16,089 research outputs found

    Weak unit disk and interval representation of graphs

    Full text link
    We study a variant of intersection representations with unit balls: unit disks in the plane and unit intervals on the line. Given a planar graph and a bipartition of the edges of the graph into near and far edges, the goal is to represent the vertices of the graph by unit-size balls so that the balls for two adjacent vertices intersect if and only if the corresponding edge is near. We consider the problem in the plane and prove that it is NP-hard to decide whether such a representation exists for a given edgepartition. On the other hand, we show that series-parallel graphs (which include outerplanar graphs) admit such a representation with unit disks for any near/far bipartition of the edges. The unit-interval on the line variant is equivalent to threshold graph coloring, in which context it is known that there exist girth-3 planar graphs (even outerplanar graphs) that do not admit such coloring. We extend this result to girth-4 planar graphs. On the other hand, we show that all triangle-free outerplanar graphs and all planar graphs with maximum average degree less than 26/11 have such a coloring, via unit-interval intersection representation on the line. This gives a simple proof that all planar graphs with girth at least 13 have a unit-interval intersection representation on the line. © Springer International Publishing Switzerland 2016

    Constant mean curvature surfaces

    Get PDF
    In this article we survey recent developments in the theory of constant mean curvature surfaces in homogeneous 3-manifolds, as well as some related aspects on existence and descriptive results for HH-laminations and CMC foliations of Riemannian nn-manifolds.Comment: 102 pages, 17 figure

    FO Model Checking of Geometric Graphs

    Get PDF
    Over the past two decades the main focus of research into first-order (FO) model checking algorithms has been on sparse relational structures - culminating in the FPT algorithm by Grohe, Kreutzer and Siebertz for FO model checking of nowhere dense classes of graphs. On contrary to that, except the case of locally bounded clique-width only little is currently known about FO model checking of dense classes of graphs or other structures. We study the FO model checking problem for dense graph classes definable by geometric means (intersection and visibility graphs). We obtain new nontrivial FPT results, e.g., for restricted subclasses of circular-arc, circle, box, disk, and polygon-visibility graphs. These results use the FPT algorithm by Gajarsk\'y et al. for FO model checking of posets of bounded width. We also complement the tractability results by related hardness reductions

    Bounded nonvanishing functions and Bateman functions

    Full text link
    We consider the family B-tilde of bounded nonvanishing analytic functions f(z) = a_0 + a_1 z + a_2 z^2 + ... in the unit disk. The coefficient problem had been extensively investigated, and it is known that |a_n| <= 2/e for n=1,2,3, and 4. That this inequality may hold for n in N, is know as the Kry\.z conjecture. It turns out that for f in B-tilde with a_0 = e^-t, f(z) << e^{-t (1+z)/(1-z)} so that the superordinate functions e^{-t (1+z)/(1-z)} = sum F_k(t) z^k are of special interest. The corresponding coefficient function F_k(t) had been independently considered by Bateman [3] who had introduced them with the aid of the integral representation F_k(t) = (-1)^k 2/pi int_0^pi/2 cos(t tan theta - 2 k theta) d theta . We study the Bateman function and formulate properties that give insight in the coefficient problem in B-tilde

    On the Implicit Graph Conjecture

    Get PDF
    The implicit graph conjecture states that every sufficiently small, hereditary graph class has a labeling scheme with a polynomial-time computable label decoder. We approach this conjecture by investigating classes of label decoders defined in terms of complexity classes such as P and EXP. For instance, GP denotes the class of graph classes that have a labeling scheme with a polynomial-time computable label decoder. Until now it was not even known whether GP is a strict subset of GR. We show that this is indeed the case and reveal a strict hierarchy akin to classical complexity. We also show that classes such as GP can be characterized in terms of graph parameters. This could mean that certain algorithmic problems are feasible on every graph class in GP. Lastly, we define a more restrictive class of label decoders using first-order logic that already contains many natural graph classes such as forests and interval graphs. We give an alternative characterization of this class in terms of directed acyclic graphs. By showing that some small, hereditary graph class cannot be expressed with such label decoders a weaker form of the implicit graph conjecture could be disproven.Comment: 13 pages, MFCS 201

    Boundary behaviour of λ\lambda-polyharmonic functions on regular trees

    Full text link
    This paper studies the boundary behaviour of λ\lambda-polyharmonic functions for the simple random walk operator on a regular tree, where λ\lambda is complex and λ>ρ|\lambda|> \rho, the 2\ell^2-spectral radius of the random walk. In particular, subject to normalisation by spherical, resp. polyspherical functions, Dirichlet and Riquier problems at infinity are solved and a non-tangential Fatou theorem is proved

    Diagrammatics for Coxeter groups and their braid groups

    Full text link
    We give a monoidal presentation of Coxeter and braid 2-groups, in terms of decorated planar graphs. This presentation extends the Coxeter presentation. We deduce a simple criterion for a Coxeter group or braid group to act on a category.Comment: Many figures, best viewed in color. Minor updates. This version agrees with the published versio

    The Ising Partition Function: Zeros and Deterministic Approximation

    Full text link
    We study the problem of approximating the partition function of the ferromagnetic Ising model in graphs and hypergraphs. Our first result is a deterministic approximation scheme (an FPTAS) for the partition function in bounded degree graphs that is valid over the entire range of parameters β\beta (the interaction) and λ\lambda (the external field), except for the case λ=1\vert{\lambda}\vert=1 (the "zero-field" case). A randomized algorithm (FPRAS) for all graphs, and all β,λ\beta,\lambda, has long been known. Unlike most other deterministic approximation algorithms for problems in statistical physics and counting, our algorithm does not rely on the "decay of correlations" property. Rather, we exploit and extend machinery developed recently by Barvinok, and Patel and Regts, based on the location of the complex zeros of the partition function, which can be seen as an algorithmic realization of the classical Lee-Yang approach to phase transitions. Our approach extends to the more general setting of the Ising model on hypergraphs of bounded degree and edge size, where no previous algorithms (even randomized) were known for a wide range of parameters. In order to achieve this extension, we establish a tight version of the Lee-Yang theorem for the Ising model on hypergraphs, improving a classical result of Suzuki and Fisher.Comment: clarified presentation of combinatorial arguments, added new results on optimality of univariate Lee-Yang theorem
    corecore