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Average size of unstretched Remote-Spanners

Philippe Jacquet∗ Laurent Viennot†

November 25, 2008

Abstract

Motivated by the optimization of link state routing in ad hoc networks, and the concept
of multipoint relays, we introduce the notion of remote-spanner. Given an unweighted
graph G, a remote spanner is a set of links H such that for any pair of nodes (u, v)
there exists a shortest path in G for which all links in the path that are not adjacent to
u belong to H. The remote spanner is a kind of minimal topology information beyond
its neighborhood that any node would need in order to compute its shortest paths in a
distributed way. This can be extended to k-connected graphs by considering minimum
length sum over k disjoint paths as distance.

In this paper, we give distributed algorithms for computing remote-spanners in or-
der to obtain sparse remote-spanners with various properties. We provide a polynomial
distributed algorithm that computes a k-connecting unstretched remote-spanner whose
number of edges is at a factor 2(1 + log ∆) from optimal where ∆ is the maximum degree
of a node. Interestingly, its expected compression ratio in number of edges is O( k

n log n)
in Erdös-Rényi graph model and O(( k

n )
2
3 ) in the unit disk graph model with a uniform

Poisson distribution of nodes.

1 Introduction

This paper concerns the characterization and the distributed computation of sparse remote-
spanners. Given an unweighted graph G, a sub-graph H with vertex set V (H) = V (G) is an
unstretched-remote-spanner if it keeps distances in G from any node u when it is completed
with all neighboring links of u. More precisely, for any two nonadjacent nodes u, v, dHu(u, v) =
dG(u, v), where Hu is the sub-graph with edge set E(H) ∪ {uv | v ∈ N(u)} and dHu is the
distance in Hu. (Note that dHu(u, v) = 1 = dG(u, v) when u and v are adjacent).

We introduce this notion based on the functioning of link state routing protocols used
in practical networks where each router generally knows its list of neighbors. Link state
routing was proposed by McQuillian et al. [22] as a replacement for distance vector routing.
It was then standardized as OSPF protocol [23, 24]. With a very high level description, link
state routing basically consists in two periodic procedures. First, each router sends regularly
probing messages on its network interfaces to discover its neighbors. Second, it regularly
floods the network with link state advertisement messages containing its list of neighbors.
(Additional messages may be sent when the list of neighbors changes). Each node then
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knows its list of neighbors and the whole network topology. This can be very costly in a
large and dense network, a case that can be encountered in ad hoc networks where wireless
connections may provide many neighbors to each node. To optimize link state routing in such
situations, it was proposed more recently to alleviate the cost of link state advertisements by
flooding only a subset of links [21, 8]. This was standardized by IETF as the OLSR routing
protocol [7].

This principle can be indeed applied to any link state routing protocol: broadcast only a
subset of links to all nodes, thus defining a sub-graph H. As each node u regularly discovers
its neighbors, it can augment this graph with its neighboring links, to obtain a sub-graph
Hu with edge set E(H) ∪ {uv | v ∈ N(u)}. It then computes its routing tables according to
distances in Hu: it forwards packets with destination v to a closest neighbor u′ to v in Hu.
u′ then forwards similarly the packet and so on. This results in a classical greedy routing
scheme. As the path from u′ to v in Hu is included in H, it is known by u′, implying
dHu′ (u

′, v) ≤ dHu(u, v)−1. We thus see that this greedy routing from u to v results in a route
of length at most dG(u, v). The notion of unstretched-remote-spanner thus formalizes the
required properties on the broadcasted sub-graph H to ensure that greedy routing performs
without route optimality loss.

This formalization is inspired by the regular notion of graph spanner introduced by Pe-
leg et al. [26, 25]. An unstretched-spanner is a sub-graph H such that for all nodes u, v,
dH(u, v) = dG(u, v). Conversely to remote-spanners, neighboring links outside the spanner
are not considered. Spanners are key ingredients of various distributed applications, e.g.,
synchronizers [2, 26], compact routing [1, 27, 29], covers [3], dominating sets [12], distance
oracles [4, 30], emulators and distance preservers [5, 10], broadcasting [17], near-shortest
path algorithms [13, 14, 15, 16]. Recent reviews of the literature on spanners can be found
in [28, 32]. We are working on an extension of remote-spanner where an (α, β) stretch is
allowed. and we believe that a part of this work can be investigated in the context where
a node knows its neighboring links in addition to the spanner as this information is usually
accessible in practical routing context.

We introduce the concept of multi-connectivity in remote spanner. Preserving multi-
connectivity has practical interest for improving reliability of the network and to allow multi-
path routing. We says that two nonadjacent nodes u and v are k-connected in G if there
exists k pairwise disjoint paths from u to v (i.e. having no internal node in common). An
unstretched remote-spanner H is said to be k-connecting if for all nonadjacent nodes u, v
and all positive integer k′ ≤ k, u and v are k′-connected in Hu if they are k′-connected
in G. Additionally, we require that the stretch of the length sum of these paths is one, i.e.
dk
′
Hu

(u, v) = dk
′
G(u, v) where dk

′
K(u, v) is minimum length sum of k′ disjoint paths in a sub-graph

K.
Conversely to spanners, we show that remote-spanners have local characterizations that

yield simple distributed algorithms for computing them. Additionally, unstretched-remote-
spanners can be sparse whereas an unstretched spanner must obviously include all edges.
Finally, we are able to compute remote-spanners providing both multi-connectivity and con-
trolled stretch.

1.1 Our results

We show that any unstretched-remote-spanner is an union of stars called multipoint relay star
dominating nearby nodes. More precisely, we define an multipoint relay star Tu for a node u

2
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as a subset of adjacent links of u neighborhood of node u, such that for all v at distance 2
from u, there exists (u, x) ∈ Tu and x is neighbor of v. In other words, Tu ∪ {u} dominates
the ball B(u, 2) of radius 2 centered at u. Notice that the set of end nodes of the multipoint
relay star is a multipoint relay set according to the terminology in [7] We say that a sub-
graph H induces multipoint relays if it contains amultipoint relay set for each node in the
graph, i.e. for every node u there exist a multipoint relay star T for u with E(T ) ⊆ E(H).
We provide in Section 2 a distributed algorithm for computing the multipoint relay stars of
the unstretched-remote-spanner for a given node whose number of edges is within a factor
1 + log ∆ from optimal where ∆ denote the maximal degree of a node.

In Section 3, we study k-connecting remote-spanners. We provide a distributed algorithm
computing a k-connecting unstretched-remote-spanner in a polynomial time and with optimal
number of edges up to a factor 2(1 + log ∆).

Interestingly, we also show in section 4 that the k-connecting unstretched remote span-
ner shows an expected number of edges in O(kn log n) in Erdös-Rényi graph model and in
O(k

2
3n

4
3 ) in the unit disk graph model with a uniform Poisson distribution of nodes (com-

pared to Ω(n2) if the remote-spanner is equal to the graph itself). In the context of wireless
network, Erdös-Rényi graph model is pertinent about indoor wireless networking, whereas
unit disk graph model is pertinent about outdoor wireless networking.

1.2 Related work

Our unstretched-remote-spanner generalizes the notions of multipoint relays introduced in ad
hoc networks [21, 7] for optimizing flooding and shortest path routing and extended in [33,
21, 7] for providing small connected dominating sets. It was already known that they provide
shortest path routes, i.e. their union forms an unstretched-remote-spanner. However, it
was not noticed that they are also necessary: any unstretched-remote-spanner must induce
multipoint relays. As multipoint relays are also used for optimizing flooding, this definition
was extended to obtain better reliability of flooding with the k-coverage feature [7, 9]. It was
never proved that this extension indeed ensures k-connectivity.

The concept of remote-spanner is introduced in [19] as an extension of regular spanner.
This work mainly focuses on remote-spanners with stretch, i.e. preserving distances up to
some multiplicative and additive factors. More precisely, a remote-spanner H of a graph G
has stretch (α, β) if if for each pair of nodes u and v the distance between u and v in Hu, the
graph H augmented by all the edges between u and its neighbors in G, is at most α times
the distance between u and v in G plus β. This definition is extended to k-connected graphs
by considering minimum length sum over k disjoint paths as distance. It is then said that
an (α, β)-remote-spanner is k-connecting . Distributed algorithms for computing in constant
time (1+ε, 1−2ε)-remote-spanners and 2-connecting (2,−1)-remote-spanners are given. The
resulting spanner has a linear number of edges if the input graph is the unit ball graph of a
doubling metric. Distributed algorithms for computing k-connecting (1, 0)-remote-spanners
with optimal number of edges up to a logarithmic factor are also proposed in [19]. However,
no bound is given on the minimum number of edges of such a remote-spanner.

2 1-connected Unstretched-remote-spanners

We prove in Section 3 that a sub-graph is an unstretched-remote-spanner iff it induces (2, 0)-
dominating trees. However, we postpone the study of such remote-spanners to Section 3 in

3
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the more general setting of k-connecting unstretched-remote-spanners.
Algorithm 1 proposes an algorithm called DomTreeGdy(u) for computing an multipoint

relay star for node u. It consists in solving greedily a set-cover problem for dominating the
nodes at distance 2 from u.

T := ({u} , ∅)
M2 := ∅, S := B(u, 2) \B(u, 1)
while S 6= ∅ do

Pick x ∈ N(u) \M2 such that |B(x, 1) ∩ S| is maximal.
M2 := M2 ∪ {x}
Add to T the link u to x in G.
S := S \B(x, 1)

Algorithm 1: Algorithm DomTreeGdy(u) for a node u. The tree T is the multipoint
relay star computed for u.

Proposition 1 Algorithm DomTreeGdy(u) computes a multipoint relay star for node u
with minimal number of edges up to a factor 1 + log ∆.

The proof of this proposition adapted from [6] about the classical greedy heuristic for set-
cover is written in extenso in [19].

3 Remote-spanners providing multi-connectivity

We consider only simple paths, i.e. a node appears at most once in a path. We say that
two paths are disjoint if they do not have any internal node in common. Several paths are
disjoint if they are pairwise disjoint. We define the k-connecting distance dkG(s, t) between
two nodes s and t as the minimum length sum obtained over all sets of k disjoint paths from
s to t. (We set dkG(s, t) =∞ if there do not exist k disjoint paths from s to t). We thus have
d1
G(s, t) = dG(s, t). We similarly define dkH(s, t) for any sub-graph H.

Recall that an unstretched-remote-spanner H is said to be k-connecting if it satisfies
dk
′
Hs

(s, t) = dk
′
G(s, t) for all nonadjacent nodes s and t and all positive integer k′ ≤ k. This

definition is equivalent to the unstretched-remote-spanner definition for k = 1. Recall also
that a k-connecting multipoint relay star T for a node u is a tree sub-graph rooted at node
u dominating every node v at distance 2 from u in the following sense: v has k neighbors
in BT (u, 1), or uw ∈ E(T ) for all w ∈ N(u) ∩ N(v). This definition is equivalent to the
multipoint relay star definition for k = 1.

3.1 k-connecting unstretched-remote-spanners

We now characterize k-connecting unstretched-remote-spanners as sub-graphs inducing mul-
tipoint relay stars. It is clearly a necessary condition: if H is a k-connecting unstretched-
remote-spanner, consider two nodes u and v such that dG(u, v) = 2. If u and v have k′

common neighbors with 1 ≤ k′ ≤ k, then the stretch condition implies that dk
′
Hv

(v, u) ≤ 2k′.
As minimal path length between u and v is 2, u and v must thus have at least k′ common
neighbors in Hv. H must thus contain a k-connecting multipoint relay star for u. Indeed, we
can obtain the following characterization.

4
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Proposition 2 A sub-graph is a k-connecting unstretched-remote-spanner iff it induces k-
connecting multipoint relay stars.

Consider a sub-graph H inducing multipoint relay stars and two nonadjacent nodes s and
t such that dk

′
G(s, t) <∞ for some k′ with 1 ≤ k′ ≤ k.

Lemma 1 Among all tuples P1, . . . , Pk′ of k′ disjoint paths from s to t, consider one with
minimal length. If P1 lies outside H by i ≥ 2, then there exists a path P ′1 from s to t with
same length as P1 such that P ′1, P2, . . . , Pk′ are disjoint and P ′1 lies outside H by i− 1 edges.

The proof of this lemma can be found in [19].
By iteratively applying Lemma 1, we obtain that there exist k′ disjoint paths with minimal

length, all of them lying 1-outside H. This implies that dk
′
Hs

(s, t) = dk
′
G(s, t) and H is thus a

k-connecting unstretched remote-spanner. Proposition 2 follows.

3.2 Computing k-connecting remote-spanners

Algorithm 2 is similar to DomTreeGdy(u) except that it keeps adding nodes in the dom-
inating tree for node u until nodes at distance 2 are dominated k times. For k = 1, it
is equivalent to DomTreeGdy(u). The greedy heuristic in classical generalization of the
set-cover problem still performs within a factor 1 + log ∆ from optimal [11, 31].

T := ({u} , ∅)
M := ∅, S := B(u, 2) \B(u, 1), X := N(u)
while S 6= ∅ do

Pick x ∈ X \M such that |B(x, 1) ∩ S| is maximal.
M := M ∪ {x}
Add edge ux to T .
S := S \ {v ∈ S | N(v) ∩N(u) ⊆M or |N(v) ∩M | ≥ k}

Algorithm 2: Algorithm DomTreeGdyk(u) for a node u. The tree T is the dominat-
ing tree computed for u.

As long as there remains a node v in S which is initially the set of nodes at distance 2
from u, it is not dominated k times and it has a neighbor x which is not in M , the set of
nodes added as leaves of T . It is thus always possible pick some x at the beginning of the
while loop until S is empty. We can thus state the following proposition.

Proposition 3 Algorithm DomTreeGdyk(u) computes a k-connecting multipoint relay star
for node u with minimal number of edges up to a factor 1 + log ∆.

Theorem 1 A k-connecting unstretched-remote-spanner with number of edges within a factor
2(1 + log ∆) from optimal can be computed in time O(1).

The proof is in [19].

5
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4 Analysis of remote-spanner in random network models

4.1 Erdös-Rényi random graph

In this model we suppose that a network with n nodes, each pair of node being independently
connected by an edge with probability p. Therefore the average node degree δ = pn. The
following result are adapted from [20]

Proposition 4 In the Erdös-Rényi random graph with n node average degree δ = pn the
average size of the optimal multipoint relay star is smaller than 1

p log n+ 1
p when n→∞ for

n→∞ with p fixed.

Proof. Let consider a node u and let assume that one randomly adds edges in Tu until all
nodes at distance 2 of u are connected. Let assume that the sequence of selected neighbors
is : v1, v2, . . . , v`, . . .. Let w be a node distinct of u, we have

P (N(w) ∩ {u, v1, . . . , v`} = ∅) = (1− p)`+1 .

Thus

P (|Tu| > `) = P (∃w : dG(u,w) = 2 : N(w) ∩ {v1, . . . , v`} = ∅)
≤ P (∃w : N(w) ∩ {u, v1, . . . , v`} = ∅)
≤

∑
w 6=u P (N(w) ∩ {u, v1, . . . , v`} = ∅) = (n− `− 1)(1− p)`+1

Consequently
E(|Tu|) =

∑
` P (|Tu| > `)

≤
∑

` min{1, n(1− p)`+1}
≤ b logn

log 1
1−p

c+ 1
p

. �

Proposition 5 In the Erdös-Rényi random graph with n node average degree δ = pn the
average size of the optimal k-connected multipoint relay star is smaller than O(kp log n) when
n→∞ for n→∞ with p fixed.

Proof. We build Tu as in the previous proof excepted that we go ahead adding new edge until
every node w at distance 2 from u are covered at least k times. The probability that a node
w is not neighbor of u and is not covered by less than k times by the nodes v1, v2, . . . , v` is
(1−p)

∑
i<k(1−p)`−ipi

(
`
i

)
. This quantity is smaller than (1−p) exp(−k

p `+1), using Chernov
bound.

Therefore
E(|Tu|) ≤

∑
` min{1, n exp(−k

p `+ 1)
≤ k

p (log n+ 1) + e

1−e−
k
p

�
We define as the topology compression ratio of the remote spanner the ratio of the number of
links in the remote spanner to the total number of links in the graph.

Theorem 2 The topology compression average ratio of a k-connecting unstretched remote
spanner in an Erdös-Rényi random graph with n nodes and average degree δ = pn is smaller
than O(kp

logn
δ ) = O( kn log n).
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4.2 Unit disk random graph

We consider that nodes are dispatched in a large square of area R with a Poisson uniform
distribution. The number of nodes is then a random variable N with average value E(N) = n.
We denote ν = n

R the per unit area node density. Recall that the unit disk graph is the set
of connected nodes within distance at most 1 in the plane.

Proposition 6 In the unit disk graph with uniform Poisson density ν, the average size of
the optimal multipoint relay star is smaller than 3πν

1
3 +O(ν−

1
3 ) edges when ν →∞.

Proof. Let u be a node far from square border. We proof consists in building a multipoint
relay star Tu with average number of edges at most 3πν

1
3 + O(ν−

1
3 ) edges . We claim that

this bound remains valid for nodes close to the border.
Let ε < 1 be a non negative number. We denote C(u, ε) the region of points which are at

cartesian distance beween 1− ε and 1 to node u, and K(u, ε) ⊆ N(u) the set of nodes which
are located in C(u, ε). The main idea is to add in Tu an edge uv for every v ∈ K(u, ε). Note
that the area of the C(u, ε) is (2ε− ε2)π with tight upper-bound 2πε when ε→ 0.

We denote D(u, r) the disk of radius r centered on u in the plane and we call crown
nodes the nodes which are in D(u, 2) \ D(u, 1). Let v be a crown node at distance 2 − x
from u for some 0 < x < 1. Let Aε(x) denote the area of C(u, ε) ∩ D(v, 1). We denote
Nε(x) = |N(v) ∩K(u, ε)| the number of nodes already in Tu that dominate such a node v.
The random variable Nε(x) is Poisson of parameter νAε(x).

We call ε-missed node any crown node v such that the two following conditions hold: (i)
N(v) ∩K(u, ε) = ∅, and (ii) N(v) ∩ N(u) 6= ∅. To obtain a multipoint relay star for u, we
must add edges in Tu so that any ε-missed node v is dominated by one neighbor of u in Tu.
We thus complete Tu by adding at most one edge for each ε-missed node v (one added edge
may cover more than one of these nodes).

Notice that ε-missed nodes cannot be at cartesian distance to node u greater than 2 − ε
since all their common neighbors with u would then be in C(u, ε).

The average number of nodes inside K(u, ε) is smaller than 2πνε. Let Jε(ν) be the average
number of ε-missed nodes. We have

Jε(ν) = 2πν
∫ 1
ε (2− x)P (Nε(x) = 0)dx

= 2πν
∫ 1
ε (2− x) exp(−νAε(x))dx

(1)

The average size of Tu is therefore bounded by

E(|Tu|) ≤ 2πνε+ Jε(u) .

The main aim is to give an upper bound of Jε(ν).
Let A(x) be the size of the area D(u, 1) ∩D(v, 1) when the cartesian distance between u

and v is exactly 2−x for 0 < x < 1. Since the disk D(u, 1−ε) that makes the internal border
of C(u, ε) is included in D(w, 1) for any node w at cartesian distance ε to node u, we have
Aε(x) > A(x)−A(x− ε) when x > ε.

Via pure geometric consideration we have the identity

A(x) = 2θ − sin(2θ)

7
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where θ = arccos(1−x). Notice that when x→ 0, we have A(x) = 4
3θ

3 +O(θ5) and therefore
A(x) = 25/2

3 x
3
2 + O(x

5
2 ). Similarly Aε(x) > 23/2ε(x − ε)

1
2 + O(ε(x − ε)

3
2 ) for x > ε. In fact

we have Aε(x) > ρε(x− ε)
1
2 for some ρ > 0 uniformly for all x ∈ [ε, 1]

Therefore

Jε(ν) < 4πν
∫ 1−ε

0
exp(−23/2νεx1/2(1 +O(x)))dx

By the change of variable y = εx
1
2 and using the uniform domination of the integrand by

function exp(−ρενx
1
2 ) we obtain

Jε(ν) < 4πν
(εν)2

∫∞
0 exp(−23/2y

1
2 )dy +O( ν

(εν)4
)

= πν
(εν)2

+O( ν
(εν)4

)

Therefore we have the inequality (assuming εν →∞).

E(|Tu|) ≤ 2πεν +
πν

(εν)2
+O(

ν

(εν)4
)

The minimum of the right-hand side (omitting the O() term) is attained when ε = ν−
2
3 . �

Proposition 7 In the unit disk graph with uniform Poisson density ν, the average number
of edges in an optimal k-connecting multipoint relay star is O(k

2
3 ν

1
3 ).

Proof. Let u be a node far from square border. The proof consists in building a k-connecting
multipoint relay star Tu with average number of edges at most ck2/3ν1/3 edges, for some
constant c and for a sufficiently high density ν. We claim that this bound remains valid for
nodes close to the border. Using Proposition 2, we will thus obtain a k-connecting multipoint
relay star with average size O(k2/3n4/3).

We still use the main idea of adding in Tu an edge uv for every v ∈ K(u, ε). We call (ε, k)-
missed node any crown node v such that (i) |N(v) ∩K(u, ε)| < k, and (ii) |N(v) ∩N(u)| >
|N(v) ∩K(u, ε)|. To obtain a k-connecting multipoint relay star for u, we must add edges in
Tu so that any (ε, k)-missed node v is dominated by min{k, |N(v)∩N(u)|} neighbors of u in
Tu. We thus complete Tu by adding min{k, |N(v) ∩N(u)|} − |N(v) ∩K(u, ε)| edges for each
(ε, k)-missed node v.

We still have all (ε, k)-missed nodes at cartesian distance to node u smaller than 2 − ε.
We choose ε to ensure νAε(ε) = αk for some α > 1 (e.g. α = 2). To estimate P (Nε(x) < k)
we use Chernov’s bound that is for Poisson random variable Nε(x):

P (Nε(x) < k) ≤ exp(−νAε(x)β)

with β = (1− 1
α(1− log(α))).

We have Aε(x) > α′ε(x− ε)
1
2 uniformly for all x ∈ [ε, 1], for some α′ > 0. Let J(ε,k)(ν) be

the average number of (ε, k)-missed nodes we have

J(ε,k)(ν) = 2πν
∫ 1
ε (2− x)P (Nε(x) < k)dx

≤ 4πν
∫∞
0 exp(−βνα′εx

1
2 )dx

= πν
(βα′εν)2 +O( ν

(βα′εν)4 )

8
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The issue is to count the nodes needed in N(u)\K(u, ε) in order to appropriately dominate
ε-missed nodes. This means that we have |V (Tu) \K(u, ε)| ≤ kJ(ε,k)(ν).

|E(Tu)| ≤ 2πεν + kJk(ν)
≤ π(3

2α)2/3k
2
3 ν

1
3 + (2( 2

3α)2/3)2 1
β2α′k

− 1
3 ν

1
3

+O(k−
5
3 ν−

1
3 ) ,

since νA(ε) = αk and therefore ε ≈ 32/3

25/3 (αk)2/3ν−
2
3 . �

Theorem 3 The topology compression average ratio of a k-connecting unstretched remote
spanner in an unit disk graph with n nodes and average degree δ is smaller than O((kδ )

2
3 ).

5 Concluding remarks

We have introduced the notion of unstretched-remote-spanner which is well suited for grasping
the trade-offs when optimizing the subset of links advertised in a link state routing protocol.
Most strikingly, we proposed distributed construction of sparse remote-spanners which also
enjoy multi-connectivity. An interesting followup resides in constructing sparse k-connecting
(1 + ε,O(1))-remote-spanners for any eps > 0 and k > 1. Additionally, it seems possible to
extend our results to edge-connectivity where we consider paths that are edge-disjoint rather
than internal-node disjoint.
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