35 research outputs found

    mGenomeSubtractor: a web-based tool for parallel in silico subtractive hybridization analysis of multiple bacterial genomes

    Get PDF
    mGenomeSubtractor performs an mpiBLAST-based comparison of reference bacterial genomes against multiple user-selected genomes for investigation of strain variable accessory regions. With parallel computing architecture, mGenomeSubtractor is able to run rapid BLAST searches of the segmented reference genome against multiple subject genomes at the DNA or amino acid level within a minute. In addition to comparison of protein coding sequences, the highly flexible sliding window-based genome fragmentation approach offered can be used to identify short unique sequences within or between genes. mGenomeSubtractor provides powerful schematic outputs for exploration of identified core and accessory regions, including searches against databases of mobile genetic elements, virulence factors or bacterial essential genes, examination of G+C content and binucleotide distribution bias, and integrated primer design tools. mGenomeSubtractor also allows for the ready definition of species-specific gene pools based on available genomes. Pan-genomic arrays can be easily developed using the efficient oligonucleotide design tool. This simple high-throughput in silico ‘subtractive hybridization’ analytical tool will support the rapidly escalating number of comparative bacterial genomics studies aimed at defining genomic biomarkers of evolutionary lineage, phenotype, pathotype, environmental adaptation and/or disease-association of diverse bacterial species. mGenomeSubtractor is freely available to all users without any login requirement at: http://bioinfo-mml.sjtu.edu.cn/mGS/

    Evolution of the G+C content frontier in the rat cytomegalovirus genome

    Get PDF
    Within the 230138 bp of the rat cytomegalovirus (RCMV) genome, the G+C content changes abruptly at position 142644, constituting a G+C content frontier. To the left of this point, overall G+C content is 69.2%, and to the right it is only 47.6%. A region of extremely low G+C content (33.8%) is found in the 5 kb immediately to the right of the frontier, in which there are no predicted coding sequences. To the right of position 147501, the G+C content rises and predicted coding sequences reappear. However, these genes are much shorter (average 848bp, 50% G+C) than those in the left two-thirds of the genome (average 1462bp, 70% G+C). Whole genome alignment of several viruses indicates that the initial ultra-low G+C region appeared in the common ancestor of the genera Cytomegalovirus and Muromegalovirus, and that the lowering of G+C in the right third has been a subsequent process in the lineage leading to RCMV. The left two-thirds of RCMV has stop codon occurrences at 67.5% of their expected level, based on a modified Markov chain model of stop codon distribution, and the corresponding figure for the right third is 78%. Therefore, despite heavy mutation pressure, selective constraint has operated in the right third of the RCMV genome to maintain a degree of gene length unusual for such low G+C sequences

    ICEberg: a web-based resource for integrative and conjugative elements found in Bacteria

    Get PDF
    ICEberg (http://db-mml.sjtu.edu.cn/ICEberg/) is an integrated database that provides comprehensive information about integrative and conjugative elements (ICEs) found in bacteria. ICEs are conjugative self-transmissible elements that can integrate into and excise from a host chromosome. An ICE contains three typical modules, integration and excision, conjugation, and regulation modules, that collectively promote vertical inheritance and periodic lateral gene flow. Many ICEs carry likely virulence determinants, antibiotic-resistant factors and/or genes coding for other beneficial traits. ICEberg offers a unique, highly organized, readily explorable archive of both predicted and experimentally supported ICE-relevant data. It currently contains details of 428 ICEs found in representatives of 124 bacterial species, and a collection of >400 directly related references. A broad range of similarity search, sequence alignment, genome context browser, phylogenetic and other functional analysis tools are readily accessible via ICEberg. We propose that ICEberg will facilitate efficient, multi-disciplinary and innovative exploration of bacterial ICEs and be of particular interest to researchers in the broad fields of prokaryotic evolution, pathogenesis, biotechnology and metabolism. The ICEberg database will be maintained, updated and improved regularly to ensure its ongoing maximum utility to the research community

    Annotation of two large contiguous regions from the Haemonchus contortus genome using RNA-seq and comparative analysis with Caenorhabditis elegans

    Get PDF
    The genomes of numerous parasitic nematodes are currently being sequenced, but their complexity and size, together with high levels of intra-specific sequence variation and a lack of reference genomes, makes their assembly and annotation a challenging task. Haemonchus contortus is an economically significant parasite of livestock that is widely used for basic research as well as for vaccine development and drug discovery. It is one of many medically and economically important parasites within the strongylid nematode group. This group of parasites has the closest phylogenetic relationship with the model organism Caenorhabditis elegans, making comparative analysis a potentially powerful tool for genome annotation and functional studies. To investigate this hypothesis, we sequenced two contiguous fragments from the H. contortus genome and undertook detailed annotation and comparative analysis with C. elegans. The adult H. contortus transcriptome was sequenced using an Illumina platform and RNA-seq was used to annotate a 409 kb overlapping BAC tiling path relating to the X chromosome and a 181 kb BAC insert relating to chromosome I. In total, 40 genes and 12 putative transposable elements were identified. 97.5% of the annotated genes had detectable homologues in C. elegans of which 60% had putative orthologues, significantly higher than previous analyses based on EST analysis. Gene density appears to be less in H. contortus than in C. elegans, with annotated H. contortus genes being an average of two-to-three times larger than their putative C. elegans orthologues due to a greater intron number and size. Synteny appears high but gene order is generally poorly conserved, although areas of conserved microsynteny are apparent. C. elegans operons appear to be partially conserved in H. contortus. Our findings suggest that a combination of RNA-seq and comparative analysis with C. elegans is a powerful approach for the annotation and analysis of strongylid nematode genomes

    Genome Sequencing and Analysis of a Type A Clostridium perfringens Isolate from a Case of Bovine Clostridial Abomasitis

    Get PDF
    Clostridium perfringens is a common inhabitant of the avian and mammalian gastrointestinal tracts and can behave commensally or pathogenically. Some enteric diseases caused by type A C. perfringens, including bovine clostridial abomasitis, remain poorly understood. To investigate the potential basis of virulence in strains causing this disease, we sequenced the genome of a type A C. perfringens isolate (strain F262) from a case of bovine clostridial abomasitis. The ∼3.34 Mbp chromosome of C. perfringens F262 is predicted to contain 3163 protein-coding genes, 76 tRNA genes, and an integrated plasmid sequence, Cfrag (∼18 kb). In addition, sequences of two complete circular plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), and two incomplete plasmid fragments, pF262A (48.5 kb) and pF262B (50.0 kb), were identified. Comparison of the chromosome sequence of C. perfringens F262 to complete C. perfringens chromosomes, plasmids and phages revealed 261 unique genes. No novel toxin genes related to previously described clostridial toxins were identified: 60% of the 261 unique genes were hypothetical proteins. There was a two base pair deletion in virS, a gene reported to encode the main sensor kinase involved in virulence gene activation. Despite this frameshift mutation, C. perfringens F262 expressed perfringolysin O, alpha-toxin and the beta2-toxin, suggesting that another regulation system might contribute to the pathogenicity of this strain. Two complete plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), unique to this strain of C. perfringens were identified

    High Confidence Prediction of Essential Genes in Burkholderia Cenocepacia

    Get PDF
    BACKGROUND: Essential genes are absolutely required for the survival of an organism. The identification of essential genes, besides being one of the most fundamental questions in biology, is also of interest for the emerging science of synthetic biology and for the development of novel antimicrobials. New antimicrobial therapies are desperately needed to treat multidrug-resistant pathogens, such as members of the Burkholderia cepacia complex. METHODOLOGY/PRINCIPAL FINDINGS: We hypothesize that essential genes may be highly conserved within a group of evolutionary closely related organisms. Using a bioinformatics approach we determined that the core genome of the order Burkholderiales consists of 649 genes. All but two of these identified genes were located on chromosome 1 of Burkholderia cenocepacia. Although many of the 649 core genes of Burkholderiales have been shown to be essential in other bacteria, we were also able to identify a number of novel essential genes present mainly, or exclusively, within this order. The essentiality of some of the core genes, including the known essential genes infB, gyrB, ubiB, and valS, as well as the so far uncharacterized genes BCAL1882, BCAL2769, BCAL3142 and BCAL3369 has been confirmed experimentally in B. cenocepacia. CONCLUSIONS/SIGNIFICANCE: We report on the identification of essential genes using a novel bioinformatics strategy and provide bioinformatics and experimental evidence that the large majority of the identified genes are indeed essential. The essential genes identified here may represent valuable targets for the development of novel antimicrobials and their detailed study may shed new light on the functions required to support life
    corecore