7 research outputs found

    Reviewing effectivity in security approaches towards strengthening internet architecture

    Get PDF
    The usage of existing Internet architecture is shrouded by various security loopholes and hence is highly ineffective towards resisting potential threats over internet. Hence, it is claimed that future internet architecture has been evolved as a solution to address this security gaps of existing internet architecture. Therefore, this paper initiates its discussion by reviewing the existing practices of web security in conventional internet architecture and has also discussed about some recent solutions towards mitigating potentially reported threats e.g. cross-site scripting, SQL inject, and distributed denial-of-service. The paper has also discussed some of the recent research contribution towards security solution considering future internet architecture. The proposed manuscripts contributes to showcase the true effectiveness of existing approaches with respect to advantages and limitation of existing approaches along with explicit highlights of existing research problems that requires immediate attention

    Machine Learning in Application Security

    Get PDF
    Security threat landscape has transformed drastically over a period of time. Right from viruses, trojans and Denial of Service (DoS) to the newborn malicious family of ransomware, phishing, distributed DoS, and so on, there is no stoppage. The phenomenal transformation has led the attackers to have a new strategy born in their attack vector methodology making it more targeted—a direct aim towards the weakest link in the security chain aka humans. When we talk about humans, the first thing that comes to an attacker\u27s mind is applications. Traditional signature‐based techniques are inadequate for rising attacks and threats that are evolving in the application layer. They serve as good defences for protecting the organisations from perimeter and endpoint‐driven attacks, but what needs to be focused and analysed is right at the application layer where such defences fail. Protecting web applications has its unique challenges in identifying malicious user behavioural patterns being converted into a compromise. Thus, there is a need to look at a dynamic and signature‐independent model of identifying such malicious usage patterns within applications. In this chapter, the authors have explained on the technical aspects of integrating machine learning within applications in detecting malicious user behavioural pattern

    Applications in security and evasions in machine learning : a survey

    Get PDF
    In recent years, machine learning (ML) has become an important part to yield security and privacy in various applications. ML is used to address serious issues such as real-time attack detection, data leakage vulnerability assessments and many more. ML extensively supports the demanding requirements of the current scenario of security and privacy across a range of areas such as real-time decision-making, big data processing, reduced cycle time for learning, cost-efficiency and error-free processing. Therefore, in this paper, we review the state of the art approaches where ML is applicable more effectively to fulfill current real-world requirements in security. We examine different security applications' perspectives where ML models play an essential role and compare, with different possible dimensions, their accuracy results. By analyzing ML algorithms in security application it provides a blueprint for an interdisciplinary research area. Even with the use of current sophisticated technology and tools, attackers can evade the ML models by committing adversarial attacks. Therefore, requirements rise to assess the vulnerability in the ML models to cope up with the adversarial attacks at the time of development. Accordingly, as a supplement to this point, we also analyze the different types of adversarial attacks on the ML models. To give proper visualization of security properties, we have represented the threat model and defense strategies against adversarial attack methods. Moreover, we illustrate the adversarial attacks based on the attackers' knowledge about the model and addressed the point of the model at which possible attacks may be committed. Finally, we also investigate different types of properties of the adversarial attacks

    Web Application Vulnerability Prediction using Hybrid Program Analysis and Machine Learning

    Get PDF
    Due to limited time and resources, web software engineers need support in identifying vulnerable code. A practical approach to predicting vulnerable code would enable them to prioritize security auditing efforts. In this paper, we propose using a set of hybrid (static+dynamic) code attributes that characterize input validation and input sanitization code patterns and are expected to be significant indicators of web application vulnerabilities. Because static and dynamic program analyses complement each other, both techniques are used to extract the proposed attributes in an accurate and scalable way. Current vulnerability prediction techniques rely on the availability of data labeled with vulnerability information for training. For many real world applications, past vulnerability data is often not available or at least not complete. Hence, to address both situations where labeled past data is fully available or not, we apply both supervised and semi-supervised learning when building vulnerability predictors based on hybrid code attributes. Given that semi-supervised learning is entirely unexplored in this domain, we describe how to use this learning scheme effectively for vulnerability prediction. We performed empirical case studies on seven open source projects where we built and evaluated supervised and semi-supervised models. When cross validated with fully available labeled data, the supervised models achieve an average of 77% recall and 5% probability of false alarm for predicting SQL injection, cross site scripting, remote code execution and file inclusion vulnerabilities. With a low amount of labeled data, when compared to the supervised model, the semi- supervised model showed an average improvement of 24% higher recall and 3% lower probability of false alarm, thus suggesting semi-supervised learning may be a preferable solution for many real world applications where vulnerability data is missing
    corecore