Bounds relating the weakly connected domination number to the total domination number and the matching number

Johannes H. Hattingh ${ }^{\text {a,*, }}$, Michael A. Henning ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303-3083, USA
${ }^{\mathrm{b}}$ School of Mathematical Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa

A R T I C L E I N F O

Article history:

Received 18 February 2009
Received in revised form 7 May 2009
Accepted 3 June 2009
Available online 21 June 2009

Keywords:

Bounds
Weakly connected domination
Total domination
Matching number

Abstract

Let $G=(V, E)$ be a connected graph. A dominating set S of G is a weakly connected dominating set of G if the subgraph $(V, E \cap(S \times V))$ of G with vertex set V that consists of all edges of G incident with at least one vertex of S is connected. The minimum cardinality of a weakly connected dominating set of G is the weakly connected domination number, denoted $\gamma_{\mathrm{wc}}(G)$. A set S of vertices in G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number $\gamma_{t}(G)$ of G. In this paper, we show that $\frac{1}{2}\left(\gamma_{t}(G)+1\right) \leq$ $\gamma_{\mathrm{wc}}(G) \leq \frac{3}{2} \gamma_{t}(G)-1$. Properties of connected graphs that achieve equality in these bounds are presented. We characterize bipartite graphs as well as the family of graphs of large girth that achieve equality in the lower bound, and we characterize the trees achieving equality in the upper bound. The number of edges in a maximum matching of G is called the matching number of G, denoted $\alpha^{\prime}(G)$. We also establish that $\gamma_{\mathrm{wc}}(G) \leq \alpha^{\prime}(G)$, and show that $\gamma_{\mathrm{wc}}(T)=\alpha^{\prime}(T)$ for every tree T.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we continue the study of weakly connected domination in graphs introduced and studied by Dunbar, Grossman, Hattingh, Hedetniemi and McRae [8] and studied further in [4,12,15] and elsewhere.

For notation and graph theory terminology we in general follow [9]. Specifically, let $G=(V, E)$ be a graph with vertex set V of order $n=|V|$ and edge set E of size $m=|E|$, and let v be a vertex in V. The open neighborhood of v is the set $N(v)=\{u \in V \mid u v \in E\}$ and the closed neighborhood of v is $N[v]=\{v\} \cup N(v)$. For a set $S \subseteq V$, its open neighborhood is the set $N(S)=\cup_{v \in S} N(v)$ and its closed neighborhood is the set $N[S]=N(S) \cup S$. For a set $S \subseteq V$, the subgraph induced by S is denoted by $G[S]$. We denote the degree of v in G by $\operatorname{deg}_{G}(v)$, or simply by $\operatorname{deg}(v)$ if the graph G is clear from the context. The minimum degree among the vertices of G is denoted by $\delta(G)$. A cycle on n vertices is denoted by C_{n}. The girth of G, denoted $g(G)$, is the length of a shortest cycle in G. The number of components of G is denoted by $k(G)$.

A leaf of a graph G is a vertex of degree 1, while a support vertex of G is a vertex adjacent to a leaf. A tree is a double star if it contains exactly two vertices that are not leaves; if one of these vertices is adjacent to a leaves and the other to b leaves, then we denote the double star by $S(a, b)$.

For disjoint subsets $A, B \subseteq V$, we define $[A, B]$ to be the set of all edges of G that joins a vertex in A and a vertex in B. Further we define the distance $d_{G}(A, B)$ between A and B in G to be the minimum distance between a vertex in A and a vertex in B; that is, $d_{G}(A, B)=\min \left\{d_{G}(u, v) \mid u \in A, v \in B\right\}$.

Let $G=(V, E)$ be a graph with vertex set V and edge set E. A dominating set, denoted DS, of G is a set S of vertices of G such that every vertex in $V \backslash S$ is adjacent to a vertex in S. The domination number of G, denoted by $\gamma(G)$, is the minimum

[^0]cardinality of a DS. A total dominating set, abbreviated as TDS, of G with no isolated vertex is a set S of vertices of G such that every vertex is adjacent to a vertex in S. Every graph without isolated vertices has a TDS, since $S=V$ is such a set. The total domination number of G, denoted by $\gamma_{t}(G)$, is the minimum cardinality of a TDS. A TDS of G of cardinality $\gamma_{t}(G)$ is called a $\gamma_{t}(G)$-set. If X and Y are subsets of vertices in G, then the set X dominates Y in G if $Y \subseteq N[X]$, while X totally dominates Y in G if $Y \subseteq N(X)$. A set $S \subseteq V$ is a connected dominating set of G if S is a dominating set of G and the graph $G[S]$ is connected. The connected domination number $\gamma_{c}(G)$ is the minimum cardinality of a connected dominating set of G. Domination in graphs is now well studied in graph theory and the literature on this subject has been surveyed and detailed in the two books by Haynes, Hedetniemi, and Slater [9,10]. For a recent survey article on total domination in graphs see [11].

Let $G=(V, E)$ be a connected graph and let $S \subseteq V$. The subgraph weakly induced by S is the graph $G_{S}=(N[S]), E \cap(S \times V)$. Thus, G_{S} has vertex set $N[S]$ and consists of all edges of G incident with at least one vertex of S. The set S is a weakly connected dominating set of G, abbreviated as WCDS, if S is a dominating set of G and the graph G_{S} is connected. The weakly connected domination number $\gamma_{\mathrm{wc}}(G)$ is the minimum cardinality of a WCDS of G. A WCDS of G of cardinality $\gamma_{\mathrm{wc}}(G)$ is called a γ_{wc} (G)-set. Notice that every connected dominating set if a WCDS, which in turn is a dominating set. Thus for every connected graph G, we have $\gamma(G) \leq \gamma_{\mathrm{wc}}(G) \leq \gamma_{c}(G)$.

Mobile Ad Hoc Networks refer to distributed, wireless, multihop networks that function without using any infrastructure such as a base station or access points for communication, and exhibit dynamic changes in their network topology. Clustering introduces a hierarchy that is otherwise absent in these ad hoc networks, facilitating routing of information through the network. Efficient resource management, routing and better throughput performance can be achieved through adaptive clustering of these mobile nodes. Given the connectivity graph (also known as communication graph, network graph, etc.), $G_{0}=\left(V_{0}, E_{0}\right)$, where the vertices represent the nodes in the network and the edges represent the communication links between pairs of nodes in the network, the clustering problem is to find subsets (not necessarily disjoint) $V_{0}^{1}, \ldots, V_{0}^{k}$ of V_{0} such that $V_{0}=\cup_{i=1}^{k} V_{0}^{i}$. Each subset is a cluster and induces a graph with small diameter. After clustering, we can abstract the connectivity graph to a graph $G_{1}=\left(V_{1}, E_{1}\right)$ as follows: there exists a vertex $v_{i}^{1} \in V_{1}$ for every subset V_{0}^{i} and there exists an edge between v_{1}^{i} and v_{1}^{j} if and only if there exist $x_{0} \in V_{0}^{i}$ and $y_{0} \in V_{0}^{j}$ such that $x_{0} y_{0} \in E_{0}$. The concept of a WCDS has also been proposed recently for clustering ad hoc networks [2]. Various algorithms on finding a small WCDS in a graph appear, for example, in [1-3,5-7].

A subset $S \subseteq V$ is a packing in G if the closed neighborhoods of vertices in S are pairwise disjoint. A subset $U \subseteq V$ is a vertex cover of G if every edge of G is incident with a vertex in U. The minimum cardinality among all the vertex covers in G is called the vertex cover number of G and is denoted by $\alpha(G)$. The independence number $\beta(G)$ is the maximum cardinality of an independent set of vertices in G.

Two edges in G are independent if they are not adjacent in G. A set of pairwise independent edges of G is called a matching in G, while a matching of maximum cardinality is a maximum matching. The number of edges in a maximum matching of G is called the matching number of G which we denote by $\alpha^{\prime}(G)$. Let M be a specified matching in a graph G. A vertex v of G is an M-matched vertex if v is incident with an edge of M; otherwise, v is an M-unmatched vertex. An M-alternating path of G is a path whose edges are alternately in M and not in M. An M-augmenting path is an M-alternating path that begins and ends with M-unmatched vertices. A perfect matching M in G is a matching in G such that every vertex of G is incident to an edge of M. Matchings in graphs are extensively studied in the literature (see, for example, the survey articles by Plummer [13] and Pulleyblank [14]).

2. Known results

The following results on the weakly connected domination number of a connected graph can be found in [8].
Theorem 1 (Dunbar et al. [8]). If G is a connected graph of order $n \geq 2$, then the following properties hold:
(a) $\gamma_{\mathrm{wc}}(G) \leq \alpha(G)$.
(b) If G is a tree, then $\gamma_{\mathrm{wc}}(G)=\alpha(G)$.
(c) $\gamma(G) \leq \gamma_{\mathrm{wc}}(G) \leq 2 \gamma(G)-1$.
(d) $\gamma_{\mathrm{wc}}(G) \leq \gamma_{\mathrm{c}}(G) \leq 2 \gamma_{\mathrm{wc}}(G)-1$.
(e) $\gamma_{\mathrm{wc}}(G)=n-\max \{\beta(T) \mid T$ is a spanning tree of $G\}$.
(f) $\gamma_{\mathrm{wc}}(G) \leq n / 2$.

3. The total domination number

Our aim in this section is to establish a relationship between the weakly connected domination number of a connected graph and its total domination number. If G is a connected graph of order $n \geq 2$ with $\Delta(G)=n-1$, then $\gamma_{\mathrm{wc}}(G)=1$ and $\gamma_{t}(G)=2$. Hence in what follows we may assume that $\Delta(G)<n-1$.

3.1. Lower bound

First we establish a lower bound on the weakly connected domination number of a graph in terms of its total domination number.

Theorem 2. If G is a connected graph of order $n \geq 2$ with $\Delta(G)<n-1$, then

$$
\gamma_{\mathrm{wc}}(G) \geq \frac{1}{2}\left(\gamma_{t}(G)+1\right) .
$$

Proof. Let S be a $\gamma_{\mathrm{wc}}(G)$-set. On the one hand, suppose that S contains two adjacent vertices u and v. For each vertex $w \in S \backslash\{u, v\}$, let w^{\prime} be a neighbor of w in G and let

$$
S^{\prime}=\bigcup_{w \in S \backslash\{u, v\}}\left\{w^{\prime}\right\} .
$$

Then, $S \cup S^{\prime}$ is a TDS of G, and so $\gamma_{t}(G) \leq|S|+\left|S^{\prime}\right| \leq 2|S|-2=2 \gamma_{\mathrm{wc}}(G)-2$. Thus, $\gamma_{\mathrm{wc}}(G) \geq \frac{1}{2} \gamma_{t}(G)+1>\frac{1}{2}\left(\gamma_{t}(G)+1\right)$, as desired. On the other hand, suppose that S is an independent set in G. Let $v \in S$. Since S is a WCDS and $\Delta(G)<n-1$, there is a vertex $u \in S$ at distance 2 from v in G. Let v^{\prime} be a common neighbor of u and v in G. For each vertex $w \in S \backslash\{u, v\}$, let w^{\prime} be a neighbor of w in G and let S^{\prime} be defined as before. Then, $S \cup\left(S^{\prime} \cup\left\{v^{\prime}\right\}\right)$ is a TDS of G, and so $\gamma_{t}(G) \leq|S|+\left|S^{\prime}\right|+1 \leq 2|S|-1=2 \gamma_{\mathrm{wc}}(G)-1$. Thus, $\gamma_{\mathrm{wc}}(G) \geq \frac{1}{2}\left(\gamma_{t}(G)+1\right)$, as desired.

Next we present properties of connected graphs with weakly connected domination number at least 4 that achieve equality in the lower bound of Theorem 2.

Lemma 3. Let G be a connected graph such that $\gamma_{\mathrm{wc}}(G) \geq 4$ and $\gamma_{\mathrm{wc}}(G)=\frac{1}{2}\left(\gamma_{t}(G)+1\right)$, and let S be a $\gamma_{\mathrm{wc}}(G)$-set. Then, G has the following properties.
(a) S is an independent set in G.
(b) If $A \subseteq S$ and A^{\prime} totally dominates A in G, then $\left|A^{\prime}\right| \geq|A|-1$.
(c) There is a vertex v in S such that $S \backslash\{v\}$ is a packing. Further for every $u \in S \backslash\{v\}, d(u, v)=2$ and $N(u) \nsubseteq N(v)$. Moreover, $N(v) \nsubseteq N(S \backslash\{v\})$.
(d) Let v be defined as in (c) above and let $S=\left\{v, v_{1}, v_{2}, \ldots, v_{k}\right\}$. For $i=1,2, \ldots, k$, let G_{i} be the star induced by the edges of G incident with v_{i}. Then, the graph G_{S} is obtained from the disjoint union of these k stars by adding the vertex v and joining it to at least one but not to every leaf from each star $G_{i}, 1 \leq i \leq k$, and then adding at least one pendant edge to v.

Proof. Let $G=(V, E)$ and let $|V|=n$. For each vertex $w \in S$, let w^{\prime} be a neighbor of w in G.
(a) If S is not an independent set in G, then as shown in the proof of Theorem $2, \gamma_{\mathrm{wc}}(G)>\frac{1}{2}\left(\gamma_{t}(G)+1\right)$, a contradiction. Hence, S is an independent set. This establishes part (a).
(b) Let $A \subseteq S$ and let A^{\prime} totally dominate A in G (and so, $A \subseteq N\left(A^{\prime}\right)$). Suppose that $\left|A^{\prime}\right| \leq|A|-2$. Let $B=S \backslash A$ and let $S^{\prime}=\cup_{w \in B}\left\{w^{\prime}\right\}$. Then, $A^{\prime} \cup S \cup S^{\prime}$ is a TDS of G. Since $\left|S^{\prime}\right| \leq|B|=|S|-|A|$, we therefore have that $\gamma_{t}(G) \leq\left|A^{\prime}\right|+|S|+\left|S^{\prime}\right| \leq$ $2|S|-2=2 \gamma_{\mathrm{wc}}(G)-2$. Thus, $\gamma_{\mathrm{wc}}(G)>\frac{1}{2}\left(\gamma_{t}(G)+1\right)$, a contradiction. Hence, $\left|A^{\prime}\right| \geq|A|-1$. This establishes part (b).
(c) Among all vertices of S, let v be chosen so that the number of vertices of S at distance 2 from v is a maximum. Since S is a WCDS and $\Delta(G)<n-1$, there is at least one vertex at distance 2 from v in G. Let v_{1} be a vertex of S at distance 2 from v and let v_{1}^{\prime} be a common neighbor of v and v_{1} in G. Let $A=S \backslash\left\{v, v_{1}\right\}$ and let A^{\prime} be a minimum set of vertices that totally dominates A. By part (a) above, S is an independent set, implying that $A^{\prime} \subseteq V \backslash S$. Now, $S \cup\left(A^{\prime} \cup\left\{v_{1}^{\prime}\right\}\right)$ is a TDS of G, and so $\gamma_{t}(G) \leq|S|+\left|A^{\prime}\right|+1$. If $\left|A^{\prime}\right| \leq|A|-1=|S|-3$, then $\gamma_{t}(G) \leq 2|S|-2=2 \gamma_{\mathrm{wc}}(G)-2$, a contradiction. Hence, $\left|A^{\prime}\right| \geq|A|$. However the set $\cup_{w \in A}\left\{w^{\prime}\right\}$ totally dominates A, and so $\left|A^{\prime}\right| \leq|A|$. Consequently, $\left|A^{\prime}\right|=|A|=|S|-2$. This implies that the set A is a packing in G. Let $A=\left\{v_{2}, \ldots, v_{k}\right\}$ and note that $k=|S|-2 \geq \gamma_{\mathrm{wc}}(G)-2 \geq 2$.

We show that the set $S \backslash\{v\}=A \cup\left\{v_{1}\right\}$ is a packing in G. Assume, to the contrary, that $S \backslash\{v\}$ is not a packing in G. Since A is a packing, we have that $d\left(v_{1}, A\right)=2$. Renaming vertices if necessary, we may assume that $d\left(v_{1}, v_{2}\right)=2$. Let v_{2}^{\prime} be a common neighbor of v_{1} and v_{2} in G. By part (b) above, every vertex in $V \backslash S$ is adjacent to at most two vertices of S. Thus, $v_{1}^{\prime} \neq v_{2}^{\prime}$. Since v_{1} is at distance 2 from at least two vertices of S, namely, v and v_{2}, our choice of the vertex v implies that v is at distance 2 from two vertices of S. Suppose v is at distance 2 from a vertex in $S \backslash\left\{v_{1}, v_{2}\right\}$. Renaming vertices if necessary, we may assume that $d\left(v, v_{3}\right)=2$. Let v_{3}^{\prime} be a common neighbor of v and v_{3} in G. Since A is a packing, we note that $v_{2}^{\prime} \neq v_{3}^{\prime}$. But then the set $\left\{v_{2}^{\prime}, v_{3}^{\prime}\right\}$ totally dominates the set $\left\{v, v_{1}, v_{2}, v_{3}\right\} \subseteq S$, contradicting part (b) above. Hence the set $S \backslash\{v\}$ is a packing in G. However S is a WCDS, and so G_{S} is connected. The vertex v is therefore at distance 2 from every vertex of $S \backslash\{v\}$. Thus, $d(u, v)=2$ for every $u \in S \backslash\{v\}$.

If $u \in S \backslash\{v\}$ and $N(u) \subseteq N(v)$, then replacing u with a neighbor of u in S produces a $\gamma_{\mathrm{wc}}(G)$-set that is not independent set, contradicting part (a) above. Hence, $N(u) \nsubseteq N(v)$ for every $u \in S \backslash\{v\}$.

Finally suppose $N(v) \subseteq N(S \backslash\{v\})$. For $i=1,2, \ldots, k$, let u_{i} be a common neighbor of v and v_{i}. Since the set $S \backslash\{v\}$ is a packing in $G, u_{i} \neq u_{j}$ for $1 \leq i<j \leq k$. Let $S^{\prime}=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$, and let $D=\left(S \cup S^{\prime}\right) \backslash\{v\}$. Then, D is a TDS of G, and so $\gamma_{t}(G) \leq|D|=2(|S|-1)=2 \gamma_{\mathrm{wc}}(G)-2$, a contradiction. Hence, $N(v) \nsubseteq N(S \backslash\{v\})$. This establishes part (c).
(d) By part (c) above, there is a vertex v in S such that $S \backslash\{v\}$ is a packing. Let $S_{v}=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, and so $S_{v}=S \backslash\{v\}$. For $i=1,2, \ldots, k$, let G_{i} be the star induced by the edges of G incident with v_{i}, and let $A_{i}=N(v) \cap N\left(v_{i}\right)$ and $B_{i}=N\left(v_{i}\right) \backslash A_{i}$. Let $N_{v}=N(v) \backslash N\left(S_{v}\right)$. By part (c) above, we have that $\left|N_{v}\right| \geq 1$. Further for $i=1,2, \ldots, k,\left|A_{i}\right| \geq 1$ and $\left|B_{i}\right| \geq 1$. Thus the graph G_{S} is the spanning subgraph of G obtained from the disjoint union of the k stars $G_{1}, G_{2}, \ldots, G_{k}$ by adding the set of vertices $N_{v} \cup\{v\}$ and joining v to every vertex of A_{i} for each $i, 1 \leq i \leq k$, and joining v to every vertex of N_{v}. The graph G_{S} is illustrated in Fig. 1.

Fig. 1. The graph G_{S}.
As a consequence of Lemma 3, we have a characterization of special families of graphs, including the family of bipartite graphs and the family of graphs of large girth, with weakly connected domination number at least 4 that achieve equality in the lower bound of Theorem 2. For this purpose, let q be the family of all trees that can be obtained from a star $K_{1, k}$ for some integer $k \geq 3$, by adding at least one pendant edge to each vertex of the star, and then subdividing every edge of the star exactly once. Let \mathfrak{B} be the family of bipartite graphs that can be obtained from $b \geq 3$ disjoint stars each of order at least 3 by adding a new vertex v and joining it to at least one but not to every leaf from each of the b stars, and then adding at least one pendant edge to v.

Corollary 4. Let G be a connected graph such that $\gamma_{\mathrm{wc}}(G) \geq 4$ and $\gamma_{\mathrm{wc}}(G)=\frac{1}{2}\left(\gamma_{t}(G)+1\right)$.
(a) If G is bipartite, then $G \in \mathscr{B}$.
(b) If G has girth at least 8 , then $G \in \mathcal{G}$.

Proof. We shall follow the notation introduced in the proof of Lemma 3(d). Let S be a $\gamma_{\mathrm{wc}}(G)$-set. Then the graph G_{S} is as defined in Lemma 3(d). The only possible edges of G not in G_{S} are edges joining vertices in $V(G) \backslash S$. However adding any such edge would create an odd cycle of length 3,5 or 7 . Thus if G is bipartite, then no edge can be added to G_{S} to construct G, whence $G=G_{S}$ and $G \in \mathscr{B}$. This establishes part (a). If $\left|A_{i}\right| \geq 2$ for some $i, 1 \leq i \leq k$, then v and v_{i} are contained in a common 4-cycle. Thus if G has girth at least 8 , then $\left|A_{i}\right|=1$ for all $i=1,2, \ldots, k$ and no edge can be added to G_{S} to construct G, whence $G=G_{S}$ and $G \in \mathcal{G}$. This establishes part (b).

3.2. Upper bound

Next we establish an upper bound on the weakly connected domination number of a graph in terms of its total domination number.
Theorem 5. If G is a connected graph of order at least 2 , then $\gamma_{\mathrm{wc}}(G) \leq \frac{3}{2} \gamma_{t}(G)-1$.
Proof. To establish the desired upper bound, we construct a WCDS D that satisfies $|D| \leq \frac{3}{2} \gamma_{t}(G)-1$, as follows. Initially, we let D_{0} be a $\gamma_{t}(G)$-set and we let $G_{0}=G_{D_{0}}$. (Recall that $G_{D_{0}}$ denotes the graph weakly induced by D_{0}.) If G_{0} is connected, then $D=D_{0}$ is a WCDS, and so $\gamma_{\mathrm{wc}}(G) \leq|D|=\gamma_{t}(G) \leq \frac{3}{2} \gamma_{t}(G)-1$, and we are done. Hence we may assume that G_{0} is disconnected. Among all components of G_{0}, let $G_{X_{0}}$ and $G_{Y_{0}}$ be chosen so that the distance between their vertex sets is a minimum. Since G is connected and D_{0} is a dominating set, $d_{G}\left(V\left(G_{X_{0}}\right), V\left(G_{Y_{0}}\right)\right)=1$. Hence there exists an edge $x_{0} y_{0} \in E(G)$ where $x_{0} \in V\left(G_{X_{0}}\right)$ and $y_{0} \in V\left(G_{Y_{0}}\right)$. Since $G_{X_{0}}$ and $G_{Y_{0}}$ are distinct components of G_{0}, we note that neither x_{0} nor y_{0} is in D. Hence, x_{0} is adjacent to a vertex $u \in D \cap X_{0}$ and y_{0} is adjacent to a vertex $v \in D \cap Y_{0}$. Notice that u and v are neither adjacent nor do they have a common neighbor. We now let $D_{1}=D_{0} \cup\left\{x_{0}\right\}$ and we let $G_{1}=G_{D_{1}}$ be the subgraph of G weakly induced by D_{1}. Since the components $G_{X_{0}}$ and $G_{Y_{0}}$ of G_{0} are contained in one new component of G_{1}, we have that $k\left(G_{1}\right) \leq k\left(G_{0}\right)-1$.

In general, if G_{i} is connected for some $i \geq 0$, then we let $D=D_{i}$. Otherwise, if G_{i} is disconnected, then among all components of G_{i}, let $G_{X_{i}}$ and $G_{Y_{i}}$ be chosen so that the distance between their vertex sets is a minimum. Since G is connected and D_{i} is a dominating set, $d_{G}\left(V\left(G_{X_{i}}\right), V\left(G_{Y_{i}}\right)\right)=1$. Hence there exists an edge $x_{i} y_{i} \in E(G)$ where $x_{i} \in V\left(G_{X_{i}}\right)$ and $y_{i} \in V\left(G_{Y_{i}}\right)$. We now let $D_{i+1}=D_{i} \cup\left\{x_{i}\right\}$ and we let $G_{i+1}=G_{D_{i+1}}$ denote the subgraph of G weakly induced by D_{i+1}. Since the components $G_{X_{i}}$ and $G_{Y_{i}}$ of G_{i} are contained in one new component of G_{i+1}, we have that $k\left(G_{i+1}\right) \leq k\left(G_{i}\right)-1$.

Since the subgraph $G\left[D_{0}\right]$ induced by the set D_{0} contains no isolated vertex, the subgraph G_{0} contains at most $\left|D_{0}\right| / 2$ components. Hence by adding at most $\frac{1}{2}\left|D_{0}\right|-1$ vertices to D_{0}, we can extend D_{0} to a WCDS. Thus for some i with $i \leq \frac{1}{2}\left|D_{0}\right|-1$, the graph G_{i} is connected, whence $D=D_{i}$ is a WCDS of G. Therefore, $\gamma_{\mathrm{wc}}(G) \leq\left|D_{i}\right|=\left|D_{0}\right|+i \leq\left|D_{0}\right|+\frac{1}{2}\left|D_{0}\right|-1=\frac{3}{2}\left|D_{0}\right|-1=$ $\frac{3}{2} \gamma_{t}(G)-1$, which completes the proof of the upper bound.

Next we present properties of connected graphs that achieve equality in the upper bound of Theorem 5.
Lemma 6. Let G be a connected graph of order at least 2 satisfying $\gamma_{\mathrm{wc}}(G)=\frac{3}{2} \gamma_{t}(G)-1$, and let D be a $\gamma_{t}(G)$-set. Then, G has the following properties.
(a) $G[D]=k K_{2}$ for some integer $k \geq 1$.

Fig. 2. A labeled double star.
Let $E(G[D])=\left\{u_{1} v_{1}, u_{2} v_{2}, \ldots, u_{k} v_{k}\right\}$. For $i=1, \ldots, k$, let $V_{i}=\left\{u_{i}, v_{i}\right\}$ and let G_{i} be the subgraph induced by the edges of G incident at least one vertex in V_{i}.
(b) G_{1}, \ldots, G_{k} are the k components of G_{D}.
(c) $d\left(V_{i}, V_{j}\right) \geq 3$ for $1 \leq i<j \leq k$ and $\left(N_{G}\left[V_{1}\right], \ldots, N_{G}\left[V_{k}\right]\right)$ is a partition of $V(G)$.
(d) For $i=1, \ldots, k$, each G_{i} contains a leaf adjacent to u_{i} and a leaf adjacent to v_{i}.
(e) Each vertex is adjacent in G to vertices from at most one component of G_{D} different from the component of G_{D} to which it belongs.
Proof. (a) Since $\gamma_{\mathrm{wc}}(G)=\frac{3}{2} \gamma_{t}(G)-1$, we have that $3 \gamma_{t}(G)=2\left(\gamma_{\mathrm{wc}}(G)+1\right)$, and so $\gamma_{t}(G)$ is even. Let D be a $\gamma_{t}(G)$-set. Each inequality in the proof of Theorem 5 becomes an equality, and so G_{D} has exactly $|D| / 2$ components and each component of $G[D]$ is a K_{2}-component consisting of two adjacent vertices. Thus, $G[D]=k K_{2}$ for some integer $k \geq 1$.
(b) Let $E(G[D])=\left\{u_{1} v_{1}, u_{2} v_{2}, \ldots, u_{k} v_{k}\right\}$. For $i=1, \ldots, k$, let $V_{i}=\left\{u_{i}, v_{i}\right\}$. Since G_{D} has exactly $|D| / 2$ components, the subgraphs G_{1}, \ldots, G_{k} are the k components of G_{D}.
(c) Thus, $V_{i}=D \cap V\left(G_{i}\right)$ for $i=1, \ldots, k$. Since G_{1}, \ldots, G_{k} are distinct components of G_{D}, we have that $d\left(V_{i}, V_{j}\right) \geq 3$ for $1 \leq i<j \leq k$. By definition of the subgraph $G_{i}, V\left(G_{i}\right)=N_{G}\left[V_{i}\right]$ for each $i=1, \ldots, k$. Thus since D is a dominating set of G, $\left(N_{G}\left[V_{1}\right], \ldots, N_{G}\left[V_{k}\right]\right)$ is a partition of $V(G)$.
(d) Suppose that there is a vertex $v \in D$ that does not have a leaf-neighbor in the component of G_{D} to which it belongs. We may assume that $v=u_{1}$. Thus, G_{1} does not contain a leaf adjacent to u_{1}. Hence, v_{1} dominates $V\left(G_{1}\right)$. Since G is connected and D is a dominating set of G, there exists an edge $x_{1} y_{1}$ that joins a vertex of G_{1} to a vertex of G_{i} for some $i \geq 2$. But then $D^{\prime}=\left(D \backslash\left\{u_{1}\right\}\right) \cup\left\{x_{1}\right\}$ is a $\gamma_{t}(G)$-set of G with $G_{D^{\prime}}$ having at most $|D| / 2-1$ components, and so letting $D_{0}=\overline{D^{\prime}}$ in the proof of Theorem 5 , at least one inequality in the proof becomes a strict inequality, whence $\gamma_{\mathrm{wc}}(G)<\frac{3}{2} \gamma_{t}(G)-1$, a contradiction.
(e) Suppose there is a vertex v that is adjacent in G to vertices from two or more components of G_{D} different from the component of G_{D} containing v. By part (c) above, $v \notin V_{1}$. We now let $D_{0}=D$ and $x_{0}=v$. As in the proof of Theorem 5, we let $D_{1}=D_{0} \cup\left\{x_{0}\right\}$ and $G_{1}=G_{D_{1}}$. Since at least three components of G_{0} are all contained in one new component in G_{1}, we have that $k\left(G_{1}\right) \leq k\left(G_{0}\right)-2$. Hence at least one inequality in the proof of Theorem 5 becomes a strict inequality, whence $\gamma_{\mathrm{wc}}(G)<\frac{3}{2} \gamma_{t}(G)-1$, a contradiction.

Next we provide a constructive characterization of trees that achieve the upper bound of Theorem 5. For this purpose, we shall need the following definitions.

Definition 1. We define a labeling of a tree T as a function $S: V(T) \rightarrow\{A, B, C\}$. The label of a vertex v is also called its status, denoted $\operatorname{sta}(v)$. A labeled tree is denoted by a pair (T, S).

Definition 2. Let $L(a, b)$ be the labeled double star obtained from the double star $S(a, b)$, where $a \geq 1$ and $b \geq 1$, by labeling the two central vertices of $S(a, b)$ with status C, labeling exactly one leaf adjacent to each central vertex of $S(a, b)$ with status B, and labeling all other leaves of $S(a, b)$ with status A. A labeled double star is shown in Fig. 2.

Definition 3. Let operation \mathcal{O}_{1} extend a labeled tree (T, S) by adding a labeled double star $L(a, b)$, where $a \geq 1$ and $b \geq 2$, and joining a vertex u of status A in (T, S) to a vertex v of status A in $L(a, b)$, and then relabeling both u and v with status B in the resulting labeled tree while keeping all other labels unchanged.

We now describe a procedure to build labeled trees.
Definition 4. Let \mathcal{L} be the family of labeled trees that contain all labeled double stars and is closed under the operation \mathcal{O}_{1}.
We remark that if $(T, S) \in \mathcal{L}$ for some labeling S, then, by construction, T is a tree and every vertex of status A in (T, S) is a leaf whose neighbor has status C, while every vertex of status C in (T, S) is a support vertex with exactly one leaf-neighbor of status B. Furthermore, every support vertex in (T, S) has status C while every leaf in (T, S) has status A or B.

Definition 5. Let \mathcal{T} be the family of all unlabeled trees T such that $(T, S) \in \mathcal{L}$ for some labeling S. We remark that every graph in the family \mathcal{T} is a tree.

We are now in a position to present our constructive characterization of trees that achieve the upper bound of Theorem 5 .

Theorem 7. Let T be a tree of order at least 2. Then, $\gamma_{\mathrm{wc}}(T)=\frac{3}{2} \gamma_{t}(T)-1$ if and only if $T \in \mathcal{T}$.
Proof. Suppose $T \in \mathcal{T}$. We show that $\gamma_{\mathrm{wc}}(T)=\frac{3}{2} \gamma_{t}(T)-1$, by using induction on num (T), the number of operations required to construct the tree $(T, S) \in \mathcal{L}$ for some labeling S. If num $(T)=0$, then $T=L(a, b)$ for some $a \geq 1$ and $b \geq 1$, and so $\gamma_{\mathrm{wc}}(T)=\gamma_{t}(T)=2$, whence $\gamma_{\mathrm{wc}}(T)=\frac{3}{2} \gamma_{t}(T)-1$. Assume, then, that for all trees $T^{\prime} \in \mathcal{T}$ with num $\left(T^{\prime}\right)<k$, where $k \geq 1$ is an integer, that $\gamma_{\mathrm{wc}}\left(T^{\prime}\right)=\frac{3}{2} \gamma_{t}\left(T^{\prime}\right)-1$. Let $T \in \mathcal{T}$ be a tree with num $(T)=k$. Then, $(T, S) \in \mathcal{L}$ is obtained from some labeled tree $\left(T^{\prime}, S^{\prime}\right) \in \mathcal{L}$ by Operation \mathcal{O}_{1}. But then $T^{\prime} \in \mathcal{T}$ and num $\left(T^{\prime}\right)<k$. Applying the inductive hypothesis to T^{\prime}, $\gamma_{\mathrm{wc}}\left(T^{\prime}\right)=\frac{3}{2} \gamma_{t}\left(T^{\prime}\right)-1$.

Suppose (T, S) is obtained from $\left(T^{\prime}, S^{\prime}\right)$ by joining the leaf ℓ_{1} in T^{\prime} to the leaf ℓ_{2} of the added labeled double star L. Suppose u_{1} is the central vertex of L adjacent to ℓ_{2}, and let u_{2} be the other central vertex of L. Note that both u_{1} and u_{2} are support vertices in T. Let v denote the neighbor of the leaf ℓ_{1} in the tree T^{\prime}.

We first show that $\gamma_{t}(T)=\gamma_{t}\left(T^{\prime}\right)+2$. Let D be a $\gamma_{t}(T)$-set. As every support vertex of T must be in D, we immediately see that D consists of exactly the vertices labeled C. But then $D \backslash\left\{u_{1}, u_{2}\right\}$ is a TDS of T^{\prime}, whence $\gamma_{t}\left(T^{\prime}\right) \leq \gamma_{t}(T)-2$. Moreover, every $\gamma_{t}\left(T^{\prime}\right)$-set can be extended to a TDS of T by adding the two vertices u_{1} and u_{2}, and so $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+2$. Consequently, $\gamma_{t}(T)=\gamma_{t}\left(T^{\prime}\right)+2$.

Next we show that $\gamma_{\mathrm{wc}}(T)=\gamma_{\mathrm{wc}}\left(T^{\prime}\right)+3$. Let W be a $\gamma_{\mathrm{wc}}(T)$-set. Let $u \in\left\{u_{1}, u_{2}\right\}$. If $u \notin W$, then all neighbors of u must be in W. Let u^{\prime} be a leaf-neighbor of u in T. Then, $\left(W \backslash\left\{u^{\prime}\right\}\right) \cup\{u\}$ produces a new $\gamma_{\mathrm{wc}}(T)$-set. Hence we may assume that $\left\{u_{1}, u_{2}\right\} \subseteq W$. With this assumption, the minimality of W implies that no leaf-neighbor of u_{1} or u_{2} in T belongs to W. On the one hand, suppose $\ell_{2} \in W$. If $\ell_{1} \in W$, then $W \backslash\left\{\ell_{2}\right\}$ is a WCDS of T, contradicting the minimality of W. Hence, $\ell_{1} \notin W$. Since T_{W} is connected, we have that $v \in W$. Thus, $W \backslash\left\{\ell_{2}, u_{1}, u_{2}\right\}$ is a WCDS of T^{\prime}, whence $\gamma_{\mathrm{wc}}\left(T^{\prime}\right) \leq \gamma_{\mathrm{wc}}(T)-3$. On the other hand, suppose $\ell_{2} \notin W$. Since T_{W} is connected, we have that $\ell_{1} \in W$. This in turn implies that either $v \in W$ or $v \notin W$ and $N_{T^{\prime}}(v) \subseteq W$. Since the leaf ℓ_{1} has status A in $\left(T^{\prime}, S^{\prime}\right)$, the vertex v has status C in (T^{\prime}, S^{\prime}) and is a support vertex with a leaf-neighbor, say ℓ_{3}, of status B. But then $W^{\prime}=\left(W \backslash\left\{u_{1}, u_{2}, \ell_{2}, \ell_{3}\right\}\right) \cup\{v\}$ is a WCDS of T^{\prime}, and so $\gamma_{\mathrm{wc}}\left(T^{\prime}\right) \leq\left|W^{\prime}\right| \leq|W|-3=\gamma_{\mathrm{wc}}(T)-3$. However every $\gamma_{\mathrm{wc}}\left(T^{\prime}\right)$-set contains either the support vertex v or its leafneighbor ℓ_{1}. Thus every $\gamma_{\mathrm{wc}}\left(T^{\prime}\right)$-set can be extended to a WCDS of T by adding to it the vertices in the set $\left\{\ell_{2}, u_{1}, u_{2}\right\}$, and so $\gamma_{\mathrm{wc}}(T) \leq \gamma_{\mathrm{wc}}\left(T^{\prime}\right)+3$.

Hence we have shown that if $T \in \mathcal{T}$, then $\gamma_{t}(T)=\gamma_{t}\left(T^{\prime}\right)+2$ and $\gamma_{\mathrm{wc}}(T)=\gamma_{\mathrm{wc}}\left(T^{\prime}\right)+3$. This implies that $\gamma_{\mathrm{wc}}(T)=\gamma_{\mathrm{wc}}\left(T^{\prime}\right)+3=\frac{3}{2} \gamma_{t}\left(T^{\prime}\right)-1+3=\frac{3}{2}\left(\gamma_{t}\left(T^{\prime}\right)+2\right)-1=\frac{3}{2} \gamma_{t}(T)-1$, as desired.

Conversely, suppose $\gamma_{\mathrm{wc}}(T)=\frac{3}{2} \gamma_{t}(T)-1$. By part (a) of Lemma $6, \gamma_{t}(T)=2 k$ for some integer $k \geq 1$. We show that $T \in \mathcal{T}$. We proceed by induction on k. Suppose $k=1$. If T is a star, then $\gamma_{\mathrm{wc}}(T)=1<\frac{3}{2} \gamma_{t}(T)-1$, a contradiction. Hence, T is a double star. Let S be a labeling of T that produces a labeled double star. Then, $(T, S) \in \mathcal{L}$, whence $T \in \mathcal{T}$. This establishes the base case. Assume, then, that $k \geq 2$ and that for all trees T^{\prime} with $\gamma_{\mathrm{wc}}\left(T^{\prime}\right)=\frac{3}{2} \gamma_{t}\left(T^{\prime}\right)-1$ where $\gamma_{t}\left(T^{\prime}\right)<2 k$ we have $T^{\prime} \in \mathcal{T}$.

Let T be a tree with $\gamma_{\mathrm{wc}}(T)=\frac{3}{2} \gamma_{t}(T)-1$ where $\gamma_{t}(T)=2 k$. Let D be a $\gamma_{t}(T)$-set. Then, T has the properties listed in Lemma 6. We shall adopt the notation introduced in Lemma 6. Since T is a tree, each of the k components of T_{D} is a double star. By part (c) and part (d) of Lemma 6, the two central vertices of each such double star belong to D and have degree at least 2 in the double star, while all leaves in the double star belong to $V(T) \backslash D$. By part (c), each vertex of D belongs to exactly one component of T_{D}. Further the sets $N(u)$, where $u \in D$, form a partition of $V(T)$.

We show that each vertex in $V(T) \backslash D$ has degree at most 2 in T. Let $v \in V(T) \backslash D$. Then, v is a leaf in some component of T_{D}. Since T is a tree, the vertex v is adjacent in T to at most one vertex from every component of T_{D}. By part (e) of Lemma 6 , the vertex v is adjacent in T to vertices from at most one component of T_{D} different from the component of T_{D} that contains v. Hence, $\operatorname{deg}_{T}(v) \leq 2$ for all $v \in V(T) \backslash D$.

We show next that each vertex of D has a leaf-neighbor in T. Let $u \in D$. Let w be the vertex of D adjacent to u, and let $N_{u}=N(u) \backslash\{w\}$. Thus, $N_{u} \subset V(T) \backslash D$ is the set of leaf-neighbors of u in the (double star) component of T_{D} that contains u. Suppose that u has no leaf-neighbor in T. Then, $\operatorname{deg}_{T}(v)=2$ for all $v \in N_{u}$. Since T is a tree, no two vertices in N_{u} are adjacent to vertices from the same component of T_{D} other than from the component of T_{D} that contains u. Hence letting $D^{\prime}=(D \backslash\{u\}) \cup N_{u}$ and letting $T^{\prime}=T_{D^{\prime}}$ denote the subgraph of T weakly induced by D^{\prime}, at least $\operatorname{deg}_{T}(u)$ components of T_{D} are all contained in one new component in T^{\prime}. Thus, $\left|D^{\prime}\right|=|D|+d_{T}(u)-2$ while $k\left(T^{\prime}\right) \leq k\left(T_{D}\right)-d_{T}(u)+1=\frac{1}{2}|D|-d_{T}(u)+1$. Hence we need to add at most $\frac{1}{2}|D|-d_{T}(u)$ vertices to D^{\prime} to form a WCDS for T, whence $\gamma_{\mathrm{wc}}(T) \leq\left|D^{\prime}\right|+\frac{1}{2}|D|-d_{T}(u)=|D|+d_{T}(u)-2+\frac{1}{2}|D|-d_{T}(u)=\frac{3}{2}|D|-2=\frac{3}{2} \gamma_{t}(T)-2$, a contradiction. Therefore, each vertex of D has a leaf-neighbor in T.

We are now ready to show that $T \in \mathcal{T}$. As remarked earlier, we adopt the notation introduced in Lemma 6 . Let F be the tree of order k where the vertices of F correspond to the k components of T_{D} and where two vertices of F are adjacent if the corresponding components of T_{D} are joined by an edge. Let X be a leaf of F and let Y be the neighbor of X in F. Renaming vertices if necessary, we may assume that X and Y correspond to the components G_{1} and G_{2}, respectively, and that $x y$ is an edge of T where $x \in V\left(G_{1}\right)$ and $y \in V\left(G_{2}\right)$. From our earlier remarks, both x and y are leaves in their respective components G_{1} and G_{2}. We may assume that $x \in N\left(v_{1}\right)$ and that $y \in N\left(u_{2}\right)$. Since $x y$ is the only edge of T with exactly one end in $V\left(G_{1}\right)$, every leaf of the double star G_{1} different from x is also a leaf of T, while $\operatorname{deg}_{T}(x)=\operatorname{deg}_{T}(y)=2$. As observed earlier, each vertex of D has a leaf-neighbor in T. In particular, v_{1} has a leaf-neighbor in T, say v_{1}^{\prime}, and u_{2} has a leaf-neighbor in T, say z. Let $T^{\prime}=T-V\left(G_{1}\right)$.

We first show that $\gamma_{t}(T)=\gamma_{t}\left(T^{\prime}\right)+2$. On the one hand, since $D \backslash\left\{u_{1}, v_{1}\right\}$ is a TDS of T^{\prime}, we have that $\gamma_{t}\left(T^{\prime}\right) \leq|D|-2=$ $\gamma_{t}(T)-2$. On the other hand, if D^{\prime} is a $\gamma_{t}\left(T^{\prime}\right)$-set, then $D^{\prime} \cup\left\{u_{1}, v_{1}\right\}$ is a TDS of T, and so $\gamma_{t}(T) \leq\left|D^{\prime}\right|+2=\gamma_{t}\left(T^{\prime}\right)+2$. Consequently, $\gamma_{t}(T)=\gamma_{t}\left(T^{\prime}\right)+2$.

Next we show that $\gamma_{\mathrm{wc}}(T)=\gamma_{\mathrm{wc}}\left(T^{\prime}\right)-3$. Let W be a $\gamma_{\mathrm{wc}}(T)$-set. Since each vertex of D is a support vertex of T, we may choose W so that $D \subseteq W$. In particular, $\left\{u_{1}, u_{2}, v_{1}\right\} \subset W$. But then exactly one vertex of $\{x, y\}$, say r, is in W. It follows that $W \backslash\left\{u_{1}, v_{1}, r\right\}$ is a WCDS of T^{\prime}, and so $\gamma_{\mathrm{wc}}\left(T^{\prime}\right) \leq \gamma_{\mathrm{wc}}(T)-3$. We now consider a $\gamma_{\mathrm{wc}}\left(T^{\prime}\right)$-set, say W^{\prime}. Since u_{2} is a support vertex of T^{\prime}, we may choose W^{\prime} so that $u_{2} \in W$. Hence, $W^{\prime} \cup\left\{u_{1}, v_{1}, x\right\}$ is a WCDS of T, and so $\gamma_{\mathrm{wc}}(T) \leq \gamma_{\mathrm{wc}}\left(T^{\prime}\right)+3$. Consequently, $\gamma_{\mathrm{wc}}(T)=\gamma_{\mathrm{wc}}\left(T^{\prime}\right)-3$.

Thus, $\gamma_{\mathrm{wc}}\left(T^{\prime}\right)=\gamma_{\mathrm{wc}}(T)-3=\left(\frac{3}{2} \gamma_{t}(T)-1\right)-3=\frac{3}{2}\left(\gamma_{t}\left(T^{\prime}\right)+2\right)-4=\frac{3}{2} \gamma_{t}\left(T^{\prime}\right)-1$. Applying the inductive hypothesis to T^{\prime}, we have that $T^{\prime} \in \mathcal{T}$. Hence, $\left(T^{\prime}, S^{\prime}\right) \in \mathcal{L}$ for some labeling S^{\prime}. Since u_{2} is a support vertex of (T^{\prime}, S^{\prime}), exactly one leaf-neighbors of u_{2} in (T^{\prime}, S^{\prime}) has status B and all other leaf-neighbors of u_{2} in (T^{\prime}, S^{\prime}) have status A. Renaming vertices, if necessary, we may assume that the leaf-neighbor z of u_{2} in $\left(T^{\prime}, S^{\prime}\right)$ has status B. Hence the leaf-neighbor y of u_{2} in (T^{\prime}, S^{\prime}) has status A. Now, let $\left(G_{1}, S_{1}\right)$ be a labeled double star with labeling S_{1} obtained from the double star G_{1} by labeling v_{1}^{\prime} with status B. Then, T can be obtained from T^{\prime} by operation \mathcal{O}_{1} by adding $\left(G_{1}, S_{1}\right)$ and joining the vertex y of status A in (T^{\prime}, S^{\prime}) to the vertex x of status A in $\left(G_{1}, S_{1}\right)$, and then relabeling both x and y with status B in the resulting labeled tree while keeping all other labels unchanged. Thus, $T \in \mathcal{T}$.

4. The matching number

In this section, we show that the weakly connected domination number of a connected graph of order at least two is at most the matching number of the graph.

Theorem 8. For every connected graph G of order $n \geq 2, \gamma_{\mathrm{wc}}(G) \leq \alpha^{\prime}(G)$.
Proof. Let $G=(V, E)$. For every matching M in G, we let $U_{M} \subset V$ be the set of vertices not incident with an edge in M. Thus, U_{M} is the set of M-unmatched vertices in G. Among all matchings M in G and among all subsets S of vertices in G, let M and S be chosen so that
(1) M be a maximum matching in G (and so, $\alpha^{\prime}(G)=|M|$).
(2) Subject to (1), $|S|=|M|$ and S contains exactly one vertex incident with each edge of M.
(3) Subject to (2), the number of vertices in U_{M} dominated by S is maximized.
(4) Subject to (3), the component of largest order in G_{S} is maximized.

By the maximality of M, the set U_{M} is an independent set in G. For each vertex $v \in S$, let e_{v} be the edge of M incident with v and let \bar{v} be the other vertex incident with e_{v}, and so e_{v} joins v and \bar{v}. Let \bar{S} be the set of M-matched vertices not in S; that is, $\bar{S}=V \backslash\left(S \cup U_{M}\right)$.

We show first that S dominates V. By construction, S dominates $V \backslash U_{M}$. Assume that there is a vertex $u \in U_{M}$ not dominated by S. Since G is connected, u must then be adjacent to some vertex $\bar{v} \in \bar{S}$. By assumption, u and v are not adjacent. By the maximality of the matching M, the vertex v is not adjacent with any vertex of U_{M}. Thus, $S^{\prime}=(S \backslash\{v\}) \cup\{\bar{v}\}$ satisfies condition (2) but S^{\prime} dominates more vertices in U_{M} than does S, contradicting our choice of S. Hence, S dominates V.

We show next that S is a WCDS of G. Assume, to the contrary, that S is not a WCDS of G. Then, G_{S} contains at least two components. Let G_{1} be a component in G_{S} of largest order. Since G is connected, there must be an edge $a b \in E$ where $a \in V\left(G_{1}\right)$ and $b \in V \backslash V\left(G_{1}\right)$. Let G_{2} be the component of G_{S} containing b. Since G_{1} and G_{2} are distinct components of G_{S}, we note that $\{a, b\} \subseteq V \backslash S$.

Suppose $a \in U_{M}$. Since U_{M} is an independent set in G and $b \in V \backslash S$, we must have that $b \in \bar{S}$. Thus, $b=\bar{v}$ for some vertex $v \in S$. This implies that $v \in V\left(G_{2}\right)$. By the maximality of the matching M, the vertex v is not adjacent with any vertex of $U_{M} \backslash\{a\}$. Since G_{1} and G_{2} are distinct components of G_{S}, the vertices a and v are not adjacent in G. Hence, the vertex v is not adjacent with any vertex of U_{M}. Let $S^{\prime}=(S \backslash\{v\}) \cup\{\bar{v}\}$. Then, S^{\prime} satisfies conditions (2) and (3) but $G_{S^{\prime}}$ contains a component of order strictly larger than G_{1}, contrary to our choice of S. Hence, $a \notin U_{M}$, and so $a \in \bar{S}$.

Suppose $b \in U_{M}$. Since S dominates V, there is a vertex $v \in S$ adjacent to b. This implies that $v \in V\left(G_{2}\right)$. By the maximality of the matching M, the vertex \bar{v} is not adjacent with any vertex of $U_{M} \backslash\{b\}$. Let $M^{\prime}=(M \backslash\{v \bar{v}\}) \cup\{v b\}$; that is, we replace the edge $v \bar{v}$ in M with the edge $v b$. Then, $\left|M^{\prime}\right|=|M|$, and so M^{\prime} is a maximum matching of G. Therefore, M^{\prime} satisfies condition (1). Let $S^{\prime}=S$. Then, S^{\prime} satisfies condition (2) (with respect to the matching M^{\prime}). Since S dominates V, the set S^{\prime} dominates V. Thus, S^{\prime} satisfies condition (3) (with respect to the matching M^{\prime}). Further, G_{1} is a component of $G_{S^{\prime}}$, and so S^{\prime} satisfies condition (4) (with respect to the matching M^{\prime}). Hence, by replacing \bar{v} with b, we may assume that the matching M was chosen so that $b \in \bar{S}$.

Since $\{a, b\} \subseteq \bar{S}$, we have that $a=\bar{u}$ and $b=\bar{v}$ for some vertices $u \in S$ and $v \in S$. Thus, $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$. Let $S^{\prime}=(S \backslash\{v\}) \cup\{\bar{v}\}$. If S^{\prime} is a dominating set of G, then S^{\prime} satisfies conditions (2) and (3) but $G_{S^{\prime}}$ contains a component of order strictly larger than G_{1}, contrary to our choice of S. Hence, S^{\prime} does not dominate V. Thus, there must exist a vertex $x \in U_{M}$ such that $N(x) \cap(S \cup\{\bar{v}\})=\{v\}$. By the maximality of the matching M, the vertex x is not adjacent with any vertex of U_{M}.

Let Z be the set of all vertices of $S \cap V\left(G_{1}\right)$ that are connected to u by an M-alternating path in $G_{1}-\bar{u}$ such that consecutive vertices alternate between $S \cap V\left(G_{1}\right)$ and $\bar{S} \cap V\left(G_{1}\right)$. Then, $u \in Z$. Suppose some vertex $z \in Z$ is adjacent to a vertex $z^{\prime} \in U_{M}$. Let P_{z} be an M-alternating path in $G_{1}-\bar{u}$ from u to z such that consecutive vertices alternate between $S \cap V\left(G_{1}\right)$ and $\bar{S} \cap V\left(G_{1}\right)$. Then the $x-u$ path $x, v, \bar{v}, \bar{u}, u$, followed by the $u-z$ path P_{z} and then the trivial $z-z^{\prime}$ path along the edge $z z^{\prime}$ is an M-augmenting $x-z^{\prime}$ path in G, contradicting the maximality of M. Hence no vertex of Z is adjacent to a vertex of U_{M}.

Let $V_{1}=V\left(G_{1}\right)$, and let $S_{1}=S \cap V_{1}$. Let U_{1} be the set of all vertices of U_{M} dominated by S_{1} and let $W=S_{1} \backslash Z$. Thus, W is the set of all vertices of $S \cap V\left(G_{1}\right)$ not in Z. Let $\bar{Z}=\{\bar{z} \mid z \in Z\}$ and let $\bar{W}=\{\bar{w} \mid w \in W\}$. Note that $V_{1}=W \cup \bar{W} \cup Z \cup \bar{Z} \cup U_{1}$. If there is an edge $z \bar{w}$ joining a vertex $z \in Z$ and a vertex $\bar{w} \in \bar{W}$, then there would be an M-alternating path from w to u in $G_{1}-\bar{u}$, contradicting the fact that $w \in W$. Hence, $[Z, \bar{W}]=\emptyset$; that is, there is no edge joining a vertex in Z and a vertex in \bar{W}. Since every edge in G_{1} is incident with at least one vertex of V_{1}, there is no edge in G_{1} joining a vertex in \bar{Z} and a vertex in \bar{W}. Hence, $[\bar{Z}, \bar{W}]=\emptyset$.

Let $D=(S \backslash Z) \cup \bar{Z}$ and let $D_{1}=D \cap V_{1}$. Thus, $D_{1}=W \cup \bar{Z}$. Let F be the component of G_{D} containing u. Since $\bar{u} \in \bar{Z}$ and $u \bar{u} \in E$, we have that $\bar{u} \in V(F)$. If $z \in Z$ and P_{z} is an M-alternating path from z to u in $G_{1}-\bar{u}$, then the path P_{z} is also a path in F. Hence, $Z \cup \bar{Z} \subseteq V(F)$. Since no vertex of Z is adjacent to a vertex of U_{1}, the set U_{1} is dominated by the set W. Thus, D dominates V. In particular, we note that the set \underline{D} satisfies conditions (2) and (3).

We show now that $V_{1} \subseteq V(F)$. Let $w \in W \cup \bar{W}$. Since G_{1} is connected, there is a path from w to every vertex of $Z \cup \bar{Z}$ in G_{1}. Let z be a vertex in $Z \cup \bar{Z}$ at minimum distance from w in G_{1} and let P_{w} be a shortest $w-z$ path in G_{1}. Let t be the vertex immediately preceding z on P_{w} (possibly, $w=t$). Since there is no edge in G_{1} joining a vertex in $Z \cup \bar{Z}$ and a vertex in \bar{W}, we have that $t \in W$. Since there is no edge in G_{1} with both ends in \bar{W}, every edge of P_{w} is therefore incident with at least one vertex of W. Hence since $Z \cup \bar{Z} \subseteq V(F)$ and since $W \subset D$, the path P_{w} is also a path in F. Thus, $W \cup \bar{W} \subseteq V(F)$. Further since $W \subseteq D$ and $W \subseteq V(F)$, we have that $U_{1} \subset V(F)$. Hence, $V_{1} \subseteq V(F)$.

Since $\bar{u} \in D$ and $\bar{u} \bar{v} \in E$, we have that $\bar{v} \in V(F)$. Hence since $v \in D$ and $\{x, \bar{v}\} \subseteq N(v)$, we have that $\{x, v\} \subset V(F)$. Hence, $V_{1} \cup\{x, v, \bar{v}\} \subseteq V(F)$. Thus, F is a component of G_{D} of order exceeding that of G_{1}, contrary to our choice of S. We deduce, therefore, that S is a WCDS of G. Hence, $\gamma_{\mathrm{wc}}(G) \leq|S|=\alpha^{\prime}(G)$.

Since the matching number α^{\prime} is at most the vertex covering number α, we have the following immediate consequence of Theorem 8.

Corollary 9. For every connected graph G of order $n \geq 2, \gamma_{\mathrm{wc}}(G) \leq \alpha^{\prime}(G) \leq \alpha(G)$.
As a consequence of Theorem 1(b) and Corollary 9 we have that the weakly connected domination of a tree is precisely its matching number.

Corollary 10. For every tree $T, \gamma_{\mathrm{wc}}(T)=\alpha^{\prime}(T)$.

Acknowledgements

The research was supported in part by the South African National Research Foundation and the University of KwaZuluNatal.

References

[1] K.M. Alzoubi, P.-J. Wan, O. Frieder, Weakly-connected dominating sets and sparse spanners in wireless ad hoc networks, in: Proceedings of the 23rd International Conference on Distributed Computing Systems, IEEE Computer Society, 2003, p. 96.
[2] Y.P. Chen, A.L. Liestman, Approximating minimum size weakly connected dominating sets for clustering mobile ad hoc networks, in: Proceedings of the Third ACM International Symposium on Mobile Ad Hoc Networking and Computing, 2002, pp. 165-172.
[3] Y.P. Chen, A.L. Liestman, A zonal algorithm for clustering ad hoc networks, Internat. J. Found. Comput. Sci. 14 (2003) 305-322.
[4] G.S. Domke, J.H. Hattingh, L.R. Markus, On weakly connected domination in graphs II, Discrete Math. 305 (1-3) (2005) 112-122.
[5] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, A. Srinivasan, Fast distributed algorithms for (weakly) connected dominating sets and linear-size skeletons, in: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2003, pp. 717-724.
[6] W. Duckworth, B. Mans, Randomized algorithms for finding small weakly connected dominating sets of regular graphs, in: R. Petreschi, G. Persiano, R. Silvestri (Eds.), Proceedings of the Fifth Conference on Algorithms and Complexity, 2003, pp. 83-95.
[7] W. Duckworth, B. Mans, Connected domination of regular graphs, Discrete Math. 309 (2009) 2305-2322.
[8] J.E. Dunbar, J.W. Grossman, J.H. Hattingh, S.T. Hedetniemi, A. McRae, On weakly connected domination in graphs, Discrete Math. 167-168 (1997) 261-269.
[9] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[10] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, Inc., New York, 1998.
[11] M.A. Henning, Recent results on total domination in graphs: A survey, Discrete Math. 309 (2009) 32-63.
[12] M. Lemańska, Magdalena lower bound on the weakly connected domination number of a tree, Australas. J. Combin. 37 (2007) 67-71.
[13] M. Plummer, Factors and factorization, in: J.L. Gross, J. Yellen (Eds.), Handbook of Graph Theory, CRC Press, 2003, pp. 403-430. ISBN: 1-58488-092-2.
[14] W.R. Pulleyblank, Matchings and extension, in: R.L. Graham, M. Grötschel, L. Lovász (Eds.), Handbook of Combinatorics, Elsevier Science B.V., 1995, pp. 179-232. ISBN: 0-444-82346-8.
[15] L.A. Sanchis, On the number of edges in graphs with a given weakly connected domination number, Discrete Math. 257 (1) (2002) $111-124$.

[^0]: * Corresponding author.

 E-mail addresses: jhhattingh@gsu.edu (J.H. Hattingh), henning@ukzn.ac.za (M.A. Henning).

