81,115 research outputs found

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    Development and Characterisation of a Gas System and its Associated Slow-Control System for an ATLAS Small-Strip Thin Gap Chamber Testing Facility

    Full text link
    A quality assurance and performance qualification laboratory was built at McGill University for the Canadian-made small-strip Thin Gap Chamber (sTGC) muon detectors produced for the 2019-2020 ATLAS experiment muon spectrometer upgrade. The facility uses cosmic rays as a muon source to ionise the quenching gas mixture of pentane and carbon dioxide flowing through the sTGC detector. A gas system was developed and characterised for this purpose, with a simple and efficient gas condenser design utilizing a Peltier thermoelectric cooler (TEC). The gas system was tested to provide the desired 45 vol% pentane concentration. For continuous operations, a state-machine system was implemented with alerting and remote monitoring features to run all cosmic-ray data-acquisition associated slow-control systems, such as high/low voltage, gas system and environmental monitoring, in a safe and continuous mode, even in the absence of an operator.Comment: 23 pages, LaTeX, 14 figures, 4 tables, proof corrections for Journal of Instrumentation (JINST), including corrected Fig. 8b

    Active cooling control of the CLEO detector using a hydrocarbon coolant farm

    Full text link
    We describe a novel approach to particle-detector cooling in which a modular farm of active coolant-control platforms provides independent and regulated heat removal from four recently upgraded subsystems of the CLEO detector: the ring-imaging Cherenkov detector, the drift chamber, the silicon vertex detector, and the beryllium beam pipe. We report on several aspects of the system: the suitability of using the aliphatic-hydrocarbon solvent PF(TM)-200IG as a heat-transfer fluid, the sensor elements and the mechanical design of the farm platforms, a control system that is founded upon a commercial programmable logic controller employed in industrial process-control applications, and a diagnostic system based on virtual instrumentation. We summarize the system's performance and point out the potential application of the design to future high-energy physics apparatus.Comment: 21 pages, LaTeX, 5 PostScript figures; version accepted for publication in Nuclear Instruments and Methods in Physics Research

    Compound-Specific δ^(34)S Analysis of Volatile Organics by Coupled GC/Multicollector-ICPMS

    Get PDF
    We have developed a highly sensitive and robust method for the analysis of δ^(34)S in individual organic compounds by coupled gas chromatography (GC) and multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). The system requires minimal alteration of commercial hardware and is amenable to virtually all sample introduction methods. Isobaric interference from O_2^+ is minimized by employing dry plasma conditions and is cleanly resolved at all masses using medium resolution on the Thermo Neptune MC-ICPMS. Correction for mass bias is accomplished using standard−sample bracketing with peaks of SF6 reference gas. The precision of measured δ^(34)S values approaches 0.1‰ for analytes containing >40 pmol S and is better than 0.5‰ for those containing as little as 6 pmol S. This is within a factor of 2 of theoretical shot-noise limits. External accuracy is better than 0.3‰. Integrating only the center of chromatographic peaks, rather than the entire peak, offers significant gain in precision and chromatographic resolution with minimal effect on accuracy but requires further study for verification as a routine method. Coelution of organic compounds that do not contain S can cause degraded analytical precision. Analyses of crude oil samples show wide variability in δ^(34)S and demonstrate the robustness and precision of the method in complex environmental samples

    Application of a portable FTIR for measuring on-road emissions

    Get PDF
    The objective of this work was the development of an onroad in-vehicle emissions measurement technique utilizing a relatively new, commercial, portable Fourier Transform Infra-Red (FTIR) Spectrometer capable of identifying and measuring (at approximately 3 second intervals) up to 51 different compounds. The FTIR was installed in a medium class EURO1 spark ignition passenger vehicle in order to measure on-road emissions. The vehicle was also instrumented to allow the logging of engine speed, road speed, global position, throttle position, air-fuel ratio, air flow and fuel flow in addition to engine, exhaust and catalyst temperatures. This instrumentation allowed the calculation of massbased emissions from the volume-based concentrations measured by the FTIR. To validate the FTIR data, the instrument was used to measure emissions from an engine subjected to a real-world drive cycle using an AC dynamometer. Standard analyzers were operated simultaneously for comparison with the FTIR and the standard analyzer results showed that most pollutants (NOx, CO2, CO) were within ~10% of a standard analyzer during steady state conditions and within 20% during transients. The exception to this was total HC which was generally 50% or less than actual total HC, but this was due to the limited number of hydrocarbons measured by the FTIR. In addition to the regulated emissions, five toxic hydrocarbon species were analyzed and found to be sensitive to cold starts in varying proportions. Finally, FTIR data was compared to results from a commercially available on-road measurement system (Horiba OBS- 1000), and there was good agreement

    Aqua: AIRS, AMSU, HSB, AMSR-E, CERES, MODIS

    Get PDF
    This brochure provides an overview of the Aqua spacecraft, instruments, science, and data products Aqua, Latin for water, is a NASA Earth Science satellite mission named for the large amount of information that the mission is collecting about the Earth's water cycle, including evaporation from the oceans, water vapor in the atmosphere, clouds, precipitation, soil moisture, sea ice, land ice, and snow cover on the land and ice. Additional variables also measured by Aqua include radiative energy fluxes, aerosols, vegetation cover on the land, phytoplankton and dissolved organic matter in the oceans, and air, land, and water temperatures. Note: this guide was produced before Aqua was launched; for the most recent information on Aqua, go to http://aqua.nasa.gov. Educational levels: Undergraduate lower division, Undergraduate upper division, Graduate or professional, Informal education

    Performance of a UTC FW-4S solid propellant rocket motor under the command effects of simulated altitude and rotational spin

    Get PDF
    One United Technology Center FW-4S solid-propellant rocket motor was fired at an average simulated altitude of 103,000 ft while spinning about its axial centerline at 180 rpm. The objectives of the test program were to determine motor altitude ballistic performance including the measurement of the nonaxial thrust vector and to demonstrate structural integrity of the motor case and nozzle. These objectives are presented and discussed
    corecore