57,607 research outputs found

    CSISE: cloud-based semantic image search engine

    Get PDF
    Title from PDF of title page, viewed on March 27, 2014Thesis advisor: Yugyung LeeVitaIncludes bibliographical references (pages 53-56)Thesis (M. S.)--School of Computing and Engineering. University of Missouri--Kansas City, 2013Due to rapid exponential growth in data, a couple of challenges we face today are how to handle big data and analyze large data sets. An IBM study showed the amount of data created in the last two years alone is 90% of the data in the world today. We have especially seen the exponential growth of images on the Web, e.g., more than 6 billion in Flickr, 1.5 billion in Google image engine, and more than 1 billon images in Instagram [1]. Since big data are not only a matter of a size, but are also heterogeneous types and sources of data, image searching with big data may not be scalable in practical settings. We envision Cloud computing as a new way to transform the big data challenge into a great opportunity. In this thesis, we intend to perform an efficient and accurate classification of a large collection of images using Cloud computing, which in turn supports semantic image searching. A novel approach with enhanced accuracy has been proposed to utilize semantic technology to classify images by analyzing both metadata and image data types. A two-level classification model was designed (i) semantic classification was performed on a metadata of images using TF-IDF, and (ii) image classification was performed using a hybrid image processing model combined with Euclidean distance and SURF FLANN measurements. A Cloud-based Semantic Image Search Engine (CSISE) is also developed to search an image using the proposed semantic model with the dynamic image repository by connecting online image search engines that include Google Image Search, Flickr, and Picasa. A series of experiments have been performed in a large-scale Hadoop environment using IBM's cloud on over half a million logo images of 76 types. The experimental results show that the performance of the CSISE engine (based on the proposed method) is comparable to the popular online image search engines as well as accurate with a higher rate (average precision of 71%) than existing approachesAbstract -- Contents -- Illustrations -- Tables -- Acknowledgements - Introduction -- Related work -- Cloud-based semantic image search engine model -- Cloud-based semantic image search engine (CSISE) implementation -- Experimental results and evaluation -- Conclusion and future work - Reference

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Efficient On-the-fly Category Retrieval using ConvNets and GPUs

    Full text link
    We investigate the gains in precision and speed, that can be obtained by using Convolutional Networks (ConvNets) for on-the-fly retrieval - where classifiers are learnt at run time for a textual query from downloaded images, and used to rank large image or video datasets. We make three contributions: (i) we present an evaluation of state-of-the-art image representations for object category retrieval over standard benchmark datasets containing 1M+ images; (ii) we show that ConvNets can be used to obtain features which are incredibly performant, and yet much lower dimensional than previous state-of-the-art image representations, and that their dimensionality can be reduced further without loss in performance by compression using product quantization or binarization. Consequently, features with the state-of-the-art performance on large-scale datasets of millions of images can fit in the memory of even a commodity GPU card; (iii) we show that an SVM classifier can be learnt within a ConvNet framework on a GPU in parallel with downloading the new training images, allowing for a continuous refinement of the model as more images become available, and simultaneous training and ranking. The outcome is an on-the-fly system that significantly outperforms its predecessors in terms of: precision of retrieval, memory requirements, and speed, facilitating accurate on-the-fly learning and ranking in under a second on a single GPU.Comment: Published in proceedings of ACCV 201

    Learning Object Categories From Internet Image Searches

    Get PDF
    In this paper, we describe a simple approach to learning models of visual object categories from images gathered from Internet image search engines. The images for a given keyword are typically highly variable, with a large fraction being unrelated to the query term, and thus pose a challenging environment from which to learn. By training our models directly from Internet images, we remove the need to laboriously compile training data sets, required by most other recognition approaches-this opens up the possibility of learning object category models “on-the-fly.” We describe two simple approaches, derived from the probabilistic latent semantic analysis (pLSA) technique for text document analysis, that can be used to automatically learn object models from these data. We show two applications of the learned model: first, to rerank the images returned by the search engine, thus improving the quality of the search engine; and second, to recognize objects in other image data sets
    • 

    corecore