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Abstract
Over the past two decades the main focus of research into first-order (FO) model checking al-
gorithms has been on sparse relational structures – culminating in the FPT algorithm by Grohe,
Kreutzer and Siebertz for FO model checking of nowhere dense classes of graphs. On contrary
to that, except the case of locally bounded clique-width only little is currently known about FO
model checking of dense classes of graphs or other structures. We study the FO model checking
problem for dense graph classes definable by geometric means (intersection and visibility graphs).
We obtain new nontrivial FPT results, e.g., for restricted subclasses of circular-arc, circle, box,
disk, and polygon-visibility graphs. These results use the FPT algorithm by Gajarský et al. for
FO model checking of posets of bounded width. We also complement the tractability results by
related hardness reductions.
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1 Introduction

Algorithmic meta-theorems are results stating that all problems expressible in a certain
language are efficiently solvable on certain classes of structures, e.g. of finite graphs. Note
that the model checking problem for first-order logic – given a graph G and an FO formula
φ, we want to decide whether G satisfies φ (written as G |= φ) – is trivially solvable in
time |V (G)|O(|φ|). “Efficient solvability” hence in this context often means fixed-parameter
tractability (FPT); that is, solvability in time f(|φ|) · |V (G)|O(1) for some computable
function f .

In the past two decades algorithmic meta-theorems for FO logic on sparse graph classes
received considerable attention. While the algorithm of [5] for MSO on graphs of bounded
clique-width implies fixed-parameter tractability of FO model checking on graphs of locally
bounded clique-width via Gaifman’s locality, one could go far beyond that. After the
result of Seese [26] proving fixed-parameter tractability of FO model checking on graphs of
bounded degree there followed a series of results [6, 10,12] establishing the same conclusion
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19:2 FO Model Checking of Geometric Graphs

for increasingly rich sparse graph classes. This line of research culminated in the result of
Grohe, Kreutzer and Siebertz [20], who proved that FO model checking is FPT on nowhere
dense graph classes.

While the result of [20] is the best possible in the following sense – if a graph class
D is monotone (closed on taking subgraphs) and not nowhere dense, then the FO model
checking problem on D is as hard as that on all graphs; this does not exclude interesting
FPT meta-theorems on somewhere dense non-monotone graph classes. Probably the first
extensive work of the latter dense kind, beyond locally bounded clique-width, was that of
Ganian et al. [16] studying subclasses of interval graphs for which FO model checking is
FPT (when only bounded number of interval lengths is used). Another approach has been
taken in the works of Bova, Ganian and Szeider [3] and Gajarský et al. [13], which studied
FO model checking on posets – posets can be seen as typically quite dense special digraphs.
Altogether, however, only very little is known about FO model checking of somewhere dense
graph classes (except perhaps specialised [15]).

The result of Gajarský et al. [13] claims that FO model checking is FPT on posets of
bounded width (size of a maximum antichain), and it happens to imply [16] in a stronger
setting (see below). One remarkable message of [13] is the following (citation): The result may
also be used directly towards establishing fixed-parameter tractability for FO model checking
of other graph classes. Given the ease with which it ( [13] ) implies the otherwise non-trivial
result on interval graphs [16], it is natural to ask what other (dense) graph classes can be
interpreted in posets of bounded width. Inspired by the geometric case of interval graphs, we
propose to study dense graph classes defined in geometric terms, such as intersection and
visibility graphs, with respect to tractability of their FO model checking problem.

The motivation for such study is a two-fold. First, intersection and visibility graphs
present natural examples of non-monotone somewhere dense graph classes to which the great
“sparse” FO tractability result of [20] cannot be (at least not easily) applied. Second, their
supplementary geometric structure allows to better understand (as we have seen already
in [16]) the boundaries of tractability of FO model checking on them, which is, to current
knowledge, terra incognita for hereditary graph classes in general.

Our results mainly concern graph classes which are related to interval graphs. Namely,
we prove (Theorem 3.1) that FO model checking is FPT on circular-arc graphs (these are
interval graphs on a circle) if there is no long chain of arcs nested by inclusion. This directly
extends the result of [16] and its aforementioned strengthening in [13] (with bounding chains
of nested intervals instead of their lengths). We similarly show tractability of FO model
checking of interval-overlap graphs, also known as circle graphs, of bounded independent
set size (Theorem 4.1), and of restricted subclasses of box and disk graphs which naturally
generalize interval graphs to two dimensions (Theorem 5.1).

On the other hand, for all of the studied cases we also show that whenever we relax our
additional restrictions (parameters), the FO model checking problem becomes as hard on
our intersection classes as on all graphs (Corollary 6.2). Some of our hardness claims hold
also for the weaker ∃FO model checking problem (Proposition 6.3).

Another well studied dense graph class in computational geometry are visibility graphs of
polygons, which have been largely explored in the context of recognition, partition, guarding
and other optimization problems [17,25]. We consider some established special cases, involving
weak visibility, terrain and fan polygons. We prove that FO model checking is FPT for the
visibility graphs of a weak visibility polygon of a convex edge, with bounded number of reflex
(non-convex) vertices (Theorem 7.2). On the other hand, without bounding reflex vertices,
FO model checking remains hard even for the much more special case of polygons that are
terrain and convex fans at the same time (Theorem 7.1).
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As noted above, our fixed-parameter tractability proofs use the strong result [13] on FO
model checking of posets of bounded width. We refer to Section 2 for a detailed explanation
of the technical terms used here. Briefly, for a given graph G from the respective class and a
formula φ, we show how to efficiently construct a poset PG of bounded width and a related
FO formula φI such that G |= φ iff PG |= φI , and then solve the latter problem.

With respect to the previously known results, we remark that our graph classes are not
sparse, as they all contain large complete or complete bipartite subgraphs. For some of them,
namely unit circular-arc graphs, circle graphs of bounded independence number, and box
graphs (with parameter k = 2 as in Theorem 5.1), it can be shown that they are of locally
unbounded clique-width by an adaptation of the corresponding argument from [16].

Lastly, we particularly emphasize the seemingly simple tractable case (Corollary 4.2) of
permutation graphs of bounded clique size: in relation to so-called stability notion (cf. [1]),
already the hereditary class of triangle-free permutation graphs has the n-order property (i.e.,
is not stable), and yet FO model checking of this class is FPT. This example presents a natural
hereditary and non-stable graph class with FPT FO model checking other than, say, graphs
of bounded clique-width. We suggest that if we could fully understand the precise breaking
point(s) of FP tractability of FO model checking on simply described intersection classes like
the permutation graphs, then we would get much better insight into FP tractability of FO
model checking of general hereditary graph classes.

Due to space restrictions, most of the proofs and some illustrating pictures have had to
be removed from this short paper. The statements with removed proofs are marked by *
and they can be found, for example, in the arXiv version.

2 Preliminaries

Graphs and intersection graphs. We work with finite simple undirected graphs and use
standard graph theoretic notation. We refer to the vertex set of a graph G as to V (G) and
to its edge set as to E(G), and we write shortly uv for an edge {u, v}. As it is common in
the context of FO logic on graphs, vertices of our graphs can carry arbitrary labels.

Considering a family of sets S (in our case, of geometric objects in the plane), the
intersection graph of S is the simple graph G defined by V (G) := S and E(G) := {AB :
A,B ∈ S, A ∩ B 6= ∅}. In respect of algorithmic questions, it is important to distinguish
whether an intersection graph G is given on the input as an abstract graph G, or alongside
with its intersection representation S.

One folklore example of a widely studied intersection graph class are interval graphs – the
intersection graphs of intervals on the real line. Interval graphs enjoy many nice algorithmic
properties, e.g., their representation can be constructed quickly, and generally hard problems
like clique, independent set and chromatic number are solvable in polynomial time for them.

For a general overview and extensive reference guide of intersection graph classes we
suggest to consult the online system ISGCI [7].

FO logic. The first-order logic of graphs (abbreviated as FO) applies the standard language
of first-order logic to a graph G viewed as a relational structure with the domain V (G)
and the single binary (symmetric) relation E(G). That is, in graph FO we have got the
standard predicate x = y, a binary predicate edge(x, y) with the usual meaning xy ∈ E(G),
an arbitrary number of unary predicates L(x) with the meaning that x holds the label L,
usual logical connectives ∧,∨,→, and quantifiers ∀x, ∃x over the vertex set V (G).

IPEC 2017
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For example, φ(x, y) ≡ ∃z
(
edge(x, z) ∧ edge(y, z) ∧ red(z)

)
states that the vertices x, y

have a common neighbour in G which has got label ‘red’. One can straightforwardly express in
FO properties such as k-clique ∃x1, . . . , xk

(∧k
i<j=1(edge(xi, xj)∧xi 6= xj)

)
and k-dominating

set ∃x1, . . . , xk∀y
(∨k

i=1(edge(xi, y) ∨ y = xi)
)
. Specially, an FO formula φ is existential

(abbreviated as ∃FO) if it can be written as φ ≡ ∃x1, . . . , xk ψ where ψ is quantifier-free. For
example, k-clique is ∃FO while k-dominating set is not.

Likewise, FO logic of posets treats a poset P = (P,v) as a finite relational structure
with the domain P and the (antisymmetric) binary predicate x v y (instead of the predicate
edge) with the usual meaning. Again, posets can be arbitrarily labelled by unary predicates.

Parameterized model checking. Instances of a parameterized problem can be considered
as pairs 〈I, k〉 where I is the main part of the instance and k is the parameter of the instance;
the latter is usually a non-negative integer. A parameterized problem is fixed-parameter
tractable (FPT) if instances 〈I, k〉 of size n can be solved in time O(f(k) · nc) where f is a
computable function and c is a constant independent of k. In parameterized model checking,
instances are considered in the form 〈(G,φ), |φ|〉 where G is a structure, φ a formula, the
question is whether G |= φ and the parameter is the size of φ.

When speaking about the FO model checking problem in this paper, we always implicitly
consider the formula φ (precisely its size) as a parameter. We shall use the following result:

I Theorem 2.1 ( [13]). The FO model checking problem of (arbitrarily labelled) posets, i.e.,
deciding whether P |= φ for a labelled poset P and FO φ, is fixed-parameter tractable with
respect to |φ| and the width of P (this is the size of the largest antichain in P).

We also present, for further illustration, a result on FO model checking of interval graphs
with bounded nesting. A set A of intervals (interval representation) is called proper if there
is no pair of intervals in A such that one is contained in the other. We call A a k-fold proper
set of intervals if there exists a partition A = A1 ∪ · · · ∪ Ak such that each Aj is a proper
interval set for j = 1, . . . , k. Clearly, A is k-fold proper if and only if there is no chain of
k+ 1 inclusion-nested intervals in A. From Theorem 2.1 one can, with help of relatively easy
arguments (Lemma 3.2), derive the following:

I Theorem 2.2 ( [13], cf. Proposition 2.4 and Lemma 3.2). Let G be an interval graph given
alongside with its k-fold proper interval representation A. Then FO model checking of G is
FPT with respect to the parameters k and the formula size.

Parameterized hardness. For some parameterized problems, like the k-clique on all graphs,
we do not have nor expect any FPT algorithm. To this end, the theory of parameterized
complexity of Downey and Fellows [8] defines complexity classes W [t], t ≥ 1, such that the
k-clique problem is complete for W [1] (the least class). Furthermore, theory also defines a
larger complexity class AW [∗] containing all of W [t]. Problems that are W [1]-hard do not
admit an FPT algorithm unless the established Exponential Time Hypothesis fails.

I Theorem 2.3 ( [9]). The FO model checking problem (where the formula size is the
parameter) of all simple graphs is AW [∗]-complete.

Dealing with parameterized hardness of FO model checking, one should also mention
the related induced subgraph isomorphism problem: for a given input graph G, and a graph
H as the parameter, decide whether G has an induced subgraph isomorphic to H. Note
that this includes the clique and independent set problems. Induced subgraph isomorphism
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(parameterized by the subgraph size) is clearly a weaker problem than parameterized FO
model checking, since one may “guess” the subgraph with |V (H)| existential quantifiers and
then verify it edge by edge. Consequently, every parameterized hardness result for induced
subgraph isomorphism readily implies same hardness results for ∃FO and FO model checking.

FO interpretations. Interpretations are a standard tool of logic and finite model theory.
To keep our paper short, we present here only a simplified description of them, tailored
specifically to our need of interpreting geometric graphs in posets.

An FO interpretation is a pair I = (ν, ψ) of poset FO formulas ν(x) and ψ(x, y) (of one
and two free variables, respectively). For a poset P , this defines a graph G := I(P) such that
V (G) = {v : P |= ν(v)} and E(G) = {uv : u, v ∈ V (G), P |= ψ(u, v) ∨ ψ(v, u)}. Possible
labels of the elements are naturally inherited from P to G. Moreover, for a graph FO formula
φ the interpretation I defines a poset FO formula φI recursively as follows: every occurrence
of edge(x, y) is replaced by ψ(x, y)∨ψ(y, x), every ∃xσ is replaced by ∃x (ν(x)∧σ) and ∀xσ
by ∀x (ν(x)→ σ). Then, obviously, P |= φI ⇐⇒ G |= φ.

Usefulness of the concept is illustrated by the following trivial claim:

I Proposition 2.4.* Let P be a class of posets such that the FO model checking problem of
P is FPT, and let G be a class of graphs. Assume there is a computable FO interpretation I,
and for every graph G ∈ G we can in polynomial time compute a poset P ∈ P such that
G = I(P). Then the FO model checking problem of G is in FPT.

3 Circular-arc Graphs

Circular-arc graphs are intersection graphs of arcs (curved intervals) on a circle. They clearly
form a superclass of interval graphs, and they enjoy similar nice algorithmic properties as
interval graphs, such as efficient construction of the representation [24], and easy computation
of, say, maximum independent set or clique.

Since the FO model checking problem is AW [∗]-complete on interval graphs [16], the
same holds for circular-arc graphs in general. Furthermore, by [21,23] already ∃FO model
checking is W [1]-hard for interval and circular-arc graphs. A common feature of these
hardness reductions (see more discussion in Section 6) is their use of unlimited chains of
nested intervals/arcs. Analogously to Theorem 2.2, we prove that considering only k-fold
proper circular-arc representations (the definition is the same as for k-fold proper interval
representations) makes FO model checking of circular-arc graphs tractable.

I Theorem 3.1. Let G be a circular-arc graph given alongside with its k-fold proper circular-
arc representation A. Then FO model checking of G is FPT with respect to the parameters k
and the formula size.

Note that we can (at least partially) avoid the assumption of having a representation A
in the following sense. Given an input graph G, we compute a circular-arc representation A
using [24], and then we easily determine the least k′ such that A is k′-fold proper. However,
without further considerations, this is not guaranteed to provide the minimum k over all
circular-arc representations of G, and not even k′ bounded in terms of the minimum k.

Our proof will be based on the following extension of the related argument from [13]:

I Lemma 3.2 (parts from [13, Section 5]).* Let B be a k-fold proper set of intervals for some
integer k > 0, such that no two intervals of B share an endpoint. There exist formulas ν, ψ, ϑ
depending on k, and a labelled poset P of width k + 1 computable in polynomial time from B,
such that all the following hold:

IPEC 2017
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0

Figure 1 An illustration; a proper circular-arc representation A (ordinary black and thick blue
arcs), giving raise to a 2-fold proper interval set B (ordinary black and dashed red arcs), as in the
proof of Theorem 3.1. The red arcs are complements of the corresponding blue arcs.

The domain of P includes (the intervals from) B, and P |= ν(x) iff x ∈ B,
P |= ψ(x, y) for intervals x, y ∈ B iff x ∩ y 6= ∅ (edge relation of the interval graph of B),
P |= ϑ(x, y) for intervals x, y ∈ B iff x ⊆ y (containment of intervals).

Proof of Theorem 3.1. We consider each arc of A in angular coordinates as [α, β] clockwise,
where α, β ∈ [0, 2π). By standard arguments (a “small perturbation”), we can assume that
no two arcs share the same endpoint, and no arc starts or ends in (the angle) 0. Let A0 ⊆ A
denote the subset of arcs containing 0. Note that for every arc [α, β] ∈ A0 we have α > β,
and we subsequently define A1 :=

{
[β, α] : [α, β] ∈ A0

}
as the set of their “complementary”

arcs avoiding 0. For a ∈ A0 we shortly denote by ā ∈ A1 its complementary arc.
Now, the set B := (A \ A0) ∪ A1 is an ordinary interval representation contained in the

open line segment (0, 2π). See Figure 1. Since each of A \A0 and A1 is k-fold proper by the
assumption on A, the representation B is 2k-fold proper. Note the following facts; every two
intervals in A0 intersect, and an interval a ∈ A0 intersects b ∈ A \ A0 iff b 6⊂ ā.

We now apply Lemma 3.2 to the set B, constructing a (labelled) poset P of width at
most 2k+1. We also add a new label red to the elements of P which represent the arcs in A1.
The final step will give a definition of an FO interpretation I = (ν, ψ1) such that I(P) will
be isomorphic to the intersection graph G of A. Using the formulas ψ, ϑ from Lemma 3.2,
the latter is also quite easy. As mentioned above, intersecting pairs of intervals from A can
be described using intersection and containment of the corresponding intervals of B:

ψ1(x, y) ≡
(
red(x)∧ red(y)

)
∨
(
¬red(x)∧¬red(y)∧ψ(x, y)

)
∨
(
red(x)∧¬red(y)∧¬ϑ(y, x)

)
It is routine to verify that, indeed, G ' I(P) (using the obvious bijection of A0 to A1).

We then finish simply by Theorem 2.1 and Proposition 2.4. J

4 Circle graphs

Another graph class closely related to interval graphs are circle graphs, also known as interval
overlap graphs. These are intersection graphs of chords of a circle, and they can equivalently
be characterised as having an overlap interval representation C such that a, b ∈ C form an
edge, if and only if a ∩ b 6= ∅ but neither a ⊆ b nor b ⊆ a hold (see Figure 2). A circle
representation of a circle graph can be efficiently constructed [2].

Related permutation graphs are defined as intersection graphs of line segments with the
ends on two parallel lines, and they form a complementation-closed subclass of circle graphs.
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Figure 2 “Opening” a circle representation (left; an intersecting system of chords of a circle) into
an overlap representation (right; the depicted arcs to be flattened into intervals on the line).

Note another easy characterization: let G be a graph and G1 be obtained by adding one
vertex adjacent to all vertices of G; then G is a permutation graph if and only if G1 is a circle
graph. We will see in Section 6 that the ∃FO model checking problem is W [1]-hard for circle
graphs, and the FO model checking problem is AW [∗]-complete already for permutation
graphs. However, there is also a positive result using a natural additional parameterization.
The proof of it uses arguments similar to those of Theorem 3.1.

I Theorem 4.1.* The FO model checking problem of circle graphs is FPT with respect to
the formula and the maximum independent set size.

An interesting question is whether ‘independent set size’ in Theorem 4.1 can also be
replaced with ‘clique size’. We think the right answer is ‘yes’, but we have not yet found the
algorithm. At least, the answer is positive for the subclass of permutation graphs:

I Corollary 4.2.* The FO model checking problem of permutation graphs is FPT with respect
to the formula size, and either the maximum clique or the maximum independent set size.

I Corollary 4.3.* The subgraph isomorphism (not induced) problem of permutation graphs
is FPT with respect to the subgraph size.

5 Box and Disk graphs

Box (intersection) graphs are graphs having an intersection representation by rectangles in
the plane, such that each rectangle (box) has its sides parallel to the x- and y-axes. The
recognition problem of box graphs is NP-hard [28], and so it is essential that the input of
our algorithm would consist of a box representation. Unit-box graphs are those having a
representation by unit boxes.

The ∃FO model checking problem is W [1]-hard already for unit-box graphs [22], and we
will furthermore show that it stays hard if we restrict the representation to a small area in
Proposition 6.3. Here we give the following slight extension of Theorem 2.2:

I Theorem 5.1.* Let G be a box intersection graph given alongside with its box representation
B such that the following holds: the projection of B to the x-axis is a k-fold proper set of
intervals, and the projection of B to the y-axis consists of at most k distinct intervals. Then
FO model checking of G is FPT with respect to the parameters k and the formula size.

IPEC 2017
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Figure 3 Constructing witnesses of the consecutive neighbourhood representation property – as
permutation graphs (left) and as unit-box graphs (right); cf. Corollary 6.2.

Furthermore, disk graphs are those having an intersection representation by disks in the
plane. Their recognition problem is NP-hard already with unit disks [4], and the ∃FO model
checking problem is W [1]-hard again for unit-disk graphs by [22]. Similarly to Theorem 5.1,
we have identified a tractable case of FO model checking of unit-disk graph, based on
restricting the y-coordinates of the disks. Due to space restrictions, we leave this case only
for the full paper.

6 Hardness for intersection classes

Our aim is to provide a generic reduction for proving hardness of FO model checking (even
without labels on vertices) using only a simple property which is easy to establish for many
geometric intersection graph classes. We will then use it to derive hardness of FO for quite
restricted forms of intersection representations studied in our paper (Corollary 6.2).

We say that a graph G represents consecutive neighbourhoods of order `, if there exists a
sequence S = (v1, v2, . . . , v`) ⊆ V (G) of distinct vertices of G and a set R ⊆ V (G), R∩S = ∅,
such that for each pair i, j, 1 ≤ i < j ≤ `, there is a vertex w ∈ R whose neighbours in S are
precisely the vertices vi, vi+1 . . . , vj . (Possible edges other than those between R and S do
not matter.) A graph class G has the consecutive neighbourhood representation property if,
for every integer ` > 0, there exists an efficiently computable graph G ∈ G such that G or its
complement G represents consecutive neighbourhoods of order `.

Note that our notion of ‘representing consecutive neighbourhoods’ is related to the
concepts of “n-order property” and “stability” from model theory (mentioned in Section 1).
This is not a random coincidence, as it is known [1] that on monotone graph classes stability
coincides with nowhere dense (which is the most general characterization allowing for FPT
FO model checking on monotone classes). In our approach, we stress easy applicability of
this notion to a wide range of geometric intersection graphs and, to certain extent, to ∃FO
model checking.

The main result is as follows. A duplication of a vertex v in G is the operation of adding
a true twin v′ to v, i.e., new v′ adjacent to v and precisely to the neighbours of v in G.

I Theorem 6.1.* Let G be a class of unlabelled graphs having the consecutive neighbourhood
representation property, and G be closed on induced subgraphs and duplication of vertices.
Then the FO model checking of G is AW [∗]-complete with respect to the formula size.

Graphs witnessing the consecutive neighbourhood representation property can be easily
constructed within our intersection classes, even with strong further restrictions. See some
illustrating examples in Figure 3. So, we obtain the following hardness results:
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I Corollary 6.2. * The FO model checking problem is AW [∗]-complete with respect to the
formula size, for each of the following geometric graph classes (all unlabelled):
(a) circular-arc graphs with a representation consisting or arcs of lengths from [π − ε, π + ε]

on the circle of diameter 1, for any fixed ε > 0,
(b) connected permutation graphs,
(c) unit-box graphs with a representation contained within a square of side length 2 + ε, for

any fixed ε > 0,
(d) unit-disk graphs (that is of diameter 1) with a representation contained within a rectangle

of sides 1 + ε and 2, for any fixed ε > 0.

It is worthwhile to notice that for each of the classes listed in Corollary 6.2, the k-clique
and k-independent set problems are all easily FPT, and yet FO model checking is not.

Finally, we return to the weaker ∃FO model checking problem. In fact, this problem can
be treated “the same” as the aforementioned parameterized induced subgraph isomorphism
problem: precisely, one of them admits an FPT algorithm on any given (unlabelled) graph
class if and only if the other does so.

The hardness construction in the proof of Theorem 6.1 can be turned into ∃FO, but
only if vertex labels are allowed. Though, we can modify some of the constructions from
Corollary 6.2 to capture also ∃FO without labels.

I Proposition 6.3. * The ∃FO model checking problem is W [1]-hard with respect to the
formula size, for both the following unlabelled geometric graph classes:
(a) circle graphs,
(b) unit-box graphs with a representation contained within a square of side length 3.

One complexity question that remains open after Proposition 6.3 is about ∃FO on
unlabelled permutation graphs (for labelled ones, this is W [1]-hard by the remark after
Corollary 6.2). While induced subgraph isomorphism is generally NP-hard on permutation
graphs by [21], we are not aware of results on the parameterized version, and we currently
have no plausible conjecture about its parameterized complexity.

7 Polygonal visibility graphs

Given a polygon W in the plane, two vertices pi and pj of W are said to be mutually visible
if the line segment pipj does not intersect the exterior of W . The visibility graph G of W is
defined to have vertices vi corresponding to each vertex pi of W , and edge (vi, vj) if and only
if pi and pj are mutually visible. Our aim is to study the visibility graphs of some special
established classes of polygons with respect to FO model checking.

If there is an edge e of the polygon W , such that for any point p of W , there is a point
on e that sees p, then W is called a weak visibility polygon, and e is called a weak visibility
edge of W (Figure 4a) [17, 18]. A vertex vi of W is called a reflex vertex if the interior angle
of W formed at vi by the two edges of W incident to vi is more than π. Otherwise, vi is
called a convex vertex. If both of the end vertices of an edge of W are convex vertices, then
the edge is called a convex edge.

If the boundary of W consists only of an x-monotone polygonal arc touching the x-axis
at its two extreme points, and an edge contained in the x-axis joining the two points, then it
is called a terrain (Figure 4b) [11, 17]. All terrains are weak visibility polygons with respect
to their edge that lies on the x-axis. If all points of a W are visible from a single vertex v
of the polygon, then W is called a fan (Figure 4c) [17,19]. If W is a fan with respect to a
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vvu vu

Figure 4 From left to right: (a) a weak visibility polygon with respect to edge uv; (b) a terrain;
(c) a convex fan visible from the vertex v.

convex vertex v, then W is called a convex fan [25]. If W is a convex fan with respect to a
vertex v, then both of the edges of W incident to v are convex edges, and W is also a weak
visibility polygon with respect to any of them.

In this section we identify some interesting tractable and hard cases of the FO model
checking problem on these visibility classes.

We first argue that the FO model checking problem of polygon visibility graphs stays
hard even when the polygon is a terrain and a convex fan. Our approach is very similar to
that in Theorem 6.1 above, that is, we show that a given FO model checking instance of
general graphs can be interpreted in another instance of the visibility graph of a specially
constructed polygon which is a terrain and a convex fan at the same time.

I Theorem 7.1. * The FO model checking problem of unlabelled polygon visibility graphs
(given alongside with the representing polygon) is AW [∗]-complete with respect to the formula
size, even when the polygon is a terrain and a convex fan at the same time.

Second, we prove that FO model checking of the visibility graph of a given weak visibility
polygon of a convex edge is FPT when additionally parameterized by the number of reflex
vertices. We remark that, for example, the independent set problem is NP-hard on polygonal
visibility graphs [27], but Ghosh et al. [18] showed that the maximum independent set of
the visibility graph of a given weak visibility polygon of a convex edge, is computable in
quadratic time. In Theorem 7.1, we have seen that the latter result does not generalise
to arbitrary FO properties, since FO model checking remains hard even for a very special
subcase of weak visibility polygons. So, an additional parameterization is necessary.

I Theorem 7.2.* Let W be a given polygon weakly visible from one of its convex edges, with
k reflex vertices, and let G be the visibility graph of W . Then FO model checking of G is
FPT with respect to the parameters k and the formula size.

While we cannot fit the whole algorithm in the short paper, we at least give an informal
overview of how the algorithm works. As in the previous intersection graph cases, our aim is
to construct, from given W , a poset P such that the width of P is bounded by a function
of k and that we have an FO interpretation of the visibility graph of W in this P.

LetW be weakly visible from its convex edge uv, and denote by Cuv the clockwise sequence
of the vertices of W from u to v. The subsequence of Cuv between two reflex vertices va and
vb, such that all vertices in it are convex, is called an ear of W . The length of this sequence
can be 0 as well. Additionally, the first (last) ear of W is defined as the subsequence between
u and the first reflex vertex of Cuv (between the last reflex vertex and v, respectively). We
have got k + 1 ears in W . With a slight abuse of terminology at u, v, we may simply say
that an ear is a sequence of convex vertices between two reflex vertices.

The crucial idea of our construction of the poset P (which contains all vertices of W , in
particular) is that the visibility edges between the internal (convex) vertices of the ears are
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nicely structured: withing one ear Ea, they form a clique, and between two ears Ea, Eb, the
visibility edges exhibit a “shifting pattern” not much different from the left and right ends of
intervals in a proper interval representation (cf. Lemma 3.2). Consequently, we may “encode”
all the edges between Ea and Eb with help of an extra subposet of P of fixed width, and
since we have got only k + 1 ears, this together gives a poset of width bounded in k.

The last step concerns visibility edges incident with one of the k reflex vertices or u, v.
These can be easily encoded in P with only 2(k+2) additional labels, without any assumption
on the structure of P: for each reflex vertex x of Cuv, or x ∈ {u, v}, we assign one new
label L0

x to x itself and another new label L1
x to all the neighbours of x. Altogether, we can

efficiently construct an FO interpretation of G in P such that the formulas depend only on k.
Then we may finish by Theorem 2.1.

8 Conclusions

We have identified several FP tractable cases of the FO model checking problem of geometric
graphs, and complemented these by hardness results showing quite strict limits of FP
tractability on the studied classes. Overall, this presents a nontrivial new contribution
towards understanding on which (hereditary) dense graph classes can FO model checking be
FPT.

All our tractability results rely on the FO model checking algorithm of [13], which is
mainly of theoretical interest. However, in some cases one can employ, in the same way, the
simple and practical ∃FO model checking algorithm of [14]. We would also like to mention
the possibility of enhancing the result of [13] via interpreting posets in posets. While this
might seem impossible, we actually have one positive indication of such an enhancement.
It is known that interval graphs are C4-free complements of comparability graphs (i.e., of
posets) – the width of which is the maximum clique size of the original interval graph. Then,
among k-fold proper interval graphs there are ones of unbounded clique size, which have FPT
FO model checking by Theorem 2.2. This opens a promising possibility of an FP tractable
subcase of FO model checking of posets of unbounded width, for future research.

Finally, we list two concrete open problems related to our results. We conjecture that
FO model checking is FPT for

circle graphs additionally parameterized by the maximum clique size,
visibility graphs of weak visibility polygons additionally parameterized by the maximum
independent set size.
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