3,645 research outputs found

    Development of Wearable Systems for Ubiquitous Healthcare Service Provisioning

    Get PDF
    This paper reports on the development of a wearable system using wireless biomedical sensors for ubiquitous healthcare service provisioning. The prototype system is developed to address current healthcare challenges such as increasing cost of services, inability to access diverse services, low quality services and increasing population of elderly as experienced globally. The biomedical sensors proactively collect physiological data of remote patients to recommend diagnostic services. The prototype system is designed to monitor oxygen saturation level (SpO2), Heart Rate (HR), activity and location of the elderly. Physiological data collected are uploaded to a Health Server (HS) via GPRS/Internet for analysis.Comment: 6 pages, 3 figures, APCBEE Procedia 7, 2013. arXiv admin note: substantial text overlap with arXiv:1309.154

    Switched Capacitor DC-DC Converter for Miniaturised Wearable Systems

    Get PDF
    Motivated by the demands of the integrated power system in the modern wearable electronics, this paper presents a new method of inductor-less switched-capacitor (SC) based DC-DC converter designed to produce two simultaneous boost and buck outputs by using a 4-phases logic switch mode regulation. While the existing SC converters missing their reconfigurability during needed spontaneous multi-outputs at the load ends, this work overcomes this limitation by being able to reconfigure higher gain mode at dual outputs. From an input voltage of 2.5 V, the proposed converter achieves step-up and step-down voltage conversions of 3.74 V and 1.233 V for Normal mode, and 4.872 V and 2.48 V for High mode, with the ripple variation of 20–60 mV. The proposed converter has been designed in a standard 0.35 μm CMOS technology and with conversion efficiencies up to 97–98% is in agreement with state-of-the-art SC converter designs. It produces the maximum load currents of 0.21 mA and 0.37 mA for Normal and High modes respectively. Due to the flexible gain accessibility and fast response time with only two clock cycles required for steady state outputs, this converter can be applicable for multi-function wearable devices, comprised of various integrated electronic modules

    A Three-dimensional Finger Motion Measurement System of a Thumb and an Index Finger Without a Calibration Process

    Get PDF
    Various wearable systems have been investigated to measure hand motion, but some challenges remain. Many systems require a calibration process to map sensor signals to actual finger joint angles by the principle of measuring the length change of the finger, or bending sensors. Also, few studies have investigated how to measure thumb motion accurately using the wearable systems. This paper proposes an exoskeleton system with linear Hall sensors to measure three-dimensional hand motion without a calibration process. The calibration process is avoided by measuring finger joint angles through an absolute rotation measurement. A new wearing method with lower parts underneath the hand joints and rubber bands is proposed to fix the structure to the hand and adapt it for various hand sizes. As the thumb has a complex biomechanical feature at carpometacarpal (CMC) joint, a new measuring method of the CMC joint is proposed to directly calculate the orientation of the metacarpal. The prototype of the thumb and index finger was manufactured, and the performance was verified experimentally by using an optical motion capture system

    A Survey of Trustworthy Computing on Mobile & Wearable Systems

    Get PDF
    Mobile and wearable systems have generated unprecedented interest in recent years, particularly in the domain of mobile health (mHealth) where carried or worn devices are used to collect health-related information about the observed person. Much of the information - whether physiological, behavioral, or social - collected by mHealth systems is sensitive and highly personal; it follows that mHealth systems should, at the very least, be deployed with mechanisms suitable for ensuring confidentiality of the data it collects. Additional properties - such as integrity of the data, source authentication of data, and data freshness - are also desirable to address other security, privacy, and safety issues. Developing systems that are robust against capable adversaries (including physical attacks) is, and has been, an active area of research. While techniques for protecting systems that handle sensitive data are well-known today, many of the solutions in use today are not well suited for mobile and wearable systems, which are typically limited with respect to power, memory, computation, and other capabilities. In this paper we look at prior research on developing trustworthy mobile and wearable systems. To survey this topic we begin by discussing solutions for securing computing systems that are not subject to the type of strict constraints associated with mobile and wearable systems. Next, we present other efforts to design and implement trustworthy mobile and wearable systems. We end with a discussion of future directions

    Layer-Wise Learning Framework for Efficient DNN Deployment in Biomedical Wearable Systems

    Get PDF
    The development of low-power wearable systems requires specialized techniques to accommodate their unique requirements and constraints. While significant advancements have been made in the inference phase of artificial intelligence, the training phase remains a challenge, particularly for biomedical wearable systems. Traditional training algorithms might not be suitable for these applications due to the substantial memory requirements and high computational costs associated with processing the large number of bits involved in neural network operations. In this paper, we introduce a novel learning procedure specifically designed for low-power wearable systems, dubbed Bio-BPfree (deep neural network training without backpropagation for low-power wearable systems). Using a two-class classification task, Bio-BPfree replaces conventional forward and backward backpropagation passes with four forward passes, two for data of the positive class and two for data of the negative class. Each layer is equipped with a unique objective function aimed at minimizing the distance between data points within the same class while maximizing the distance between data points from different classes. Our experimental results, which were obtained by conducting rigorous evaluations on the MIT-BIH dataset that features electrocardiogram (ECG) signals, effectively demonstrate the superior performance and suitability of Bio-BPfree for two-class classification tasks, particularly within the challenging environment of low-power wearable systems designed for continuous health monitoring and assessment.RYC2021-032853-

    Development of a transformer-based electrical stimulation driver for a wearable physiotherapy system

    Get PDF
    This work presents the development of an electrical stimulation driver for two wearable systems: NanoStim and NanoID. These systems are designed for physiotherapy purposes, with NanoStim focusing on the treatment of knee pathologies and NanoID on balance control. The goal of this work is to create a compact electrical stimulation driver with low processing consumption capable of inducing muscle contractions in a wide range of applications. The proposed solution involves the development of two transformer-based stimulation drivers, each controlled by a microcontroller and a mobile application. These drivers are based on distinct transformer models, each tailored to produce muscle contractions through the application of electrical pulses and are designed to meet the requirements for integration into wearable systems. Both alternatives underwent testing and validation with volunteers, and the collected data was analyzed to determine the optimal circuit alternative for implementation in both wearable systems

    Development of E-Skin Sensors and Their Applications

    Get PDF
    This is a poster presentation. The poster will present the students\u27 research results on E-skin sensor development and application

    Embroidered textile connectors for wearable systems

    Get PDF
    This thesis presents a novel textile microwave interconnect that can be easily attached and removed from textile devices. Interconnects perform a vital role in carrying RF signals between an amplifier and an antenna or other devices. Conventional interconnects used for interconnecting non-flexible circuits perform this function with very low losses, however the same is not true for transmission lines made on fabrics using conductive threads or inks. This scenario of using interconnects on fabric systems is challenging. Due to the necessity of washing fabrics, permanent attachments on the fabric have disadvantages. Theconnectionpresentedinthisthesisisdonewithoutanymetalor rigid parts on the textile devices side. The connector is held in place by magnets which are shown to have no negative impact on the microwave connection. Two models are then explored, a microstrip connector and a grounded coplanar waveguide (CPW) connector. A detailed study of the models was done and it was found that both models have reasonable results up to2GHz. The interconnects are fully characterized by de-embedding the connection part. This can be used to predict the effect the interconnect will have when used to connect a microwave equipment. The microstrip version of the interconnect is attached to an antenna and the results presented. The interconnect has no negative effect on the reflection coefficient measurement of the antenna. Repeatability tests were also performed with this model, with no visible change in the connection quality between measurements. Different embroidery patterns and stitching designs were also investigated. These are used to reduce the amount of conductive thread used up to 59% reduction in thread ammount. A wearable antenna was fully converted from rigid copper sheet to a full textile design
    corecore