
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Computer Science Technical Reports Computer Science 

5-25-2017 

A Survey of Trustworthy Computing on Mobile & Wearable A Survey of Trustworthy Computing on Mobile & Wearable 

Systems Systems 

Travis Peters 
Dartmouth College 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr 

 Part of the Computer Sciences Commons 

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation 
Peters, Travis, "A Survey of Trustworthy Computing on Mobile & Wearable Systems" (2017). Computer 
Science Technical Report TR2017-823. https://digitalcommons.dartmouth.edu/cs_tr/373 

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital 
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized 
administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/337601439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/373?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


A Survey of Trustworthy Computing on
Mobile & Wearable Systems

Travis Peters
Dartmouth Computer Science Technical Report TR2017-823

May 25, 2017

ABSTRACT
Mobile and wearable systems have generated unprecedented in-
terest in recent years, particularly in the domain of mobile health
(mHealth) where carried or worn devices are used to collect health-
related information about the observed person. Much of the infor-
mation – whether physiological, behavioral, or social – collected
by mHealth systems is sensitive and highly personal; it follows
that mHealth systems should, at the very least, be deployed with
mechanisms suitable for ensuring con�dentiality of the data it col-
lects. Additional properties – such as integrity of the data, source
authentication of data, and data freshness – are also desirable to
address other security, privacy, and safety issues.

Developing systems that are robust against capable adversaries
(including physical attacks) is, and has been, an active area of re-
search. While techniques for protecting systems that handle sensi-
tive data are well-known today, many of the solutions in use today
are not well suited for mobile and wearable systems, which are
typically limited with respect to power, memory, computation, and
other capabilities.

In this paper we look at prior research on developing trustworthy
mobile and wearable systems. To survey this topic we begin by
discussing solutions for securing computing systems that are not
subject to the type of strict constraints associated with mobile and
wearable systems. Next, we present other e�orts to design and
implement trustworthy mobile and wearable systems. We end with
a discussion of future directions.

1 INTRODUCTION
As personal devices, mobile and wearable devices often handle data
that is valuable to the user of the device; this data is potentially
sensitive. As a result, many solutions have been proposed to protect
systems from compromise and to ensure the protection of user
data handled by the device. To provide meaningful protection, it
is necessary to understand users’ requirements for data protection
on these mobile devices [13]. More speci�cally, it is necessary to
look at types of data that users want to protect, understand current
users’ practices for protecting data, and understand how security
requirements vary for di�erent data types.

Passwords, location data, personal messages (e.g., SMS) and docu-
ments (e.g., emails), photos and videos, audio recordings, and health
data may all be sensitive information. For example, password-based
logins play an increasingly important role on user systems. We
use passwords to authenticate ourselves to countless applications
and services. For help and convenience, users turn to applications
such as one-time password (OTP) generators, password managers,
and two-factor authentication services. Many of these applications
can be found on mobile systems today. The problem is that these

applications cannot guarantee the con�dentiality of passwords, au-
thentication tokens or seeds when the mobile OS is compromised.
Fortunately, there exist some trusted computing technologies today
that can address some of these problems. TrustOTP [17] is a secure
one-time password (OTP) solution for mobile devices that leverages
ARM TrustZone security features to protect the con�dentiality of
the OTPs against a malicious mobile OS. Also, TrustLogin [21] is a
solution for Intel platforms that uses System Management Mode to
protect user login credentials from malware (e.g., keyloggers) even
when the OS is compromised. These are useful but highly speci�c
instances of trusted computing technologies put to use to protect
user data. In this paper we identify past and present technologies
that can be used to protect user data in light of growing concerns
around security and privacy.

Isolating code execution is one of the fundamental approaches
to achieving security; past work has surveyed solutions towards
this end [22]. OS-based and Virtual Machine-based isolation have
dependencies on operating systems and hypervisors that may have
large Trusted Computing Bases (TCB); e.g., the Xen hypervisor
has 532K lines of source code. Also, OS-based and VM-based iso-
lation do not address hypervisor or �rmware (e.g., BIOS) rootkits.
Generally speaking, recent trends suggest that excluding large,
error-prone software such as a hypervisor and the OS from the
TCB, is an e�ective way to make system exploitations more di�-
cult for adversaries, e�ectively requiring higher privilege levels to
compromise the system. In this paper we focus attention on trusted
computing technologies that provide isolated code execution but do
so by relying on hardware assistance, as these solutions generally
exclude these error-prone hypervisors and operating systems from
the TCB.

Regardless of the security mechanism, we observe that any
trusted-computing solution needs to meet the following non-security
requirements: the system should (1) perform well – especially with
respect to mobile and wearable devices – in terms of energy us-
age, usability, latency, and computation; and the solution should (2)
work with popular operating systems that are in use by the majority
of mobile device users (e.g., iOS, Android). Failure to meet either of
these requirements will likely mean that the technology will not
be used by most people, thus defeating the purpose of designing a
technology to protect their data.

In the remainder of this paper, we present relevant background in
computer architecture, trusted computing, and the general threats
that are considered in trusted computing; we then provide a sum-
mary of past and current developments in trustworthy computing
technologies for unconstrained systems—it is our belief that a proper
understanding of past works, even if they are not directly applicable
to constrained systems, is important for informing designs for more
constrained execution environments such as smartphones, tablets,



and other IoT devices; next, we provide a summary of past and
current developments in trustworthy computing technologies for
the constrained systems in which we are primarily interested; and
last, we conclude by discussing some open problems or problems
for which there are only limited solutions.

2 BACKGROUND
In this section we provide background information on computer
architecture and terminology used in this paper. We also review
concepts from trusted computing as well as attacker and threat
models relevant to the motivation for this paper.

2.1 Computer architecture background
In this paper we use nomenclature that is common in computer ar-
chitecture, though a deep knowledge in this area is not required for
the level at which we discuss trusted-computing solutions. While
our interest is primarily in mobile-computing architectures, many
concepts from desktop computing platforms carry over; mobile
platforms, however, have less physical space for hardware compo-
nents and a much more limited energy budget. As a result, mobile
and wearable platforms often include a subset of the hardware of
traditional computing platforms or they use miniaturized designs
that are more suitable for mobile and wearable platforms.

We acknowledge that many computer architecture terms are
used interchangeably or ambiguously which, more often than not,
leads to confusion. To this end, we include Figure 1 which illustrates
the major components of a computer. In the most basic sense, a
computer can be viewed as a device consisting of three fundamental
pieces: processors to interpret and execute instructions (Figure 1,
top right), di�erent types of storage (fast/slow) to store data and
instructions (Figure 1, upper and lower left), and I/O modules for
transferring data to and from the outside world (Figure 1, lower
right), all connected via various buses. Furthermore, we de�ne terms
that we use throughout this paper below. Figure 1 and the provided
de�nitions should provide a su�cient mental model of relevant
architectural components and relationships between components,
with the understanding that modern designs combine various com-
ponents into fewer dies and/or packages (de�ned in Section 2.1.1)
for reasons described below.

2.1.1 Foundations. If we use the CPU as an example, the term
die refers to a single, continuous piece of semiconductor material
(usually silicon) that contains the transistors that make up the CPU.
The CPU is an example of an integrated circuit (IC), where an
IC in general is nothing more than a set of electronic circuits on
(integrated onto) a single chip. For our purposes, the words “chip"
and “die" can be used interchangeably.

The term package refers to the smallest physical parts sold to
consumers. The package contains one or more dies, is made up of
plastic or ceramic housing for the dies, and has gold-plated contacts
on its exterior that match those on a motherboard. The package is
the actual unit that is plugged into a CPU socket on a motherboard.

In the literature we review below we have noticed that the terms
“die" and “chip" are used interchangeably; similarly, “chip" and "pack-
age" are used interchangeably. This is unfortunate since the terms
“die" and “package" are not used interchangeably, leading to ambi-
guity when using the term “chip" in writing. It is usually possible

Figure 1: Traditional multi-chip computer architecture. The
block labeled “CPU" depicts the CPU package which con-
tains the processor cores. The CPU is physically connected
to the other system components via buses which carry data;
the actual interactions between the CPU and the rest of the
system are handled by the northbridge and the southbridge.
The northbridge (as rendered here) is an IC dedicated to
managing the CPU’s access to high-speed devices (e.g., RAM,
video and network cards), whereas the southbridge is an IC
that exists to manage the CPU’s access to lower-speed de-
vices (e.g., hard drives, human interface devices such as key-
boards andmice) – the southbridge indirectly interacts with
the CPU via the northbridge. Here, the CPU, northbridge,
southbridge, RAM, and so forth, exist as separate chips that
are all connected and work together to make up what we
know as a modern computer. Figure from a description of a
multi-chip system in response to a post on StackExchange
(“What is a single-chip microcomputer?") [15].

to determine what an author means given more context around
how they use the above mentioned terms. Thus, the context of use
will determine the meaning of the term.

Note that none of these terms are exclusive to CPUs; dies, chips,
and packages are meaningful terms with respect to the composition
of other computer components as well.

2.1.2 Processors. Recent developments in computer architec-
ture can especially lead to confusion concerning terms such as
“CPU," “processor," “cores," “microprocessor," and “multi-core pro-
cessor." We use the following de�nitions.

A central processing unit (CPU) is the electronic circuitry
within a computer that carries out the instructions of a computer
program by performing the basic arithmetic, logical, control, and
input/output (I/O) operations speci�ed by some instruction; in the

2



most basic sense, a CPU is a processor, capable of performing a
single task or running a single program at one time. Most modern
CPUs are microprocessors, meaning they are contained on a single
integrated circuit (IC) chip.

Over the past couple of decades, CPU designs have changed in
order to achieve better performance, lower power consumption, and
so forth. Among those changes we’ve seen cache memory added to
the CPU to improve execution speeds. Further, the parts of the CPU
responsible for executing instructions were duplicated; components
such as ALUs, fetch and decode hardware, the instruction pipeline,
and cache memory were combined into what we now call cores.

Thus, CPUs in general can be thought of as being made up of
one or more cores. Since the terms “CPU" and “processor" can
be used interchangeably, a CPU with more than one core has led
to the nomenclature multi-core processor . Since the advent of
multi-core technology, such as dual-cores and quad-cores, the term
processor has become context-sensitive, and is largely ambiguous
when describing multi-core systems. A processor could describe
either a single execution core (i.e., a single core within CPU) or a
single physical multi-core chip (i.e., a CPU with multiple cores).
The context of use will determine the meaning of the term.

2.1.3 Integrated Circuit (IC) designs. The term chipset broadly
refers to any group of ICs that are designed to work together, and
are usually marketed as a single product. This can lead to confu-
sion, however, since the term chipset is most often used to refer to
a speci�c pair of chips on the motherboard: the northbridge and
the southbridge. It is increasingly common in modern systems for
the northbridge, which links the CPU to high-speed devices such
as RAM, graphics, and network controllers, to be integrated into
the main processor’s die (i.e., the northbridge physically resides
within the same chip as the CPU). There is also a southbridge,
which is generally responsible for managing access to lower-speed
peripherals, 1 which may or may not be integrated into the pro-
cessor package as well. In many modern chipsets, the southbridge
contains integrated peripherals such as Ethernet, USB, and audio
devices.

Variations in design are most often simply a reorganization of
components in a multi-chip computer with several advantages. For
instance, by integrating the memory controller that resides within
the northbridge in a multi-chip architecture, the physical distance
between the CPU and the memory controller is decreased, making
memory access faster. Furthermore, if reasonable measures are
made by the CPU manufacturer to protect the physical package
in which the CPU resides, then any other components integrated
into that package also bene�t from increased security because their
connections are hidden inside the package.

A System-on-Chip (SoC) is a design where all of the system
components are packed into a single silicon chip. Along with a
CPU, an SoC usually contains a graphics processor, memory and
memory controller, USB controller, power management circuits,
and wireless radios (e.g., Wi-Fi, 3G, 4G LTE). This integration is
performed in a single manufacturing process; the die is then put
into a package. Whereas a CPU cannot function without dozens
of other chips, it’s possible to build complete computers with just

1Most peripherals are “lower-speed peripherals" when compared to the speeds at
which, for example, memory access happens.

a single SoC. SoCs – which are common in mobile and wearable
devices – are generally lower cost, lower energy, and have huge
potential for improving security relative to multi-package designs.

A System-in-Package (SiP) is a further level of integration
where multiple dies are integrated inside a single package. The
system components (subsystems) are individual dies and they can
be manufactured independently. They are assembled inside a single
package by various techniques, e.g., vertical stacking or horizon-
tal stacking. The SiP approach helps surpass the limits of the SoC
designs. Bene�ts to SiP include user intellectual property (IP) in-
tegration, IP reuse, low design risk, reduced process complexity,
low developmental cost, and shorter time-to-market. In short, SiP
brings together ICs including SoCs and discrete components using
lateral or vertical integration technologies.

2.1.4 So�ware privilege levels. Commodity CPUs implement
several mechanisms to protect data and functionality from faults
and malicious behavior; one mechanism of particular interest to
us in this paper is software privilege levels. Commodity CPUs run
software at di�erent privilege levels. Each privilege level is strictly
more powerful than the ones below it, so a piece of software can
freely read and modify the code and data running at less privileged
levels. Therefore, a software module can be compromised by any
piece of software running at a higher privilege level. It follows that
a software module implicitly trusts all the software running at more
privileged levels, and a system’s security analysis must take into
account the software at all privilege levels.

In practice these sorts of hierarchical privilege levels are often
called protection rings (or simply rings), and they exist as mech-
anisms to protect data and functionality from faults and malicious
behavior. A protection ring is one of two or more hierarchical levels
or layers of privilege within the architecture of a computer system.
This is generally hardware-enforced by some CPU architectures
that provide di�erent CPU modes at the hardware or microcode
level. Rings are arranged in a hierarchy from most privileged (most
trusted, usually numbered zero or with a negative number) to least
privileged (least trusted, usually with the highest ring number, e.g.,
3). On most operating systems, ring 0 is the level with the most
privileges and interacts most directly with the physical hardware
such as the CPU and memory. Programs such as web browsers
running in higher numbered rings – usually ring 3 – and must re-
quest access to system resources such as the network – a resource
restricted to lower-numbered rings.

2.2 Trusted Computing
Trusted Computing is by no means a new concept. “In the security
engineering subspecialty of computer science, a trusted system
is a system that is relied upon to a speci�ed extent to enforce a
speci�ed security policy. As such, a trusted system is one whose
failure may break a speci�ed security policy" [20].

Some Trusted Computing designs (Figure 2) aim to enforce secu-
rity policies by leveraging trusted hardware. The trusted hardware
establishes a secure container, and a local or remote computation
service can provision desirable computation and data into the secure
container. The trusted hardware protects the data’s con�dentiality
and integrity while the computation is being performed.

3



Trusted Hardware

Data Owner’s
Computer

Remote Computer

Secure Container

Data Owner Software
Provider

Infrastructure
Owner

Manages

Private Data

Owns
Trusts

Private Code

Computation
Dispatcher

Setup

Verification

Authors

Trusts

Untrusted Software

Setup
Computation

Receive
Encrypted

Results

Public Loader

Manufacturer

Builds

Trusts

Figure 2: Trusted computing. The user trusts the manufacturer of a
piece of hardware in the remote computer, and entrusts her data to a
secure container hosted by the secure hardware.

Computing Base (TCB) for the system using hardware
protection. The attestations produced by the original
TPM design covered all the software running on a com-
puter, and TXT attestations covered the code inside a
VMX [179] virtual machine. In SGX, an enclave (secure
container) only contains the private data in a computation,
and the code that operates on it.

For example, a cloud service that performs image pro-
cessing on confidential medical images could be imple-
mented by having users upload encrypted images. The
users would send the encryption keys to software running
inside an enclave. The enclave would contain the code
for decrypting images, the image processing algorithm,
and the code for encrypting the results. The code that
receives the uploaded encrypted images and stores them
would be left outside the enclave.

An SGX-enabled processor protects the integrity and
confidentiality of the computation inside an enclave by
isolating the enclave’s code and data from the outside
environment, including the operating system and hyper-
visor, and hardware devices attached to the system bus.
At the same time, the SGX model remains compatible
with the traditional software layering in the Intel archi-
tecture, where the OS kernel and hypervisor manage the
computer’s resources.

This work discusses the original version of SGX, also
referred to as SGX 1. While SGX 2 brings very useful
improvements for enclave authors, it is a small incre-
mental improvement, from a design and implementation
standpoint. After understanding the principles behind

Trusted Platform

Secure Container

Data Owner’s Computer

Initial State
Public Code + Data

Key exchange: B, gA

Shared key: K = gAB

Key exchange: A, gA

gA

gB, SignAK(gA, gB, M)
M = Hash(Initial State)

Shared key: K = gAB 
EncK(secret code/data)

Secret Code + Data

Computation Results
EncK(results)

Computation Results

AK: Attestation Key

Endorsement Certificate

Figure 3: Software attestation proves to a remote computer that
it is communicating with a specific secure container hosted by a
trusted platform. The proof is an attestation signature produced
by the platform’s secret attestation key. The signature covers the
container’s initial state, a challenge nonce produced by the remote
computer, and a message produced by the container.

SGX 1 and its security properties, the reader should be
well equipped to face Intel’s reference documentation
and learn about the changes brought by SGX 2.

1.1 SGX Lightning Tour

SGX sets aside a memory region, called the Processor
Reserved Memory (PRM, § 5.1). The CPU protects the
PRM from all non-enclave memory accesses, including
kernel, hypervisor and SMM (§ 2.3) accesses, and DMA
accesses (§ 2.9.1) from peripherals.

The PRM holds the Enclave Page Cache (EPC,
§ 5.1.1), which consists of 4 KB pages that store enclave
code and data. The system software, which is untrusted,
is in charge of assigning EPC pages to enclaves. The
CPU tracks each EPC page’s state in the Enclave Page
Cache Metadata (EPCM, § 5.1.2), to ensure that each
EPC page belongs to exactly one enclave.

The initial code and data in an enclave is loaded by un-
trusted system software. During the loading stage (§ 5.3),
the system software asks the CPU to copy data from un-
protected memory (outside PRM) into EPC pages, and
assigns the pages to the enclave being setup (§ 5.1.2).
It follows that the initial enclave state is known to the
system software.

After all the enclave’s pages are loaded into EPC, the
system software asks the CPU to mark the enclave as
initialized (§ 5.3), at which point application software
can run the code inside the enclave. After an enclave is
initialized, the loading method described above is dis-
abled.

2

Figure 2: “Trusted Computing. The user trusts the manu-
facturer of a piece of hardware in the remote computer, and
entrusts her data to a secure container hosted by the secure
hardware." Figure and quote from Intel SGX Explained [2].

Trusted Computing is seeing increasing attention as a necessary
technology in future computing platforms, speci�cally for consumer
devices like PCs, laptops, tablets, smartphones, and IoT devices. In
light of prominent modern computer security and privacy threats
(including rootkits that compromise operating systems), researchers
and system developers have explored various mechanisms to create
a Trusted Execution Environment (TEE) that makes it possible
to isolate a security sensitive application or service from a regular
operating system. Also, a critical goal in securing systems is to
reduce the attack surface by trusting only the system components
and code that are absolutely necessary to implement the system’s
intended functionality; this e�ort is often referred to minimizing
the Trusted Computing Base (TCB). Thus, we anticipate that TEE
technologies will be used in the near future as they become common
in commercial chips and concerns around data protection intensify,
and that these technologies will provide security at an increasingly
granular level (e.g., application-speci�c TEEs such as the application
enclave approach used in Intel’s SGX).

Although the concepts of trusted computing have been around
for some time, the availability of this technology is relatively new
and it is only recently that application developers have the tools to
develop applications that leverage the power of hardware security
features such as TEEs. A TEE is an environment with desirable
security properties (SP) where code can be executed and data can be
stored. Speci�cally, a TEE should provide the following properties,
even in the presence of compromised system software; we adapt2

and summarize them below according to the de�nitions provided
by Vasudevan et al. [19].
(SP1) Isolated Execution provides secrecy and integrity of a

process’s code and data.

2While the list is largely a summary of the original list, we add local attestation (SP3)
and secure IPC (SP5) to the list presented by Vasudevan et al. [19].

(SP2) Secure Storage provides secrecy, integrity, and freshness
of a software module’s data at rest.

(SP3) Local & Remote A�estation allows local and remote par-
ties to verify that a particular message originated from a
particular process – an attestation based on factors such
as a measurement of the application code itself.

(SP4) Secure Provisioning is a mechanism to send data to a
speci�c process from a trusted party, running on a speci�c
device, while protecting the data’s secrecy and integrity.
The trusted party that provisions the data can be a remote
party (e.g., a content provider that uses secure provisioning
to construct a DRM3 scheme) or a local party (e.g., an
application that uses secure provisioning to migrate secrets
to an updated version of the application).

(SP5) Trusted Inter-process Communication (IPC) protects
authenticity, secrecy, and availability of communication
between trusted processes.

(SP6) Trusted Path protects authenticity, secrecy, and availabil-
ity of communication between a trusted process and a
peripheral (e.g., keyboard, touch screen, or health device).

TEE technology promises to make it di�cult to access code and
data that is being executed and stored in a system, even in light of
capable adversaries who have control over all untrusted software
components, including the operating system and hypervisor.

2.3 Threats & attacker model
We provide an overview of common adversaries considered in
trustworthy computing work; these adversaries have varying capa-
bilities and motivations. In this discussion we attempt to capture
the general assumptions that are made in the trusted computing
systems and designs, as well as identify general capabilities and
motivations of adversaries.

We denote static (machine) code and associated data and meta-
data as an application. The Trusted Computing Base (TCB) of
an application is the set of components (hardware and software)
that must be secured to assure desired security properties over the
application. Applications that are designed and believed to imple-
ment a particular function for the user (e.g., health data repository),
and that use a set of trustworthy hardware and software compo-
nents to protect its computation and data, are referred to as trusted
applications.

The works that we cover in the following sections of this paper
attempt to implement systems that provide the desired security
properties (SP1) – (SP6), though none of the systems provide all of
the desired properties today. In trusted computing, it is assumed
that any deployed software and hardware in the TCB, and any cryp-
tographic mechanisms used, are secure and implemented correctly.

With respect to platforms and the sensitive data they store and
process, it is generally the goal of an adversary to compromise appli-
cations running on a platform that are not owned by the adversary;
here, to compromise applications means to obtain unauthorized
access to their code or data, or to a�ect the underlying trusted

3Digital Rights Management (DRM) schemes are access-control technologies that
can be used to restrict access to copyrighted works such as software and multimedia
content.

4



components of the platform in such a way that violates the de-
sired functional and security properties. To this end, it is generally
assumed that the adversary has full control over the (untrusted)
OS and other software running on the platform. In addition, it is
not unreasonable to assume that the adversary also controls all
communication with the platform and can eavesdrop, manipulate
and intercept any network links or I/O channels.

The physical security of platforms often arises as a topic of inter-
est in trustworthy computing. In trusted computing it is generally
assumed that the high levels of integration achievable with modern
IC fabrication processes render chip-level invasive attacks such
as tampering, on-chip bus probing, extracting keys from on-chip
memory, or fault injection out of scope for economically motivated
attackers and that mitigations are in place against side-channel
leakage through power, electromagnetic emissions or timing be-
havior.

When we discuss trusted computing solutions and their weak-
nesses or limitations it is useful to have a speci�c adversary and her
respective capabilities in mind. For this we adapt a list of progres-
sively capable adversaries (AD) from Mirzamohammadi et al. [12]:
(AD1) The �rst attacker can only use the application API in the

operating system, e.g., the Android API. This attacker can
run native code but without root privileges.

(AD2) The second attacker runs native code with root privileges
in user space, but cannot run code with kernel privileges
or secretly modify the system image (for future boots).

(AD3) The third attacker leverages some vulnerabilities of the
kernel to compromise it and hence can run code with kernel
privileges.

(AD4) The fourth attacker is a more advanced version of the third
attacker that, after compromising the kernel, leverages
some vulnerabilities of the hypervisor to compromise it
and hence can run code with hypervisor privileges.

(AD5) The �fth attacker is a root user in a system without any
sort of veri�ed boot feature, which would allow him to
rewrite the kernel and hypervisor images (to be used after
a reboot).

(AD6) The sixth attacker has physical access to the device and
can manipulate the hardware. This attacker is assumed to
have the necessary knowledge and capabilities to carry out
chip-level invasive attacks such as tampering, on-chip bus
probing, extracting keys from on-chip memory, or fault
injection.

Trusted computing solutions are almost always resilient to (AD1)
and (AD2). Few solutions can protect against (AD6). Hence, the
trusted-computing solutions of greatest interest are those that can
protect against as many of (AD3) – (AD5) as possible.

3 TRUSTWORTHY COMPUTING ON
UNCONSTRAINED SYSTEMS

To best understand the state of trustworthy computing on con-
strained mobile and wearable systems, we �rst touch on solutions
that are relevant to computing systems that are less constrained –
such as those designed for PCs and servers. Of particular interest
are hardware-based solutions that o�er security properties relevant
to our goals and the promise of being implemented as e�ciently

as possible; speci�cally, we look at Hardware-assisted Isolated Ex-
ecution Environments (HIEEs). HIEEs provide isolated execution,
sometimes referred to as a TEE, for code execution even on a com-
promised system. Note that while the terms HIEEs and TEEs are
sometimes used interchangeably, they are not the same in all cases;
a TEE can be enforced in software, and not all HIEEs are designed
for security.

In the remainder of this section we brie�y describe relevant
projects and build atop an organization of these types of works
presented in an SoK paper on HIEEs [22], and an informative white
paper that reviews Intel’s SGX technology in great detail along
with other related work [2].

3.1 Legacy solutions
We begin by reviewing some of the earliest work in HIEEs.

3.1.1 System Management Mode (SMM). System Management
Mode (SMM) is a mode of execution similar to Real and Protected
modes available on x86 platforms. It provides a hardware-assisted
isolated execution environment for implementing platform-speci�c
system control functions such as power management. SMM is trig-
gered by asserting the System Management Interrupt (SMI) pin on
the CPU. It is initialized by the Basic Input/Output System (BIOS).
The BIOS loads the SMI handler into SMRAM (dedicated RAM in
main memory for SMM) at boot time. The SMI handler has unre-
stricted access to the physical address space and can run privileged
instructions; for this reason, SMM is often referred to as ring -2
(pronounced “ring negative-two").

3.1.2 Dynamic Root of Trust for Measurements (DRTM). DTRM
is an alternate to Static Root of Trust Measurements, which allows
the root of trust measurement to be initialized at any point. DTRM
was introduced to the TPM v1.2 speci�cation in 2005.

Two well-known implementations of DTRM are (a) Intel’s Trusted
eXecution Technology (TXT), which implements a trusted way to
load and execute system software (e.g., OS or VMM); and (b) AMD’s
Secure Virtual Machine (SecVM), which implements new CPU in-
structions to enter/exit a secure environment for code execution.
Intel’s TXT and AMD’s SecVM are similar and are both hardware-
assisted isolated execution environments used for running security-
sensitive tasks. The drawback to these solutions, however, is that
they introduce signi�cant performance overhead due to the ex-
pensive CPU instructions (e.g., SENTER, SKINIT) that control the
transition between secure and non-secure environments.

3.2 Recent solutions
Next, we review popular developments from the last 10-15 years
that are still in use today.

3.2.1 Intel Management Engine (ME) & AMD Platform Secu-
rity Processor (PSP). Intel ME and AMD PSP (and AMD System
Management Unit (SMU)) are similar solutions. This design con-
sists of embedding a micro-computer (i.e., co-processor) into the
main processor. This coprocessor is commonly integrated into the
northbridge, which is commonly integrated into the main processor
package. This design creates a completely isolated environment for
code execution and data storage (i.e., a TEE). The ME, PSP, SMU
solutions are interesting since the embedded computer really is a

5



computer that contains its own dedicated processor, internal Static
Random-Access Memory (SRAM), Read-Only Memory (ROM), a
cryptography engine, Direct Memory Access (DMA) engine, Host-
Embedded Communication Interface (HECI) engine, a timer, and
other I/O devices. With these resources the Intel ME, for example,
can execute instructions on its own processor; it has code and data
caches to reduce the number of accesses to the internal SRAM;
it uses its own internal SRAM is to store the �rmware code and
runtime data; it is capable of using its DMA and HECI engine to
access the main memory of the computer; and it can run Intel secu-
rity applications (e.g., Enhanced Privacy Identi�cation [5], Identity
Protection Technology [6]).

Boot code stored in internal ROM is used as the root of trust for
these embedded devices. The boot code loads and runs code from
external �ash memory (usually accessed over SPI); �ash devices are
typically “locked" by Original Equipment Manufacturers (OEMs)
to prevent (malicious) modi�cations, but researchers have shown
that it is possible to modify this code. Thus, while this approach is
common, it is not without �aws.

3.2.2 ARM TrustZone (TZ). The ARM TrustZone (TZ) technol-
ogy [8] technically falls into the domain of “recent solutions;" Trust-
Zone technology, however, is primarily aimed at ARM’s mobile
processors. Please refer to Section 4 below for more information
on TrustZone.

3.3 Latest solutions
To conclude our summary of Trusted Computing on unconstrained
systems we review promising e�orts from the last few years.

3.3.1 Intel So�ware Guard Extensions (SGX). Announced in
2013, SGX [11] is a set of CPU instructions and memory access
mechanisms added to Intel Architecture (IA) processors. These ex-
tensions allow an application to instantiate a protected container
referred to as an enclave. An enclave could be used as a TEE, which
provides con�dentiality and integrity even without trusting the
BIOS, �rmware, hypervisors, or operating systems.

This solution is considered to be the “next generation of TXT"
and has aroused a lot of attention recently. Not everyone, how-
ever, is convinced that SGX is the future of trusted computing.
Costan et al. [2] examine SGX in great detail and identify many
potential concerns with the technology; in response, they propose
Sanctum [3].

3.3.2 Sanctum. Sanctum [3] o�ers the same promise as SGX,
namely strong provable isolation of software modules running con-
currently and sharing resources, but protects against an important
class of additional software attacks that infer private information
from a program’s memory-access patterns. The authors of Sanctum
claim to “follow a principled approach to eliminating entire attack
surfaces through isolation, rather than plugging attack-speci�c pri-
vacy leaks" and that “strong software isolation is achievable with
a surprisingly small set of minimally invasive hardware changes,
and a very reasonable overhead."

only consists of a Boot ROM and a small trusted domain
controller (283 lines of code). The trusted domain controller is
responsible for ensuring the integrity and authenticity of secure
code before being loaded into the memory, enforcing secure
isolation of secure code in the normal domain, and achieving
a secure switching between ICE and the Rich OS. Therefore,
TrustICE provides third-party software vendors and application
developers an isolated computing environment for integrating
their secure code into the TrustZone’s secure domain, without
the arduous negotiation with OEMs.

We can protect one ICE from being accessed by the Rich
OS and other ICEs by using TrustZone. First, when secure
code is running in an ICE, the Rich OS and other ICEs are all
suspended and thus cannot access the resource in the active
ICE. Second, when one ICE is in the suspend state, since it
may contain state information about secure code, we must
prevent the running Rich OS and other secure code from
reading the memory of the suspended secure code. Instead
of using the heavy encryption/decryption mechanisms, we
use the hardware-assisted Watermark technique [13] on ARM
processors to dynamically protect the memory regions of the
suspended secure code.

We implement a TrustICE prototype on Freescale i.MX53
QSB and develop two ICE usage instances to demonstrate the
usability of TrustICE. First, we can successfully run a self-
contained cryptographic library in one ICE to provide public
key operations. Second, we implement a trusted user interface
containing a touchscreen driver and a wireless communication
driver for users to interact with the ICE.

In summary, we make the following contributions in this
paper.

• We design a TrustZone-based isolation framework
named TrustICE to provide isolated computing envi-
ronments on mobile devices without using a hypervi-
sor.

• We enhance the system security. TrustICE can reduce
the attack surface of the secure domain and minimize
the system’s TCB by moving secure code from the
secure domain to the normal domain. TrustICE’s TCB
only includes a Boot ROM and a small trusted domain
controller, which is protected by TrustZone in the
secure domain.

• We can ensure the isolation of secure code in the
normal domain. Since all secure code will be executed
in the normal domain, we ensure that no matter
whether the secure code is running or suspended, the
untrusted Rich OS cannot access or manipulate it.

• We implement a TrustICE prototype on Freescale
i.MX53 QSB. The Rich OS is a customized Linux
2.6.35 and Android 2.3.4. The experimental results
show that our system can switch from the Rich OS
to ICE in 10.6 ms, and switch back from ICE to the
Rich OS in 0.8 ms.

The remainder of the paper is organized as follows. Sec-
tion II introduces TrustZone background. Section III describes
the threat model and assumptions. We present the TrustICE
framework in Section IV. A prototype implementation is

detailed in Section V. Section VI presents experimental results.
We perform a security analysis in Section VII. The related
work is described in Section VIII. Finally, we conclude the
paper in Section IX.

II. BACKGROUND

ARM TrustZone technology is a hardware security exten-
sion in ARM processors [9], [14], [15]. Commodity processor
chips with TrustZone extension have been introduced by
mainstream semiconductor corporations such as Freescale [16],
TI [17], and Samsung [18]. Figure 1 shows the TrustZone
architecture adopted by most trusted execution environment
(TEE) solutions (e.g. MobiCore (Trustonics) [12], Sierra-
TEE [19] and Trusted Logic [20]), which runs untrusted apps
on an untrusted Rich OS in the normal domain and protects
secure apps on a small customized secure OS in the secure
domain. The isolation between two domains is enforced by
a secure monitor in the secure domain to ensure CPU state
isolation, memory isolation, and I/O device isolation. When
the system boots up, a secure boot ensures the integrity and
authenticity of the secure OS.

Secure OSRich OS

Secure Monitor

App App App

Normal Domain Secure Domain

Trusted 
App

Trusted 
App

Trusted 
App

Secure Boot

TrustZone-enabled ARM processor

Fig. 1: Traditional TrustZone Architecture

A. CPU State Isolation

TrustZone supports two CPU states, secure state and non-
secure state, for the secure domain and the normal domain,
respectively. Two CPU states are separated through a set of
banked CP15 registers that could be assigned two values. Each
state consists of seven CPU modes: User, FIQ, IRQ, Supervi-
sor, Abort, Undefined, and System. All the modes, except the
User mode, are privileged modes. Mobile applications run in
the User mode, and the OS kernel runs in the privileged modes.
Secure and non-secure states can be distinguished by setting
the NS bit in the Secure Configuration Register (SCR), which
can only be modified in the secure state [14]. TrustZone adds a
new privileged Monitor mode that only runs in the secure state
to serve as a gatekeeper managing the switching between the
two states. Both states can call a privileged Secure Monitor
Call (SMC) instruction to enter the Monitor mode and then
switch to the other state. Moreover, a hypervisor mode called
HYP mode has been integrated in ARM Cortex A15 processor
family to support virtualization of non-secure operations [4],
[5].

2

Figure 3: TrustZone architecture. Figure from TrustICE [18].

4 TRUSTWORTHY COMPUTING ON
CONSTRAINED SYSTEMS

The work reviewed in Section 3 is helpful for trying to understand
various approaches that have been considered when trying to re-
alize trustworthy computing on platforms with few limitations.
Keeping these approaches in mind, we now turn our attention
to the state of trustworthy computing on constrained mobile and
wearable systems.

4.1 ARM TrustZone
We begin by brie�y discussing the ARM TrustZone (TZ) security
technology [8]. In the text that follows we introduce some technical
background on TrustZone, then review trustworthy-computing so-
lutions built atop TrustZone. Figure 3 presents a high-level overview
of the ARM TrustZone architecture, and Figure 4 illustrates an ARM-
based smartphone SoC design based on TrustZone.

TrustZone is a hardware feature that creates an isolated execu-
tion environment, similar to other hardware isolation technologies.
Namely, TrustZone provides security extensions for hardware com-
ponents including the CPU, memory, and peripherals. The processor
on a TrustZone-enabled ARM platform has two security modes: the
“secure world" mode (i.e., a TEE) and “normal world" mode. Each
processor mode has its own memory access region and privilege.
Code running in normal world cannot access memory in secure
world, but secure world code can access normal world memory.
A secure bit (also known as the NS bit) in the Secure Con�gura-
tion Register (SCR) is used to identify the secure/normal worlds; it
can only be modi�ed in the secure world. An interface known as
the “Monitor Mode" (which technically resides in the secure world
domain) is the gate keeper between normal and secure worlds, man-
aging transitions between the worlds. The normal world invokes a
Secure Monitor Call (SMC) to enter the monitor mode, which can
modify the NS bit to switch into the secure world.

In Figure 4, the red IP blocks are TrustZone-aware. The red
connections ignore the TrustZone secure bit in the bus address.

We now review trusted-computing solutions built atop Trust-
Zone.

4.1.1 Sentry. Projects such as the Sentry [1] system are great
examples of interesting work that grows out of developers having
access to trustworthy computing technologies. Sentry is a system

6



processor’s attestation key is stored in battery-backed
memory that is only accessible to the service processor.
Upon reset, the service processor executes a first-stage
bootloader stored in ROM, which measures and loads the
system software. In turn, the system software measures
the application code stored in NVRAM and loads it into
the DRAM chip accessible to the application processor.
The system software provides attestation services to the
application loaded inside the coprocessor.

4.2 ARM TrustZone
ARM’s TrustZone [13] is a collection of hardware mod-
ules that can be used to conceptually partition a system’s
resources between a secure world, which hosts a secure
container, and a normal world, which runs an untrusted
software stack. The TrustZone documentation [18] de-
scribes semiconductor intellectual property cores (IP
blocks) and ways in which they can be combined to
achieve certain security properties, reflecting the fact that
ARM is an IP core provider, not a chip manufacturer.
Therefore, the mere presence of TrustZone IP blocks in a
system is not sufficient to determine whether the system
is secure under a specific threat model. Figure 58 illus-
trates a design for a smartphone System-on-Chip (SoC)
design that uses TrustZone IP blocks.

System-on-Chip Package

4G ModemProcessor 
without 
Secure 

Extensions
DMA 

Controller

Memory 
Controller

Memory 
Controller

Display
Controller

OTP
Polyfuses

TZMABoot ROM

AMBA AXI On-Chip Bus

L3 Cache

AMBA AXI Bus

DRAM Flash Display

L2 Cache

Processor 
with 

Secure 
Extensions

Interrupt Controller

APB Bus

AXI to APB 
Bridge

ADC / DAC Keypad 
Controller

Audio Keypad

Real-Time
Clock

SRAM

TZASC

Figure 58: Smartphone SoC design based on TrustZone. The
red IP blocks are TrustZone-aware. The red connections ignore
the TrustZone secure bit in the bus address. Defining the system’s
security properties requires a complete understanding of all the red
elements in this figure.

TrustZone extends the address lines in the AMBA AXI
system bus [17] with one signal that indicates whether
an access belongs to the secure or normal (non-secure)

world. ARM processor cores that include TrustZone’s
“Security Extensions” can switch between the normal
world and the secure world when executing code. The
address in each bus access executed by a core reflects the
world in which the core is currently executing.

The reset circuitry in a TrustZone processor places
it in secure mode, and points it to the first-stage boot-
loader stored in on-chip ROM. TrustZone’s TCB includes
this bootloader, which initializes the platform, sets up
the TrustZone hardware to protect the secure container
from untrusted software, and loads the normal world’s
bootloader. The secure container must also implement
a monitor that performs the context switches needed to
transition an execution core between the two worlds. The
monitor must also handle hardware exceptions, such as
interrupts, and route them to the appropriate world.

The TrustZone design gives the secure world’s monitor
unrestricted access to the normal world, so the monitor
can implement inter-process communication (IPC) be-
tween the software in the two worlds. Specifically, the
monitor can issue bus accesses using both secure and non-
secure addresses. In general, the secure world’s software
can compromise any level in the normal world’s software
stack. For example, the secure container’s software can
jump into arbitrary locations in the normal world by flip-
ping a bit in a register. The untrusted software in the
normal world can only access the secure world via an
instruction that jumps into a well-defined location inside
the monitor.

Conceptually, each TrustZone CPU core provides sep-
arate address translation units for the secure and normal
worlds. This is implemented by two page table base
registers, and by having the page walker use the page
table base corresponding to the core’s current world. The
physical addresses in the page table entries are extended
to include the values of the secure bit to be issued on the
AXI bus. The secure world is protected from untrusted
software by having the CPU core force the secure bit in
the address translation result to zero for normal world
address translations. As the secure container manages its
own page tables, its memory accesses cannot be directly
observed by the untrusted OS’s page fault handler.

TrustZone-aware hardware modules, such as caches,
are trusted to use the secure address bit in each bus access
to enforce the isolation between worlds. For example,
TrustZone’s caches store the secure bit in the address
tag for each cache line, which effectively provides com-
pletely different views of the memory space to the soft-
ware running in different worlds. This design assumes

52

Figure 4: Smartphone SoC design based on TrustZone. The
red IP blocks are TrustZone-aware. Figure from Intel SGX
Explained [2].

that protects against DRAM attacks by leveraging on-SoC storage
mechanisms originally intended for realtime predictable perfor-
mance. Sentry can bootstrap additional secure storage by safely
encrypting regions of memory much larger than the capacity of
the ARM SoC. Sentry allows applications and OS components to
store their code and data on the System-on-Chip (SoC) rather than
in DRAM, thus enabling protections for applications and OS sub-
systems from memory attacks.

4.1.2 TrustICE. TrustICE [18] is a TrustZone-based isolation
framework that creates isolated computing environments (ICEs) in
the normal world. The authors of TrustICE anticipate that as more
secure code is designated to run in the secure world, the attack
surface of the secure domain will increase along with the size of
secure code, and it will be an arduous process to negotiate with
OEMs to get new secure code installed.

TrustICE securely isolates the secure code in an ICE from an
untrusted Rich OS in the normal domain. The TCB of TrustICE
remains small and unchanged regardless of the amount of secure
code being protected. Their prototype shows that the switching
time between an ICE and the Rich OS is less than 12 ms. Also,
TrustICE proposed the use of LEDs to protect against spoo�ng
attacks that “pretend" to switch between normal/secure world; i.e.,
LEDs are actuated in a meaningful way to indicate to the user that
the system has really switched from one world to the other.

4.2 Flicker
Flicker [10] is an infrastructure for executing security-sensitive
code in complete isolation while trusting as few as 250 lines of
additional code. Flicker can also provide meaningful, �ne-grained
attestation of the code executed (as well as its inputs and outputs) to

a remote party. Flicker guarantees these properties even if the BIOS,
OS and DMA-enabled devices are all malicious. Flicker leverages
new commodity processors from AMD and Intel and does not
require a new OS or VMM. The authors of Flicker demonstrate a
full implementation on an AMD platform.

4.3 TrustVisor
TrustVisor [9] is a special-purpose hypervisor that provides code
integrity as well as data integrity and secrecy for selected portions
of an application. TrustVisor achieves a high level of security, �rst
because it can protect sensitive code at a �ne granularity, and second
because it has a small code base (only around 6K lines of code),
which makes veri�cation feasible. TrustVisor can also attest the
existence of isolated execution to an external entity. In their work,
the authors of TrustVisor observe less than 7% overhead on the
legacy OS and its applications when protecting security-sensitive
code blocks.

4.4 Self-Protecting Modules (SPM)
Strackx et al. propose self-protecting modules (SPM) [16], a design
for a generic and lightweight hardware mechanism that can support
an e�cient implementation of isolation for several subsystems that
share the same processor and memory space.

4.5 SMART
The Secure and Minimal Architecture for (Establishing a Dynamic)
Root of Trust (SMART) [4] is an e�cient (lightweight and low cost)
and secure approach for establishing a dynamic root of trust in a
remote embedded device. SMART is primarily intended for low-
end micro-controller units (MCU) that lack specialized memory
management or protection features. The authors of SMART demon-
strate that a simple measurement routine in ROM with exclusive
access to a protected secret key can provide remote attestation and
trusted execution. The implementation of SMART requires mini-
mal changes to existing MCUs (while providing concrete security
guarantees) and imposes few limitations on adversarial capabili-
ties when arguing for the quality of security provided by SMART.
Their work shows that SMART implementations require only a few
changes to memory bus access logic.

4.6 Sancus
Sancus [14] proposes additional CPU instructions that can be used
to set up trusted software modules at runtime. For this purpose, they
implement multiple memory-protection regions, each containing a
code and data section. An extended processor instruction set enables
dynamic measurement and loading of code into protected regions
to query the protection status of modules and request tokens for
authenticated communication between processes.

4.7 TrustLite
TrustLite [7] is a security architecture for �exible, hardware-enforced
isolation of software modules. The main contribution behind TrustLite
is an execution-aware memory protection unit with a secure ex-
ception handler that protects the state of “tasks." The developers

7



of TrustLite acknowledged that tiny devices cannot a�ord sophis-
ticated hardware security mechanisms, and therefore new hard-
ware protection mechanisms were (and are) needed to provide
the required resilience and dependency at low cost. This work is
particularly necessary as tiny devices are increasingly embedded
in complex control infrastructures, medical support systems, and
health and wellness consumer products; our dependency on these
tiny devices, as well as our willingness to allow them to collect
copious amounts of personal data, has made these devices a popular
target of attack. TrustLite includes mechanisms for secure exception
handling and communication between protected modules, enabling
seamless interoperability with untrusted operating systems and
tasks. TrustLite scales from providing a simple protected �rmware
runtime to advanced functionality such as attestation and trusted
execution of user space tasks. The authors demonstrate their design
using an FPGA prototype playing the role of a low-cost embedded
system.

5 DISCUSSION
From the work that we survey in this paper we observe that so-
lutions tend to follow one of two approaches: (1) isolation or (2)
re-engineering shared resources; we describe these categories –
and the challenges that are present in each approach – below. To
conclude our discussion, we also address open challenges.

5.1 Isolation
Generally speaking, isolation-based security achieves security through
(complete) physical separation from the application processor. This
sort of isolation is realized through the inclusion of a trusted co-
processor that executes security-sensitive tasks using its own dedi-
cated resources such as SRAM and caches. The co-processor may
have access to a shared bus, allowing it to interact with software
running on the application processor. To ensure protection from
untrusted software, custom bus logic is implemented to prevent the
application processor from accessing privileged resources.

This approach seems to only be used in the context of the un-
constrained trusted-computing solutions we describe in Section 3;
this may be due to the expensive4 cryptographic operations that
security-oriented co-processors perform; or it may be possible due
to the larger area available inside of processor packages to include
an additional secure co-processor.

5.2 Re-engineering shared resources
Security through re-engineering shared resources seems to be a
more frequently pursued approach to providing trustworthy com-
puting on mobile and wearable devices, according to the work
we survey. This approach relies on hardware modi�cations that
can logically partition a system’s resources, allowing both trusted
and untrusted software to share processors, memory, and so forth.
This approach is desirable because it builds security features into
hardware that is common in mobile and wearable systems. Other
bene�ts include keeping manufacturing costs low, little reliance on
energy-consuming cryptographic operations to realize and enforce
security, and so forth.

4Expensive in terms of processor cycles and energy consumption.

Drawbacks to this approach include the complexities of manag-
ing access of software in di�erent security domains. For instance,
this approach may require at least the following considerations:

SystemBusmodi�cations.Memory accesses can be performed
from di�erent security domains. Thus, the system bus address lines
may need to be extended – as has been done to the AMBA AXI
system bus for ARM TrustZone-based SoCs – to contain contextual
information about the security domain in which memory accesses
occur. For instance, in TrustZone-based systems, “the address in
each bus access executed by a core re�ects the world in which the
core is currently executing" [2].

Secure boot scheme. The trustworthiness of the system is ulti-
mately rooted in how the system boots. Initially, a system should
boot into the highest-privilege security domain so that it can load
and execute the boot code that measures, loads, and executes sub-
sequent software (e.g., non-secure domain bootloaders, operating
systems). This secure boot scheme can be realized by having a
�rst-stage bootloader verify a signature in the second-stage boot-
loader against a public key whose cryptographic hash is burned
into on-chip One-Time Programmable (OTP) fuses; the �rst-stage
bootloader and the hash burned into the OTP fuses constitutes the
system’s root of trust.

Context switching between security domains. There should
exist some trusted component to handle how the system context-
switches between security domains. For instance, a solution should
implement a “monitor" that controls context switching between se-
curity domains; the monitor is all-powerful in these designs, having
access to resources across all security domains. The monitor can
also be used to implement secure IPC between the security domains
(e.g., between the normal world and secure world in TrustZone).

Instruction setmodi�cations. Ideally untrusted software should
have a way to invoke the secure monitor so it can initiate secure
IPC or use some service provided by software running in a higher-
security domain (e.g., software and platform attestation). For this
purpose, new CPU instructions can be added that cause code run-
ning in less-secure domains to jump to (invoke) the monitor; this
prevents direct access to higher-security domains.

Introducing or modifying CPU instructions for the aforemen-
tioned reasons requires additional considerations. For instance, it
is important that each (logical) execution core maintains informa-
tion about the security context in which it is executing, as well
as maintain separate address translation units (e.g., for the secure
and normal worlds). Furthermore, this can require, for example, ex-
tending physical addresses in page-table entries to include security
context information; in this case, one must protect the integrity
of page tables for di�erent security domains. Regarding memory,
these designs must also consider implications for shared caches,
SRAM, DRAM, �ash, etc., and their respective memory controllers.

Threat models. Mobile and wearable devices present unique
challenges with respect to threats. They are often carried or worn,
and are easily lost or stolen. They are often cheap, which means
they are likely to have little or no countermeasures for physical
attacks.

Generally, threat models in trusted-computing trust the proces-
sor package. Unconstrained systems can include tamper-resistant

8



hardware and software, but these solutions are often too expensive
or bulky for mobile and wearable devices.

5.3 Open problems
Trusted computing for mobile and wearable systems is clearly on
the mind of many hardware vendors and security researchers. Even
with all of the existing work that has been done to date, however,
there remain open problems or at least areas where improvement
is greatly needed; we brie�y discuss some of these below.

Trusted Switching Path. The HIEE-based systems we discuss
above generally assume attackers have ring 0, and maybe even
ring -1, privileges. Given that level of privilege, attackers can in-
tercept the switching from the normal environment to TEE and
provide a fake switching process to deceive users. Or attackers
can perform a Denial of Service (DoS) attack against a system by
simply disabling the switching (since they have ring 0 privilege or
below). These attacks are challenging to overcome because trusted-
computing solutions are primarily concerned with ensuring the
desired security goals hold over sensitive user data even if the
system has been compromised.

Trusted I/O. TEE technology, especially in the form of HIEE-
based TEE technology, provides hope that applications can perform
sensitive computations within a secure container that protects sen-
sitive code and data. Unfortunately, ensuring that sensitive code and
data can be delivered to and from a secure container has proven to be
a more challenging problem. As in the rest of the trusted-computing
space, existing solutions are highly speci�c to a particular architec-
ture, hypervisor, and/or operating system.

We believe the trusted computing community is in need of a
trusted I/O solution that can be broadly relevant, regardless of the
TEE solution that is used by some platform. In keeping with the
TEEs we review above, any solution claiming to provide trustworthy
I/O (i.e., a trusted path from peripherals to trusted software) should
ensure — at a minimum — the con�dentiality and integrity of I/O
data even when running on a system in which the OS or hypervisor
has been compromised.

Trust rooted in manufacturers. One trust relationship that is
di�cult to avoid is that of the user of a device trusting the hardware
vendor(s) of a device. Human user trust is inevitably rooted in
the hardware vendors; many hardware-based solutions are “black
boxes" and there is no way to verify the trustworthiness of their
implementations or manufacturing processes. For example, the Intel
ME is largely a mysterious black box that only the hardware vendor
really understands. The closed nature of some of these devices raise
questions about how to reliably evaluate the trustworthiness of
these (often mysterious) hardware security technologies.

6 CONCLUSION
It is clear from the research and industry e�orts reviewed in this
paper that realizing more trustworthy computing on mobile and
wearable systems is necessary but challenging. In this paper we
review the most relevant systems and architectures that have been
proposed as solutions for realizing more trustworthy computing
on mobile and wearable devices. We also discuss open challenges
and potential areas of future work.

By surveying legacy and current state-of-the-art trusted com-
puting systems, we hope our summaries and observations provide
helpful insights into the design of future systems.

REFERENCES
[1] Patrick Colp, Jiawen Zhang, James Gleeson, Sahil Suneja, Eyal de Lara, Himanshu

Raj, Stefan Saroiu, and Alec Wolman. Protecting data on smartphones and
tablets from memory attacks. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 177–189. ACM, March 2015. DOI 10.1145/2694344.2694380.

[2] Victor Costan and Srinivas Devadas. Intel SGX Explained. Cryptology ePrint
Archive, Report 2016/086, January 2016. Online at http://eprint.iacr.org/2016/086.

[3] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal hardware
extensions for strong software isolation. In Proceedings of the USENIX Security
Symposium, pages 857–874, August 2016. Online at https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/costan.

[4] Karim Eldefrawy, Aurélien Francillon, Daniele Perito, and Gene Tsudik. SMART:
Secure and Minimal Architecture for (Establishing a Dynamic) Root of Trust. In
Proceedings of the Annual Network and Distributed System Security Symposium
(NDSS), pages 1–15, February 2012. Online at http://www.eurecom.fr/publication/
3536.

[5] Intel. Enhanced Privacy ID. https://software.intel.com/en-us/node/702985,
March 2017.

[6] Intel. Identity Protection Technology. http://www.intel.com/
content/www/us/en/architecture-and-technology/identity-protection/
identity-protection-technology-general.html, March 2017.

[7] Patrick Koeberl, Ste�en Schulz, Ahmad R. Sadeghi, and Vijay Varadharajan.
TrustLite: A Security Architecture for Tiny Embedded Devices. In Proceedings of
the European Conference on Computer Systems (EuroSys), pages 1–14. ACM, April
2014. DOI 10.1145/2592798.2592824.

[8] ARM Limited. ARM Security Technology - Building a Secure System using
TrustZone Technology, 2009.

[9] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Virgil
Gligor, and Adrian Perrig. TrustVisor: E�cient TCB reduction and attestation.
In Proceedings of the IEEE Symposium on Security and Privacy, pages 143–158.
IEEE, May 2010. DOI 10.1109/sp.2010.17.

[10] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter, and
Hiroshi Isozaki. Flicker: an execution infrastructure for TCB minimization.
SIGOPS Operating Systems Review, 42(4):315–328, April 2008. DOI 10.1145/
1352592.1352625.

[11] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham
Sha�, Vedvyas Shanbhogue, and Uday R. Savagaonkar. Innovative instructions
and software model for isolated execution. In Proceedings of the International
Workshop on Hardware and Architectural Support for Security and Privacy (HASP).
ACM, June 2013. DOI 10.1145/2487726.2488368.

[12] Saeed Mirzamohammadi and Ardalan A. Sani. Viola: Trustworthy sensor noti�ca-
tions for enhanced privacy on mobile systems. In Proceedings of the International
Conference on Mobile Systems, Applications, and Services (MobiSys), pages 263–276.
ACM, June 2016. DOI 10.1145/2906388.2906391.

[13] Ildar Muslukhov, Yazan Boshmaf, Cynthia Kuo, Jonathan Lester, and Konstantin
Beznosov. Understanding users’ requirements for data protection in smartphones.
In IEEE International Conference on Data Engineering Workshops, pages 228–235.
IEEE, April 2012. DOI 10.1109/icdew.2012.83.

[14] Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony V. Her-
rewege, Christophe Huygens, Bart Preneel, Ingrid Verbauwhede, and Frank
Piessens. Sancus: Low-cost trustworthy extensible networked devices with a
zero-software trusted computing base. In Proceedings of the USENIX Security
Symposium, pages 479–498, August 2013. Online at https://www.usenix.org/
conference/usenixsecurity13/technical-sessions/presentation/noorman.

[15] StackExchange. Multi-chip Architecture. https://i.stack.imgur.com/3HIfQ.png,
February 2017.

[16] Raoul Strackx, Frank Piessens, and Bart Preneel. E�cient isolation of trusted
subsystems in embedded systems. In Proceedings of the International Conference
on Security and Privacy in Communication Systems (SecureComm), pages 344–361.
Springer, 2010. DOI 10.1007/978-3-642-16161-2_20.

[17] He Sun, Kun Sun, Yuewu Wang, and Jiwu Jing. TrustOTP: Transforming smart-
phones into secure one-time password tokens. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS), pages 976–988.
ACM, October 2015. DOI 10.1145/2810103.2813692.

[18] He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Haining Wang. TrustICE:
Hardware-assisted isolated computing environments on mobile devices. In
Proceedings of the IEEE/IFIP International Conference on Dependable Systems and
Networks, pages 367–378. IEEE, June 2015. DOI 10.1109/dsn.2015.11.

9

http://dx.doi.org/10.1145/2694344.2694380
http://eprint.iacr.org/2016/086
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
http://www.eurecom.fr/publication/3536
http://www.eurecom.fr/publication/3536
https://software.intel.com/en-us/node/702985
http://www.intel.com/content/www/us/en/architecture-and-technology/identity-protection/identity-protection-technology-general.html
http://www.intel.com/content/www/us/en/architecture-and-technology/identity-protection/identity-protection-technology-general.html
http://www.intel.com/content/www/us/en/architecture-and-technology/identity-protection/identity-protection-technology-general.html
http://dx.doi.org/10.1145/2592798.2592824
http://dx.doi.org/10.1109/sp.2010.17
http://dx.doi.org/10.1145/1352592.1352625
http://dx.doi.org/10.1145/1352592.1352625
http://dx.doi.org/10.1145/2487726.2488368
http://dx.doi.org/10.1145/2906388.2906391
http://dx.doi.org/10.1109/icdew.2012.83
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/noorman
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/noorman
https://i.stack.imgur.com/3HIfQ.png
http://dx.doi.org/10.1007/978-3-642-16161-2_20
http://dx.doi.org/10.1145/2810103.2813692
http://dx.doi.org/10.1109/dsn.2015.11


[19] Amit Vasudevan, Emmanuel Owusu, Zongwei Zhou, James Newsome, and
Jonathan M. McCune. Trustworthy execution on mobile devices: What se-
curity properties can my mobile platform give me? In Trust and Trustwor-
thy Computing, volume 7344 of LNCS, pages 159–178. Springer, 2012. DOI
10.1007/978-3-642-30921-2_10.

[20] Wikipedia. Trusted system. https://en.wikipedia.org/w/index.php?title=Trusted_
system, March 2017.

[21] Fengwei Zhang, Kevin Leach, Haining Wang, and Angelos Stavrou. TrustLogin:
Securing password-login on commodity operating systems. In Proceedings of the
ACM Symposium on Information, Computer and Communications Security (ASIA
CCS), pages 333–344. ACM, 2015. DOI 10.1145/2714576.2714614.

[22] Fengwei Zhang and Hongwei Zhang. SoK: A study of using hardware-assisted
isolated execution environments for security. In Proceedings of the International
Workshop on Hardware and Architectural Support for Security and Privacy (HASP).
ACM, June 2016. DOI 10.1145/2948618.2948621.

10

http://dx.doi.org/10.1007/978-3-642-30921-2_10
https://en.wikipedia.org/w/index.php?title=Trusted_system
https://en.wikipedia.org/w/index.php?title=Trusted_system
http://dx.doi.org/10.1145/2714576.2714614
http://dx.doi.org/10.1145/2948618.2948621

	A Survey of Trustworthy Computing on Mobile & Wearable Systems
	Dartmouth Digital Commons Citation

	Abstract
	1 Introduction
	2 Background
	2.1 Computer architecture background
	2.2 Trusted Computing
	2.3 Threats & attacker model

	3 Trustworthy computing on unconstrained systems
	3.1 Legacy solutions
	3.2 Recent solutions
	3.3 Latest solutions

	4 Trustworthy computing on constrained systems
	4.1 ARM TrustZone
	4.2 Flicker
	4.3 TrustVisor
	4.4 Self-Protecting Modules (SPM)
	4.5 SMART
	4.6 Sancus
	4.7 TrustLite

	5 Discussion
	5.1 Isolation
	5.2 Re-engineering shared resources
	5.3 Open problems

	6 Conclusion
	References

