51 research outputs found

    Average Size of Unstretched Remote-Spanners

    Get PDF
    International audienceMotivated by the optimization of link state routing in ad hoc networks, and the concept of multipoint relays, we introduce the notion of remote-spanner. Given an unweighted graph GG, a remote spanner is a set of links HH such that for any pair of nodes (u,v)(u,v) there exists a shortest path in GG for which all links in the path that are not adjacent to uu belong to HH. The remote spanner is a kind of minimal topology information beyond its neighborhood that any node would need in order to compute its shortest paths in a distributed way. This can be extended to kk-connected graphs by considering minimum length sum over kk disjoint paths as distance. In this paper, we give distributed algorithms for computing remote-spanners in order to obtain sparse remote-spanners with various properties. We provide a polynomial distributed algorithm that computes a kk-connecting unstretched remote-spanner whose number of edges is at a factor 2(1+logΔ)2(1+\log \Delta) from optimal where Δ\Delta is the maximum degree of a node. Interestingly, its expected compression ratio in number of edges is O(\frackn\log n) in Erdös-Rényi graph model and O((\frackn)^\frac23) in the unit disk graph model with a uniform Poisson distribution of nodes

    An ACO Algorithm for Effective Cluster Head Selection

    Full text link
    This paper presents an effective algorithm for selecting cluster heads in mobile ad hoc networks using ant colony optimization. A cluster in an ad hoc network consists of a cluster head and cluster members which are at one hop away from the cluster head. The cluster head allocates the resources to its cluster members. Clustering in MANET is done to reduce the communication overhead and thereby increase the network performance. A MANET can have many clusters in it. This paper presents an algorithm which is a combination of the four main clustering schemes- the ID based clustering, connectivity based, probability based and the weighted approach. An Ant colony optimization based approach is used to minimize the number of clusters in MANET. This can also be considered as a minimum dominating set problem in graph theory. The algorithm considers various parameters like the number of nodes, the transmission range etc. Experimental results show that the proposed algorithm is an effective methodology for finding out the minimum number of cluster heads.Comment: 7 pages, 5 figures, International Journal of Advances in Information Technology (JAIT); ISSN: 1798-2340; Academy Publishers, Finlan

    Near-Optimal Distributed Approximation of Minimum-Weight Connected Dominating Set

    Full text link
    This paper presents a near-optimal distributed approximation algorithm for the minimum-weight connected dominating set (MCDS) problem. The presented algorithm finds an O(logn)O(\log n) approximation in O~(D+n)\tilde{O}(D+\sqrt{n}) rounds, where DD is the network diameter and nn is the number of nodes. MCDS is a classical NP-hard problem and the achieved approximation factor O(logn)O(\log n) is known to be optimal up to a constant factor, unless P=NP. Furthermore, the O~(D+n)\tilde{O}(D+\sqrt{n}) round complexity is known to be optimal modulo logarithmic factors (for any approximation), following [Das Sarma et al.---STOC'11].Comment: An extended abstract version of this result appears in the proceedings of 41st International Colloquium on Automata, Languages, and Programming (ICALP 2014

    Broadcasting Protocol for Effective Data Dissemination in Vehicular Ad Hoc Networks

    Get PDF
    VANET topology is very dynamic due to frequent movements of the nodes. Using beacon information connected dominated set are formed and nodes further enhanced with neighbor elimination scheme. With acknowledgement the inter section issues are solve. A modified Broadcast Conquest and Delay De-synchronization mechanism address the broadcasting storm issues. Although data dissemination is possible in all direction, the performance of data dissemination in the opposite direction is investigated and compared against the existing protocols

    Bounds relating the weakly connected domination number to the total domination number and the matching number

    Get PDF
    AbstractLet G=(V,E) be a connected graph. A dominating set S of G is a weakly connected dominating set of G if the subgraph (V,E∩(S×V)) of G with vertex set V that consists of all edges of G incident with at least one vertex of S is connected. The minimum cardinality of a weakly connected dominating set of G is the weakly connected domination number, denoted γwc(G). A set S of vertices in G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number γt(G) of G. In this paper, we show that 12(γt(G)+1)≤γwc(G)≤32γt(G)−1. Properties of connected graphs that achieve equality in these bounds are presented. We characterize bipartite graphs as well as the family of graphs of large girth that achieve equality in the lower bound, and we characterize the trees achieving equality in the upper bound. The number of edges in a maximum matching of G is called the matching number of G, denoted α′(G). We also establish that γwc(G)≤α′(G), and show that γwc(T)=α′(T) for every tree T

    A distributed topology control technique for low interference and energy efficiency in wireless sensor networks

    Get PDF
    Wireless sensor networks are used in several multi-disciplinary areas covering a wide variety of applications. They provide distributed computing, sensing and communication in a powerful integration of capabilities. They have great long-term economic potential and have the ability to transform our lives. At the same time however, they pose several challenges – mostly as a result of their random deployment and non-renewable energy sources.Among the most important issues in wireless sensor networks are energy efficiency and radio interference. Topology control plays an important role in the design of wireless ad hoc and sensor networks; it is capable of constructing networks that have desirable characteristics such as sparser connectivity, lower transmission power and a smaller node degree.In this research a distributed topology control technique is presented that enhances energy efficiency and reduces radio interference in wireless sensor networks. Each node in the network makes local decisions about its transmission power and the culmination of these local decisions produces a network topology that preserves global connectivity. The topology that is produced consists of a planar graph that is a power spanner, it has lower node degrees and can be constructed using local information. The network lifetime is increased by reducing transmission power and the use of low node degrees reduces traffic interference. The approach to topology control that is presented in this document has an advantage over previously developed approaches in that it focuses not only on reducing either energy consumption or radio interference, but on reducing both of these obstacles. Results are presented of simulations that demonstrate improvements in performance. AFRIKAANS : Draadlose sensor netwerke word gebruik in verskeie multi-dissiplinêre areas wat 'n wye verskeidenheid toepassings dek. Hulle voorsien verspreide berekening, bespeuring en kommunikasie in 'n kragtige integrate van vermoëns. Hulle het goeie langtermyn ekonomiese potentiaal en die vermoë om ons lewens te herskep. Terselfdertyd lewer dit egter verskeie uitdagings op as gevolg van hul lukrake ontplooiing en nie-hernubare energie bronne. Van die belangrikste kwessies in draadlose sensor netwerke is energie-doeltreffendheid en radiosteuring. Topologie-beheer speel 'n belangrike rol in die ontwerp van draadlose informele netwerke en sensor netwerke en dit is geskik om netwerke aan te bring wat gewenste eienskappe het soos verspreide koppeling, laer transmissiekrag en kleiner nodus graad.In hierdie ondersoek word 'n verspreide topologie beheertegniek voorgelê wat energie-doeltreffendheid verhoog en radiosteuring verminder in draadlose sensor netwerke. Elke nodus in die netwerk maak lokale besluite oor sy transmissiekrag en die hoogtepunt van hierdie lokale besluite lewer 'n netwerk-topologie op wat globale verbintenis behou.Die topologie wat gelewer word is 'n tweedimensionele grafiek en 'n kragsleutel; dit het laer nodus grade en kan gebou word met lokale inligting. Die netwerk-leeftyd word vermeerder deur transmissiekrag te verminder en verkeer-steuring word verminder deur lae nodus grade. Die benadering tot topologie-beheer wat voorgelê word in hierdie skrif het 'n voordeel oor benaderings wat vroeër ontwikkel is omdat dit nie net op die vermindering van net energie verbruik of net radiosteuring fokus nie, maar op albei. Resultate van simulasies word voorgelê wat die verbetering in werkverrigting demonstreer.Dissertation (MEng)--University of Pretoria, 2010.Electrical, Electronic and Computer Engineeringunrestricte

    Survey of local algorithms

    Get PDF
    A local algorithm is a distributed algorithm that runs in constant time, independently of the size of the network. Being highly scalable and fault-tolerant, such algorithms are ideal in the operation of large-scale distributed systems. Furthermore, even though the model of local algorithms is very limited, in recent years we have seen many positive results for non-trivial problems. This work surveys the state-of-the-art in the field, covering impossibility results, deterministic local algorithms, randomised local algorithms, and local algorithms for geometric graphs.Peer reviewe

    Dynamics of spectral algorithms for distributed routing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 109-117).In the past few decades distributed systems have evolved from man-made machines to organically changing social, economic and protein networks. This transition has been overwhelming in many ways at once. Dynamic, heterogeneous, irregular topologies have taken the place of static, homogeneous, regular ones. Asynchronous, ad hoc peer-to-peer networks have replaced carefully engineered super-computers, governed by globally synchronized clocks. Modern network scales have demanded distributed data structures in place of traditionally centralized ones. While the core problems of routing remain mostly unchanged, the sweeping changes of the computing environment invoke an altogether new science of algorithmic and analytic techniques. It is these techniques that are the focus of the present work. We address the re-design of routing algorithms in three classical domains: multi-commodity routing, broadcast routing and all-pairs route representation. Beyond their practical value, our results make pleasing contributions to Mathematics and Theoretical Computer Science. We exploit surprising connections to NP-hard approximation, and we introduce new techniques in metric embeddings and spectral graph theory. The distributed computability of "oblivious routes", a core combinatorial property of every graph and a key ingredient in route engineering, opens interesting questions in the natural and experimental sciences as well. Oblivious routes are "universal" communication pathways in networks which are essentially unique. They are magically robust as their quality degrades smoothly and gracefully with changes in topology or blemishes in the computational processes. While we have only recently learned how to find them algorithmically, their power begs the question whether naturally occurring networks from Biology to Sociology to Economics have their own mechanisms of finding and utilizing these pathways. Our discoveries constitute a significant progress towards the design of a self-organizing Internet, whose infrastructure is fueled entirely by its participants on an equal citizen basis. This grand engineering challenge is believed to be a potential technological solution to a long line of pressing social and human rights issues in the digital age. Some prominent examples include non-censorship, fair bandwidth allocation, privacy and ownership of social data, the right to copy information, non-discrimination based on identity, and many others.by Petar Maymounkov.Ph.D
    corecore