Z τ

0
gB(u)

˘
π [1− exp(−λu)]

ˆ
a2 (θ, u) + 2a (θ, u) b (θ, u)

˜
+ b2 (θ, u)

¯
du

+ [1−G(τ)]
˘
π [1− exp(−λτ)]

ˆ
a2 (θ, τ) + 2a (θ, τ) b (θ, τ)

˜
+ b2 (θ, τ)

¯
I(θ)[2,2] =

Z τ

0
gB(u)

˘
π [1− exp(−λu)]

ˆ
g2 (θ, u) + 2g (θ, u)h (θ, u)

˜
+ h2 (θ, u)

¯
du

+ [1−G(τ)]
˘
π [1− exp(−λτ)]

ˆ
g2 (θ, τ) + 2g (θ, τ)h (θ, τ)

˜
+ h2 (θ, τ)

¯
I(θ)[1,2] = I(θ)[2,1]

=

Z τ

0
gB(u) {π [1− exp(−λu)] [a (θ, u) g (θ, u) + a (θ, u)h (θ, u) + b (θ, u) g (θ, u)] + b (θ, u)h (θ, u)} du

+ [1−G(τ)] {π [1− exp(−λτ)] [a (θ, τ) g (θ, τ) + a (θ, τ)h (θ, τ) + b (θ, τ) g (θ, τ)] + b (θ, τ)h (θ, τ)} ,

where G(·) is the c.d.f. of a GAM(γ1, γ2) random variable. The parameters associated

with this assessment time distribution depend on ρ = P (S < B|X = 1;λ, µ, φ) which is

the probability of testing positive for the sub-population of individuals who will develop

antibodies at some point. Consider the maximum observation time τ = 1, and let λ be

the solution to 1 − FS(τ ;λ) = 0.95 which is λ = − log 0.05. This ensures that 95% of

the susceptible sample would be expected to seroconvert over the course of the study. In

addition, let B∗ ∼ GAM(γ1, γ2) with mean µ = γ1γ2 and variance φ = γ1γ
2
2 . Since the

inspection times are B = min(B∗, 1), ρ is:

ρ =

∫ τ

0

[1− exp(−λu)] g(u;µ, φ)du+ [1− exp(−λτ)] [1−G(τ ;µ, φ)] . (4.11)

Based on specified values of φ and ρ, (4.11) can be solved for µ using numerical integration.

Then these parameter values can be used to evaluate the Fisher information which, when

inverted, provides asymptotic variances to be used to calculate asymptotic relative efficien-

cies. The parameter values given by ν = (π, ρ, φ)′ characterize a specific configuration. If

we denote ν0 = (π0, ρ0, φ0)
′ as the reference parameter configuration, then the asymptotic

relative efficiency of the estimator for different values of ν = (π, ρ, φ)′ compared to the

estimator with ν0 = (π0, ρ0, φ0)
′ is the ratio of asymptotic variances given by

R.E.(π̂) =
asvar (

√
n(π̂ − π);ν0)

asvar (
√
n(π̂ − π);ν)

and

R.E.(λ̂) =
asvar

(√
n(λ̂− λ);ν0

)
asvar

(√
n(λ̂− λ);ν

) .
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Figures 4.5 and 4.6 display asymptotic relative efficiencies of estimators for π and λ

based on the latent class current status model. In both plots, the reference parameter

configuration is ν0 = (0.1, 0.1, 0.1)′. Figure 4.5 compares relative efficiencies for different

values of the variance of the inspection time distribution, φ; whereas, Figure 4.6 compares

these values for different values of π. Based on the plots, it appears that estimators are

least efficient when the probability of testing positive is extreme (i.e. either very low or

very high) for the susceptible sub-population. It seems that the true underlying value

for π has more of an impact on the R.E. than the value for φ, although this may not be

the case for φ > 0.5. There appears to be considerable increases in sensitivity of R.E. to

ρ as π is increased. Figure 4.5 suggests that imposing variation in the inspection times

will increase efficiency, while 4.6 suggests that the most efficient estimators are obtained

when the inspection times are distributed such that a moderate proportion of susceptible

individuals are observed to test positive.
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4.3.5 Piecewise Constant Hazards Models

An alternative to adopting a standard parametric model for the seroconversion time is

to assume a flexible piecewise constant proportional hazards model. Although we will

show that the expectation step of the EM algorithm is a little more complicated than it

was before, unlike typical parametric models, this type of model does not require strong

assumptions regarding the underlying distribution. Moreover there is greater flexibility

in the degree of robustness of the model: the greater the number of pieces, the more

robust the method. The complete data in this case is given by (Si, Xi), i = 1, 2, ..., n. Let

a0 = 0 < a1 < a2 < ... < aK = ∞ denote the cut-points and suppose there are K pieces to

the hazard function so that

λS(s) = λk, if s ∈ (ak−1, ak], (4.12)

for k = 1, 2, ..., K. The cumulative hazard function ΛS(s) is then

ΛS(s) =
K∑
k=1

ck(s)λk,

where

ck(s) = max (0,min (s− ak−1, ak − ak−1)) ,

and we may write FS(s;λ) = exp(−ΛS(s)). The complete data log-likelihood function is

then given by

lc (θ) =
n∑
i=1

{
K∑
k=1

E [XiI (Si ∈ (ak−1, ak])] log λk −
K∑
k=1

E [Xick(Si)]λk

}
. (4.13)

Based on this log-likelihood function, the EM algorithm proceeds as outlined below.

1. Expectation Step (E-Step)
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Q
(
θ; θ̂

(r−1)
)

.= E

{
n∑
i=1

Xi

K∑
k=1

[I (Si ∈ (ak−1, ak] ) log λk − ck (Si) λk] |Wi, Bi;θ

}

= E

{
E

[
n∑
i=1

Xi

K∑
k=1

[I (Si ∈ (ak−1, ak] ) log λk − ck (Si) λk] |Wi, Bi, Xi;θ

]
|Wi, Bi

}

= E

{
n∑
i=1

Xi

[
K∑
k=1

E (I (Si ∈ (ak−1, ak] ) |Wi, Bi, Xi) log λk

− E (ck (Si) |Wi, Bi, Xi) λk|Wi, Bi;θ]}

=
n∑
i=1

x
(r)
i

[
K∑
k=1

E
(
I (Si ∈ (ak−1, ak] ) |Wi, Bi, Xi = 1;λ(r−1)

)
log λk

− E
(
ck (Si) |Wi, Bi, Xi = 1;λ(r−1)

)
λk

]
.

When Wi = 1 and Bi > ak−1

E
(
ck (Si) |Wi = 1, Bi, Xi = 1;Λ(r−1)

)
= E

(∫ min(Bi,ak)

ak−1

I (Si > u) du|Wi = 1, Xi = 1, Bi

)

=
∫ min(Bi,ak)

ak−1

P (Si > u|Wi = 1, Xi = 1, Bi) du

=
∫ min(Bi,ak)

ak−1

P (u < Si < Bi|Xi = 1, Bi)
P (Si < Ci|Xi = 1, Bi)

du

=
∫ min(Bi,ak)

ak−1

FS(u)−FS(Bi)
1−FS(Bi)

du

= min(Bi, ak)− ak−1 −
∫ min(Bi,ak)

ak−1

1− exp(−Λ(r−1)
S (u))

1− exp(−Λ(r−1)
S (Bi))

du,
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and

E
[
I
(
Si ∈ (ak−1, ak]; Λ(r−1)

)
|Wi = 1, Bi, Xi = 1

]
= E [I (ak−1 < Si < ak) |Wi = 1, Xi = 1, Bi]

=
P (ak−1 < Si < min(Bi, ak)|Xi = 1, Bi)

P (Si < min(Bi, ak)|Xi = 1, Bi)

=
FS(ak−1)−FS(min(Bi, ak))

1−FS(min(Bi, ak))

=
exp(−Λ(r−1)

S (ak−1))− exp(−Λ(r−1)
S (min(Bi, ak)))

1− exp(−Λ(r−1)
S (min(Bi, ak)))

.

If Bi < ak−1 then the inspection time occurred prior to the lower endpoint of the interval

(ak−1, ak] . Since Wi = 1, seroconversion was observed to occur prior to ak−1 so

E
(
ck (Si) |Wi = 1, Bi, Xi = 1; Λ(r−1)

)
= E

[
I (Si ∈ (ak−1, ak]) |Wi = 1, Bi, Xi = 1; Λ(r−1)

]
= 0.

Based on similar steps, when Wi = 0 and Bi ≥ ak then

E
(
ck (Si) |Wi = 0, Bi, Xi = 1; Λ(r−1)

)
=

∫ ak

max(Bi,ak−1)

exp(−Λ
(r−1)
S (u))

exp(−Λ
(r−1)
S (Bi))

du

and

E
[
I (Si ∈ (ak−1, ak]) |Wi = 0, Bi, Xi = 1;Λ(r−1)

]
=

exp(−Λ(r−1)
S (max(Bi, ak−1)))− exp(−Λ(r−1)

S (ak))

exp(−Λ(r−1)
S (Bi))

.

If Bi > ak, then the inspection time (and the seroconversion time since Wi = 0 and Xi = 1)

occurred after the upper endpoint of the interval so individual i was at risk for the entire

interval resulting in

E
(
ck (Si) |Wi = 0, Bi, Xi = 1; Λ(r−1)

)
= ak − ak−1

and

E
[
I (Si ∈ (ak−1, ak]) |Wi = 0, Bi, Xi = 1; Λ(r−1)

]
= 0.

In addition, x
(r)
i is as given in (4.7).
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2. Maximization Step (M-Step)

Obtain θ̂(r) through maximization of Q
(
θ; θ̂(r−1)

)
with respect to θ for r = 1, 2, .... This

can be achieved using ordinary software for fitting exponential regression models; (4.13)

has the form of a sum of contributions to a log-likelihood for a series of exponential mod-

els. Covariates can be introduced to indicate the “piece” of the piecewise constant hazard

function.

Steps 1 and 2 are repeated until convergence is reached (i.e. when the difference between

successive parameter estimates drops below a specified tolerance).

4.3.6 EM with Nonparametric Estimation of FS(·)

The term lc2 in (4.9) appears to be a weighted version of (1.33). It is reasonable then,

that a modified version of PAVA could be applied to find the nonparametric maximum

likelihood estimate of FS(·), and therefore FS(·), in lc2 at each iteration. There may be

some identifiability issues when estimating FS(·) due to the fact that only a proportion

of the population will experience the event of interest. Tail adjustments may be required

in such settings to ensure identifiability (Farewell 1977; Taylor 1995). The idea, however,

would work basically as follows.

A nonparametric estimate of FS(·) can be obtained by noting that (4.9) is like a

weighted version of (1.33), so optimizing (4.9) may be carried out by adapting the usual

isotonic regression approach (Sun 2006). Similar to the steps outlined in Section 1.4,

let B(1) < B(2) < ... < B(J) denote the J unique ordered inspection times and let

rj =
∑n

i=1 I(Bi = B(j))Wi be the number of individuals with inspection time B(j) who

test positive. Individuals testing positive are known to be seroconverters but those testing

negative will have x
(r)
i < 1. The “effective number at risk” at the jth inspection time is

then µ̂
(r)
j =

∑n
i=1 I(Bi = B(j))(Wi + (1 −Wi)x

(r)
i ) and so (4.9) can be optimized by the

isotonic regression of (r1/µ̂
(r)
(1), . . . , rJ/µ̂

(r)
(J))

′ with weights (µ̂
(r)
(1), . . . , µ̂

(r)
(J))

′ to give

F̂ (r)(B(j)) =
max

u ≤ j

min

v ≥ j

( ∑v
`=u r`∑v
`=u µ̂

(r)
(`)

)
(4.14)
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To ensure identifiability in the nonparametric setting, as in the case with right-censored

data (Taylor 1995), it is necessary to force F̂S(·) to increase to one at some point, Υ.

This can be achieved by putting a point mass at Υ so that F̂S(Υ) = 1. The literature on

immunological response following exposure to low molecular weight heparin suggests that

this occurs within 10 days of exposure.

Likelihood ratio statistics can be used to carry out tests of significance of covariate

effects in the binary response model for Xi. Let ψj denote the coefficient of Zij in this

model. Profile maximum likelihood estimates for FS(s) and ψ are can be obtained by

carrying out a slightly modified EM algorithm. If ψj0 is a particular value of ψj, let Fψj0

S (s)

and ψψj0 denote the maximum likelihood estimates when ψj is constrained to equal ψj0;

these are obtained by treating ψj0Zij as an offset in the maximization of a version of (4.8)

that incorporates covariates (i.e. with π replaced with π(ψ)). The profile likelihood ratio

pivotal is

LRS(ψj0) = −2 log

(
L(F̂ψj0

S (·), ψ̂ψj0)

L(F̂S(·), ψ̂)

)
(4.15)

so the p-value for testing H0 : ψj = ψj0 versus HA : ψj 6= ψj0 is P (χ2
1 > LRS(ψj0)).

Similarly, a 95% confidence interval for ψj is defined as {ψj : LRS(ψj) < χ2
1(0.95))} where

χ2
1(0.95) is the 95th percentile of the chi-square distribution with 1 degree of freedom.

4.4 Simulation Study

A small simulation study was conducted to assess the finite sample performance of esti-

mators based on the EM algorithm. The one sample setting was considered. Data were

generated in the following manner.

• Consider π = 0.1, 0.25 to represent low and moderate susceptible proportions of the

population.

• Let the maximum assessment time be τ = 1.

• For the susceptible subpopulation, the event times, si were generated from aWEI(λ, κ)

with λ and κ determined as follows:
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– Initially, we set κ = 1 so that there is no trend in the lifetime distribution for the

susceptible sub-population. To represent an increasing trend in the distribution,

k = 1.25 will also be investigated.

– For each parameter configuration, λ was selected such that the probability of

experiencing the event of interest by time τ was 0.95 (i.e. FS(τ) = 0.05).

• The inspection time distribution was based on B∗ ∼ GAM(γ1, γ2).

– Let V AR(B∗) = φ = γ1γ
2
2 = 0.1 and 0.5 to represent low to moderate variation

in the inspection times.

– Based on the value of φ, the mean of B∗, µ = γ1γ2, and therefore, both γ1 and

γ2 are determined by solving ρ = P (S < B|X = 1) = 0.5, 0.75 where ρ is given

by (4.11).

– We let bi = min(1, b∗i ).

• The observed data were then recorded as (bi, wi), where wi = 1 if si < bi and 0

otherwise, i = 1, 2, ..., 2000.

Figure 4.7 gives a plot of the densities and cumulative distribution for a particular

setting. Table 4.1 summarizes results based on fitting a single sample latent class model

assuming an exponential lifetime distribution to data generated as above with κ = 1. In

other words, we are considering the situation when the model is specified correctly. The

EM algorithm was implemented with the tolerance criteria set to 1× 10−4. Depending on

the configuration, the average number of iterations required to reach convergence at this

tolerance level ranged between 85 and 310. Overall, the estimators based on this model

appear to perform reasonably well. Histograms and normal probability plots were gener-

ated to identify possible outliers and evidence of non-normality. For most of the parameter

configurations, no outliers were present and the plots did not suggest departures from a

normal distribution. It is worth noting that the trends seen in the standard errors are

broadly consistent with what we would expect from the asymptotic calculations conducted

in Section 4.3.4. Specifically the standard errors are smaller when φ is larger and when π

is larger, all other parameters being equal.
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Estimators based on this latent class model did not fare so well for a couple of the

parameter configurations investigated. On average, larger numbers of iterations were re-

quired to reach convergence for these configurations as well. Although not shown here, the

empirical biases and standard errors were quite a bit larger when π = 0.05 compared to

when π > 0.05. However, the sample size was taken to be n = 2000 so when π = 0.05,

we would expect approximately 100 individuals in each dataset to be at risk to experience

the event. Of that group, only some will have experienced the event of interest by their

inspection times. Depending on the relationship between the lifetime and the inspection

time distributions (see Figure 4.7 for example), there may be a relatively small number of

individuals testing positive (i.e. with wi = 1) in any given dataset. In this case, there may

not be enough information present to estimate (π, λ). It appears that large sample sizes

are essential to successful estimation under this model. This is especially the case when π

is small.

Figure 4.7: True underlying event and inspection time distributions when P (S < 1) = 0.95, ρ = 0.75,
and φ = 0.5.
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Table 4.1: Simulation results evaluating the performance of a single sample latent class current status
model assuming an exponential lifetime distribution; Number of simulations = 500, sample size = 2000
and κ = 1.

Exponential (S ∼ EXP (λ))

Configuration logitπ log λ

π φ ρ BIAS SE† BIAS SE†

0.25 0.1 0.75 0.0282 0.1512 -0.0167 0.2624

0.25 0.1 0.5 0.0067 0.1938 0.0199 0.2571

0.25 0.5 0.75 0.0181 0.1241 0.0113 0.2488

0.25 0.5 0.5 0.0041 0.1445 -0.0055 0.2318

0.1 0.1 0.75 0.0839 0.3206 0.0685 0.5585

0.1 0.1 0.5 0.0448 0.3692 0.0160 0.5159

0.1 0.5 0.75 0.0438 0.2100 0.0576 0.4299

0.1 0.5 0.5 0.0271 0.2355 -0.0002 0.4172

†SE is the empirical standard error.

Table 4.1 summarizes results based on the correct assumption that the distribution

follows an exponential distribution. A small number of simulations were performed for the

parameter configuration defined by π = 0.25, φ = 0.5 and ρ = 0.5 again with κ = 1. Based

on additional 75 datasets, the empirical biases and standard errors for logitπ and log λ

were 0.0287 (SE=0.1453) and -0.0345 (SE=0.2354) assuming an exponential model and

0.0808 (SE=0.2583) and -0.1077 (SE=0.4101) under a Weibull model. The parameter κ is

also estimated when the Weibull model it fit to the data. The empirical bias associated

with κ was observed to be 0.0115 with a standard error of 0.1542. Based on this small

numerical investigation, the estimated biases and standard errors appear to be larger un-

der the Weibull model as compared to the exponential model when the true distribution

is exponential.

We will now turn our attention to piecewise constant models. Three pieces were used

and the cut-points (a1 and a2) were chosen to be the 33.33% and 66.67% percentiles of
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the true underlying lifetime distribution. To ensure there were data available to estimate

each of the pieces, the variance, φ was chosen such that P (B < a1), P (a1 < B < a2)

and P (B > a2) were greater than 0.1 based on a prespecified average assessment time of

0.6 (µ=0.6). The results based on two parameter configurations are summarized in Table

4.2. The empirical biases and standard errors are higher for the piecewise model than for

the correctly specified Weibull model. A more conservative choice of the EM algorithm

tolerance (1 × 10−4, here) may result in smaller biases and standard errors. However,

the piecewise approach seems to require a larger number of iterations than those based on

parametric model to give converging solutions. When κ = 1.25, the empirical bias may also

be reduced by increasing the number of pieces. A larger number of pieces would provide

a better approximation to the true underlying hazard, but if the data are limited over

some of the intervals imposed by the cut-points, estimation of the pieces will be difficult.

Based on the simulations summarized in this section, it is clear that a large sample size is

necessary to successfully estimate parameters associated with a latent class current status

model.
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4.5 Application: Orthopedic Surgery Data

For the purposes of this application, the time of surgery is taken to be the origin. Both the

time to seroconversion distribution and the probability of seroconversion will be estimated

based on these data. Ignoring covariates for now, Weibull and piecewise constant models

were fit to obtain π̂ and F̂S(t; λ̂, κ̂). Cumulative distribution function estimates based on

these models, π̂
(
1− F̂S(t; λ̂, κ̂)

)
, along with a nonparametric estimate are displayed in

Figure 4.8. These estimates appear to agree over the region for which there is a reasonable

amount of data. As Figure 4.2 demonstrates, most of the patients are discharged from

the hospital before the eight-day mark so there are little data available to estimate the

distribution after that time.

A latent class current status model was fit to the data arising from the four orthopedic

surgery studies, the results of which are presented in this section. Weibull, nonparametric

and piecewise constant models were considered for the seroconversion time distribution in

the latent class current status model and the seroconversion probability was modeled by a

logistic distribution. The constraint FS(10) = 0 was imposed to facilitate nonparametric

estimation of FS(·). The Pool-Adjacent-Violators algorithm (PAVA) was used to fit the

isotonic regression for the nonparametric approach in R (Raubertas 1994). No covariates

were included in the model for the seroconversion distribution. It was the probability of

seroconversion that was of interest in this application rather than the time to seroconver-

sion. Also, since the proportion of individuals susceptible to HIT is so low, even though

the sample size is large here, there would only be a small amount of data available to

estimate the effects of covariates on both the probability of seroconversion and the time to

seroconversion distributions.

Table 4.3 summarizes results for these data based on Weibull and nonparametric model-

ing of FS(·). The confidence intervals presented in this table are based on profile likelihood

pivotals and the p-values using likelihood ratio statistics as described in Section 4.3.6. Re-

sults based on a piecewise constant hazards model for FS(·) will be reported throughout

the text. Three pieces were used for the piecewise constant models and the cut-points were

determined by the estimated 33.33% and 66.67% percentiles of the seroconversion time
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Figure 4.8: Estimates of the cumulative distribution function for the seroconversion time based on a
latent class model with Weibull and piecewise constant hazard functions and a nonparametric estimate.
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distribution. Three covariates were considered: the timing of the first injection (before

versus after), the location of surgery (hip versus knee) and the gender of the patient (male

versus female). The covariate effects represent log odds ratios since they are included in

the logistic model for the seroconversion probability rather than the seroconversion time

distribution, in which case they would represent relative risks.

The models tended to give similar estimates. There is little effect of the timing of

the first injection or gender on the odds of seroconversion based on the Weibull and non-

parametric models. This was also found to be the case based on the piecewise constant
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model, under which the estimates of the log odds ratios were 0.207 (95% CI (-0.165,0.576);

p=0.438) for injection prior to surgery and -0.248 (95% CI (-0.600,0.092); p=0.313) for

gender. The only variable that appeared to significantly influence the risk of seroconver-

sion was the location of the surgery (hip versus knee). Hip surgery patients experienced

a lower risk of seroconversion than those in for knee surgery. Estimates for the odds ratio

were OR=0.274 (95% CI (0.179, 0.425); p < 0.001) based on a Weibull model and for the

nonparametric model, OR=0.279 (95% CI (0.175, 0.432); p < 0.001). Again, the piece-

wise constant model resulted in a similar estimate of OR=0.285 (95% CI (0.186, 0.440);

p < 0.001). The profile likelihood plots for the Weibull and nonparametric seroconver-

sion time distributions are given in Figure 4.9. The horizontal line determines the profile

likelihood-based 95% confidence intervals reported in Table 4.3.

Table 4.3: Estimates of the covariate effects on seroconversion probability based on a latent class current
status model.

Weibull Nonparametric

EST 95 % CI† p−value EST 95 % CI† p−value

Prior injection 0.197 (-0.175, 0.566) 0.460 0.163 (-0.211, 0.553) 0.544

Hip surgery -1.293 (-1.723, -0.856) <0.001 -1.278 (-1.745, -0.839) 0.001

Male -0.250 (-0.603, 0.091) 0.310 -0.223 (-0.584, 0.126) 0.388

†CI based on profile likelihood (see Figure 4.9).
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Figure 4.9: Profile likelihood estimates for Weibull and nonparametric models of FS(s).
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Chapter 5

Concluding Remarks

5.1 Overview

Throughout this thesis the effects of several types of incomplete life history data on param-

eter estimation were investigated. It was demonstrated that conducting inference based

on simpler, naive models can result in seriously biased estimators and incorrect standard

errors which often lead to inaccurate conclusions. Alternative approaches were proposed

for these problems and the performance of some of the resulting estimators was shown to

be superior to those based on naive models. There is considerable need for extensions of

this work as is evident by the following topics summarized by chapter.

5.1.1 Interval-censored Lifetime Data with Mismeasured Covari-

ates

The findings in the simulation studies of Chapter 2 suggested that significant biases can

result from naive analyses of interval-censored data with both continuous mismeasured co-

variates and binary misclassified covariates. Bias reductions can be obtained from corrected

likelihood-based analyses and the SIMEX procedure. When large validation datasets are

available the corrected likelihood methods work very well with the coverage probability

being within the acceptable range of the nominal level in most cases. The SIMEX proce-

dure, while attractive from a coding standpoint, did not perform as well; when there was

226
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minor measurement error or misclassification it sometimes performed acceptably when a

large validation study was available, but it was sufficiently unpredictable that it cannot be

recommended for use as implemented in the settings of the simulation study.

Piecewise constant baseline hazard (PCBH) models are considered to be robust in many

applications. In this context, for the most part these models appeared to give similar results

as Weibull models. However, to explore the robustness of the PCBH models more fully

here, it would be a valuable exercise to extend the simulation studies to investigate their

performance when data are generated from a model other than Weibull. The effect of

varying the number of baseline hazard pieces would also be an interesting extension.

Measurement Error for Current Status Data

Further investigation is needed on the effects of misclassification and measurement error

when only current status data are available. Table 2.5 summarizes results involving a

misclassified binary covariate with current status data for a particular parameter configu-

ration. It would be interesting to extend this to the case of continuous measurement error

and perform a more extensive simulation study investigating the impact of mismeasured

covariates on the lifetime distribution parameters (λ, κ) as well as the covariate effects

for different distributions for the inspection times. To help with the planning of future

studies involving current status data, it would also be useful to explore the optimal choice

of inspection times.

As (4.10) indicates, the likelihood function based on current status data can be ex-

pressed as a generalized linear model (GLM). Specifically, a proportional hazards Weibull

regression model lifetime distribution is equivalent to a binary regression model with a com-

plementary log-log link. The literature on covariate mismeasurement in generalized linear

models would therefore provide some insight into the effects of mismeasured covariates on

estimation as well as possible approaches of handling this problem.

Misclassified Covariates and States

It would be interesting to investigate methodology that addresses mismeasured covariates

and misclassification of states simultaneously. Rosychuk & Thompson (2003) consider
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a misclassified two-state model in the absence of covariates allowing for two transitions

(0 → 1 and 1 → 0). The behavior of maximum likelihood estimators are investigated and

two bias-correction methods are proposed and implemented. Methodology such as that

presented in their paper could be extended to consider covariates with and without error

in addition to misclassified states.

Bayesian Methods

The approaches implemented in this chapter tended to be computationally burdensome.

The Bayesian approach should be investigated as another possible method to deal with

mismeasured covariates in progressive multi-state models using the software package WIN-

BUGS. Gustafson (2004) describes this approach for other settings involving the mismea-

surement of covariates.

5.1.2 Interval-censored Three-state Data with Mismeasured Co-

variates

The findings in Chapter 3 were broadly similar to those of Chapter 2. The unique aspect

of this setting was the bias induced in estimates of regression coefficients of error-free

covariates in transition intensities with no covariates measured with error. Here we found

this bias tended to be modest but could be reduced further by use of likelihood methods

with a large validation study. The reliability data available for the psoriatic arthritis

dataset was very small and the empirical studies suggest that it may be too small to place

much confidence in the results of the corrected analyses, either by likelihood or SIMEX

approaches.

Validation Studies vs. Reliability Studies

It would be useful to investigate optimal design strategies for selection of validation sam-

ples, as well as to compare the utility of reliability studies versus validation studies. In

settings where there is no gold standard, it is easier to conduct reliability studies, but there

are few guidelines on the optimal design of studies aiming to estimate an intraclass correla-

tion coefficient, or misclassification rates from latent class analyses such as those discussed
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for the psoriatic arthritis study. This information would be helpful at the planning stage

of future mismeasured covariate problems involving multi-state models.

Misclassified Covariates and States in Multi-State Models

In the motivating application for both Chapters 2 and 3, the states were defined by the

number of damaged joints determined by clinical assessment. In my research to date these

have been treated as being precisely measured. However, these counts have been demon-

strated to vary between physicians on the same patient (Gladman et al. 2004). Therefore,

in addition to the presence of error in covariates, there is also error in the response. In

other words, the observed states are misclassified versions of the true underlying states.

Based on the literature, a mixture modeling approach involving hidden Markov models, or

models where the true states of the Markov chain are unobserved, can be taken to deal with

the misclassified state problem (Bureau et al. 2003). A more complicated problem, also

motivated by the PsA application is one where the misclassification of states and covariate

mismeasurement are considered simultaneously.

More Complex Measurement Error Models

Extending this work to accommodate more complex state structures such as progressive

models with more states or non-progressive models would also be useful. Extensions to

more complex mismeasurement models, possibly involving dependence on other covariates,

Z, and considering misclassification in discrete covariates and measurement error in con-

tinuous covariates simultaneously represents practical areas worthy of development. The

challenge in this setting is the need to develop models for the joint distribution of many

covariates.

Mismeasured Time-Dependent Covariates

Misclassification and measurement error in fixed covariates were considered in this work.

Extension to time-varying variables is a much more complex problem if their values may

be influenced by the PsA progression process, but it is worth examining. Model misspec-

ification other than incorrect usage of W in place of X was not considered here. In the
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simulation studies, the form of the model used to conduct inference was the same as that

used to generate the data, and these models were all Markov models. It would be inter-

esting to consider applications to semi-Markov models and to fit and evaluate piecewise

constant baseline intensities models in this setting.

5.1.3 Current Status Data with a Susceptible Fraction

The work in Chapter 4 was motivated by the need to analyze data from several orthopedic

studies on seroconversion rates following orthopedic surgery and exposure to blood thin-

ning medication. The findings included that covariate effects can be seriously biased when

naive models are fit to the observable status indicators at the time of inspection. Relative

efficiency plots indicate the settings when information is maximized for a given sample size

and provide rough guidelines on the implications of different inspection time distributions.

Two EM algorithms were described including one which facilitated estimation with para-

metric and nonparametric estimates of the seroconversion time distribution, and a more

involved version which gave estimates under a piecewise constant hazards model. For the

motivating problem, there is little interest in fitting covariates in the seroconversion time

distribution, but there is some appeal to the piecewise constant approach because it would

facilitate fitting covariate effects in proportional hazards models.

Comprehensive Simulation Study

It would be useful to extend the simulation studies to compare the performance of the three

models; logistic model for the probability of seroconversion (depending on covariates) with

nonparametric, Weibull and piecewise constant hazards models for the time to seroconver-

sion distribution. The range of the susceptible fractions investigated via simulation was

selected based on the motivating example (i.e. it has been reported that approximately

5% of patients experience HIT following surgery and injection). In other applications, this

fraction may be much larger. Therefore, a simulation study investigating a larger range

of possible susceptible fractions would represent more situations that may arise in prac-

tice and would provide details regarding the relative utility of these models over different

fraction values.
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Covariates in Seroconversion Time Model

It is possible in principle to put covariates in the model for the event time distribution

as well as the model for seroconversion. There can be serious identifiability issues even in

settings with right-censored data, and with current status data these may be more chal-

lenging. One strategy is to put covariates in one of the two component models but not

both of them. This may address some of the computing challenges as well. In the motivat-

ing problem there is little interest in characterizing the seroconversion time distribution or

related covariate effects, but it must be dealt with to ensure valid inferences as discussed

in Chapter 4.

Bivariate Current Status Data

The primary objective of the orthopedic studies was to examine the incidence of deep vein

thrombosis (DVT). There were two ways of measuring this outcome. One was based on

careful radiographic examination of the patients over 5-11 days following surgery, which

detected both symptomatic and asymptomatic clots, and the other was based on contact-

ing the patients 49 days after surgery to ask them if they had any symptoms since surgery

(this outcome was therefore based only on symptomatic clots).

The former method of assessment could be viewed as corresponding to a current status

observation scheme since the status of patients with respect to DVT is assessed at the

examination time. As in the case of seroconversion there is little interest in the actual

time a DVT develops, but more in whether such a DVT develops, and one could consider

using a bivariate version of the latent class model to examine the association between

seroconversion and the development of DVT; it would be expected that these would be

negatively correlated since seroconversion increases risk of thrombocytopenia (a decrease

in platelet counts) and clots are less likely to occur with lower platelet counts.

Current Status Observation of Covariates

The variable W , the observed seroconversion status, was considered as a response in Chap-

ter 4. However, it may be of interest to consider whether the true seroconversion status
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(X) affects the distribution of another outcome of interest, such as the status of patients

at 49 days with respect to symptomatic DVT mentioned above. In this case one might

form a logistic regression model with a single misclassified binary covariate (W ) in addi-

tion to several covariates to control for other risk factors. An EM algorithm (similar to

that described in Chapter 4) can be used to obtain maximum likelihood estimates in this

situation, or one could consider adapting mean score methods as suggested by Reilly &

Pepe (1995).
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