1,909 research outputs found

    Augmenting human memory using personal lifelogs

    Get PDF
    Memory is a key human facility to support life activities, including social interactions, life management and problem solving. Unfortunately, our memory is not perfect. Normal individuals will have occasional memory problems which can be frustrating, while those with memory impairments can often experience a greatly reduced quality of life. Augmenting memory has the potential to make normal individuals more effective, and those with significant memory problems to have a higher general quality of life. Current technologies are now making it possible to automatically capture and store daily life experiences over an extended period, potentially even over a lifetime. This type of data collection, often referred to as a personal life log (PLL), can include data such as continuously captured pictures or videos from a first person perspective, scanned copies of archival material such as books, electronic documents read or created, and emails and SMS messages sent and received, along with context data of time of capture and access and location via GPS sensors. PLLs offer the potential for memory augmentation. Existing work on PLLs has focused on the technologies of data capture and retrieval, but little work has been done to explore how these captured data and retrieval techniques can be applied to actual use by normal people in supporting their memory. In this paper, we explore the needs for augmenting human memory from normal people based on the psychology literature on mechanisms about memory problems, and discuss the possible functions that PLLs can provide to support these memory augmentation needs. Based on this, we also suggest guidelines for data for capture, retrieval needs and computer-based interface design. Finally we introduce our work-in-process prototype PLL search system in the iCLIPS project to give an example of augmenting human memory with PLLs and computer based interfaces

    iForgot: a model of forgetting in robotic memories

    Get PDF
    Much effort has focused in recent years on developing more life-like robots. In this paper we propose a model of memory for robots, based on human digital memories, though our model incorporates an element of forgetting to ensure that the robotic memory appears more human and therefore can address some of the challenges for human-robot interaction

    Experiences of aiding autobiographical memory Using the SenseCam

    Get PDF
    Human memory is a dynamic system that makes accessible certain memories of events based on a hierarchy of information, arguably driven by personal significance. Not all events are remembered, but those that are tend to be more psychologically relevant. In contrast, lifelogging is the process of automatically recording aspects of one's life in digital form without loss of information. In this article we share our experiences in designing computer-based solutions to assist people review their visual lifelogs and address this contrast. The technical basis for our work is automatically segmenting visual lifelogs into events, allowing event similarity and event importance to be computed, ideas that are motivated by cognitive science considerations of how human memory works and can be assisted. Our work has been based on visual lifelogs gathered by dozens of people, some of them with collections spanning multiple years. In this review article we summarize a series of studies that have led to the development of a browser that is based on human memory systems and discuss the inherent tension in storing large amounts of data but making the most relevant material the most accessible

    Experiences of aiding autobiographical memory using the sensecam

    Get PDF
    Human memory is a dynamic system that makes accessible certain memories of events based on a hierarchy of information, arguably driven by personal significance. Not all events are remembered, but those that are tend to be more psychologically relevant. In contrast, lifelogging is the process of automatically recording aspects of one's life in digital form without loss of information. In this article we share our experiences in designing computer-based solutions to assist people review their visual lifelogs and address this contrast. The technical basis for our work is automatically segmenting visual lifelogs into events, allowing event similarity and event importance to be computed, ideas that are motivated by cognitive science considerations of how human memory works and can be assisted. Our work has been based on visual lifelogs gathered by dozens of people, some of them with collections spanning multiple years. In this review article we summarize a series of studies that have led to the development of a browser that is based on human memory systems and discuss the inherent tension in storing large amounts of data but making the most relevant material the most accessible

    Integrating memory context into personal information re-finding

    Get PDF
    Personal information archives are emerging as a new challenge for information retrieval (IR) techniques. The user’s memory plays a greater role in retrieval from person archives than from other more traditional types of information collection (e.g. the Web), due to the large overlap of its content and individual human memory of the captured material. This paper presents a new analysis on IR of personal archives from a cognitive perspective. Some existing work on personal information management (PIM) has begun to employ human memory features into their IR systems. In our work we seek to go further, we assume that for IR in PIM system terms can be weighted not only by traditional IR methods, but also taking the user’s recall reliability into account. We aim to develop algorithms that combine factors from both the system side and the user side to achieve more effective searching. In this paper, we discuss possible applications of human memory theories for this algorithm, and present results from a pilot study and a proposed model of data structure for the HDMs achieves

    LifeLogging: personal big data

    Get PDF
    We have recently observed a convergence of technologies to foster the emergence of lifelogging as a mainstream activity. Computer storage has become significantly cheaper, and advancements in sensing technology allows for the efficient sensing of personal activities, locations and the environment. This is best seen in the growing popularity of the quantified self movement, in which life activities are tracked using wearable sensors in the hope of better understanding human performance in a variety of tasks. This review aims to provide a comprehensive summary of lifelogging, to cover its research history, current technologies, and applications. Thus far, most of the lifelogging research has focused predominantly on visual lifelogging in order to capture life details of life activities, hence we maintain this focus in this review. However, we also reflect on the challenges lifelogging poses to an information retrieval scientist. This review is a suitable reference for those seeking a information retrieval scientist’s perspective on lifelogging and the quantified self

    What do people want from their lifelogs?

    Get PDF
    The practice of lifelogging potentially consists of automatically capturing and storing a digital record of every piece of information that a person (lifelogger) encounters in their daily experiences. Lifelogging has become an increasingly popular area of research in recent years. Most current lifeloggiing research focuses on techniques for data capture or processing. Current applications of lifelogging technology are usually driven by new technology inventions, creative ideas of researchers, or the special needs of a particular user group, e.g. individuals with memory impairment. To the best of our knowledge, little work has explored potential lifelogs applications from the perspective of the desires of the general public. One of the difficulties of carrying out such a study is the balancing of the information given to the subject regarding lifelog technology to enable them to generate realistic ideas without limiting or directing their imaginations by providing too much specific information. We report a study in which we take a progressive approach where we introduce lifelogging in three stages, and collect the ideas and opinions of a volunteer group of general public participants on techniques for lifelog capture, and applications and functionality

    Exploring the technical challenges of large-scale lifelogging

    Get PDF
    Ambiently and automatically maintaining a lifelog is an activity that may help individuals track their lifestyle, learning, health and productivity. In this paper we motivate and discuss the technical challenges of developing real-world lifelogging solutions, based on seven years of experience. The gathering, organisation, retrieval and presentation challenges of large-scale lifelogging are dis- cussed and we show how this can be achieved and the benefits that may accrue

    Home detection of freezing of gait using Support Vector Machines through a single waist-worn triaxial accelerometer

    Get PDF
    Among Parkinson’s disease (PD) symptoms, freezing of gait (FoG) is one of the most debilitating. To assess FoG, current clinical practice mostly employs repeated evaluations over weeks and months based on questionnaires, which may not accurately map the severity of this symptom. The use of a non-invasive system to monitor the activities of daily living (ADL) and the PD symptoms experienced by patients throughout the day could provide a more accurate and objective evaluation of FoG in order to better understand the evolution of the disease and allow for a more informed decision-making process in making adjustments to the patient’s treatment plan. This paper presents a new algorithm to detect FoG with a machine learning approach based on Support Vector Machines (SVM) and a single tri-axial accelerometer worn at the waist. The method is evaluated through the acceleration signals in an outpatient setting gathered from 21 PD patients at their home and evaluated under two different conditions: first, a generic model is tested by using a leave-one-out approach and, second, a personalised model that also uses part of the dataset from each patient. Results show a significant improvement in the accuracy of the personalised model compared to the generic model, showing enhancement in the specificity and sensitivity geometric mean (GM) of 7.2%. Furthermore, the SVM approach adopted has been compared to the most comprehensive FoG detection method currently in use (referred to as MBFA in this paper). Results of our novel generic method provide an enhancement of 11.2% in the GM compared to the MBFA generic model and, in the case of the personalised model, a 10% of improvement with respect to the MBFA personalised model. Thus, our results show that a machine learning approach can be used to monitor FoG during the daily life of PD patients and, furthermore, personalised models for FoG detection can be used to improve monitoring accuracy.Peer ReviewedPostprint (published version
    corecore