8 research outputs found

    Virtual simulation of the postsurgical cosmetic outcome in patients with pectus excavatum

    Get PDF
    Pectus excavatum is the most common congenital deformity of the anterior chest wall, in which several ribs and the sternum grow abnormally. Nowadays, the surgical correction is carried out in children and adults through Nuss technic. This technic has been shown to be safe with major drivers as cosmesis and the prevention of psychological problems and social stress. Nowadays, no application is known to predict the cosmetic outcome of the pectus excavatum surgical correction. Such tool could be used to help the surgeon and the patient in the moment of deciding the need for surgery correction. This work is a first step to predict postsurgical outcome in pectus excavatum surgery correction. Facing this goal, it was firstly determined a point cloud of the skin surface along the thoracic wall using Computed Tomography (before surgical correction) and the Polhemus FastSCAN (after the surgical correction). Then, a surface mesh was reconstructed from the two point clouds using a Radial Basis Function algorithm for further affine registration between the meshes. After registration, one studied the surgical correction influence area (SCIA) of the thoracic wall. This SCIA was used to train, test and validate artificial neural networks in order to predict the surgical outcome of pectus excavatum correction and to determine the degree of convergence of SCIA in different patients. Often, ANN did not converge to a satisfactory solution (each patient had its own deformity characteristics), thus invalidating the creation of a mathematical model capable of estimating, with satisfactory results, the postsurgical outcome.Fundação para a Ciência e a Tecnologia, Portugal (FCT) through the Postdoc grant referenced SFRH/BPD/46851/2008 and R&D project referenced PTDC/SAU-BEB/103368/2008

    Designing and Implementing an ANFIS Based Medical Decision Support System to Predict Chronic Kidney Disease Progression

    Get PDF
    Background and objective: Chronic kidney disease (CKD) has a covert nature in its early stages that could postpone its diagnosis. Early diagnosis can reduce or prevent the progression of renal damage. The present study introduces an expert medical decision support system (MDSS) based on adaptive neuro-fuzzy inference system (ANFIS) to predict the timeframe of renal failure.Methods: The core system of the MDSS is a Takagi-Sugeno type ANFIS model that predicts the glomerular filtration rate (GFR) values as the biological marker of the renal failure. The model uses 10-year clinical records of newly diagnosed CKD patients and considers the threshold value of 15 cc/kg/min/1.73 m2 of GFR as the marker of renal failure. Following the evaluation of 10 variables, the ANFIS model uses the weight, diastolic blood pressure, and diabetes mellitus as underlying disease, and current GFR(t) as the inputs of the predicting model to predict the GFR values at future intervals. Then, a user-friendly graphical user interface of the model was built in MATLAB, in which the user can enter the physiological parameters obtained from patient recordings to determine the renal failure time as the output.Results: Assessing the performance of the MDSS against the real data of male and female CKD patients showed that this decision support model could accurately estimate GFR variations in all sequential periods of 6, 12, and 18 months, with a normalized mean absolute error lower than 5%. Despite the high uncertainties of the human body and the dynamic nature of CKD progression, our model can accurately predict the GFR variations at long future periods.Conclusions: The MDSS GUI could be useful in medical centers and used by experts to predict renal failure progression and, through taking effective actions, CKD can be prevented or effectively delayed

    Information Systems and Health Care-VI: Medical Nomograms with Decision Support Systems: A Case Study and an Enhanced Architecture

    Get PDF
    Nomograms are used extensively in medical practice as decision aids to adjust treatment protocols based on knowledge gained from previous outcomes. In this paper, we describe a case study of a surgical nomogram system that was developed for estimating laser settings in refractive eye surgery. This system was developed in Microsoft Access with add-ins from Total Access Statistics. It is being used in one of the authors\u27 surgical practice. Based on experiences with the system, we present an enhanced architecture for a nomogram server that can be used in other areas of medicine

    Open electronics for medical devices: State-of-art and unique advantages

    Get PDF
    A wide range of medical devices have significant electronic components. Compared to open-source medical software, open (and open-source) electronic hardware has been less published in peer-reviewed literature. In this review, we explore the developments, significance, and advantages of using open platform electronic hardware for medical devices. Open hardware electronics platforms offer not just shorter development times, reduced costs, and customization; they also offer a key potential advantage which current commercial medical devices lack—seamless data sharing for machine learning and artificial intelligence. We explore how various electronic platforms such as microcontrollers, single board computers, field programmable gate arrays, development boards, and integrated circuits have been used by researchers to design medical devices. Researchers interested in designing low cost, customizable, and innovative medical devices can find references to various easily available electronic components as well as design methodologies to integrate those components for a successful design

    WeAidU - a decision support system for myocardial perfusion images using artificial neural networks

    No full text
    This paper presents a computer-based decision support system for automated interpretation of diagnostic heart images (called WeAidU), which is made available via the Internet. The system is based on image processing techniques, artificial neural networks (ANNs) and large well-validated medical databases. We present results using artificial neural networks, and compare with two other classification methods, on a retrospective data set containing 1320 images from the clinical routine. The performance of the artificial neural networks detecting infarction and ischemia in different parts of the heart, measured as areas under the receiver operating characteristic curves, is in the range 0.83-0.96. These results indicate a high potential for the tool as a clinical decision support system. (C) 2003 Elsevier B.V. All rights reserved

    Decision support continuum paradigm for cardiovascular disease: Towards personalized predictive models

    Get PDF
    Clinical decision making is a ubiquitous and frequent task physicians make in their daily clinical practice. Conventionally, physicians adopt a cognitive predictive modelling process (i.e. knowledge and experience learnt from past lecture, research, literature, patients, etc.) for anticipating or ascertaining clinical problems based on clinical risk factors that they deemed to be most salient. However, with the inundation of health data and the confounding characteristics of diseases, more effective clinical prediction approaches are required to address these challenges. Approximately a few century ago, the first major transformation of medical practice took place as science-based approaches emerged with compelling results. Now, in the 21st century, new advances in science will once again transform healthcare. Data science has been postulated as an important component in this healthcare reform and has received escalating interests for its potential for ‘personalizing’ medicine. The key advantages of having personalized medicine include, but not limited to, (1) more effective methods for disease prevention, management and treatment, (2) improved accuracy for clinical diagnosis and prognosis, (3) provide patient-oriented personal health plan, and (4) cost containment. In view of the paramount importance of personalized predictive models, this thesis proposes 2 novel learning algorithms (i.e. an immune-inspired algorithm called the Evolutionary Data-Conscious Artificial Immune Recognition System, and a neural-inspired algorithm called the Artificial Neural Cell System for classification) and 3 continuum-based paradigms (i.e. biological, time and age continuum) for enhancing clinical prediction. Cardiovascular disease has been selected as the disease under investigation as it is an epidemic and major health concern in today’s world. We believe that our work has a meaningful and significant impact to the development of future healthcare system and we look forward to the wide adoption of advanced medical technologies by all care centres in the near future.Open Acces

    Методи та математичні моделі сучасних інформаційно-комунікаційних технологій

    Get PDF
    Мета роботи – розроблення методів, моделей та інформаційних технологій підвищення функціональної ефективності систем підтримки прийняття рішень в освіті та промисловості. Предмет дослідження – методи, моделі та інформаційні технології прийняття рішень в освіті та промисловості, оцінка функціональної ефективності інтелектуальних систем аналізу даних, методи захисту інформації в інфокомунікаційних системах, інформаційно-аналітичні системи в освіті

    Entwicklung von Klassifikatoren zur Analyse und Interpretation zeitvarianter Signale und deren Anwendung auf Biosignale

    Get PDF
    Die Auswertung von Zeitreihen mit Hilfe von Data-Mining Verfahren ist häufig durch zeitvariante Änderungen der Zeitreihen erschwert. Zur Verbesserung der Ergebnisse bei solchen Datensätzen wird in der vorliegenden Arbeit die gezielte Ausnutzung von zeitlichen Informationen beim Entwurf und der Anwendung von Klassifikatoren für Zeitreihen vorgeschlagen. Durch die neuen Verfahren können die Klassifikatoren nicht nur bessere Ergebnisse erzielen, sondern sind auch robuster gegenüber Störungen
    corecore