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Abstract 
Clinical decision making is a ubiquitous and frequent task physicians make in 

their daily clinical practice. Conventionally, physicians adopt a cognitive 

predictive modelling process (i.e. knowledge and experience learnt from past 

lecture, research, literature, patients, etc.) for anticipating or ascertaining 

clinical problems based on clinical risk factors that they deemed to be most 

salient. However, with the inundation of health data and the confounding 

characteristics of diseases, more effective clinical prediction approaches are 

required to address these challenges.  

Approximately a few century ago, the first major transformation of medical 

practice took place as science-based approaches emerged with compelling 

results. Now, in the 21st century, new advances in science will once again 

transform healthcare. Data science has been postulated as an important 

component in this healthcare reform and has received escalating interests for its 

potential for ‘personalizing’ medicine. The key advantages of having 

personalized medicine include, but not limited to, (1) more effective methods 

for disease prevention, management and treatment, (2) improved accuracy for 

clinical diagnosis and prognosis, (3) provide patient-oriented personal health 

plan, and (4) cost containment.  

In view of the paramount importance of personalized predictive models, this 

thesis proposes 2 novel learning algorithms (i.e. an immune-inspired algorithm 

called the Evolutionary Data-Conscious Artificial Immune Recognition System, 

and a neural-inspired algorithm called the Artificial Neural Cell System for 

classification) and 3 continuum-based paradigms (i.e. biological, time and age 

continuum) for enhancing clinical prediction. Cardiovascular disease has been 

selected as the disease under investigation as it is an epidemic and major health 

concern in today’s world.  
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We believe that our work has a meaningful and significant impact to the 

development of future healthcare system and we look forward to the wide 

adoption of advanced medical technologies by all care centres in the near future. 
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Chapter 1 

Introduction  

1.1. Personalized Predictive Models for Cardiovascular Disease 
Personalized medicine, first introduced by Hippocrates around 2400 years 

ago, was about the evolution and increasing precision of diagnosis and 

treatment (Gordon & Koslow, 2010). With advances in medicine and 

technologies over the years (e.g. advances in medical knowledge and devices, 

analytical tools, and information technologies), a paradigm shift in medical 

knowledge and tools have enabled diagnosis of disease from metaphysical to 

physical and from cellular to molecular. More recently, system-level 

interactions between molecular events and higher level phenomena (e.g. 

cognition and behaviour) have been studied. Currently, disease diagnosis with 

genetic, molecular and other markers of functional significance is not 

uncommon. This lead us to be at the verge of making accurate prediction of 

whether someone will develop a disease in the future, respond positively (or 

negatively) to a treatment or have any serious reaction to a drug. The use and 

proliferation of these advanced medical forecasting technologies requires other 

elements of healthcare system and society to co-evolve in tandem. This 

includes, but not limited to, laws protecting privacy, systems of payment, 

regulatory guidelines, physician and patient education, and ethical framework.  

Personalized clinical predictions, based on the patient’s unique clinical, 

genetic and environmental characteristics, play an essential role in healthcare 

decision making and planning. These predictions can lead to improved disease 

prevention, management and therapeutics strategies, and potentially empower 

patients to initiate a dialogue that can enhance the wellness plan personalized 

for them. Common clinical predictions include clinical diagnosis and prognosis 

of patient’s health status. Conventionally, predictions rely on expert knowledge. 

However, it has become more and more difficult with the exponential increase 

http://wizfolio.com/?citation=1&ver=3&ItemID=671&UserID=8301&AccessCode=A9F437F30E7A4DFEBFE03DB8478B0614&CitationSuffix=
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in informative health data. This inevitably hinders, if not incapacitates, one’s 

ability to recall and analyse the full content of complicated patient’s record 

effectively.  

Clinical researchers have invested great effort into developing and 

optimizing predictive instruments to identify disease status that physicians often 

find it difficult to define accurately (Baxt & Skora, 1996). Myocardial 

infarction (MI), for example, is often difficult to ascertain for patient presenting 

to the emergency department with anterior chest pain. Therefore, reliable 

predictive models capable of foretelling events of MI are highly desirable. 

Several risk scoring systems based on generalized linear model have been 

developed with the assumption of linear relationship between the risk factors 

and the disease (Nilsson et al., 2006). However, in most cases, the underlying 

cause of a disease is commonly multifactorial and subtle, with non-linear causal 

dynamics. On this aspect, if a linear model is used in the presence of 

nonlinearity, inaccurate modelling would result. This ultimately causes poor 

generalization and prediction performance. Therefore, a non-linear approach, 

like machine learning techniques, would be more appropriate to characterize 

and predict a disease. Machine learning (ML) is a branch of artificial 

intelligence that postulates a set of computer-based methods for automatic 

analysis of information and recognition of patterns/concept, through repeated 

learning from the training data (Roganb et al., 2008). It is capable of identifying 

the non-trivial/non-linear relationship between the predicators and the outcome, 

building models capable of making data-driven prediction. Data-driven 

predictions have the advantage of providing guidance for relatively rare clinical 

or sub-clinical diseases that could elude a physician, but could be elucidated by 

the data-driven integration of limitless experiences of many physicians and 

patients (Chawla & Davis, 2013). This approach may contribute to the 

transition of medicine from population-based evidence to one that amalgamates 

both population and individual-based evidence.  

http://wizfolio.com/?citation=1&ver=3&ItemID=589&UserID=8301&AccessCode=D19458CF6FF54636A460E50914206948&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=563&UserID=8301&AccessCode=B3156E6D6D0940018F00D0DAC927B973&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=591&UserID=8301&AccessCode=20FD68593E5F4299885F148E45F7F833&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=684&UserID=8301&AccessCode=1F6F6AB17BFB43099C1710FC62152F79&CitationSuffix=
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To this end, the employment of data mining techniques – suggested by 

Snyderman et. al. as a “central feature” for future healthcare system 

(Snyderman & Langheier, 2006) - have received escalating interests for 

performing diagnosis and prognosis of diseases that physicians often find it 

challenging to adjudicate accurately. It has been demonstrated in (Baxt & Skora, 

1996; Eftekhar et al., 2005; Li et al., 2000) that medical decision support 

system based on machine learning techniques like artificial neural network 

(ANN) outperform physicians’ judgment and classical statistical models such as 

multivariable logistic regression analysis. Hence, ML methods have been 

applied in several clinical domains, aspiring to leverage the performance of 

clinical diagnosis and prognosis. This is of paramount importance as with 

improved sensitivity, many lives can be saved while with improved specificity, 

the healthcare costs can be greatly reduced as unnecessary admission and 

procedures could be eradicated. Clinical diseases that have been studied with 

the use of ML techniques include but not limited to, cardiovascular disease 

(CVD) (Nilsson et al., 2006; Baxt & Skora, 1996; Eggers et al., 2007), 

cerebrovascular disease (Khosla et al., 2010; Yeh et al., 2011), cancer (Cruz & 

Wishart, 2006; Liu, 2004) and traumatic brain injury (Mushkudiani et al., 2008; 

Eftekhar et al., 2005; Li et al., 2000).  

However, even with the use of ML techniques, several challenges still exist 

which prohibits the efficient development of accurate personalized and 

predictive models. The key challenges addressed in this thesis are summarized 

below: 

1. Unlike manufacturing process, in which the products are standardized, 

patients are generally different and may not fit well within a standard 

prediction model. This means that if inadequate consideration was given 

when designing the clinical prediction models, inefficient development 

process and poor prediction performance would thrive.  

http://wizfolio.com/?citation=1&ver=3&ItemID=693&UserID=8301&AccessCode=F052AB9775F646DD916CBEF38C53CB4B&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=589&UserID=8301&AccessCode=D19458CF6FF54636A460E50914206948&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=589&UserID=8301&AccessCode=D19458CF6FF54636A460E50914206948&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=592&UserID=8301&AccessCode=4283970424C34621AE59F8BF5ED5E340&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=592&UserID=8301&AccessCode=4283970424C34621AE59F8BF5ED5E340&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=563&UserID=8301&AccessCode=B3156E6D6D0940018F00D0DAC927B973&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=563&UserID=8301&AccessCode=B3156E6D6D0940018F00D0DAC927B973&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=590&UserID=8301&AccessCode=49DE9993ACDB4CD99827F38FCFE602C6&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=490&UserID=8301&AccessCode=14468FE091754C9BBCCE2B8C3A27F8B3&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=490&UserID=8301&AccessCode=14468FE091754C9BBCCE2B8C3A27F8B3&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=564&UserID=8301&AccessCode=2A7BF132813B4AF5B2EF35FB1F204B30&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=564&UserID=8301&AccessCode=2A7BF132813B4AF5B2EF35FB1F204B30&CitationSuffix=
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2. Evolving medical knowledge and continual addition of new clinical 

information result in a large number of clinical features that need to be 

analysed. This situation, commonly known as the curse of 

dimensionality (Bellman, 1961), often jeopardizes the ability of ML 

techniques to learn and generalize. 

3. The health status of individuals tends to change over time (e.g. as one 

ages). Similarly, the concept that underlies the clinical data tends to drift 

over different prediction scale and intervals. These, if not handled 

properly, often degrade the performance of the prediction models.  

On this note, the ability to (1) efficiently handle large number of clinical 

features, (2) understand the design issues related to the development of clinical 

prediction models (e.g. sample peculiarity), and (3) recognize the importance of 

employing learning algorithms with high generalization ability are valuable for 

the development of patient-oriented prediction models. Achieving these aspects 

would ultimately leverage on the diagnostic/prognostic performance, increase 

efficiency and lower the cost incurred by both the hospital and the patients (e.g. 

cost containment through early diagnosis and eradication of unnecessary 

clinical tests). In this thesis, the disease we focus on is cardiovascular disease – 

one of the leading cause of death worldwide (World Health Organization, 2008; 

Go et al., 2013). 

 

1.2. Motivations 
Clinical decision making, such as disease diagnosis and prognosis, is a 

coveted and elusive clinical task. In the United States (U.S.), for example, 

missed or wrong diagnosis is not uncommon and has detrimental implications – 

e.g. causing preventable and permanent damage or death (Tehrani et al., 2013). 

This however, when carried out properly, would significantly improve the 

quality of healthcare and saves many lives. Further, with the clinical data 

deluge in today’s healthcare industry, the performance of effective analysis of 
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clinical data becomes a challenge for a healthcare provider; the large amount of 

data that needs to be processed concurrently is beyond the human scale of 

thinking and analysis. Hence in this thesis, we investigate on methods to 

alleviate and ameliorate the task of clinical decision making. Particularly, 

computational methods based on the idea of artificial intelligence (AI) for 

predicting cardiovascular health outcomes are delved into. It is noteworthy that 

these predictive models can be highly effective and efficient in providing 

instant clinical prediction on the likelihood of a disease when properly 

calibrated. Additionally, it has been demonstrated to achieve comparable, if not 

better, predictive accuracy as clinicians (Baxt, 1991; Harrison et al., 1991). 

With such system present in the clinical settings, it has been postulated to 

enhance clinicians’ judgement.  

Coronary heart disease (CHD), the narrowing or blockage of blood vessels 

that supply oxygen and nutrients to the heart, is the leading cause of mortality 

in many developed countries, such as the U.S. and the United Kingdom (U.K.) 

(Go et al., 2013; Wilson et al., 1998; British Heart Foundation Statistics 

Database, 2010); accounting for approximately 12.7% of all global deaths (in 

2008). Despite considerable advances in medicine, approximately 1 in every 6 

deaths in the U.S. (in 2007) is caused by CHD. Moreover, MI, a form of CHD, 

approximately occurs every 34 seconds in the U.S. and about 15% who 

experience MI will die from it (Go et al., 2013). This places a heavy burden on 

the healthcare systems (Leal et al., 2006; McGovern et al., 1996; Jemal et al., 

2005). The complexity of MI arises from the fact that multiple subclinical and 

clinical diseases typically interact with each other in a complicated and often 

unknown manner. Moreover, it is unlikely that a single aspect of health status to 

be the sole predicator (Fried et al., 1998; Song et al., 2004). This results in very 

significant challenges in relation to the analysis and understanding of the 

disease. Therefore to reduce the number of MI incidences, improved methods 

of detection and management are necessary. Clinical decision support system 

(CDSS) is one such method developed to assist physicians and other healthcare 
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professionals in making decision for clinical tasks like diagnosis. One type of 

CDSS uses AI, or more specifically ML methods, to learn and consolidate the 

knowledge required to perform the clinical tasks. The motivation for creating 

such intelligent computer system was to create the perfect “doctors in a box” in 

an attempt to improve the ability to detect, manage and treat different types of 

disease. The benefits of having such system include:   

1. Bridging the gap between individual practitioners (through the 

condensation of the most up-to-date knowledge and experience) so that 

they can aspire to the same level of practice as the best in their field and 

offered copious experience to gauge the impact of diseases. 

2. Serving as a second opinion for the patients, a highly recommended step 

for ascertaining the diagnosis and determining the course of treatment. 

In addition, it offers the reassurance that is much needed by the patient 

(i.e. whether the best possible choice of treatment is offered to the 

patient).  

3. Providing predictive tools capable of offering personalized and 

preventative means to medicine. The potential advantages for this 

approach include early detection and intervention, more precise 

diagnosis and prognosis, more appropriate selection of treatment 

strategies, and cost containment among others. 

Although CDSS based on ML techniques has shown improved clinical 

prediction performance over conventional methods on many clinical problems 

(Kim et al., 2005; Song et al., 2004; Li et al., 2000), we are still far from the 

goal of personalized and predictive medicine. Personalized medicine is a model 

capable of recommending decisions for diagnosis, treatment and prevention that 

are specific to an individual patient. The recommendation is often based on the 

patient’s unique clinical, genetic and environmental characteristics (Lenfant, 

2012). This differs from the traditional approach where patient care is based on 

generalization from randomized controlled clinical trials. The significant 
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disadvantage associated with this traditional approach is the delivery of 

“average medicine” where clinical interventions are offered to a patient on the 

basis that they, from a statistical perspective, work well on other patients. This 

drawback is supported by studies in the field of pharmacogenomics where each 

individual (with unique genotypic makeup) has different degree of response 

with respect to a specific type and amount of drug (Evans & Relling, 1997). 

Therefore, the selection of therapy based on large randomized clinical trials 

may soon be replaced because of the estimated benefits it promises for 

individual patients. Another goal of personalized medicine is to offer healthcare 

professionals and even patients with predictive tools that encourage healthcare 

to be more proactive and preventive, allowing appropriate medical interventions 

to be carried out early to prevent or procrastinate the onset of the disease. This 

differs from the conventional approach where it is disease-oriented, reactive, 

episodic, and geared towards acute crisis intervention where the disease has 

already manifested and largely irreversible (Ginsburg & Willard, 2009).  

With the completion of the Human Genome Project in 2003 (Austin, 2003), 

it provides clinicians and scientists with a diverse and important set of 

molecular information that can be used to better understand the mechanisms 

that underpin a disease. However, the use of gene expression profiles to define 

broad group distinctions has its limitation; resulting in considerable 

heterogeneity within the broadly defined groups and poor clinical predictions 

for individual patients. On this note, a more holistic analytical approach is 

required to improve the prediction accuracy. Beyond information at the 

molecular and gene levels, clinical observations (e.g. electrocardiography, 

blood pressure, ultrasound data, magnetic resonance image, etc.) have been 

used and have shown great potential in understanding the biology of a disease 

experienced by an individual (Hsia et al., 2003). These inevitably offer the 

conceptual advances necessary to drive the healthcare system to one that is 

predictive and patient-oriented. This growing transition in the healthcare system 

has been utilized to stratified risk for several diseases such as cancer, 
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cardiovascular disease, traumatic brain injury, and diabetes (Lisboa & Taktak, 

2006; Vellido et al., 2008; Nevins et al., 2003; Tsai & Watanabe, 1999; Polat et 

al., 2006; Li et al., 2000; Polat & Güneş, 2007; Barakat et al., 2010). These 

developments clearly serve as examples where CDSS and patient’s unique 

clinical/genetic characteristics have resulted in the opportunities to better 

characterize diseases and at the same time redefine therapeutic strategies.   

 

1.3. Thesis Contributions and Objectives 
This thesis contributes to the development of novel machine learning 

algorithms, their application for solving clinical problems, and new 

methodologies for addressing issues unique to clinical predictions. A total of 2 

new algorithms and 3 continuum paradigms (i.e. biological, time and age 

continuum) were developed as part of the pursuit to (1) ameliorate the task of 

clinical predictions (e.g. through the development of more robust and accurate 

learning algorithms), and (2) create clinical models that are carefully calibrated 

and personally effective for the individuals (e.g. by recognizing the potential 

advantages of incorporating the concept of continuum for clinical prediction). 

The following are the main contributions:  

 Biological Continuum Model for Clinical Prediction: Clinical 

classification, based on machine learning techniques, provides the 

disease diagnosis for an individual. It is a significant task of pragmatic 

value in the clinical settings. However, with the exponential growth of 

clinical features in the healthcare industries, the efficient development 

of up-to-date and efficacious clinical classification models becomes a 

challenge. To address this issue, we propose a novel feature selection 

methodology for the development of clinical classification model. We 

believe that information about one level of concept should be, in many 

cases, generalized to other levels. Hence, we employed the conceptual 

framework of biological continuum (BC) (Kitney & Poh, 2006; Poh et 

al., 2007), together with the optimization capability of genetic algorithm 
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(GA) (Holland, 1992) and the classification ability of support vector 

machine (SVM) (Boser et al., 1992; Cortes & Vapnik, 1995; Vapnik, 

1999) to build clinical classification models. Evaluation of the proposed 

method was carried out using the cardiovascular heart study (CHS) 

dataset (Fried et al., 1991). Results demonstrate that with the adoption 

of this methodology, a significant speedup of 4.73-fold (when compared 

to conventional GA based wrapper approach using SVM) can be 

achieved for the development of clinical classification model without 

compromising the classification accuracy. 

 Evolutionary Data-Conscious Artificial Immune Recognition 

System (EDC-AIRS): We introduce a novel immune-inspired 

supervised learning algorithm that exploits on 3 human immune 

system’s phenomena observed – namely the (1) increase in the 

concentration of antibodies in antigen infected regions, (2) spatial 

independency and distribution of lymph nodes across the human body, 

and (3) characteristics and specificity of surface receptors on B-Cells 

necessary to recognize and bind to a certain type of antigen. This 

algorithm, called EDC-AIRS, is an optimized version of the artificial 

immune recognition system version 2 (AIRS2) algorithm proposed by 

Andrew Watkins in 2004 (Watkins et al., 2004). The key difference 

between EDC-AIRS and AIRS2 algorithms is that EDC-AIRS algorithm 

contextualizes the immune response to the concentration, distribution 

and characteristics of the antigens and is no longer a global centralized 

response. Empirical experiments with 6 benchmark datasets showed 

promising results and clinches a place in the top 3 positions when 

compared to other state-of-the-art classification algorithms. 

 Time-related Continuum Model for Clinical Prediction: The best 

practice to avoid human mortality caused by diseases is to detect them 

early and prevent its onset. The ability to do so in current clinical 

practice is highly attractive but is equally challenging. Therefore, a more 
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holistic, sophisticated, predictive, preventative and personalized 

approach is required to detect diseases early. This is very important as 

delayed treatment could cause permanent damage where full recovery 

becomes impossible or even death. Therefore, we investigate on the use 

of SVM and EDC-AIRS algorithms as classifiers to predict the risk of 

individuals experiencing MI over different time scales and intervals 

(using baseline datasets having different sample age). The CHS 

observational study (Fried et al., 1991), which contains a comprehensive 

set of biomarkers, was analysed.  Results indicate that SVM algorithm is 

capable of achieving high sensitivity, specificity and balanced accuracy 

of 95.3%, 84.8% and 90.1% respectively over a time interval of 6 years. 

Further, experiment results indicate that sample age, prediction scale 

and intervals do not have a significant impact on prediction models 

developed using subjects and 65 and above. This opens the opportunity 

for constructing prediction models capable of detecting MI early, 

allowing clinicians to take preventative measures promptly, improving 

the quality of individuals’ life, and reducing avoidable mortality. 

 Artificial Neural Cell System for classification (ANCSc): We propose 

a novel neural-inspired supervised learning algorithm for solving 

classification problems – one of the most common and well-studied 

tasks in predictive data mining and knowledge discovery. It is developed 

based on new source of inspirations that are responsible for developing 

and enriching the brain – namely neurogenesis, neuroplasticity, 

nurturing and apoptosis. This novel algorithm, called ANCSc, 

capitalizes on the mechanisms associated with the brain’s ability to (1) 

produce new neurons during both prenatal and postnatal development 

phases (i.e. neurogenesis), (2) refine neural pathways and synapses in 

support for learning and adapting to changes (i.e. neuroplasticity), (3) 

promote neurogenesis and neuroplasticity when knowledge are 

inculcated to individuals (i.e. nurturing), and (4) programmed cell death 
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of redundant cells during an organism’s lifecycle. Evaluation of ANCSc 

algorithm with 6 benchmark datasets demonstrated that it is a robust 

learning algorithm capable of achieving highly competitive 

classification results.  

 Age-related Continuum Model for Clinical Prediction: The 

performance of prediction models not only relies on the predictive 

ability of the learning algorithm used, but is also highly dependent on 

the quality and characteristics of the data analysed. In order to 

continuously ameliorate the performance of prediction models, it is 

necessary to explore and investigate on different components that would 

influence the performance of prediction models. One clinical study 

suggests that differences in degree of severity of CVD risk factors as 

one age plays a crucial role in age-related excess risk for CVD. 

Hypertension and diabetes, for example, tend to prevail with age while 

total cholesterol levels and body mass index (BMI) often decline with 

age (Abbott et al., 2002). This indicates a confounding and evolving role 

CVD risk factors take. Therefore, to investigate whether this observation 

has an impact on prediction models developed using machine learning 

algorithms, we propose a (age-related) risk prediction approach that 

takes the effect of evolving risk factors (over a range of ages) into 

consideration – i.e. develop risk prediction models using only 

individuals from a specific age group. Three algorithms, namely ANCSc, 

EDC-AIRS and SVM, were employed to develop these risk prediction 

models. Juxtaposition of these algorithms was performed to investigate 

on their ability to generalize. Data from the Honolulu Heart Program 

(Syme et al., 1975; Marmot et al., 1975; Robertson et al., 1977) were 

utilized to perform this risk prediction task. Results demonstrate that 

age-related risk prediction outperforms unified risk prediction approach 

(i.e. prediction model developed using individuals of all ages). This 

offers the advantage of providing a spectrum of accurate prediction 
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models suitable for individuals of all ages; enabling a continuum of high 

quality healthcare to be given to the patients. 

 

1.4. Thesis Organization 
The task of developing effective and efficient MI risk prediction models is 

very important. The ability to do so is highly desirable as it would allow early 

detection of MI risk, and consequently enables preventative measures to be 

given promptly. This would inevitably increase the opportunity of avoiding the 

full manifestation of the disease. Such proactive approach would ultimately 

improve the quality of individuals’ life as they would not need to undergo the 

painful experience that is associated with MI. To this end, this thesis describes 

methods for developing accurate MI risk prediction models in an effective and 

efficient manner.  

The structure of the thesis is illustrated in Figure 1.1 and described as 

follows. Chapter 2 provides background information to our studies which 

include cardiovascular disease, personalized predictive medicine and clinical 

support technologies.  

Chapter 3 proposes a methodology for alleviating the computational effort 

needed to construct up-to-date clinical classification models. Detailed 

information on feature selection, data pre-processing, structure adopted (i.e. 

biological continuum), data used (i.e. CHS dataset), and classification model 

development are provided. The performance and speedup achieved for our 

proposed method is also presented. 

Chapter 4 introduces an optimized immune-inspired supervised learning 

algorithm called EDC-AIRS. Background information of AIRS (version 2) 

algorithm, detailed description of EDC-AIRS algorithm and the classification 

performance of our proposed algorithm tested using 6 widely benchmarked 

datasets are provided. 
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Chapter 7 delved into the significance of developing risk prediction models 

using clinical data of individuals stratified into different age groups; an 

important step in the construction of accurate prediction models suitable for 

individuals of all ages. This age-related risk prediction approach is 

hypothesized to be important as CVD risk factors tend to evolve and confound 

the disease as one age. This task was carried out using several algorithms (i.e. 

ANCSc, EDC-AIRS and SVM). Investigation on which algorithm is most 

capable at performing risk prediction for CVD is also conducted.  

Finally, Chapter 8 summaries the achievements of this thesis and provides 

the possible directions for future research. 
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Chapter 2 

Background  

2.1. Cardiovascular Disease  
Cardiovascular disease (CVD) is a group of diseases associated with the 

heart and/or blood vessels. It includes disorders that cause (1) narrowing of 

blood vessels supplying blood to the heart (i.e. coronary heart disease), brain 

(i.e. cerebrovascular disease) and limbs (i.e. peripheral arterial disease), (2) 

damage to the heart muscle and heart valves from rheumatic fever (i.e. 

rheumatic heart disease), (3) weakening of heart muscle to pump adequate 

blood into the blood vessels (i.e. congestive heart failure), (4) abnormal 

formations of heart structures at birth (i.e. congenital heart disease), and (5) 

formation of blood clots in leg veins which could give rise to serve pain and 

disability, or even life threatening complications when the clots dislodge and 

move to the heart and lungs (i.e. deep venous thrombosis and pulmonary 

embolism) (World Health Organization, 2013).  

An acute event that is of particular interest is acute myocardial infarction 

(MI) - commonly known as heart attack. This is because it is a deleterious 

health issue experienced by people worldwide; causing substantial mortality 

(Go et al., 2013; Wilson et al., 1998; British Heart Foundation Statistics 

Database, 2010). MI is often linked to atherosclerosis - the formation of plaque 

that builds up in the walls of the blood arteries, narrowing them, and increasing 

the difficulties for blood to flow through. MI events usually arises when 

myocardial ischemia (an inadequate supply of blood to the heart) occurs for a 

considerable period of time, overwhelming the myocardial cellular repair 

mechanisms designed to support the normal operating function and homeostasis 

of the cardiovascular system. If this imbalanced supply and demand of blood 

(or more specifically, oxygen and nutrients) reaches a critical threshold and left 

for an extended period of time, it would result in an irreversible myocardial cell 
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damage or necrosis. Such event is often caused by plaque rupture with 

thrombus formation in a coronary vessel, and in the most unfortunate case it 

would lead to the death of a person.  

In view of the detrimental impact of MI on the society, several epidemiology 

studies have been carried out to better understand and characterize the disease. 

This includes the Cardiovascular Health Study (CHS) (Fried et al., 1991), the 

Honolulu Heart Program (HHP) (Robertson et al., 1977; Marmot et al., 1975; 

Syme et al., 1975), the Framingham Heart Study (O'Donnella & Elosua, 2008) 

and the INTERHEART study (Ounpuu et al., 2001). These studies have 

identified major risk factors associated with CVD which include age, gender, 

cholesterol, hypertension, obesity, diabetes, smoking, alcohol, psychosocial 

factors, sedentary lifestyle and unhealthy diet (Yusuf et al., 2004; Hubert et al., 

1983; Psaty et al., 2001; Stokes et al., 1989; Yano et al., 1984; Anand et al., 

2008).  

Broadly, risk factors can be categorized into 2 groups, namely non-

modifiable and modifiable risk factors. The non-modifiable risk factors include 

age, gender, race and family history while the modifiable risk factors include 

blood pressure, cholesterol, body mass index, diabetes, smoking, diet and 

physical activities among others. Identification of these risk factors is important 

as they are measurable elements or characteristics that are causally correlated to 

an increased risk of a disease (O'Donnella & Elosua, 2008). However, caution 

need to be taken when analysing risk factors as their degree of impact on 

individuals’ health may change as one ages (Asia Pacific Cohort Studies 

Collaboration, 2006) (which will be addressed in this thesis). Therefore, careful 

monitoring, analysis and management of these risk factors could reduce 

mortality rate.  

Several risk scoring systems and survival curves (Clayton et al., 2005; Lloyd-

Jones et al., 2004; Levy et al., 2006) have been proposed for clinical risk prediction. 

However, these models (e.g. logistic regression models) tend to flounder as the 
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number of interacting predictors that need to be analysed becomes large (e.g. in 

genome-wide studies). This is because when identifying interactions between 

predicators with traditional statistical methods, there is a need to specifically 

detail a model for the interaction (McKinney et al., 2006). For example, in logistic 

regression, interaction between polymorphisms A and B need to be explicitly 

specified in the logistic equation in order to allow for interaction between the 

polymorphisms. This problem becomes increasingly severe when the number of 

predictors, and thus the number of possible interactions, becomes large. 

Another caveat of a traditional statistical model is that it assumes that the 

predicators (e.g. genes or clinical measurements) are independent and that 

linear combination of these predictors can successfully describe the underlying 

patterns and predict the outcome (e.g. disease status). However, this conceptual 

phenomenon is not common in most biological systems (Cruz & Wishart, 2006). 

All these challenges often hinder the ability of traditional statistical models to 

identify and characterize the predictors’ interactions and the biological 

pathways that underpin a disease. Therefore, caution has to be exercised when 

employing these models. Nevertheless, they have been a good tool (in 

conventional medicine) for estimating the risk of an individual experiencing or 

re-experiencing a disease. 

Technological advances and accelerating pace of change in healthcare; 

including, new modalities, socio-economic needs for cost containment (through 

prevention and early diagnosis and prognosis), and escalating demands for 

personalized therapy (Vellido et al., 2008), predicates for tools capable of 

offering patient-specific diagnoses, prognoses and recommendations. This has 

been part of an effort towards a predictive, preventative and personalized (3P) 

approach to medicine (Snyderman & Williams, 2003). One goal of such “3P” 

concept to medicine is to provide clinicians with sophisticated, efficient and 

effective risk assessment methods, and patients with early, accurate and 

personalized diagnosis that could prevent the onset of MI; thus improving their 
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quality of life and reducing preventable mortality (which will be addressed in 

this thesis).  

 

2.2. Personalized Medicine  
Personalized medicine, a form of medical innovation, refers to the use of 

genomic signatures of patients in a target population to ameliorate diagnosis 

accuracy, allow early interventions that could prevent or delay the onset of 

diseases, and promote the assignment of more effective therapies (Moon et al., 

2007). It has been recognized to have major impact to human health and has 

been identified as one of the grand societal challenge to which engineers (e.g. 

biomedical engineers, biologists, computer scientists, etc.) can contribute (i.e. 

to the advance of personalized healthcare) over the next 20 years (College of 

Fellows, 2013). The prospect of offering individualized risk predictions and 

treatment decisions through the examination of individual’s genomic details has 

been attractive, albeit a challenging one (Ginsburg & Willard, 2009). 

Personalized medicine has become possible, in part, due to the Human genome 

project (HGP) (Collins & Galas, 1993) and the Genome-wide association study 

(GWAS) (U.S. Department of Health & Human Services, 2013). The use of 

genetic information has been the key player in certain aspect of personalized 

medicine since inception. However, its scope has broadened over the years to 

include various types of personalized measurements like clinical data and 

environmental triggers - including several other objectives such as: the 

identification of risk factors, diagnostic features, and therapies based on large 

healthcare databases; remote monitoring of individual’s compliance with 

treatment regimens; and scrutinization of relationships between an individual 

environment and his or her health (College of Fellows, 2013).  

Personalized medicine differs from traditional medicine is several aspects. In 

particular, traditional clinical diagnosis and management focus on medical and 

family history, observable clinical signs/symptoms, laboratory results, and 
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imaging data for diagnosing and treating patients. This often is described as a 

reactive approach where treatment begins only when the signs of the disease 

appear (e.g. when the patient is in pain or their daily life has been affected by 

the disease). With the increasing emphasis to improve the quality of life among 

individuals, there is a need for a more proactive approach where diseases are 

detected and treated early before they fully manifest. To do so, a more 

personalized approach is necessary, where patients are examined in an attempt 

to identify the disease signature specific to each patient at the individual level. 

This is important to ensure that the most appropriate, effective, and ideally a 

non-invasive healthcare intervention, plan and/or recommendation is given to 

the patient. 

Despite the advantages associated with the analysis of genomic data, several 

challenges exist. Bioinformaticians, for example, faced the difficulties of the 

need to (1) process large-scale robust genomic data; (2) interpret the functional 

impacts of genomic variation; (3) integrate data to relate complex interactions 

with phenotypes; and (4) translate these discoveries into clinical practices 

(Fernald et al., 2011). Other challenges include the high failure rate of 

molecular targeted therapeutics, unexpected effects on patient outcomes cause 

by bypass mechanisms, and the difficulties of identifying and validating the 

molecular markers, homeostatic feedback loops and molecular crosstalk 

(Gonzalez-Angulo et al., 2010). Although these challenges impede our 

advancement towards the complete understanding of the biological complexity 

and eventually personalized cure to a disease, the ability to circumvent these 

issues would have far-reaching clinical ramifications. This, ultimately, would 

enable a more comprehensive, effective and safe (i.e. with no side effects) 

therapeutic strategies to be developed. Through this personalization of 

therapeutic interventions, it is aimed that not only years are added to 

individual’s life, but life is also added to those years.  
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2.3. Clinical Support Technologies 
Several clinical support technologies are available to directly support clinical 

tasks and leverage on the benefits that patients, healthcare professionals and 

healthcare systems would eventually accrue. This includes electronic health 

record (EHR) system, computerized physician order entry (CPOE) system, 

integrated clinical pathways (ICP) and clinical decision support system (CDSS). 

EHR system refers to an aggregated computerized legal medical record system 

that allows the storage, retrieval and manipulation of patients’ health and 

history records across multiple locations. It is an important component in 

current clinical settings as accurate clinical decision making is highly 

dependent on the amount of viewable clinical data. Clinical studies have shown 

that with EHR system integrated into daily clinical practice, the immediate 

benefits gained include improvement in quality of care, decrement in 

medication errors, reduction in cost, and improve availability, timeliness and 

accuracy of clinical data (Wang et al., 2003; Hillestad et al., 2005). In view of 

such advantages and guidelines from the Health Information Technology for 

Economic and Clinical Health (HITECH) Act (U.S. Department of Health and 

Human Services, 2009) – which provides incentives to healthcare providers that 

adopt health information technology to advance clinical processes and improve 

outcomes – EHR is becoming more common in (U.S.) clinical settings (Neill, 

2013).  

CPOE system refers to a variety of computer-based systems that enable 

electronic medication ordering and ensures standardized, legible and complete 

orders (Kaushal et al., 2003). CPOE systems alone, however, offer limited 

benefits without CDSS (Sittig & Ash, 2009). CDSS system encompasses a 

variety of tools and interventions which include: computerized alerts, reminders 

and recommendations; clinical guidelines; order sets; patient data reports and 

dashboards; documentation templates; diagnostic/prognostic support; and 

clinical workflow tools (Osheroff et al., 2007). Therefore, CPOE with CDSS is 

essential to enable medication orders to be integrated with the patient medical 
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information (from EHR system) and automatically cross-referenced to identify 

potential medical errors. The impact of CPOE with CDSS on quality of care has 

been studied with positive results showing better adherence to clinical 

guidelines, decline in medication errors (such as drug dosage errors, frequency 

errors, route errors, drug allergies, incorrect therapy and wrong 

contraindications), reduction in unnecessary healthcare utilization, hospital 

admission and hospitalization duration (Bates et al., 1999; Kaushal et al., 2003; 

Eslami et al., 2008; Garg et al., 2005).  

An ICP is a multidisciplinary plan that displays goals for patients, and 

provides the sequence and timing of actions necessary to achieve these goals 

with optimal efficiency (Uzark, 2003). The concept of ICP was first 

demonstrated in the industrial sectors as a tool to define, organize and manage 

the essential tasks and rate-limiting processes. Examples of such pathways 

include ‘program evaluation and review technique’ (PERT) and ‘critical path 

method’ (CPM), which were developed to assist with the planning and 

scheduling of tasks (Chu & Cesnik, 1998). The success of these pathways (in 

terms of both cost and productivity) was quickly being realized. Subsequently, 

similar tools were adopted in the healthcare industries in response to the rising 

healthcare costs and clinical demands. In the clinical context, the primary aims 

of ICP are to: provide high-quality and safe patient care that is delivered in a 

timely, organized and cost effective manner (Kwan, 2007); promote evidence-

based and guideline-based care; standardize the care processes; increase use of 

recommended medical therapies; decrease use of unnecessary tests; decrease 

the hospitalization duration; provide a framework for data collection and 

analysis; alleviate documentation burdens; and improve patient satisfaction 

(Cannon & O'Gara, 2007; Cheah, 2000). It is noteworthy that cardiovascular 

medicine is an area in which clinical pathways have embraced. This is due in 

part to the high volume and high cost associated with CVD and the related 

procedures (Every et al., 2000).  
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One key problem with current ICP is that it often addresses processes in the 

“ideal” patient, and in some cases do not address issues in the majority of 

patients who enter the pathway. Hence, placing patients within a standardize 

pathway may not be beneficial (Every et al., 2000) as each patient may have 

unique response to the given clinical interventions. Therefore, the development 

of patient-specific pathways is highly desirable for providing personalized care. 

Generally, for any support system (that aids in decision making) to be 

considered useful in the clinical settings, it must possess at least one of the 

following characteristics (Lisboa, 2002):  

1. Attention focusing or alerts that aim to notify users of any abnormalities 

which might otherwise be overlooked. 

2. Patient-specific assessments and advices that provide customized 

medical recommendations (e.g. diagnostic and prognostic inferences) 

for individual patient. It must have the ability to make medical 

predictions with comparable, if not better, accuracy than a human 

physician. 

3. Interactive tools for critiquing, analysing, planning and testing clinical 

hypotheses. This would allow discovery of new insights about a patient's 

condition or the possible effects of different treatment choices.  

 

2.3.1. Clinical Decision Support System 
CDSS refers to any electronic system designed and developed to objectively 

assist in clinical decision making. An aspect that is of particular interest in 

recent years is its capability to analyse the characteristics of individual patients 

to generate patient-specific assessments or recommendations; which are then 

presented to the clinicians for consideration (Bright et al., 2012). CDSS has 

emerged as one of the most important components in future healthcare due to 

its capability to capitalize on the wealth of clinical information reaped from 
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day-to-day clinical practice - which otherwise are left unexploited - providing 

data-driven recommendations for clinical processes like diagnosis and 

prognosis, and even discovery of new medical insights (e.g. the underlying 

mechanisms of a disease). Moreover, it can integrate and offer the functionality 

of several systems (e.g. EHR, CPOE and ICP), making it a powerful tool whose 

value and usefulness in the clinical settings should not be underestimated. 

Not only does CDSS help in clinical decisions, it may open the possibilities 

of bridging the gap between individual practitioners, allowing them to aspire to 

the same level of practice as the best in their field. In view of these benefits it 

can offer in the healthcare industry, the prospect of CDSS has become 

increasingly attractive with many interesting works put forward by the artificial 

intelligence research community (Chawla & Davis, 2013; Baxt, 1991; Wiens et 

al., 2012; Khosla et al., 2010; Neill, 2013) - postulating approaches that 

amalgamate both knowledge-driven and data-driven concepts for medical 

related analysis and management. With the continual advancement of CDSS, it 

is aimed that it would eventually enable physicians to focus on tasks where they 

are most needed (e.g. at the patient’s bedside, listening and understanding their 

problems, comforting them, etc.), leaving the task of recalling, searching and 

analysing the “encyclopedic” aspect of medicine to CDSS. 

The uptake of CDSS in current clinical settings is slow despite the critical 

role it plays in the emergence of personalized healthcare, and the ubiquity of 

computer systems in the commercial, industrial and scientific areas to enhance 

the accuracy, efficiency and productivity. Typical barriers that hinder the wide 

adoption of CDSS include (Miller & Sim, 2004; Coiera et al., 2003; Garg et al., 

2005; Hillestad et al., 2005):  

1. Additional time and efforts required by physicians to learn and deploy 

the system before it can be used effectively and efficiently for their daily 

tasks. 
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2. Concerns about physicians being overly dependent on CDSS, resulting 

in eroded capacity in making independent decision. 

3. CDSS fit poorly into the current clinical practice, either solving issues 

perceived as trivial or imposing changes in the way clinicians worked.  

4. Scepticism over the applicability of CDSS in terms of their explanatory 

ability, adaptability to the changing population and the capability of 

adjusting to the idiosyncratic health phenomena exhibited by population 

from different regions.  

5. Uncertainty in the degree of proven benefits needed to be demonstrated 

before mass deployment should be carried out. 

6. High upfront implementation cost and uncertainty in lucrative benefits. 

7. High disincentive for healthcare providers to invest in these systems 

while the savings go to the patients. This misalignment of incentives 

hinders healthcare transformation. 

8. Compatibility issues between heterogeneous systems and the lack of 

ubiquitous data exchange between different disciplines.  

9. Dearth of physicians’ exhortation and supports.  

10. Legal considerations. 

 

In face of these multifactorial obstacles that healthcare organizations may 

encounter in their efforts to wide deployment of CDSS, and the increasing 

demands for CDSS to be effective and adaptive under unprecedented 

circumstances, ten grand challenges that impede the inception of high quality, 

effective means of designing, developing, presenting, implementing, evaluating 

and maintaining all types of CDSS capabilities for clinicians, patients and 

consumers have been identified (Sittig et al., 2008). Proposed and listed in their 
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order of importance, that when solved, the full potential of these systems can be 

realized are to: 

1. Improve the human-computer interface whereby the presentation of the 

CDSS recommendations should support and not interrupt the clinical 

workflow. This requires developers of modern CDSS to take a socio-

technical approach where the goals of CDSS go beyond the original 

focus of producing expert-level advisories and extend to encompass 

support for tasks like producing better documentation, retrieving 

relevant literature and facilitating communication among providers 

(Peleg & Tu, 2006).  

2. Identify, describe, evaluate, collect, categorize, synthesize and 

disseminate the best practices for CDSS design, development, 

implementation, maintenance and evaluation. 

3. Intelligently and automatically summarize all patient-level information, 

allowing ‘at a glance’ assessment of patient status. 

4. Automatically prioritize and filter recommendations according to a 

multi-attribute utility model by combining both patient-specific and 

provider-specific data.  

5. Create architecture for sharing executable CDSS modules and services 

so that one can implement new state of the art CDSS interventions with 

little or no extra effort on their part.  

6. Identify and eliminate redundant, potentially discordant or mutually 

exclusive guideline-based recommendations for patients with co-morbid 

conditions or multiple medications.  

7. Prioritize CDSS content development and implementation according to 

(1) value to patients, (2) cost to the healthcare system, (3) availability of 
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reliable data, (4) difficulty of implementation, and (5) acceptability to 

clinicians and patients, among others. 

8. Create internet-accessible CDSS repositories that allow these 

interventions and services to be easily downloaded, maintained, locally 

modified and installed. 

9. Extract clinical information contained in the free-text portions of 

electronic health record systems into a form that would drive CDSS. 

10. Mine large clinical databases to create new, valuable guidelines and 

CDSS interventions. 

 

Similarly, Bates et al. investigated the common factors that lead to 

successful implementation and stated Ten Commandments for effective CDSS 

(Bates et al., 2003). The Ten Commandments are: (1) speed is everything (i.e. 

the speed of the information system – for example, process and response time - 

is highly important); (2) anticipate needs and deliver in real-time (i.e. provide 

the appropriate information to the clinicians at the time they need it); (3) fit into 

the user’s workflow (i.e. provision of appropriate guidelines, on the same 

screen, to clinicians when they are in the process of ordering); (4) little things 

can make a big different (i.e. usability of CDSS is very important); (5) 

recognize that physicians will strongly resist stopping (i.e. physicians dislike 

suggestions that resist the performance of an action without providing an 

alternative); (6) changing direction is easier than stopping (i.e. modifying 

clinician behaviour can be carried out more easily  when the change is a single 

attribute of an order which the clinician does not have strong disagreement with 

– for example recommending changes to the dose, route or frequency of a 

medication); (7) simple interventions work best (i.e. substantial condensation 

and simplification of guidelines onto a single screen is essential); (8) ask for  
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Table 2.1: Possible Features Leading to an Effective CDSS 
Type Feature 

General System 
Features 

1. Support workflow integration using charting or order entry 

system.  

2. Generation of decision support using a computer. 

Clinician-System 
Interaction Features 

1. Provision of automatic decision support as part of clinician 

workflow. 

2. Eradication of requirement for additional clinician data entry  

3. Documentation of reason for not following CDSS 

recommendations is required. 

4. Provision of real-time decision support. 

5. Execution of recommended orders by agreement. 

Communication 
Content Features 

1. Provision of recommendation, not just assessment. 

2. Encourage execution of action rather than inaction. 

3. Provision of reasoning for the recommended action. 

4. Justification of decision support with the provision of research 

evidence. 

Auxiliary Features 1. Involvement of local users during the development process. 

2. Provision of decision support results to patients as well as 

providers. 

3. Performance of periodic CDSS performance feedback by 

users. 

4. Provision of conventional education on the use and features of 

the deployed CDSS. 

Features stated in italics are strongly correlated to the implementation of effective CDSS. 

 

additional information only when you really need it (i.e. plans must be made to 

handle situations when providers do not provide the piece of required 

information, and over time, ensure that key information are collected as part of 

the routine care); (9) monitor impact, get feedback and respond (i.e. track and 

assess suggestions and make appropriate midcourse correction); and (10) 

manage and maintain your knowledge-based systems (i.e. evaluate system 

usage pattern and ensure that it is in pace with changes in medical knowledge).  
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Additionally, Kawamoto et al. described numerous potentially important 

features that (Kawamoto et al., 2005). Fifteen of these features (categorized into 

four groups) are listed in Table 2.1. In particular, four of these features: (1) 

provision of automatic decision support as part of clinician workflow, (2) 

provision of could lead to the implementation of an effective CDSS 

recommendation rather than just an assessment, (3) provision of real-time 

decision support, and (4) generation of decision support using a computer, 

demonstrated strong correlation to the implementation of effective CDSS. 

Therefore, they are highly recommended to be implemented whenever possible. 

It is also important to examine and understand the characteristics of the data 

CDSS are learning from. For instance, human medical data are known to have 

their own unique characteristics which may pose challenges for medical data 

mining. Some of these dominant characteristics include voluminous and 

heterogeneous raw medical data, lack of standardization in disease description, 

poor mathematical characterization of medical data, lack of canonical form in 

biomedicine, data ownership, privacy and security of human data, strong 

obligatory towards statistical philosophy (Cios & Moore, 2002), sparseness in 

outcome events, redundancy in medical records, conflict in patients’ predictors 

and outcomes, and sequential recording of medical records (Suka et al., 2008). 

In spite of the challenges, human medical data are vital and rewarding to mine 

and analyse since human subjects can provide feedbacks (like visual and 

auditory sensations, perception of pain, discomfort, hallucinations and 

recollections). These are of great importance for both short-term and long-term 

disease observations. Hence, appropriate actions such as: (1) preprocessing of 

raw medical data, (2) analysis of sample peculiarity exhibited by the collected 

clinical data, (3) determination of the prediction characteristics, (4) meticulous 

selection of mining (e.g. machine learning) techniques, and (5) acquiring 

supports from healthcare providers, patients and professional organizations, 

should be considered during development of CDSS systems.  
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2.4. Introduction to Machine Learning  
Machine learning (ML), a term coined by Samuel (Samuel, 1959) in the 

1950s, is concerned with the creative design and development of learning 

procedures capable of empowering computers with the ability to autonomously 

learn to solve a problem without explicitly being programmed (Min, 2010). 

Specifically, ML is a process that aims to select, explore and acquire 

knowledge directly from plethora of data (with minimal human intervention); 

constructing a concise model capable of describing unknown patterns or 

relationships, and in turn solves challenging problems. This learning process is 

usually performed through repeated exposure to the defined (data) problem, 

allowing the model to self-optimize and continuously improve its ability to 

solve future related problems. Key differences between statistics and ML 

techniques include: (1) statistics use a rigorous mathematical approach while 

ML methods allow partial adoption of heuristics to solve the problem; (2) 

statistics only allows the manipulation of numerical data while ML methods 

often allow multiple types of data (e.g. numerical or categorical) to be handled 

simultaneously; and (3) statistics is of hypothetico-deductive nature (i.e. a 

hypothesis is postulated and subsequently, data is collected to test the 

hypothesis) while ML is of inductive nature (i.e. from the data collected, a 

knowledge or evidence-based hypothesis is deduced) (Yoo et al., 2012).  

In the context of clinical classification (e.g. discriminating patients from 

healthy individuals), supervised learning algorithms are a typical set of ML 

methods used to perform this predictive modelling. Supervised classification is 

a ML task that reasons from labelled data instances provided externally (i.e. 

exemplars that consist of observation/measurement values about an item of 

interests and the desired output value) to generate a hypothesis model capable 

of making predictions (i.e. assigning the output value) about future (unseen) 

instances. A variety of supervised learning algorithms exists and has garnered a 

significant amount of attention due to their successful application to different 

types of real-world problems; 2 novel supervised learning algorithms developed 
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would be described in this thesis. Some of the most commonly used algorithms 

are described below: 

1. Artificial Neural Network (ANN): ANN is a type of ML model first 

introduced by McCulloch and Pitts in 1943 (McCulloch & Pitts, 

1943). It is inspired by the neurological functions of the brain and is 

capable of performing many tasks like classification and regression. 

It consists of interconnected artificial neurons (i.e. computational 

nodes) that (1) accept input data, and (2) compute an output value 

based on the given input values (Baxt, 1991). A key advantage of 

ANN over conventional statistical methods is that ANN is capable of 

modelling complex non-linear relationships. This provides ANN the 

competitive advantage when modelling non-trivial tasks; allowing it 

to achieve good performance when applied on various challenging 

science and engineering problems. However, ANN has several 

drawbacks: (1) it is highly sensitive to its parameters’ value; (2) the 

architecture and complexity of the network constructed play a 

significant role in its performance; (3) it has a high computational 

training cost; and (4) the resulting induction models may be difficult 

to interpret by humans (Bellazzi & Zupan, 2008).  

2. Support Vector Machine (SVM): SVM, introduced by Vapnik and 

Cortes in 1995 (Cortes & Vapnik, 1995), is a learning algorithm 

based on statistical learning theory (Vapnik, 1999). The fundamental 

strategy of this algorithm is to search for a (linear) hyper-plane that 

could maximally separate exemplars from different categories. This 

hyper-plane is then used to (linearly) classify new exemplars by 

determining which side of the hyper-plane they fall on. For 

non-linearly separable problems, non-linear kernels can be used to 

map the original feature space onto a higher dimensional space so 

that they can be linearly separated. Popular kernel functions include 

polynomial, sigmoid and radial basis functions. One key advantage 
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of SVM is its excellent predictive performance while its key 

disadvantage is the extensive computational time required (Bellazzi 

& Zupan, 2008). 

3. Decision Trees (DT): DT is a type of decision tools that uses a 

directed acyclic graph constructed from training data (through 

recursive data partitioning) to perform classification. Within the tree 

structure, each non-leaf node is responsible for testing a feature while 

each leaf node corresponds to a class label. One of the pioneering 

(landmark) DTs is ID3 (Iterative Dichotomizer 3) developed by 

Quinlan in 1986 (Quinlan, 1986). Some of the currently popular DT 

algorithms include C4.5 (successor of ID3), See5 (successor of C4.5) 

(Quinlan, 1992) and CART (Classification And Regression Tree) 

(Breiman et al., 1984). One notable advantage of DT is its low 

computational complexity while the key disadvantage is that the 

constructed tree may become very complex when the analysed 

dataset contains many features (Yoo et al., 2012). 

4. Naïve Bayesian classifier: Naïve Bayesian classifier is an efficient 

probabilistic classifier based on Bayesian theorem. It estimates 

various probabilities from the input data and assumes that the input 

features are conditionally independent of each other – i.e. the 

presence (or absence) of one feature is unrelated to the absence (or 

presence) of another. Despite it being a relatively simple classifier 

that makes unrealistic independence assumption, it is capable of 

achieving comparable performance in relation to other more 

sophisticated algorithms (Bellazzi & Zupan, 2008), and is one of the 

popular classifiers used for medical diagnosis (Rish, 2001). However, 

when biomarkers exhibit non-linear relationships, more sophisticated 

algorithms like ANN and SVM are capable of surpassing the 

performance of Naïve Bayesian classifier (Bellazzi & Zupan, 2008).  
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The data preparation phase is responsible for constructing the final dataset 

that will be deployed for learning and construction of ML models. It consists of 

data pre-processing steps like feature ranking, feature selection, feature 

construction, data cleaning, data imputation and data transformation. 

Additionally, it is important to split the initial data into 2 mutually independent 

datasets (namely training dataset and validation dataset) during this phase in 

order to postulate a reliable approach for the estimation of the true performance 

of the constructed predictive models. The training dataset is used for the 

construction of the final predictive model while the validation dataset is used to 

test the constructed model developed using the training dataset (Bellazzi & 

Zupan, 2008). In the fourth phase, modelling, different ML algorithms are 

employed, trained and calibrated with the training dataset to construct the 

predictive model. The performance of these constructed models is compared 

and the best performing model is selected for evaluation and deployment. If 

necessary, one would cycle between modelling and data preparation phases to 

construct the best possible predictive model. Typically during this phase, k-fold 

stratified cross validation strategy is adopted to develop the predictive model. 

This approach divides the training dataset into k data subsets of approximately 

equal size and outcome distribution. Consequently, k-1 data subsets are used to 

develop the predictive model while the remaining (testing) subset is used to test 

the constructed model. This process of training and testing is repeated k times, 

each time using a unique testing subset. A graphical illustration of 10-fold cross 

validation strategy is provided in Figure 2.2.  

The evaluation phase aims to evaluate whether the clinical objectives 

defined during the business understanding phase were satisfied and to estimate 

the true performance of the constructed predictive model. If the clinical 

objectives were not satisfied by the constructed model, one would need to 

repeat the entire process. To evaluate the constructed model, it is crucial to use 
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provision of a platform for updating the predictive models; (4) support of 

standards for the exportation, importation and communication of predictive 

models across different decision support systems; and (5) provision of either 

web or mobile based decision support shells (Wirth & Hipp, 2000; Bellazzi & 

Zupan, 2008).  

 

2.5. Machine Learning based Clinical Decision Support System 

Medical diagnosis and prognosis conducted by physicians today tend to be 

highly subjective and vary based on their personal intuition, experiences, 

judgement, emotions, and knowledge. Exacerbated by the fact that medical 

history, clinical biomarkers and symptoms seldom follow a linear relationship, 

and the expected outcome at individual level does not always abide to the rules 

of epidemiology; it is necessary for the healthcare industry to adopt a more 

objective approach (Chattopadhyay, 2013). One method that has been 

postulated is the use of computational machine learning techniques that allow 

the extraction of interesting, meaningful and predictive information from 

clinical data. This approach has the potential to: (1) eradicate some degree of 

physician’s subjectivity; (2) allow the epidemiology to work more precisely at 

the patient level; (3) enable more comprehensive set of data to be analysed 

simultaneously; and (4) ensure a more objective output to be generated. 

However, it is noteworthy that the final clinical decision should be made by the 

physicians as humans are more flexible and capable at identifying outlying 

details that CDSS is unable to account for (e.g. due to the lack of certain 

information). Hence, CDSS should serve as guidelines aiming to leverage on 

the overall standard of healthcare and should not be used as a replacement for 

physicians. An ideal scenario is to capitalize on the highly accurate prediction 

that machine learning based CDSS can offer while allowing physicians to have 

full flexibility and responsibility in making good clinical judgement 

(Snyderman & Langheier, 2006). 
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Albeit the challenges for the wide deployment of CDSS in clinical practices, 

efforts have continually been invested to improve and enhance the capabilities 

of CDSS. This is, in part, because of the growing body of literature that 

demonstrates the potential benefits of adopting CDSS as part of the clinical 

routine (Neill, 2013; Wiens et al., 2012; Levin et al., 2012); a necessity to gain 

greater appreciation and eventual adoption from the clinicians. Moreover, it has 

been realized that CDSS do offer significant advantages (e.g. improved patient 

safety, quality of care, and efficiency in healthcare delivery) when deployed 

appropriately (Coiera et al., 2003) . Hence, a vital task is to accurately identify 

those aspects of clinical practice that are best suited for their introduction. 

These promises have anticipated the current confluence of interests on the 

employment of artificial intelligence (AI) and statistical modelling as 

computational reasoning tools to support clinical decision. These approaches 

have the distinct advantages of performing non-linear inference, exploratory 

data analysis, tolerating noise, circumventing the difficulties of acquiring expert 

knowledge and the ability to accommodate and model new manifestations of 

disease (Lisboa, 2002).  

In view of these promising benefits, a plethora of CDSS have been 

developed in recent years using ML methods. This approach empowers users to 

automatically discover the underlying medical knowledge (from large medical 

databases that could be stored in different sources) through the process of 

learning from experiences. This process of learning allows the performance of 

certain tasks to improve over time with experience; here, experience refers to 

the data that is used for training the ML inference model. In other words, the 

algorithm will search through the possible hypotheses (within the boundaries of 

the selected mathematical or computational model) to identify the one that best 

suit the observed data and any prior knowledge possessed by the learning 

algorithm. The nature of the data, in this case, can be described by nominal or 

numerical information called attributes (e.g. gender, age, family history, etc.) 

and/or time-series information (e.g. electrocardiogram, blood pressure, etc). 
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Clearly, if an algorithm is allowed to learn from more data, it will gain more 

experience. Similarly, if high quality data is presented to a classification 

algorithm, good experience will be gained. This would result in good 

discriminative ability reaped by the algorithm.   

 

 

Table 2.2: List of Algorithms Used for the Development of Clinical Decision Support 
Technique 

Algorithm Area of Concern Reference 
Artificial immune recognition 

system Atherosclerosis (Latifoğlu et al., 2008) 

Artificial immune recognition 
system Heart disease (Polat et al., 2006) 

Artificial immune recognition 
system Thyroid disease (Polat et al., 2007) 

Artificial neural network Nosocomial infection (Suka et al., 2008) 
Artificial neural network Cardiovascular disease (Ohlsson, 2004) 
Artificial neural network Diabetic retinopathy (Schaefer & Leung, 2007) 

Self-organizing maps 
Probabilistic neural network 
Multi-layer perceptron neural 

network 

Kidney dysfunction (AlTimemy & Naima, 2010) 

Artificial neural network 
Support vector machine 

K-nearest neighbour  
Soft tissue tumor (García-Gómez et al., 2004) 

Artificial neural network 
Decision tree Coronary artery disease (Kurt et al., 2008) 

Bayesian classifier Pyloric stenosis (Alvarez et al., 2006) 
Bayesian learning Pulmonary gas exchange (Murley et al., 2005) 

Model-averaged Naïve Bayes 
Naïve Bayes 

Naïve Bayes with feature 
selection 

Alzheimer’s disease (Wei et al., 2011) 

Naïve Bayes 
Decision tree Diabetes (Huang et al., 2007) 

Decision tree Dengue (Tanner et al., 2008) 
Decision tree Pancreatic cancer (Yu et al., 2005) 

Decision tree Acute myocardial 
infarction (Mair et al., 1995) 

Random forest Coronary Artery Disease (Kelm et al., 2011) 
Random forest Cardiac arrhythmia (Özçift, 2011) 

Support vector machine Tracheal intubation (Yan et al., 2009) 
Support vector machine Clostridium difficile (Wiens et al., 2012) 
Support vector machine Breast cancer (Daemen et al., 2007) 
Support vector machine Lung cancer (Nguyen et al., 2007) 
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Common ML techniques that have been employed to build CDSS include 

Artificial Neural Network (ANN), Decision Tree (DT), Random Forest (RF), 

Bayesian Network, Naïve Bayes, Support Vector Machine (SVM) (Geert et al., 

2009), and Artificial Immune Recognition System (AIRS). The use of these 

algorithms for extracting insights from large medical databases is invaluable as 

medicine is a domain that is complex and difficult to model by humans. These 

techniques are capable of handling large amount of data from different sources, 

incorporate expert knowledge into the analysis, offer data-driven predictions 

that can assist clinicians in making their decision.  A list of examples that 

employs popular machine learning techniques as an approach to enhance 

clinical decision making is shown in Table 2.2. Selected examples are 

succinctly described below: 

1. Suka et al. (Suka et al., 2008) proposed a multiple ANNs approach to 

estimate the probability of nosocomial infection. Multiple ANNs was 

constructed by connecting individual ANNs (that predicts the 

probability of nosocomial infection at different time period) sequentially, 

where the output of an ANN is connected to the input of the next ANN.  

Experimental results show that with multiple ANNs, it outperforms 

multivariate regression models in predicting the risk of nosocomial 

infection.  

2. Ohlsson (Ohlsson, 2004) presented a technique using ANN to automate 

the interpretation of heart images. ANN was compared with logistic 

discrimination and K-nearest neighbour (KNN). Results indicate an 

advantage of using ANN over the other 2 methods evaluated.  

3. Schaefer et al. (Schaefer & Leung, 2007) proposed a neural network-

based approach for automatic detection of exudates in retina images – 

an early indicator for diabetic retinopathy (a common eye disease that is 

directly associated with diabetes, which can eventually result in 
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blindness). Experimental results demonstrated high sensitivity and 

specificity of 94.78% and 94.29% respectively.  

4. AlTimemy et al. (AlTimemy & Naima, 2010) compared the accuracy of 

using self-organizing maps (SOM), probabilistic neural network (PNN) 

and multi-layer perceptron neural network (MLPNN) for the prediction 

of kidney dysfunction. Over 600 analytical laboratory tests have been 

collected and evaluated with the 3 aforementioned types of neural 

networks. Their results indicate that PNN offers faster and more 

accurate prediction for kidney dysfunction.  

5. Yan et al. (Yan et al., 2009) employed support vector machine (SVM) 

with polynomial kernel for the prediction of whether tracheal intubation 

would be easy or difficult before anesthesia is carried out. A total of 264 

medical cases and 13 physical features were analysed in this study. The 

use of 13 basic and anthropometrical features has a significant 

advantage over the approach taken by some anaesthetists where a single 

feature is examined ahead of anaesthesia. This is because most 

specialists agree that full consideration of multiple features would 

improve the prediction accuracy of airway physical examination. Based 

on 4-fold cross-validation, an average classification accuracy of 90.53% 

was achieved in the study. 

6. Wiens et al. (Wiens et al., 2012) compared the use of SVM and HMM 

for predicting patient risk of clostridium difficile. The problem is 

formulated as a time-series problem, which is of particular importance 

as the nature and timing of diagnostic and therapeutic activities, and the 

overall evolution of the patient’s pathophysiology over time have a 

significant impact towards the patient’s risk for adverse events. A total 

of 8166 unique patients were analysed in this study. It was found that 

classifiers that consider the temporal aspect of patient health outperform 

classifiers that only consider a patient’s current state (p<0.05). 
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7. Murley et al. (Murley et al., 2005) used Bayesian learning to determine 

the desirable physiological model parameters for pulmonary gas 

exchange. It aims to support and improve the selection of inspired 

oxygen fraction. The model was tested with 16 post-operative cardiac 

patients. Results demonstrate that it is both accurate and safe to use the 

prediction model to support clinicians. 

8. Wei et al. (Wei et al., 2011) applied model-averaged naïve Bayes 

(MANB) method to predict late onset of Alzheimer’s disease. A total of 

1,411 individuals who each had 312,318 SNP measurements available 

were analysed. MANB performance was compared with Naïve Bayes 

(NB) and Naïve Bayes with feature selection (FSNB). The area under 

the receiver operating characteristic curve (AUC) achieved for MANB, 

NB and FSNB were 0.72, 0.59 and 0.71 respectively. Although the 

performance of MANB and FSNB was statistically not significant, the 

training time required by MANB is significantly faster than FSNB 

(~104-fold faster). 

9. Latifoglu et al. (Latifoğlu et al., 2008) performed diagnosis of 

atherosclerosis from Carotid Artery Doppler Signals using Artificial 

Immune Recognition System (AIRS) as the classification algorithm. 

Prior to classification, features were first extracted using Fast Fourier 

Transformation (FFT) modelling and calculation of maximum 

frequency envelope of sonograms. Subsequently, Principal Component 

Analysis (PCA) was used to reduce the number of features which are 

then weighted using K nearest neighbour (KNN). A total of 60 cases 

and 54 controls were studied. Based on the method proposed, a 

classification accuracy of 100% was obtainable using 10-fold cross-

validation. 

10. Polat et al. (Polat et al., 2007) employed AIRS and fuzzy theory to 

perform thyroid disease diagnosis. The thyroid dataset, available at the 
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UCI machine learning repository, consists of 215 instances and 3 classes. 

The 10-fold cross-validation classification accuracy achieved was 85%. 

This performance, when compared to previous work, is the highest. 

 

Although the current role of ML based CDSS revolves around patient 

diagnosis, prognosis and image analysis, it is postulated that it has great 

potential to improve copious aspects of clinical healthcare in the future. 

Examples include (1) personalization of therapeutic strategies that maximizes 

efficacy and safety, (2) recommendation of the most appropriate and cost-

efficient diagnostic process, (3) real-time and transparent monitoring of patients’ 

health, and (4) discovery of new medical knowledge that has a direct and 

profound impact to the quality of patients’ health and care (Neill, 2013). 
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Chapter 3 

A Biological Continuum based Approach for 

Efficient Clinical Classification1 

Clinical diagnosis is a significant task of pragmatic value. The conventional 

approach to this task is based on expert knowledge and judgement (i.e. analysis 

of patient’s clinical data by a physician and based on his knowledge and 

experience, determine the health status and treatment for the patient). However, 

with the inundation of clinical data/features in current healthcare industries, this 

approach is becoming increasingly challenging. Therefore, computer-aided 

techniques, like data mining, have been proposed to alleviate this challenge.  

In this chapter, we introduce a novel clinical feature selection methodology 

for efficient development of clinical classification model. It is an approach that 

adopts the conceptual framework of biological continuum (BC) (Kitney & Poh, 

2006; Poh et al., 2007), the optimization capability of genetic algorithm (GA) 

(Holland, 1992) and the classification ability of support vector machine (SVM) 

(Boser et al., 1992; Cortes & Vapnik, 1995; Vapnik, 1999). Together, a 

network of associated clinical risk factors (from different biological levels) was 

constructed. We call this network the Biological Continuum based Etiological 

Network (BCEN). Evaluation of our proposed methodology was carried out 

using the CHS dataset (Fried et al., 1991). Results demonstrate that our 

methodology, when compared with the conventional approach, is capable of 

achieving a significant speedup of 4.73-fold without compromising 

classification accuracy. The key advantage of our approach is the provision of a 

                                                 
1  The work presented in this chapter has been published in the Journal of Biomedical 
Informatics and reprinted from “Journal of Biomedical Informatics, Tay, Poh, Goh & Kitney, 
“A biological continuum based approach for efficient clinical classification”, 2014 
(doi:10.1016/j.jbi.2013.09.002)”, with permission from Elsevier. This paper can be found in 
Appendix C.  
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reusable (feature subset) paradigm for efficient development of up-to-date and 

efficacious clinical classification models. 

 

3.1. Introduction 
The efficient development of accurate clinical classification models has been 

a challenge for many reasons. One problem that is commonly encountered is 

the ‘curse of dimensionality’ (Bellman, 1961), where the linear growth of 

clinical features (i.e. predicators) results in an exponential growth in the search 

space. This inevitably hinders the development of classification models as it 

becomes computationally expensive to investigate a plethora of clinical features 

simultaneously using search heuristics that analyse features in combinations 

(particularly, when performing multivariate analysis based on wrapper 

approach). This situation is exacerbated by the fact that up-to-date and 

sophisticated clinical classification models need to be constantly developed in 

order to continually improve the quality of clinical diagnosis. Specifically, the 

clinical classification models need to be rebuilt whenever new clinical risk 

factors that could potentially ameliorate the performance of the classification 

model are introduced. An example of such clinical effort is the perpetual studies 

of different types of clinical risk factors and approaches that could improve the 

ability to identify events of myocardial infarction (MI) (Baxt & Skora, 1996; 

Menown et al., 2000). This is of paramount importance as MI is a leading cause 

of morbidity and mortality in many developed countries, such as the United 

States (U.S.) and the United Kingdom (U.K.) (Go et al., 2013; Wilson et al., 

1998; British Heart Foundation Statistics Database, 2010). Despite considerable 

advances in medicine, MI approximately occurs every 34 seconds in the U.S. 

and about 15% who experience MI will die from it (Go et al., 2013). Moreover, 

MI is difficult to ascertain in patients presenting to the emergency department 

with anterior chest pain (Baxt & Skora, 1996). This advocates for the need of 

an efficient approach to develop up-to-date MI classification models for 
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performing accurate diagnosis. 

Furthermore, investigation of the association between a range of clinical 

observations (e.g. medical history, chemotherapy, stage of disease, gene, etc.) 

and the disease at the human population level is important as it has 

demonstrated promising potential for improving disease classification 

performance (Hsia et al., 2003; Pittman et al., 2004). However, when such an 

investigation is carried out on a larger scale, this would involve a large amount 

of clinical features, making analysis challenging and even computationally 

infeasible. Additionally, it also hinders the ability for any machine learning 

method to perform accurate disease classification. One approach to mitigate the 

aforementioned problems is through dimensionality reduction - where 

significant clinical risk factors are identified, reducing the total number of 

predicators that need to be analysed.  

In this chapter, we introduce a novel clinical feature selection methodology 

for the development of MI classification model. This approach utilizes on the 

conceptual framework of biological continuum (BC) (Kitney & Poh, 2006; Poh 

et al., 2007), the optimization capability of genetic algorithm2 (GA) (Holland, 

1992) for performing feature selection and the classification ability of support 

vector machine3 (SVM) (Boser et al., 1992; Cortes & Vapnik, 1995; Vapnik, 

1999) for dichotomizing patients experiencing a phenotypic manifestation from 

healthy individuals. The BC is the hierarchy of the human organism comprising 

body, systems, viscera, tissue, cells, proteins and genes. Detailed analysis of the 

biology of a disease at different levels along the BC is very important. As an 

example, one significant advantage postulated by molecular medicine is the 

ability to prevent a disease at the molecular or cellular level. This is highly 

attractive as less damage would have occurred and the likelihood of full 

recovery is much higher.  

                                                 
2 A brief description of how GA works can be found in Appendix A. 
3 A brief description of how SVM works can be found in Appendix B. 
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In this study, the BC provides the biological paradigm necessary for 

segregating a range of available clinical features; offering the advantage of 

reducing the number of clinical features that needs to be analysed concurrently. 

A GA based wrapper approach using SVM, which selects significant clinical 

features capable of dichotomizing patients experiencing a phenotypic 

manifestation from healthy individuals, was implemented. This hybrid 

algorithm (called GA-SVM) was used to identify important clinical features at 

each level of the BC and incrementally built a network of clinical risk factors, 

called the biological continuum based etiological network (BCEN). The 

primary advantage of BCEN used for the construction of up-to-date clinical 

classification model is that it allows new clinical features to be considered for 

incorporation into the classification model without the need for a total 

reanalysis from scratch. 

The reliability of the constructed BCEN was assessed by comparing the set 

of identified risk factors found in the (obesity-system) sub-network, with the 

risk factors found in previous clinical studies. Promising results were obtained 

from this analysis. An MI classification model was subsequently developed 

based on the clinical features identified and present in the BCEN. Significant 

reduction in the computational time required to develop the classification model 

was achieved. It is noteworthy that comparable classification accuracy was 

obtained between the proposed method (i.e. pre-selection of clinical features 

using BCEN) and the baseline approach (i.e. no pre-selection was performed). 

The Cardiovascular Health Study (CHS) (Fried et al., 1991) dataset was 

analysed in this study.  

The rest of the chapter is organized as follows. Section 3.2 provides the 

background information on feature selection. In Section 3.3, the experimental 

methodology involved in the development of the clinical feature selection 

technique and the clinical classification model is presented. The experimental 

results are presented in Section 3.4 and discussed in Section 3.5. Finally, 
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conclusions are drawn in Section 3.6.  

 

3.2. Background 
Conventionally, clinical predictions which provide the disease diagnosis for 

an individual are based on expert knowledge. However, with the exponential 

growth of clinical data generated in healthcare industries, this approach has 

become more and more difficult and costly. An approach to mitigate this 

challenge is to process and analyse the large amount of clinical data, extracting 

knowledge that enables support for cost-containment and decision making 

(Bhatla & Jyoti, 2012). Machine learning is one method that has been proposed 

to address this issue. It provides the techniques necessary for the analysis of the 

data, discovery of hidden patterns and provides healthcare professionals with an 

additional source of knowledge for decision making. In the parlance of 

literature, machine learning is defined as a branch of artificial intelligence that 

postulates a set of computer-based methods for automatic analysis of 

information and recognition of patterns through repeated learning from the 

training data (Roganb et al., 2008), and is a more powerful and sophisticated 

descendant of traditional statistical models. It is generally model-free and is 

capable of efficiently detecting and modelling the non-linear interactions in 

high dimensional datasets. Additionally, the associations or patterns detected by 

machine learning methods tend to be logical and can be identified by human 

experts if they analyse the problem carefully enough (Baxt & Skora, 1996). 

Clearly, this entails that machine learning is capable of saving both the time and 

effort necessary for the discovery of underlying patterns. 

Clinical prediction (e.g. diagnosis of cardiovascular disease) based on 

machine learning approaches has gained popularity over the years (Baxt & 

Skora, 1996; Eggers et al., 2007; Palaniappan & Awang, 2008; Bhatla & Jyoti, 

2012; Hossain et al., 2013; Latifoğlu et al., 2008; Ohlsson, 2004; Nilsson et al., 

2006) and shown to be an extremely useful tool in medical innovation (Hossain 
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et al., 2013). It is often based on the patient’s unique clinical, genetic and 

environmental characteristics and plays a significant role in healthcare decision 

making and planning. Since each clinical feature collected is associated with a 

different financial cost, diagnostic value and risk (Yang & Honavar, 1998), it is 

highly desirable to reduce the number of clinical tests that need to be taken by a 

patient. This would inevitably reduce the financial cost, and the time incurred 

on both the analysts and patients. One approach commonly adopted by machine 

learning techniques to reduce the number of clinical features while improving 

the diagnostic/classification accuracy is feature selection. 

Feature selection is the process of selecting a subset of relevant features for 

model construction and provides better insights into the target concept of a real-

world problem (Kohavi & Sommerfield, 1995). It differs from other 

dimensionality reduction techniques like project and compression where their 

original representation of the variables is modified. Therefore, feature selection 

has the advantage of preserving the original semantics of the features which 

enables domain experts to interpret the selected features. Furthermore, it has 

shifted from being an illustrative example to one of real prerequisite for 

developing classification models (Saeys et al., 2007). This is, in part, because of 

the exponential increase in the dimensionality of the data (e.g. in clinical and 

bioinformatics domains), the fact that most classifiers were originally not 

designed to handle plethora of irrelevant features, and the need to generate 

more accurate classifiers efficiently. In general, feature selection aims to 

identify a parsimonious subset of useful features (from a large set of features) 

that (1) does not decrease the classification accuracy, (2) reduces the 

computational time needed to learn a sufficiently accurate classification model, 

(3) does not acutely changes the class distribution while adequately 

representative for descripting the target concept, and (4) reduces the amount of 

examples that need to be collected in order to develop a classification model 

with the desired accuracy (Dash & Liu, 1997). 

Feature selection algorithms typically fall under 4 categories depending on 
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how it is performed in relation to the classification algorithm. They include (1) 

selection based on expert knowledge, (2) filter approach, (3) wrapper approach, 

and (4) embedded approach. Each has its own competitive advantages and 

drawbacks. Selection based on expert knowledge (e.g. human domain expert or 

referencing the scientific literature) offers a set of features with high 

interpretability in relation to the target concept. However, its major drawbacks 

are that it can be time consuming and human expert is required to perform the 

task. An illustration of this approach is demonstrated in (Emily et al., 2009), 

where the number of interaction tests that need to be performed can be limited 

with the use of experimental knowledge of the biological network. More 

specifically, knowledge extracted from protein interaction databases reduces the 

number of interaction tests from 1.25x1011 to 7.1x104, allowing more efficient 

analysis of genome-wide studies to be carried out. 

Filter methods, on the other hand, evaluate the relevance of each feature by 

assessing only the intrinsic characteristics of the data. Although this approach 

does not need a domain expert to intervene, is simple, efficient and can easily 

scale to very high-dimensional datasets, it does not always guarantee improved 

performance (Chu et al., 2012) as it ignores the inductive bias associated with 

the classifier (Yang & Honavar, 1998). Examples of filter techniques include 

chi-square test, t-test, information gain, correlation-based feature selection and 

Markov blanket filter.  

Wrapper methods embed the inductive bias associated with the classifier 

within the feature selection process. In this case, subsets of features are 

generated and their performance is assessed by training and testing them on a 

specific classification algorithm. The advantages of this approach are: (1) the 

freedom to choose the desired classification algorithm, (2) allowing interaction 

between feature selection and model selection, and (3) ensuring that feature 

dependencies are taken into consideration (i.e. the need to add or remove more 

than 1 feature at the same time in order to improve the performance (Guyon & 

Elisseeff, 2003; Yang & Honavar, 1998)). Consideration of feature 

dependencies is important, especially in the medical field, as it has become 
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evident that multiple genes collectively contribute to the etiology and clinical 

manifestation of human diseases (Li & Agarwal, 2009). Hence, important 

genotypic factors might be missed if they have been examined in isolation or in 

a linear fashion - without allowing for potential interactions. This situation 

would be exacerbated when performing genome-wide association studies where 

hundreds of thousands of single nucleotide polymorphisms (SNPs) need to be 

analysed. Wrapper approach, on the downside, becomes computationally 

intensive when the number of features grows exponentially. This is because 

every feature subsets generated need to be executed on the selected learning 

algorithm. Moreover, it has a higher risk of over-fitting the classifier than filter 

approach. Examples of this technique include sequential forward selection, 

sequential backward selection, simulated annealing, genetic algorithm and 

estimation of distribution algorithm. 

Finally, embedded approach integrates the process of identifying the optimal 

subset of features within the learning algorithm. Based on this mechanism, it 

has the advantage of being more computationally efficient (compared to 

wrapper approach) while maintaining interaction with the classifier. Examples 

include decision trees and weighted naïve Bayes.  

 

3.3. Material and Methods 
In Section 3.3.1, a description of the CHS dataset used is provided. Section 

3.3.2 lists the steps taken in constructing BCEN – the proposed framework for 

efficient and repetitive development of up-to-date clinical classification models. 

Specifically, data imputation (Section 3.3.2.1) was first conducted on the CHS 

dataset as it contains a significant amount of missing data. Subsequently, data 

class balancing (i.e. selecting a similar number of cases and controls) is 

performed on the imputed dataset (see Section 3.3.2.2). Through these 2 steps, 

we aim to improve the quality of the data to be analysed. In Section 3.3.2.3, 

how clinical features amassed from the CHS observational study are segregated  
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informed consent and do not require a proxy respondent at baseline. Individuals 

who were wheelchair-bound at home at baseline, receiving hospice treatment, 

radiation therapy or chemotherapy for cancer were excluded. The eligible 

individuals were examined yearly from 1989 to 1999. Extensive physical and 

laboratory evaluations were carried out to identify the presence and severity of 

cardiovascular disease (CVD) risk factors - such as hypertension; 

hypercholesterolemia and glucose intolerance; subclinical disease, such as 

carotid artery atherosclerosis; left ventricular enlargement; and transient 

ischemia. Criteria for identification of MI events include: observation of 

evolving Q-wave, cardiac pain and abnormal enzymes together with an 

evolving ST-T pattern or new left bundle branch block. A total of 355 clinical 

features related to the individual’s health status were selected from the CHS 

dataset for this study.  

The dataset was chosen because of (1) the relatively high prevalence of 

coronary heart disease (CHD) among the elderly, (2) worldwide demographic 

aging, (3) paucity of information regarding risk factors for CHD among elderly, 

and (4) the changing clinical characteristics of CHD with advancing age (Fried 

et al., 1991; Wiener & Tilly, 2002; Go et al., 2013; Abbott et al., 2002).  

 

 

3.3.2. Biological Continuum based Etiological Network (BCEN) 
Several steps were taken to construct the BCEN for MI with the canonical 

flow illustrated in Figure 3.1. A succinct description of the key steps taken is 

given below while we dedicate separate sections for the discussion of the 

details: 

1. Sparse records were removed and missing entries in the dataset were 

imputed to ensure good quality data is used to model the risk factors 

associated with MI. This was performed with the K-Nearest Neighbour 

(KNN) algorithm (Cover & Hart, 1967) - it calculates the missing value 
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by taking the K nearest training set vectors (based on Euclidean distance) 

into consideration.  

2. Healthy individuals, forming a large proportion of the dataset in relation 

to the number of patient records, were sampled to avoid jeopardizing the 

ability of SVM to learn and generalize. This is carried out with Kohonen 

Self-Organizing Map (SOM) (Kohonen, 1990), where a representative 

subset of the majority class (i.e. healthy individuals) present in the CHS 

dataset was selected, a process known as under-sampling.  

3. Clinical features, such as blood pressure, electrocardiography (EKG) 

readings, ultrasound data, hematology data, etc, were segregated along 

the BC - the hierarchy of the human organism. It comprises 7 levels, 

namely the body, system, viscera, tissue, cell, protein and gene.  

4. GA-SVM, a hybrid algorithm used to identify significant clinical features, 

was implemented. It is used repeatedly at each level of the BC to identify 

significant risk factors that are related to the different phenotypic 

manifestations, and ultimately MI.  

5. With the significant risk factors identified at the different levels of the 

BC, they were consolidated to construct a consensus network, known as 

the BCEN in this work. These risk factors, in turn, were used to perform 

MI classification using the GA-SVM algorithm. 

 

3.3.2.1. Data Imputation 
As with many datasets collected from real subjects and patients, missing data 

is unavoidable. This may be due to various factors, e.g. the refusal of 

respondents, malfunction of equipment, data not entered correctly and the death 

of patients (Batista & Monard, 2003). Moreover, since the quality of the results 

is largely determined by the quality of the data used in the analysis, detailed 
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consideration was given before using the CHS dataset. It was found that the 

CHS dataset contains a significant percentage of missing information. Hence, 

data imputation was first conducted. 

Data imputation, the process of substituting missing values in a dataset with 

plausible values, was performed using KNN. KNN imputation was used 

because of its excellent performance in estimating missing values (Troyanskaya 

et al., 2001; Acuña & Rodriguez, 2004; Batista & Monard, 2002; Jerez et al., 

2010) and its ability to estimate both qualitative and quantitative attributes. This 

makes it highly suitable for extrapolating the missing entries in the CHS 

dataset. 

Firstly, individuals with unknown MI status were removed from the analysis. 

Next, to foster more accurate data imputation, individuals and clinical features 

with high percentage of missing entries were removed. It is important to have 

low percentage of missing values because the accuracy of the imputed result 

would suffer if too little complete entries were available for KNN to reference 

when estimating the missing values (Garcia-Laencina et al., 2008; Troyanskaya 

et al., 2001; Jerez et al., 2010). Hence, individuals and clinical features with 

more than 20% and 4.5% missing entries, respectively, were removed. 

Consequently, the resultant dataset was normalized to unit variance before data 

imputation was performed using KNN. This is important as it ensures that 

variables with large scale do not dominate the (Euclidean) distance measure 

(Minaei-Bidgoli et al., 2003).  

The optimal value of K for each clinical feature was determined by 10-fold 

cross-validation. After the value of K for each clinical feature had been 

determined, data imputation for each missing attribute was performed. The type 

of replacement method used depends on the type of data present in each clinical 

feature. For instance, if the data is categorical, a reliable choice is to use the 

mode of the K nearest neighbours to assign the value for the missing entries 

(Acuña & Rodriguez, 2004; Cover & Hart, 1967). On the other hand, if the data 
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is continuous, the weighted-mean of the K nearest neighbour is used instead to 

calculate the missing value. Weighted-mean estimation has been demonstrated 

in (Dudani, 1976; Troyanskaya et al., 2001) to be robust and accurate. 

 

3.3.2.2. Class Imbalance Data Problem 
The class imbalance data problem is not uncommon in medical datasets 

where the data is predominated by the healthy subjects (i.e. controls), with only 

a small number of disease-affected subjects (i.e. cases). Consequently, this 

limited the effectiveness ability of standard machine learning algorithms - 

where the algorithms tend to be overwhelmed by the major class and ignore the 

minor one. This, in turn, hinders performance (Japkowicz, 2000; Li et al., 

2010). This class imbalance data problem prevails in the CHS dataset as well. 

Therefore, data balancing was performed before deploying the data to GA-

SVM. 

SOM, an unsupervised (neural network) learning algorithm, was employed 

to under-sample the major class. This algorithm was chosen because it is 

capable of generating high quality samples that are representative of the 

original dataset (Kohonen, 1990) and it has been shown in (Wu et al., 1996) 

that SOM outperforms random selection. Once the imputed dataset was 

obtained, the SOM was trained in two phases; namely, the ordering phase and 

the tuning phase. Two key adaptive parameters, neighbourhood size and 

learning rate, were used when training the SOM. Neighbourhood size defines 

the number of neurons that surround the winning neuron (i.e. most stimulated 

neuron) at each epoch, while the learning rate controls the degree of change for 

the adapting neurons.  

During the ordering phase, large initial neighbourhood size (i.e. 10) and 

learning rates (i.e. 0.9) were used. Conversely, small neighbourhood size (i.e. 1) 

and learning rates (i.e. 0.02) were used during the tuning phase - where the 
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neighbourhood size will shrink progressively to 1. This is to allow the SOM to 

adjust quickly to the input pattern during the ordering phase and to stabilize the 

feature map during the tuning phase (Kohonen, 1990). The following value for 

the SOM parameters was determined experimentally and used in this study: 

number of neurons: 21 by 21; topology function: hexagon; distance function: 

Euclidean; epoch: 1000; ordering phase learning rate: 0.9; tuning phase learning 

rate: 0.02; initial neighbourhood size: 10; final neighbourhood size: 1. The 

reason for using these values is because they have shown to provide reasonable 

performance. 

 

3.3.2.3. Segregation of Clinical Features 
The Biological Continuum was central to the development of the BCEN. It 

was utilized in this case to provide the necessary biological paradigm to relate 

the disease mechanisms to the clinical manifestations at various levels of the 

biological continuum. Upon analysing the clinical features, it was found that 

these features fall under 4 key levels along the BC, namely: body, system, 

viscera and protein level. Clinical features related to medication were removed 

from the study as it was difficult to adjudicate to which level of the BC they 

belong. Categorization of the rest of the clinical features, in relation to the 

levels of the BC, was undertaken using the following guidelines: 

 Body level – Contains clinical features related to individuals’ personal 

statistics (e.g. age, weight), lifestyle (e.g. smoking status, exercise 

intensity) and cardiovascular events which that individual is 

experiencing. 

 System level – Consists of clinical features related to individuals’ 

medical history (e.g. arthritis, diabetes), symptoms (e.g. hearing/vision 

problems) that the individual is experiencing and blood pressure 

measurements.  
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a set of points uniformly across the cost-gamma landscape, proposed to 

alleviate the computational loads associated with the search for the optimal 

cost-gamma pair (Chow et al., 2008). This search process begins by initializing 

a 30-points UD (global) search across the defined cost-gamma landscape. Next, 

it identifies the top 5 most accurate (global) cost-gamma pairs, where they form 

the centroid for 10-points UD (fine) search. If improved accuracy was achieved, 

the points will form the centroid for another 10-points UD search. This process 

repeats until no further improvement is achieved. Figure 3.2 provides an 

illustration of this method.  

Figure 3.3 provides the schematic illustration of GA-SVM algorithm. The 

flow of the algorithm is as follow: GA first (randomly) initializes a pool of 

clinical feature subsets (Figure 3.3 - chromosome 1 to N) from the CHS dataset 

(consisting of M clinical features). Each bit in the chromosome is assigned with 

a value of either ‘1’ or ‘0’, indicating whether that feature is selected or 

eliminated from consideration by the classifier, respectively. This produces a 

pool of chromosomes representing different input features. Consequently, each 

chromosome was evaluated by SVM (where optimization of SVM parameters 

was performed independently for each chromosome) in an attempt to determine 

how informative and discriminative the clinical features are in relation to the 

associated clinical or subclinical manifestation. This evaluation is conducted by 

performing a 10-fold stratified cross-validation. Subsequently, these subsets of 

clinical features undergo natural selection, crossover and mutation phases 

postulated by GA. The process repeats until GA converges or the maximum 

number of generations has been reached. GA is considered to have converged if 

the maximum fitness value (i.e. balanced accuracy – the average of sensitivity 

and specificity) does not improve after 20 consecutive generations. Upon 

termination, the subset of clinical features that yielded the highest balanced 

accuracy will be selected and considered as significant risk factors. A consensus 

network was constructed if several combinations of clinical feature subset 

yielded the same fitness performance. The reason for doing this is to build a 
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parsimonious model that maximizes the likelihood of the clinical features that 

are most influential to the development of the phenotypic manifestation. It was 

derived by identifying clinical features that existed in more than 75% of the 

highest-performing clinical feature combinations. The parameters value used by 

GA are as follow: population size: 250; maximum generation: 300; natural 

selection: stochastic universal sampling; crossover type: uniform crossover; 

crossover probability: 0.8; mutation probability: 0.01. These values were used 

as they perform reasonably well over a range of values when evaluated 

experimentally. The algorithm was written in Matlab (MathWorks Inc., Natick, 

MA) and executed in parallel using a high performance computer (HPC) cluster.  

 

3.3.2.5. Construction of BCEN 
The underlying cause of MI is multifactorial and subtle, with nonlinear 

causal dynamics. Moreover, with the plethora of clinical predicators available, 

analysis of all of them becomes computationally impractical. In view of such 

challenges, GA-SVM, together with the conceptual framework of the BC, were 

used to construct the BCEN for MI.  

Firstly, by segregating the clinical features into various levels along the BC, 

the number of clinical features to be analysed is effectively reduced to the 

number of clinical features present at each level (i.e. dimensionality reduction). 

Secondly, with the employment of GA, which is capable of performing global 

heuristic searches both effectively and efficiently, the computational burden of 

discovering significant risk factors is alleviated. Finally, facilitated by SVM, 

which outperforms popular technique like multifactor dimensionality reduction 

(MDR) (Chen et al., 2008), it ensures that accurate estimation of the association 

between the clinical features at adjacent levels of the BC is being carried out.  

At onset, clinical features grouped under the “body level” of the BC were 

input into GA-SVM for investigation. This step aims to identify clinical 
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features that contribute significantly to the development of an accurate 

inference model for MI. Consequently, significant risk factors, defined in this 

work as risk factors that can potentially contribute to the manifestation of a 

clinical or subclinical risk, were identified - forming the top level of the BCEN. 

If any of these identified risk factors are continuous, it is discretized based on 

the extended χ2 algorithm (Su & Hsu, 2005). The reason for performing this 

step was to alleviate the associated computational complexity when analysis 

was performed with SVM. 

Next, clinical features categorized under the “system level” of the BC were 

input into GA-SVM for investigation. This, similar to the earlier step, aims to 

identify clinical features that have a significant impact to the inference of the 

phenotypic manifestation previously identified at the “body level”. The 

 

 

 

Figure 3.4: Graphical Illustration of BCEN  
The circles represent clinical feature that belong to the respective levels of the BC. The 
arrows linking the clinical features indicate that a significant correlation was found 
between them.  

resultant output from this step forms the “system level” of BCEN. This 

procedure is repeated for the rest of the levels along the BC, constructing a 
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probabilistic tree-structured BCEN at the end of this propagation. The resultant 

BCEN is capable of scrutinizing how, for instance, clinical features at the 

visceral level are associated with those at the system level and, in turn, how 

these features at the system level are associated with those at the body level. 

This concept is graphically illustrated in Figure 3.4.  

 

3.3.3. MI Classification with BCEN 
After the construction of BCEN for MI, the distinct risk factors present in the 

network were used to develop an MI classification model. The performance 

(both classification accuracy and computational time) yielded with this 

approach was compared with an MI classification model that uses all clinical 

features present in the CHS dataset. GA-SVM was used as the classification 

algorithm for both the postulated approaches; hence, any benefits or drawbacks 

of using this classifier would prevail in both approaches. 

 

3.4. Experimental Results 

3.4.1. Data Preprocessing 
Records and clinical features with considerable missing entries were 

removed. In addition, only records with known MI status were selected. This 

resulted in a dataset comprising of 4612 instances and 272 clinical features, 

with less than 1% of missing values (with respect to the entire dataset) and 40.8% 

of records with complete entries. The training and query datasets thus have 

1881 and 2731 instances (both with 272 features), respectively. Subsequently, 

the K neighbour value for each clinical feature was determined based on the 

normalized training dataset. This yielded an average K value of 9.80, with  

 

Table 3.1: Details of Best-Performing Clinical Feature Subsets 
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Parent Node 
Child 

Nodes 
# Inner 
Nodes 

# Leaf 
Nodes 

Total 
Nodes 

ACC SN SP PR FM BA 

MI Status 
Clinical 

Features at 
Body Level 

5 6 11 0.828 0.786 0.866 0.846 0.815 0.826 

B
o

d
y 

Le
ve

l ANGBASE 
Clinical 

Features at 
System 
Level 

4 19 23 0.814 0.741 0.929 0.416 0.428 0.835 
CHFBASE 2 16 18 0.958 0.559 0.855 0.596 0.575 0.707 
STRKBASE 0 12 12 0.958 0.701 0.905 0.878 0.672 0.803 

CBD 3 18 21 0.955 0.734 0.983 0.841 0.784 0.858 
OVRWT120 2 32 34 0.737 0.737 0.738 0.704 0.720 0.737 

Sy
st

e
m

 

Le
ve

l 

ANBLMOD 
Clinical 

Features at 
Viscera 
Level 

0 25 25 0.785 0.562 0.931 0.841 0.673 0.746 
CLBLMOD 0 18 18 0.955 0.426 0.991 0.767 0.548 0.709 
SUPPUL16 0 9 9 0.828 0.865 0.749 0.834 0.849 0.807 

CHSTPN 0 16 16 0.717 0.794 0.609 0.695 0.741 0.702 
VISPROB 0 21 21 0.829 0.667 0.981 0.568 0.609 0.824 

Column 1 provides the best-performing clinical features at different levels of the BC: ANGBASE = angina 
status at baseline; CHFBASE = congestive heart failure at baseline; STRKBASE = stroke status at 
baseline; CBD = self-reported stroke, transient ischemic attack and cardiac endarterectomy; OVRWT120 = 
obesity > 120% ideal; ANBLMOD = angina modified at baseline status; CLBLMOD = claudication 
modified baseline status; SUPPUL16 = supine reading: 30 second heart rate; CHSTPN = chest pain; 
VISPROB = vision problem.  
Columns 6 to 11 represent the various performance measurements: ACC = Accuracy; SN = Sensitivity; SP 
= Specificity; PR = Precision; FM = F-Measure; BA = Balanced Accuracy. 

 

standard deviation of 9.38. Data imputation was next performed to impute the 

missing entries found in the query dataset.  

The imputed dataset obtained has a high fraction of controls (i.e. without MI 

- 4200 instances) and a relatively small portion of cases (i.e. with MI - 412 

instances). SOM was thus employed to resolve this class data imbalanced 

problem. Under-sampling was performed on the major class (i.e. controls), 

yielding 441 instances. The final dataset produced has 853 instances and 272 

clinical features. 

 

3.4.2. Segregation of Clinical Features 
The construction of a BCEN involved the segregation of the clinical features 

(173 diagnostic measurements and 1 MI status) along the BC. These 173 

clinical features (after excluding medication) satisfied the characteristics of 

only 4 levels of the BC; namely, body, system, viscera and protein. Among 

these clinical features, 38, 74, 41 and 20 belong to the body, system, viscera 
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and protein levels, respectively. A description of the segregated clinical features 

is provided online as an Appendix at 

http://www.bg.ic.ac.uk/jtay/web/chs_appendix.html. Readers may refer to the 

CHS data dictionary made available at the Biologic Specimen and Data 

Repository Information Coordinating Center (BioLINCC) website for more 

information (https://biolincc.nhlbi.nih.gov/studies/chs/).  

 

3.4.3. Construction of BCEN and Classification of MI 
Clinical features at the body level were first deployed to GA-SVM to 

determine the set of risk factors that were highly correlated to MI (root node). A 

total of 11 risk factors, namely ANGBASE (angina status at baseline), 

CHFBASE (congestive heart failure at baseline), STRKBASE (stroke status at 

baseline), CBD (self-reported stroke, transient ischemic attack (TIA) and 

cardiac endarterectomy), SCORE03 (social support score), AMOUNT 

(cigarettes smoked per day), WGTEEN (teenage weight category), OVRWT120 

(obesity > 120% ideal), EDUC (education level), WAIST (waist circumference 

– cm) and ALCOH (number of alcoholic beverages per week) were identified at 

the body level (note that these modifiable risk factors are also identified in 

earlier reported clinical studies (Yusuf et al., 2004; Rosengren et al., 2009)).   

When extending the network, only clinical feature subsets (child nodes) that 

yielded a balanced accuracy of at least 0.7 were considered. This threshold was 

imposed to reflect only child nodes that are highly correlated to their parent 

node. This resulted in 5 inner nodes at the body level - namely ANGBASE, 

CHFBASE, STRKBASE, CBD and OVRWT120. This criterion was applied to 

the rest of the levels of the BC.  

 

http://www.bg.ic.ac.uk/jtay/web/chs_appendix.html
https://biolincc.nhlbi.nih.gov/studies/chs/
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Myocardial 
Infarction

(ANGBASE) ANGINA STATUS AT 
BASELINE
(CHFBASE) CHF STATUS AT 
BASELINE
(STRKBASE) STROKE STATUS AT 
BASELINE
(CBD) SELF-REPORTED STROKE, 
TIA, CAROTID ENDARTERECTOMY
(SCORE03) SOCIAL SUPPORT 
SCORE
(AMOUNT) CIGARETTES 
SMOKED/DAY
(WGTEEN) TEENAGE WEIGHT 
CATEGORY

(OVRWT120) OBESITY >120% 
IDEAL
(EDUC) EDUCATION LEVEL

(WAIST) WAIST CIRCUMFERENCE 
- cm
(ALCOH) NUMBER OF 
ALCOHOLIC BEVERAGES/WK

(ARTH01) ARTHRITIS

(DIAG01) EVER DIAGNOSED WITH 
CANCER

(BRONCH) BRONCHITIS CONFIRMED 
BY DOCTOR
(PNEUMON) PNEUMONIA DECTECTED 
BY DOCTOR
(EMPHYSEM) EMPHYSEMA 
DECTECTED BY DOCTOR
(THROMB) DEEP VEIN THROMBOSIS
(ROSEIC) INTERMITTENT 
CLAUDICATION BY ROSE QUESTION

(GROGGY) GROGGY IN MORNING
(TRSLEEP) TROUBLE FALLING ASLEEP
(WKERLY) WAKE UP FAR TOO EARLY
(RECOGN) SEE ENOUGH TO 
RECOGNIZE PERSON
(TELE) SEE ENOUGH TO USE PHONE

(CONVER) HEAR ENOUGH TO 
CONVERSE

(ADL) ACTIVITIES OF DAILY LIVING

(IADL) INSTRUMENTAL ACTIVITIES OF 
DAILY LIVING

(ANBLMOD) ANGINA MODIFIED 
BASELINE STATUS

(UES) UPPER EXTREMITY SCORE

(BLEED12) BLEED OR BRUISE EASILY

(CLOT12) DISORDER RELATED TO 
BLOOD CLOTTING
(LTAAI) LEFT ANKLE-ARM INDEX (%)

(SUPPUL16) SUPINE READING: 30 
SECOND HEART RATE
(BIORES21) BIOELECTRIC IMPEDANCE 
- RESISTANCE
(BAL22) DIZZINESS, LOSS OF BALANCE 
SCREEN
(LOSBAL22) LOSS OF BALANCE
(DIZZY22) DIZZY/LIGHT-HEADED 
WHEN STAND UP QUICKLY
(TIMEWLK) 15 FOOT WALK TIME-SEC

(DIGCOR) DIGIT SYMBOL SCORE

(SCOR3510) MINI-MENTAL SCORE (35 
POINTS)
(SCORE30) MINI-MENTAL SCORE (30 
POINTS)
(CLBLMOD) CLAUDICATION 
MODIFIED BASELINE STATUS
(STBLMOD) STROKE MODIFIED 
BASELINE STATUS
(TIBLMOD) TIA MODIFIED BASELINE 
STATUS
(HYPER) CALCULATED HYPERTENSION 
STATUS
(DIABADA) DIABETIC STATUS – ADA 
GUIDELINES

(BPSSUR) CORONARY BYPASS SURGERY
(CORART) CORONARY ARTERY ANGIOPLASTY
(EXTART) LOWER EXTREMITY ANGIOPLASTY
(RTIB) AVERAGE RIGHT TIBIAL BLOOD PRESSURE
(LTIB) AVERAGE LEFT TIBIAL BLOOD PRESSURE
(MAXINT) AVERAGE NEAR AND FAR WALL MAX –
INT, FROM BASELINE REREADS (mm)
(MAXINT) AVERAGE NEAR AND FAR WALL MAX –
INT, FROM BASELINE REREADS (mm)
(MAXCOM) AVERAGE NEAR AND FAR WALL MAX –
COM (mm)
(LVM42) LEFT VENTRICULAR MASS (gm)
(VCD) VENTRICULAR CONDUCT DEFECT
(QQS) MAJOR Q OR QS ABNORM
(ECGLVH) LEFT VENTRICULAR HYPERTROPHY BY ECG
(ECGAFIB) ATRIAL FIBRILLATION BY ECG
(MAJABN) ANY MAJOR ECG ABNORM
(MAJMIN) ANY ECG ABNORM-MAJ, MIN
(PSTENRT) % STENOSIS, RIGHT
(PSTENLFT) % STENOSIS, LEFT
(LDENS1BL) ORIGINAL BASELINE LESION DENSITY, 
RIGHT SIDE
(PW1BL) ORIGINAL BASELINE P WAVE, RIGHT SIDE

(CW1BL) ORIGINAL BASELINE C WAVE, RIGHT SIDE
(LMRPH2BL) ORIGINAL BASELINE LESION 
MORPHOLOGY, LEFT SIDE
(LDENS2BL) ORIGINAL BASELINE LESION DENSITY, 
LEFT SIDE
(PW2BL) ORIGINAL BASELINE P WAVE, LEFT SIDE
(CW2BL) ORIGINAL BASELINE C WAVE, LEFT SIDE
(FSTDV1BL) ORIGINAL BASELINE FAR WALL STD 
DEV., RIGHT COMMON
(MAXCOMBL) ORIGINAL BASELINE MAXCOM

(BPSSUR) CORONARY BYPASS SURGERY
(ABTLEG) LEG ARTERY BYPASS
(EXTART) LOWER EXTREMITY ANGIOPLASTY
(RTIB) AVERAGE RIGHT TIBIAL BLOOD PRESSURE
(LTIB) AVERAGE LEFT TIBIAL BLOOD PRESSURE
(MAXCOM) AVERAGE NEAR AND FAR WALL MAX COM 
(mm)

(LVM42) LEFT VENTRICULAR MASS (gm)
(ECGLVH) LEFT VENTRICULAR HYPERTROPHY BY ECG
(STT) ISOLATED MAJOR ST-T
(QST) MINOR Q/QS WITH ST-T
(LMRPH1BL) ORIGINAL BASELINE LESION 
MORHOLOGY, RIGHT SIDE
(PW1BL) ORIGINAL BASELINE P WAVE, RIGHT SIDE
(LSRFC2BL) ORIGINAL BASELINE LESION SURFACE, LEFT 
SIDE
(LMRPH2BL) ORIGINAL BASELINE LESION 
MORPHOLOGY, LEFT SIDE
(LDENS2BL) ORIGINAL BASELINE LESION DENSITY, 
LEFT SIDE
(FSTDV1BL) ORIGINAL BASELINE FAR WALL STD 
DEV., RIGHT COMMON
(MAXCOMBL) ORIGINAL BASELINE MAXCOM
(MXSTENBL) ORIGINAL BASELINE MAX STENOSIS
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Table 3.2: Performance of Classification with and without BCEN 

Experiment 
#Features 

Considered 
#Gen 

Time Taken, 

Hours (Mean±SD) 
ACC SN SP PR FM BA 

Baseline Method: 
Classification with 
Original Set of Risk 
Factors 

173 73 69.6±0.136 0.941 0.993 0.893 0.897 0.942 0.943 

Proposed Method: 
Classification with 
Risk Factors 
Present in BCEN 

111 21 14.7±0.005 0.931 0.995 0.871 0.878 0.933 0.933 

These experiments were executed in parallel over an 8-core computer server. The best-performing 
clinical feature subset is the same for the different runs. ‘#Gen’ denotes the number of generations 
taken by GA before it converges.  

 

The resultant inner nodes identified at the system level include ANBLMOD 

(angina modified at baseline status), CLBLMOD (claudication modified 

baseline status), SUPPUL16 (supine reading: 30 second heart rate), CHSTPN 

(chest pain) and VISPROB (vision problem). Table 3.1 provides the details of 

the best- performing clinical feature subsets that satisfy the aforementioned 

criteria. Note that none of the clinical features at the protein level correlated 

well with those at the visceral level. The authors believe that this could be due 

to the discontinuity in continuum along the BC (i.e. missing data at the tissue 

and cell levels) when estimating the association between the clinical features 

and phenotypic manifestation that resulted in the low performance. 

The resultant BCEN consists of 111 distinct nodes (Body level: 11; System 

Level: 63; Viscera Level: 37) in total, accounting for 64.1% of the original 

number of clinical features analysed. The complete BCEN for MI (created 

using prefuse toolkit (Heer et al., 2005)) is illustrated in Web Figure 1 - 

available at http://www.bg.ic.ac.uk/jtay/web/chsBCENFull.html. The BCEN 

provides a visual and interactive etiological network for the user to visualize 

and comprehend the relationship among the different risk factors along the BC 

for MI. For our discussion here, a sub-network of the BCEN was analysed 

because of its complexity and numerous interrelated risk factors present in the 

complete network. This sub-network is presented in Figure 3.5. 

http://wizfolio.com/?citation=1&ver=3&ItemID=539&UserID=8301&AccessCode=5B8701CE1F594B33B4DEDC2220005B0A&CitationSuffix=
http://www.bg.ic.ac.uk/jtay/web/chsBCENFull.html
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Referring to Figure 3.5, it can be seen that obesity (OVRWT120), a risk 

factor of MI, has 34 risk factors at the system level that are highly correlated 

with it. These risk factors are related to rheumatology, physical function, 

oncology, pulmonology, thromboembolism, sleep disorder, ophthalmology, 

otolaryngology, cognitive function and endocrinology. They account for 45.9% 

of the clinical features analysed at the system level. This suggests that not all 

clinical features at the system level are good predictors of obesity and it could 

be more fruitful to focus investigations on significantly contributing clinical 

features. 

MI classification, with GA-SVM algorithm, was next performed with the 

111 clinical features that were present in BCEN. Baseline comparison was 

made with the original set of 173 clinical features present in the imputed CHS 

dataset. Results, as shown in Table 3.2, were obtained from averaging 3 runs of 

GA-SVM. For each method, the best-performing clinical feature subset for the 

different runs is the same. Comparable classification performance was achieved 

for both the methods. However, the computational time required by the 

proposed method (i.e. deploying only risk factors present in the BCEN to GA-

SVM algorithm) to develop the MI classification model was much lower 

(approximately 14.7 hours).  

 

3.5. Discussion 
To develop MI classification models efficiently in high dimensional datasets, 

we introduced a novel methodology for the reduction of clinical features to be 

analysed without compromising the performance of the classification model. 

Classification (without feature selection) conducted on a large number of 

clinical risk factors often produced low-performing classification models, as the 

performance is often jeopardized by the present of irrelevant or redundant 

predicators. On the other hand, the development of classification models with 

feature selection (e.g. the baseline method used in this work) conducted on a 
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large number of clinical risk factors is usually computationally expensive. 

Therefore, pre-selection of clinical risk factors is vital to mitigate this problem 

contributed by the ‘curse of dimensionality’. This was performed by 

segregating the clinical features along the various levels of the BC. The 

segregation process effectively reduces the data dimension, where its size is 

dependent on the number of clinical features categorized under each level of the 

BC. In this study, for example, analysis performed at the “body level” requires 

only 38 clinical features to be considered at a time. This, in contrast to the 

initial 173 clinical features, offers a reduction of 4.55-fold in the data 

dimension. Having to analyse a smaller number of clinical features inevitably 

reduces the amount of computational time required to develop the classification 

model. Moreover, if prior knowledge is available the data dimension can be 

further restricted. For instance, Emily et. al. (Emily et al., 2009) utilized 

knowledge from protein databases to reduce the search of SNPs to gene pairs 

that are known to interact and reference. A similar concept can be applied to 

other levels of the BC to alleviate the search effort required.  

Although effort is required to construct the BCEN, the resultant network has 

several advantages. Firstly, with the introduction of new clinical risk factors the 

entire BCEN need not be reconstructed. It provides a reusable framework where 

only the level of the BC, at which the new clinical risk factor belong to, need to 

be redeveloped. If the newly introduced clinical risk factor is identified as an 

etiological factor (i.e. risk factor contributing to the cause of the disease), then 

starting with that clinical risk factor as the root node, the network is extended 

for levels of the BC that is below that of the newly inserted etiological factor. 

This approach thus provides a significant reduction in the time and effort 

required to build up-to-date clinical classification models. Secondly, the BCEN 

provides an excellent paradigm for the illustration of the potential biological 

pathways that underpin the different phenotypic manifestations and has the 

significant advantage of analysing only clinical risk factors that are biologically  
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Table 3.3: Obesity-System Level Risk Factors 
Variable Description 

ARTH01* Arthritis 
DIAG01* Ever diagnosed with cancer 

BRONCH* Bronchitis confirmed by doctor 
PNEUMON* Pneumonia detected by doctor 

EMPHYSEM* Emphysema detected by doctor 
THROMB* Deep vein thrombosis 
ROSEIC* Intermittent claudication by rose questionnaire 
GROGGYƗ Groggy in morning 
TRSLEEP* Trouble falling asleep 
WKERLY* Wake up far too early 
RECOGN* See enough to recognize person 

TELE* Hear enough to use phone 
CONVER* Hear enough to converse 

ADL* Activities of daily living (ADL) 
IADL* Instrumental ADL score 
UESƗ Upper extremity score 

BLEED12Ɨ Bleed or bruise easily 
CLOT12* Disorder related to blood clotting 
LTAAI* Left ankle-arm index (%) 

SUPPUL16Ɨ Supine reading: 30 second heart rate 
BIORES21* Bioelectric impedance – resistance 

BAL22Ɨ Dizziness, loss of balance screen 
LOSBAL22* Loss of balance 

DIZZY22Ɨ Dizzy/light-headed when stand up quickly 
TIMEWLK* 15 feet walk time-sec 
DIGCOR* Digit symbol score 

SCOR3510* Mini-mental score (35pt) 
SCORE30* Mini-mental score (30pt) 

ANBLMOD* Angina modified baseline status 
CHBLMOD* CHF modified baseline status 
STBLMOD* Stroke modified baseline status 
TIBLMOD* TIA modified baseline status 

HYPER* Calculated hypertension status 
DIABADA* ADA guidelines diabetic status 

* Risk factors found in previous work 
Ɨ Potential risk factors not found in previous studies (to the best of our knowledge) 

 

plausible. This not only allows the identification of significant risk factors that 

can be used for efficient development of accurate classification models, but, 

also, (1) reveals relationships that are not readily apparent from the study of 

individual disorders, (2) provide a global perspective of the different risk 

factors and etiologic pathways associated with the disease, and (3) identify new 

risk factors that could pave the way to the development of novel diagnostic, 

preventive or therapeutic strategies. Therefore, BCEN may be a simple 
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etiological network, but it has the potential to provide significant insights into 

the mechanisms of a disease. 

The constructed BCEN was validated by comparing the identified inter-

relationship among different risk factors with those reported in previous clinical 

studies. All risk factors found at the body level of BCEN were also identified in 

previous clinical studies. Further, comparisons of a sub-network of BCEN (i.e. 

obesity-system sub-network) have shown that there is a large overlap (of 82.4%) 

between the identified relationships and those found in previous work. A 

possible reason for the identification of the additional inter-relationships is the 

employment of machine learning techniques. Since previous clinical studies 

tend to use linear statistical models to perform the analysis, non-trivial and non-

linear relationships may go undetected. Therefore, the use of machine learning 

techniques in this work could potentially identify the non-trivial, non-linear and 

interacting etiological factors. This enables one to better understand the 

underlying causes of the disease, allowing more appropriate and focus 

interventions to be recommended to the patients. Table 3.3 lists the risk factors 

found to be highly associated with obesity and their presence in the clinical 

literature.  

Arthritis, for instance, has been reported previously to be more prevalent 

among obese patients (Holliday et al., 2011; Park & Lee, 2011). This is 

primarily due to the presence of excess biomechanical stress, inducing 

deleterious effect on the joints. Similarly, obese individuals have a higher risk 

of cancer related to endometrium, prostate, colon, esophagus and stomach 

(Kane et al., 2005; Yang et al., 2009). Previously reported investigations have 

also shown association between obesity and bronchitis, pneumonia, emphysema, 

deep vein thrombosis, intermittent claudication, duration of sleep, blindness, 

hearing impairment, activities of daily living, pulmonary embolism, ankle-arm 

index, loss of balance, walking capacity, cognitive function, unstable angina, 

stroke, transient ischemic attack, hypertension and diabetes (Guerra et al., 2002; 

http://wizfolio.com/?citation=1&ver=3&ItemID=514&UserID=8301&AccessCode=11F4A46915FA45F49316DD210C1F0399&CitationSuffix=
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Corrales-Medina et al., 2011; Samama, 2000; Golledge et al., 2007; Patel et al., 

2008; Patterson et al., 2004; Habot-Wilner & Belkin, 2005; Fransen et al., 2008; 

Himes, 2000; Stein et al., 2005; Tison et al., 2011; Gray et al., 1989; Corbeil et 

al., 2001; Hulens et al., 2003; Elias et al., 2003; Wolk et al., 2003; Winter et al., 

2008). 

This suggests that the BCEN is feasible and effective in characterizing a 

disease and identifying the possible etiological factors. It is noteworthy that 

analysis of the obesity-system sub-network identified 6 new clinical features 

that were not previously identified in previous work. This could indicate that 

these clinical features are potential etiological factors of MI where further 

investigations could improve the understanding and treatment of the disease. 

We hypothesize that the reconstruction of the etiologic pathways is of major 

importance in healthcare as it would allow a more proactive approach for 

providing medical interventions to eradicate or delay the onset of a disease. 

This differs from the traditional reactive approach where individuals visit a 

physician only when they are sick or in pain, which sometimes results in a 

situation where treatment is too late to achieve complete recovery. Early 

medical interventions can be realized with BCEN by monitoring and 

controlling the risk factors (especially at the lower levels of the BC) that 

contribute to the development of a disease (e.g. MI).  

The employment of BCEN to reduce the number of clinical features to be 

analysed significantly alleviated the computational demands. Without acutely 

compromising the classification performance, a speedup of approximately 4.73-

fold was achieved. This was possible due to the earlier convergence of GA, 

suggesting that significant risk factors are already identified and present in 

BCEN. This facilitates the identification of risk factors that contribute 

significantly to the modelling of accurate MI classification model.  

This study has a few limitations. Firstly, only a single dataset (i.e. CHS 

dataset) was used to build the etiological network for MI. This inevitably limits 
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the power to detect all the associated risks and conclusively state that the BCEN 

has described the complete etiology of MI. Additionally, it limits the ability to 

state that the proposed method provides efficiency for all clinical classification 

problems. Nonetheless, it does shed some light to a novel approach for 

investigating the etiology of MI and efficient clinical classification. Secondly, 

only a single classification algorithm (i.e. SVM) has been used to identify the 

association between the clinical features and for developing MI classification 

model. This may hinder the discovery of the underlying associations and the 

performance of the classification model, as no single machine learning 

technique or statistical model is optimal for every problem. The reason for this 

is because each method would have its own inductive bias (Freitas & Timmis, 

2007). Hence, it is suggested in  (Cruz & Wishart, 2006) that comparison 

between multiple machine learning techniques, traditional statistical models and 

expert-based schemes should be conducted in order to assess the suitability of 

each method for a particular problem. Finally, the CHS dataset only contains 

risk factors that fall under the body, system, visceral and protein levels. This 

hinders the construction of a complete BCEN, limiting the ability to provide a 

more comprehensive illustration of the underlying etiology of a disease and the 

development of a more accurate classification model.  

Nevertheless, the constructed BCEN is potentially capable of presenting the 

etiology of a disease in a biologically-structured manner that could facilitate the 

understanding and management of a disease. Moreover, it offers an effective 

and efficient approach for the development of MI classification model.  

 

3.6. Summary 
In view of the high prevalence of MI worldwide, better ability to 

characterize and classify the disease is both appropriate and necessary. In this 

chapter we have presented an integrated approach to build a single probabilistic 

network (i.e. BCEN which identifies and relates the etiological factors 
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associated with MI) that aims to provide an efficient approach for the 

development of MI classification model. 

Validation of the constructed BCEN was conducted and our results indicate 

that the network is reliable and capable of identifying significant etiological 

factors. There is a large overlap between the relationships identified by our 

approach and those found in previous work. Out of the 34 clinical features 

identified at the obesity-system level, 28 (82.4%) of them were found in the 

previous clinical studies. However, 6 new clinical features, that had not been 

identified previously, were found to be associated with obesity in this study. 

These new clinical features could be probable risk factors for MI. They indicate 

the need for further clinical investigations to improve the understanding and 

treatment of the disease.  

Based on the distinct risk factors identified and present in BCEN, a 

classification model for MI was developed. The classification model obtained 

demonstrated high balanced accuracy of 0.933. It was developed at a rate of 

4.73-fold faster than its counterpart that does not adopt any pre-selection 

strategy. This suggests that BCEN may be a desirable approach for developing 

clinical classification models when a large number of clinical features need to 

be considered. 

Although further validation of this methodology is necessary, this approach 

may be valuable in exploring and identifying risk factors that underpin a 

disease. To conclude, the BCEN is an etiological network that is simply built 

but profoundly useful. It has the potential to provide insights, from a novel 

perspective, into the characteristics of (current/new) diseases - allowing more 

efficient and effective understanding, analysis, management and classification 

to be undertaken. We look forward to a more comprehensive understanding of 

the disease etiology and eventually, towards personalized medicine.  
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Disclaimer  

The CHS dataset described in this chapter is provided by the National Heart, 

Lung and Blood Institute (NHLBI). 
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Chapter 4 

Evolutionary Data-Conscious Artificial 

Immune Recognition System4 

Artificial Immune Recognition System (AIRS) algorithm (version 2), 

introduced by Andrew Watkins (Freitas & Timmis, 2007) in 2004, offers a 

promising methodology for supervised data classification. It is an immune-

inspired learning algorithm that works efficiently and has shown comparable 

performance with respect to other classifier algorithms. For this reason, it has 

received escalating interests in recent years. However, the full potential of the 

algorithm was yet unleashed. 

In this chapter, a novel supervised classification algorithm further inspired 

by the natural immune system is presented. This algorithm, called the 

evolutionary data-conscious artificial immune recognition system (EDC-AIRS), 

is an improvised version of artificial immune recognition algorithm version 2 

(AIRS2). It exploits 3 additional immune metaphors which empowers the 

algorithm with the ability to robustly adapt to the different density, distribution 

and characteristics exhibited by each data class. Promising results have been 

achieved when evaluated with six widely used benchmarking datasets. 

 

 

                                                 
4 The work presented in this chapter has been published in the ‘Proceeding of the fifteenth 
annual conference on Genetic and Evolutionary Computation Conference (GECCO)’ and 
reprinted with permission: Tay, Poh & Kitney, “An evolutionary data-conscious artificial 
immune recognition system”, GECOO’13, © 2013 ACM, Inc. 
http://doi.acm.org/10.1145/2463372.2463499 (ISBN: 978-1-4503-1963-8).  
This paper can be found in Appendix D. 
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4.1. Introduction 
The human immune system is a highly sophisticated, distributed, complex 

and powerful natural defense mechanism that comprises of several functional 

mechanisms, positioned in strategic locations, conferring resistance against 

viruses and foreign pathogens. It has the ability to learn the characteristics of 

the foreign antigens and contrive a defense strategy to detect and neutralize 

them. Specifically, the immune system possesses properties such as the 

capability of recognition, memory acquisition, diversity and self-regulation, 

making it highly suitable for learning patterns that underlie a data. On this note, 

it has inspired the development of the artificial immune system capable of 

solving many problems related to computer science and engineering (e.g. 

computer security, anomaly detection, optimization, machine learning, etc.) 

(Freitas & Timmis, 2007; Castro & Timmis, 2002). One such algorithm that has 

received escalating interests is the Artificial Immune Recognition System 

version 2 (AIRS2) (Watkins et al., 2004).  

Although AIRS2 algorithm has shown to be an effective classification 

algorithm, some useful immune mechanisms are yet to be exploited by the 

algorithm. For instance, artificial recognition balls (ARBs) are used in AIRS2 

algorithm to denote a representative subset of B-Cells. They would compete for 

survival based on the idea of resource limited system (Timmis & Neal, 2001). 

However, the creation and elimination of the ARBs do not correspond to the 

density of the data in which they cover (i.e. a larger number of ARBs do not 

survive in regions that are more densely populated with data). This contradicts 

with the natural immune system where macrophages would flood the 

extracellular space of the infected regions (attempting to eliminate the harmful 

agents) and B-Cells would proliferate and secrete antibodies profoundly in 

response to pathogenic agents. In other words, a larger concentration of defense 

agents would be present in regions that has received intense invasion from 

harmful antigens. Another area that the original AIRS2 algorithm did not 
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explore and exploit is the distributed diversity exhibited by the lymph nodes 

found in the natural immune system. The AIRS2 algorithm uses a common 

parameter set to model the distribution of different data classes. This is 

undesirable in cases where the distribution of different data classes differ by a 

considerable degree. Observation of the strategic positioning of the lymph 

nodes in human bodies (which promotes better immune defense) advocates for 

the need of a more specific and distinct parameter set (e.g. affinity threshold 

scalar, density and total resources parameters) to model each data class (i.e. 

instances that belong to a specific class). Finally, it is important to generate B-

Cells that can affiliate/bind well with the antigens. This is realized biologically 

through the production of highly specific surface receptors on the B-Cells 

which facilitates the detection and eradication of the foreign antigens. To mimic 

this concept computationally, feature selection can be performed where highly 

informative features that can describe the underlying association were identified 

and used for classification.  

This chapter presents a novel algorithm called the evolutionary data-

conscious AIRS (EDC-AIRS) algorithm, which extends the existing AIRS2 

algorithm by contextualizing the immune response to the concentration, 

distribution and characteristics of the antigens and is no longer a global 

centralized response. When evaluated using 6 widely used benchmarking 

datasets, our method has exhibited improved learning ability and classification 

accuracy.  

The rest of the chapter is organized as follows. Section 4.2 provides a brief 

introduction to the AIRS2 algorithm. A description of the proposed EDC-AIRS 

algorithm is presented in Section 4.3.  The experimental results are offered in 

Section 4.4 and discussed in Section 4.5. Finally, Section 4.6 concludes this 

chapter. 
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4.2. Artificial Immune Recognition System 
The natural immune system is a highly rapid and efficient biological self-

defense mechanism that protects a given host against infections, for example, 

from foreign antigens or pathogens. The immune system functions by detecting 

a wide variety of agents and distinguish the foreign antigens (e.g. viruses) from 

the organism’s own healthy cells or molecules (also known as self-antigens). 

The immune system consists of a number of components. Two examples are 

macrophages and lymphocytes (e.g. B-cell ad T-Cell) which are responsible for 

the recognition and elimination of the determined infectious agents. The 

lymphocytes have highly specific surface antigenic receptors to a given 

antigenic determinant, in which they would only proliferate in response to a 

specific infection. Therefore, the type of antibodies present in an individual 

could reflect the infections to which they are infected with.  

The antibody’s polypeptide chains composed of a highly variable amino-

terminal region (V-region) and a carboxy-terminal region (C-region) that can be 

of a few types. The V-region is responsible for the antigenic detection while the 

C-region is responsible for a variety of effector functions. The polypeptide 

chain of an antibody is formed through the genetic recombination and somatic 

hyper-mutation of multiple gene segments scattered along the chromosome of 

the genome. Such formation mechanism used to generate antibodies introduces 

diversity into the underlying immune defense (Castro & Timmis, 2002), 

ameliorating the ability of the antibodies to recognize/bind to the antigens.  

Inspired by the robustness exhibited by the natural immune system, the 

AIRS2 algorithm (Watkins et al., 2004) - a novel one-shot incremental 

supervised learning algorithm was developed and applied to solve classification 

problems. It has several attractive characteristics such as the ability to (1) 

adaptively develop an appropriate architecture during the learning process, (2) 

achieve competitive accuracy compared to other classification algorithms, (3) 
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The initialization stage is responsible for normalization of the data, 

parameter discovery and seeding of memory cells. The data items found in the 

dataset is first normalized so that the Euclidean distance between the feature 

vectors of any 2 data items is in the range [0, 1]. Affinity threshold, the average 

Euclidean distance between each data item in the training dataset, is then 

calculated. This value controls the quality of the memory cells maintained and 

utilized for classification. The mathematical expression for computing the 

affinity threshold is as follow: 

 affinity threshold =  
∑ ∑ affinity(agi,agj)n

j=i+1
n
i=1

n(n−1)

2

 (2) 

where n is the number of training instances (antigens), agi and agj are the ith 

and jth training antigens in the training data, and affinity(agi,agj) returns the 

Euclidean distance between the two antigens. The initial memory cell pool 

(MCP), a collection of classifier cells that will be used for classification at the 

end of the training lifecycle, is then seeded by randomly selecting data item(s) 

from the training dataset.  

A process known as the antigenic presentation is then undertaken where each 

training instance is subsequently presented to the AIRS2 algorithm. For each 

training instance presented, it first undergoes the memory cell identification 

stage where its affinity with the memory cells in MCP (that reside in the same 

class) is computed. The most stimulated memory cell (also known as matched 

memory cell) is then selected and cloned in proportion to its stimulation value 

(i.e. clonal expansion phase). This value is calculated based on the following 

equation: 

 stimulation(x, y) = 1 − affinity(x, y)   (3) 

where x is the presented training instance and y is the memory cell. These 

cloned memory cells forms the artificial recognition ball (ARB) pool where an 

ARB (Timmis & Neal, 2001) is a single representation for a number of similar 
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memory cells. This allows a reduction in duplication and manages the survival 

of classifier cells within the population. The cloned ARBs are then mutated at a 

rate inversely proportional to the antigenic affinity, introducing diversity into 

the system (i.e. affinity maturation phase). The range of the maturated value 

assigned to a selected attribute is centered at the attribute’s initial value and 

spanned over the difference between 1 and the ARB’s stimulation value. In 

other words, mutated ARB offspring of highly stimulated cells are only allowed 

to explore and mutate to a value near its initial state while less stimulated ARB 

offspring are allowed to mutate over a lager range.  

Next, the ARBs will compete for survival based on the concept of resource 

allocation mechanism (Timmis & Neal, 2001), where the ARBs are allocated a 

number of resources proportional to their normalized stimulation values. The 

resulting ARBs with insufficient resources are subsequently pruned (i.e. meta-

dynamic phase). The average simulation level for the ARBs is then computed 

based on the following equation: 

 avg_stimulationi =  
∑ 𝑎𝑏𝑗.𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

|𝐴𝐵𝑖|

𝑗=1

|𝐴𝐵𝑖|
 ,  𝑎𝑏𝑗  ∈  𝐴𝐵𝑖 (4) 

where AB refers to the ARB pool, ab ε AB; |ABi| is the number of ARBs in 

class i. The average stimulation is then compared with the user-defined 

stimulation threshold. If it is greater than the user-defined threshold, the 

training cycle stops for that training instance. Otherwise, the training cycle 

repeats.  

Once the termination condition is satisfied, the most stimulated ARB is 

selected as the candidate memory (CM) cell. If this CM cell’s stimulation level 

is higher than all the memory cells in the established memory (EM) set (i.e. 

collection of ARBs that have survived the resource competition stage), then it is 

added into the EM set. Otherwise, this CM cell is discarded. Finally, 

replacement of the EM cells is carried out first by computing the memory cell 

replacement cutoff value as defined as: 
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 Cutoff = AT ∗ ATS (5) 

where AT refers to affinity threshold and ATS denotes affinity threshold scalar. 

If the affinity between this CM cell and the best affiliated memory cell found 

previously (i.e. EM cell) is below the cutoff value, the EM cell will be removed 

and replaced with the CM cell. Consequently, the next training instance is 

deployed to the AIRS2 algorithm until all the training instances are presented. 

This process ultimately identifies a set of representative memory cells that 

provides a generalized representation of the pattern that underlies the data, 

which will then be used for classification. The classification algorithm 

employed is K-nearest neighbour (KNN) where the classification outcome for 

each unseen data instance is determined by taking the majority vote of the k 

most stimulated EM cells. For a more detailed description of the algorithm, 

readers can refer to (Watkins et al., 2004; Brownlee, 2005). 

 

 

1 CandStim  stimulation(ag, mccandidate) 
2 MatchStim  stimulation(ag, mcmatch) 
3 CellAff  affinity(mccandidate, mcmatch) 
4 if (CandStim > MatchStim) 
5      if (CellAff < AT * ATS) 
6           MC  MC - mcmatch 
7      end 
8      MC  MC ⋃ mccandidate 

9 end 
Figure 4.2: Pseudo-code for Memory Cell Introduction used in AIRS2 Algorithm 
– adopted from (Watkins et al., 2004) 
CandStim (and MatchSim) denotes the stimulation level between the presented 
antigen and the candidate (and matched) memory cell. CellAff refers to the affinity 
between the candidate and matched memory cell. MC represents the memory cell pool. 
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4.3. Material and Methods 

4.3.1. Evolutionary Data-Conscious AIRS (EDC-AIRS) 

Algorithm  
This study formulates a novel immune-inspired (EDC-AIRS) algorithm that 

employs several natural immune mechanisms. In particular, how antibodies 

evolve and adapt to the different concentration, location and type of foreign 

antigens are being mimicked in addition to those proposed by the AIRS2 

algorithm. This, when implemented as a high fidelity computational technique, 

empowers the algorithm with the ability to independently adapt to the distinct 

(1) density, (2) distribution and (3) characteristics of each data class. 

Firstly, the ability to adapt to the different (local) density present in the data 

was addressed by the observation of the rapid growth of macrophages and  

 

1 CellAff  affinity(mccandidate, mcmatch) 
2 Densitycount  0 
3 foreach (agi in AG) 
4 do 
5      AntigenAff  affinity(agi, mccandidate) 
6      if (AntigenAff < AT*Radiusdensity) 
7           Densitycount  Densitycount + 1 
8      end 
9 done 
10 Densityratio  Densitycount

Densitymax
 

11 if (CellAff < (1- Densityratio) * AT * ATS) 
12      MC  MC - mcmatch 
13 end 
14 MC  MC ⋃ mccandidate 

Figure 4.3: Pseudo-code for Memory Cell Introduction used in EDC-AIRS 
Algorithm  
Densitycount represents the number of antigens that is proximal to the candidate memory 
cell. Densitymax denotes the maximum number of antigen present in the training data. 
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B-Cells in response to the invasion of foreign antigens (particularly, at the 

regions of infection). More specifically, a relative proportion of antibodies to 

antigens were necessary to neutralize the harmful agents. This mechanism was 

incorporated in the EDC-AIRS algorithm by allowing a relatively larger 

number of ARBs to survive in regions that are more densely populated with 

training data. Implementation was carried out by removing and modifying some 

of the criteria present in the original AIRS2 algorithm. In particular, the way the 

memory cells are introduced into the system is modified. The original pseudo-

code for memory cell introduction (Watkins et al., 2004) used in AIRS2 

algorithm is shown in Figure 4.2. In this (original) implementation, the 

candidate memory cell (mccandidate) is first identified by determining which 

memory cell generated has the highest stimulation level (Figure 4.2 line 1) to 

the training antigen (ag) presented. Next, this new mccandidate is introduced into 

the existing memory cells (MC) pool (Figure 4.2 line 8) if it is more stimulated 

to the training antigen presented than the most stimulated memory cell (mcmatch) 

in the MC pool (Figure 4.2 line 4). mccandidate will replace mcmatch (Figure 4.2 

line 6) if the affinity between them is less than the product of affinity threshold 

and affinity threshold scalar (Figure 4.2 line 5).  

In our proposed implementation, the criterion that requires the candidate 

memory cell (mccandidate) to be more stimulated (by the training antigen, ag) than 

the matched memory cell (mcmatch) before it was added to the memory cell pool 

was first removed. The reason for doing so is to encourage new ARBs that are 

highly stimulated (ensured by the high stimulation threshold adopted) to 

survive within the system.  Secondly, computation of the density (Densitycount) 

proximal to mccandidate, based on the initial set of training antigens (AG), was 

implemented in the algorithm. The degree of proximity was determined by a 

user-defined parameter, Radiusdensity (Figure 4.3 line 6). This step aims to 

determine the density of the training antigens surrounding mccandidate that is no 

more than ‘Radiusdensity’ distance away (Figure 4.3 line 3-9). Additionally, the 

maximum density (Densitymax) present in AG was also computed based on the 
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mccandidate (Figure 4.3 line 12). Otherwise, mccandidate will be added to MC pool 

(Figure 4.3 line 14). The revised pseudo-code for memory cell introduction 

used in EDC-AIRS algorithm is depicted in Figure 4.3. 

The strategy that was delved into next is associated with the distribution 

characteristic of different data classes. This is vital according to the mechanism 

observed in the natural immune system, where lymph nodes are located in 

strategic positions – producing antibodies that could detect and eradicate the 

foreign antigens more efficiently. The spatial independency of the lymph nodes 

(Moses & Banerjee, 2011) and the circulatory networks in the immune system 

is of significant importance as it enables decentralized immune defense while 

protecting the human body in a global fashion. Therefore, if the distribution of 

different data classes differs by too much, this could indicate that the location at 

which the antibodies are produced (i.e. the position of the lymph nodes) would 

need to be adjusted so that the antibodies produced could detect and eradicate 

the antigens found in each data class in a more efficient manner. On the 

contrary, if the distribution of different data classes is near symmetry, this could 

indicate that no additional lymph nodes are required for more efficient 

neutralization of antigens; mitigating the required search effort as a result. This 

was empowered within the EDC-AIRS algorithm by having an independent set 

of parameters for evolving the memory cells if the distribution similarity 

between the data classes was below an empirically derived threshold, known as 

the Affinity Threshold Similarity Ratio (ATSR). Otherwise, a common set of 

parameters was used for all data classes. The ATSR was calculated by first 

computing the affinity threshold (i.e. the average affinity value over all training 

data) associated with each data class. After which, the minimum affinity 

threshold found among the different data classes was divided by the maximum 

affinity threshold found. The mathematical expression is given 
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parameters. Therefore, these parameters were duplicated and optimized 

independently for each data class if the ATSR computed for the dataset was 

below the pre-defined threshold value. All parameters were optimized using 

Genetic Algorithm (GA) (Holland, 1992), a search heuristic that imitates the 

process of natural evolution. The optimization algorithm was developed using 

MATLAB GA toolbox (Chipperfield & Fleming, 1995) and was executed in 

parallel over a high performance computer (HPC) cluster.  

Figure 4.4 and 4.5 illustrate the canonical flow of the proposed methodology 

used for binary and multiclass classification problems respectively. For binary 

classification problem, we assume either a similar or dissimilar distribution 

based on the calculated ATSR and optimize that parameter set only (i.e. distinct 

parameter set for each data class if the computed ATSR is below the pre-

defined threshold and a common parameter set if ATSR is above the pre-

defined threshold). In contrast, both similar and dissimilar distributions were 

assumed for multiclass classification problems. In other words, both set of 

parameters were optimized concurrently by GA for multiclass datasets. Upon 

convergence of both runs (i.e. no improvement after 10 generations or the 

maximum number of generations has been reached), both the populations were 

merged and re-optimized by GA once again. 

Finally, the ability to adapt to the characteristics of the data was performed 

by mimicking the genetic recombination and somatic hyper-mutation of gene 

segments scattered along the chromosome of the genome when forming a 

natural antibody. This process produces highly specific surface receptors of B-

Cell necessary to recognize and bind to a certain type of antigen (that possess 

distinct structure). From a computational perspective, this was achieved through 

feature selection where a subset of informative features, that could capture the 

true patterns underlying the particular dataset, was selected for the learning 

process. GA was selected to perform this feature selection task as it has the  
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Figure 4.6: Contingency Table for McNemar’s Test(EDC-AIRS vs AIRS2) 
 ‘a’ indicates the number of data items misclassified by both EDC-AIRS and AIRS2 
algorithms; ‘b’ represents the number of data items misclassified by AIRS2 algorithm 
but correctly classified by EDC-AIRS algorithm; ‘c’ denotes the number of data items 
misclassified by EDC-AIRS algorithms but correctly classified by AIRS2 algorithm; ‘d’ 
dictates the number of data items correctly classified by both EDC-AIRS and AIRS2 
algorithms. 

 

potential to generate the optimal feature subset (Huanga & Wangb, 2006). The 

GA parameters were determined experimentally and kept constant between 

benchmarks. The setup details of GA are as follow: population size: 100; 

maximum generation: 100; natural selection: stochastic universal sampling; 

crossover type: discrete recombination; crossover probability: 0.8; mutation rate: 

1/P, where P is the number of parameters. The value of the EDC-AIRS 

parameters that was either assigned (i.e. given as a constant value) or tuned by 

GA (i.e. given as a range of value) are as follow: seed: 1; clonal rate: 10; hyper-

mutation rate: 2; stimulation threshold: 0.9; initial memory pool size: [0, 200]; 

K-nearest neighbour value: [1, 15]; affinity threshold scalar: [0, 1]; total 

resource: [150, 300]; Radiusdensity = [0, 3]; Radiusmax = [0, 3].  

The performance of EDC-AIRS algorithm was evaluated with 4 

benchmarking datasets, namely the Fisher’s Iris, Ionosphere, Pima Indians 

Diabetes and Sonar Datasets. Hold-out validation was performed on the 

Ionosphere dataset while cross-validation was performed on the remaining 3 

datasets. More specifically, the first 200 data items of the Ionosphere dataset 

was selected as the training data and was tested on the remaining 151 data items. 

As for the Iris, Pima Indians Diabetes and Sonar datasets, 5, 10 and 13-fold 

cross-validation was carried out respectively. The reason for choosing such 
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validation strategy was to remain comparable to other experiments reported in 

the literature. Further details about the validation procedures applied on these 

benchmarking datasets can be found in (Watkins, 2001). 

The performance yielded by EDC-ARIS algorithm was (statistically) 

compared with those obtained by the AIRS2 algorithm. We have chosen 

McNemar’s test to determine whether the performance of the 2 aforementioned 

supervised algorithms are statistically different as it had been demonstrated to 

have low type 1 error (Dietterich, 1998). To perform the test, both EDC-AIRS 

and AIRS2 algorithms were first trained with the training data and tested with 

the testing data. The predicted outcome for each data item in the testing data 

was recorded and used to construct the contingency table shown in Figure 4.3. 

If the sum of ‘b’ and ‘c’ is greater than 25, chi-square test with 1 degree of 

freedom is used for performing McNemar’s test. Otherwise, to provide a better 

estimation of the small sample (i.e. b + c ≤ 25), binomial distribution is used for 

(exact) McNemar’s test. The 2 algorithms are considered to be statistically 

different if the p-value computed with McNemar’s test is smaller than 0.05.  

 

4.3.2. Dataset 
Four benchmarking datasets obtained from (C.L. Blake & C.J. Merz, 1998) 

were used to evaluate the performance of the novel EDC-AIRS algorithm. A 

brief description of these datasets is as follow: 

1. Fisher’s Iris Dataset – Consists of 4 features that describe the length and 

width of the sepal and petal. Three classes exist which represent the type of 

the iris plant (i.e. Iris Sentosa, Iris Vericolour and Iris Virginica). It has a 

sample size of 150 with 50 instances per class. The Iris Sentosa class is 

linearly separable from the other 2 classes while the Iris Vericolour and Iris 

Virginica classes are not linearly separable from each other. 
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2. Ionosphere Dataset – A binary class classification problem that contains 351 

instances and 34 features. The 2 classes represent “good” or “bad” radar 

returns. The “good” radar returns refer to those that show some types of 

structure in the ionosphere while “bad” radar returns have their signals 

passed through the ionosphere.  

3. Pima Indians Diabetes Dataset – Patients in this dataset are all females who 

are at least 21 years of age and are of Pima Indian heritage. It is a binary 

class classification problem that aims to distinguish between patients tested 

positive for diabetes and those who are not. It contains 768 instances and 8 

features.  

4. Sonar Dataset – The objective of this experiment is to determine whether an 

object is a mine (metal) or rock by bouncing sonar signal off the object at 

various angles and conditions. It contains 208 instances and 60 features. 

In order to investigate on how different data class distribution affects the 

performance of the classification algorithm, several additional benchmarking 

datasets were acquired from (C.L. Blake & C.J. Merz, 1998). Both similar and 

dissimilar distributions among the data classes were assumed for these datasets. 

Experiments were then conducted using these 10 datasets, with different degree 

of data class distribution (as determined by the computed ATSR value), to 

determine the impact of data class distribution on the algorithm’s classification 

performance. A succinct description of these datasets is as follow: 

1. Wine Dataset – Contains results obtained from the chemical analysis of 3 

different cultivars grown in the same region in Italy. It is a tri-nary 

classification problem that consists of 178 instances and 13 features. 

2. Magic Dataset – This dataset, obtained from the Major Atmospheric 

Gamma Imaging Cherenkov (MAGIC) Telescope project, is a Monte Carlo 

generated data that aims to simulate the registration of high energy gamma 
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particles in a ground-based atmospheric Cherenkov gamma telescope. It is a 

binary class classification problem which contains 19020 instances and 10 

features. 

3. Hill-Valley Dataset – This dataset consists of 606 instances, 100 features 

and 2 classes. Each instance represents 100 data points. When plotted (in 

the given order) on a 2-dimensional graph, the resultant plot would 

represent either a hill (a “bump” in the terrain) or a valley (a “dip” in the 

terrain).  

4. Bupa Liver Disorder Dataset – This dataset contains examination results 

(e.g. quantity of alcoholic beverages consumed per day and blood tests) of 

males which are used to investigate liver disorders. It has a total of 345 

instances and 6 features. 

5. Statlog Heart Dataset – Investigation of the presence or absence of heart 

disease in an individual is carried out based on various medical diagnoses. 

This result is dictated in this dataset, which contains 270 instances and 13 

features. 

6. Cardiovascular Health Study (CHS) Dataset – This dataset, as described in 

(Fried et al., 1991), is an epidemiology study of risk factors for 

cardiovascular diseases in elderly aged 65 and above. The cohort consists 

of elderly subjects from four U.S. communities, namely Forsyth County, 

North Carolina; Sacramento County, California; Washington County, 

Maryland; and Pittsburgh, Pennsylvania. Data collected in year 5 of the 

CHS study was utilized. The balanced case-control sample size consists of 

270 instances and 253 features. It is a binary class classification problem 

(i.e. with or without myocardial infarction). 

 

http://wizfolio.com/?citation=1&ver=3&ItemID=486&UserID=8301&AccessCode=41F0D469563E4BFDA80C5D349A541BF9&CitationSuffix=


[Chapter 4: Evolutionary Data-Conscious Artificial Immune Recognition 
System] 

 

[Decision Support Continuum Paradigm for CVD: Towards Personalized Predictive Models] Page 92 

4.4. Experimental Results 
EDC-AIRS algorithm was developed by extending AIRS2 algorithm. Three 

areas of optimization were carried out, each addressing an aspect of the 

phenomenon observed in the natural immune system (i.e. the concentration, 

distribution and characteristics of the antigens). In order to better generate a set 

of representative memory cells, it is necessary to empirically determine the 

ATSR threshold first. To perform this investigation, 10 datasets with different 

degree of data class distribution were evaluated. The ATSR value of these 

datasets ranges from 0.609 to 0.957, where a lower value indicates that the 

distribution of the data classes differs by a larger degree. Both classification 

with a common set of parameter (assuming similar distribution among data 

classes) and a distinct set of parameters for each data class (assuming dissimilar 

distribution among data classes) were performed. Based on the results shown in 

 

Table 4.1: Empirical Experiments with ATSR based on Datasets with Different Data Class Distribution 

Measurement Ionosphere Iris Wine ks_yr50611 MAGIC 
Pima 

Indians 
Diabetes 

Hill-
Valley 

Bupa-
Liver 

Disorder 
Sonar Statlog 

Heart 

#Instances 200 150 178 270 19020 768 606 345 208 270 
#Attributes 34 4 13 253 10 8 100 6 60 13 
#Classes 2 3 3 2 2 2 2 2 2 2 
#Class1 
Instances 99 50 59 135 12332 268 305 145 97 120 

#Class2 
Instances 101 50 71 135 6688 500 301 200 111 150 

#Class3 
Instances - 50 48 - - - - - - - 

Validation 
Type Holdout 5-CV LOO 10-CV 5-CV 10-CV Holdo

ut 10-CV 13-CV 10-CV 

Class 1 AT 0.437 0.106 0.162 0.308 0.160 0.217 0.121 0.157 0.271 0.427 
Class 2 AT 0.266 0.129 0.223 0.408 0.209 0.183 0.107 0.167 0.283 0.408 
Class 3 AT - 0.152 0.185 - - - - - - - 
Overall AT 0.371 0.288 0.266 0.366 0.187 0.202 0.114 0.164 0.283 0.448 
ATSR 0.609 0.698 0.727 0.756 0.764 0.842 0.885 0.937 0.957 0.957 
Acc. for Similar 
Distribution 96.7% 99.0% 98.9% 65.9% 83.1% 77.3% 56.3% 69.9% 88.5% 84.8% 

Acc. for 
Dissimilar 
Distribution 

97.4% 99.6% 99.6% 67.0% 82.8% 77.1% 55.7% 69.6% 87.0% 83.7% 

Accuracy (Acc.) was used to evaluate how datasets with varying degree of data class distribution affects the 
performance of the algorithm. The dataset ‘ks_yr50611’, which uses the CHS dataset, predicts the occurrence 
of MI (from year 6 to 11) based on a balanced case-control sample obtained in year 5.  
AT means affinity threshold, CV denotes cross-validation and LOO refers to leave-one-out cross-validation. 
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Table 4.2: Classification Performance of the Benchmarking Datasets with Different Issues 
Addressed 

Experiment Description Iris Ionosphere 
Pima Indians 

Diabetes Sonar 

1 AIRS2 96.0% 95.6% 74.2% 84.9% 
2 GA-AIRS2 98.7% 97.4% 77.3% 86.5% 
3 Density 98.7% 96.7% 77.3% 88.5% 
4 Density & Distribution 99.6% 97.4% 77.3% 88.5% 

5 Density, Distribution and 
Characteristics (EDC-AIRS) 99.6% 98.0% 77.3% 90.9% 

 McNeamar’s Test (p-value) 0.008 0.126 0.020 0.042 

Using GA-AIRS2 as the base algorithm, the techniques described in experiments 3, 4 and 5 are 
implemented respectively. 
 

Table 4.1, it is indicative that with an ATSR value of 0.756 and below, a 

distinct parameter set for each data class is capable of achieving a higher 

accuracy. Therefore, an ATSR threshold of 0.76 was used for the rest of the 

experiments. 

The performance of the proposed EDC-AIRS algorithm (when compared 

with AIRS2 algorithm) was evaluated using 4 benchmarking datasets. The 

algorithm was evaluated 3 times with consistent classification result obtained 

each time (i.e. standard deviation of 0). The classification accuracy for the 

incremental implementation of the 3 aforementioned mechanisms is given in 

Table 4.2. Baseline comparison was made with GA-AIRS2 algorithm - an 

AIRS2 algorithm with its parameters tuned via GA. It is noteworthy that 

GA-AIRS2 performs better than AIRS2 for all 4 benchmarking datasets.  

With the implementation to address the density issue (Table 4.2 – 

experiment 3), ameliorated performance was observed for the Sonar dataset. 

However, the performance on the Ionosphere dataset exacerbates while the 

performance for the rest of the datasets remains comparable. With the 

additional implementation to amortize the impact of different distribution 

exhibited by each data class (Table 4.2 – experiment 4), the deterioration in 

performance observed previously on the Ionosphere dataset vanished. Moreover,  

 



[Chapter 4: Evolutionary Data-Conscious Artificial Immune Recognition 
System] 

 

[Decision Support Continuum Paradigm for CVD: Towards Personalized Predictive Models] Page 94 

Table 4.3: Performance Comparison of Different Classification Algorithms 
 

Iris Ionosphere 
Pima Indians 

Diabetes 
Sonar Wine Statlog Heart 

Rank Algorithm Acc Algorithm Acc Algorithm Acc Algorithm Acc Algorithm Acc Algorithm Acc 

1 
Grobian 
(rough) 

100% 
3-NN + 
Simplex 

98.7% Logdisc 77.7% 
TAP MFT 
Bayesian 

92.3% EDC-AIRS 99.6% 
Lin. SVM 
2D QCP 

85.9% 

2 

EDC-AIRS 99.6% EDC-AIRS 98.0% IncNet 77.6% EDC-AIRS 90.9% 

kNN, 
Manh, 
auto k=1-
10 

98.9% EDC-AIRS 84.8% 

   DIPOL92 77.6%   
IncNet, 
Gauss 

98.9% 
 

 

3 

SSV 98.0% 3-NN 96.7% EDC-AIRS 77.3% 
Nave MFT 
Bayesian 

90.4% SSV 98.3% 
Naive-
Bayes 

84.5% 

C-MLP2LN 98.0% IB3 96.7% 
Linear 
Disc. 
Analysis 

77.5 – 
77.2% 

SVM 90.4%   
 

 

PVM 2 
rules 

98.0%     

Best 2-
layer MLP 
+ BP, 12 
hidden 

90.4%   

 

 

4 

PVM 1 
rule 

97.3% MLP + BP 96.0% SMART 76.8% AIRS2 84.9% 
kNN, 
Euclidean, 
k=1 

97.8% K* 76.7% 

   
GTO DT 
(5xCV) 

76.8%       

5 
AIRS 96.7% AIRS2 95.6% ASI 76.6% 

MLP+BP, 
12 hidden 

84.7% FSM 96.1% IB1c 74.0% 

FuNe-I 96.7%           
NEFCLASS 96.7%           

6 
AIRS2 96.0% AIRS 94.9% 

Fischer 
Disc. 
Analysis 

76.5% 
MLP+BP, 
24 hidden 84.5% 

  
1R 71.4% 

CART 96.0% C4.5 94.9%        

7 FUNN 95.7% RIAC 94.6% MLP+BP 76.4% 
1-NN, 
Manhantta
n 

84.2% 
  

T2 68.1% 

8   
SVM 93.2% LVQ 75.8% AIRS 84.0%   MLP + BP 65.6% 
  LFC 75.8%       

9   
FSM + 
rotation 

92.8% RBF 75.7% FSM 83.6% 
  

FOIL 64.0% 

10  

1-NN 92.1% 
kNN, 
k=22, 
Manh 

75.5%   
  

RBF 60.0% 

 
MML 75.5% 

 
    

NB 
75.5 – 
73.8% 

  
  

…     … …       
n     AIRS2 74.2%       

n+1     AIRS 74.1%       

‘Acc’ denotes the classification accuracy. 

 

the accuracy obtained for the Iris dataset improved while the accuracy for both 

Pima Indians Diabetes and Sonar datasets remain the same. Finally, when the 

characteristic of the dataset was delved into (Table 4.2 – experiment 5), further 

improvement in accuracy for Ionosphere and Sonar datasets was obtained. 

Accuracy for Iris and Pima Indians Diabetes datasets remains unchanged, 
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probably due to the limited features available for selection (i.e. 4 and 8 features 

respectively).  

Statistical comparison of EDC-AIRS and AIRS2 algorithms indicate that 

EDC-AIRS algorithm achieved comparable, if not better, performance than 

AIRS2 algorithm. Specifically, EDC-AIRS algorithm outperforms AIRS2 

algorithm for 3 out of 4 datasets (i.e. Fisher’s Iris, Pima Indian Diabetes and 

Sonar datasets) while comparable performance was achieved for Ionosphere 

dataset.  Six benchmarking datasets were used to compare the performance of 

EDC-AIRS algorithm with other well-known classifiers(Duch, 2000; Watkins 

et al., 2004; Duch, 2000) is provided in Table 4.3. The EDC-AIRS algorithm 

has shown promising results, clinching a place in the top 3 positions for all the 

datasets evaluated. 

 

4.5. Discussion 
We have developed an immune-inspired supervised classification algorithm 

called EDC-AIRS that have shown improved learning and classification 

capability. The success of the algorithm is primarily due to the recognition of 

the importance of additional immune metaphors, namely the ability to adapt to 

the different concentration, distribution and characteristics of the antigens. 

However, the EDC-AIRS algorithm did not achieve ameliorated performance 

for all classification problems investigated in this study (e.g. Pima Indian 

Diabetes dataset). This is not surprising as every learning algorithm has an 

inductive bias that would work reasonably well for some, but not all, datasets or 

application domains (Freitas & Timmis, 2007). This phenomenon has been 

described as the selective superiority problem (Brodley, 1993).  

The AIRS2 parameters reported in (Watkins et al., 2004) has been tuned 

manually. This apparently hinders the true potential of the AIRS2 algorithm. As 

demonstrated, the employment of GA to optimize the AIRS2 parameters (i.e. 
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GA-AIRS2) improved the classification accuracy (ranging from 1.6% to 3.1% 

improvement) for all the 4 benchmarking datasets investigated. Clearly, this 

indicates that optimization of parameters with an evolutionary computing 

algorithm (e.g. GA) that is capable of dynamically searching through the 

defined search space is invaluable in discovering the optimal parameter setting. 

This is especially so when dealing with datasets from various application 

domains where the patterns that underlie these data would be very different, 

causing exhaustive manual tuning of the parameters to flounder as it would be 

very time consuming to carry out this task. 

The EDC-AIRS algorithm, when juxtaposed with the AIRS2 algorithm, has 

several distinctive strengths when learning the underlying patterns within the 

data. Firstly, by adopting a mechanism to handle the different data density 

exhibited at different regions, it is capable of producing representative memory 

cells that could better characterize and capture the real data pattern. As a result, 

it is at an advantage when applied on datasets (such as Sonar dataset) that have 

data density which tends to fluctuate at different regions. Secondly, the EDC-

AIRS algorithm is more capable at dealing with difference in distribution 

among data classes, generating representative memory cells for each data class. 

The ability to do so is important because it is unlikely for different data classes 

to have the same distribution and even more unlikely for a classifier to 

recognize and robustly adapt to such deviation without explicitly allowing for it. 

Efforts were therefore taken in this work to calculate the ATSR value and to 

determine whether to optimize a common or distinct parameter set. Ten datasets 

from diverse domains with different characteristics were used to evaluate the 

importance of implementing this technique. Results shown that for datasets 

with ATSR value lesser than 0.76 (e.g. Iris and Ionosphere datasets), it is more 

desirable to have a distinct parameter set for each data class. The need to 

compute the ATSR value and differentiate them into similar or dissimilar 

distribution is not an essential step but is advantageous to do so. This is because 

it is theoretically possible for GA to tune the parameter set meant for dissimilar 
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distribution to one suitable for similar distribution. However, it is 

computationally intensive to do so. Therefore, by performing this simple step of 

differentiation, it can help to alleviate the complexity involved when tuning the 

parameters with GA. This complexity is introduced by the (linear) increase in 

the number of parameters that needs to be tuned, which in turn contributed to an 

exponential increase in the search space. This makes the task of discovering the 

optimal value for the parameters very challenging. This problem is commonly 

referred to as the ‘curse of dimensionality’ (Bellman, 1961).  

Finally, the EDC-AIRS algorithm is capable of selecting features that are 

highly informative and relevant. This avoids some of the difficulties when 

dealing with datasets (e.g. Ionosphere and Sonar datasets) that have irrelevant 

or redundant features which often jeopardize the algorithm’s ability to learn and 

generalize. Moreover, it has the crucial advantage of identifying important 

features that best associate with an outcome, building a parsimonious 

classification model as a result. This property is highly desirable in accordance 

to the law of parsimony (Occam’s razor principle (Blumer et al., 1987)) where a 

simpler model with minimal complexity is preferred. 

When EDC-AIRS algorithm was benchmarked with 4 datasets, promising 

results were obtained consistently. It outperforms AIRS2 algorithm in all the 4 

cases. The increase in classification accuracy is 3.6%, 2.4%, 3.1% and 6% for 

Iris, Ionosphere, Pima Indians Diabetes and Sonar dataset respectively. This 

suggests that EDC-AIRS algorithm is a robust learner that is capable of 

adapting to different profound data patterns and structures. 

 

4.6. Summary 
Further inspired by the characteristics of the natural immune system, we 

have developed an adaptive and robust supervised classification algorithm 

called the EDC-AIRS algorithm. The performance of the proposed algorithm 
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was evaluated with 6 benchmarking datasets. When ranked with other 

classifiers, the classification performance of EDC-AIRS algorithm is in the top 

3 positions for all the datasets evaluated. Ameliorated performance achieved by 

the algorithm signifies the importance of empowering an algorithm with the 

ability to independently adapt to the distinct density, distribution and 

characteristics of each data class. However, this approach does not guarantee 

improved performance for all classification problems in face of the selective 

superiority problem. 

 

Disclaimer  

Figure 4.2 was adopted from (Watkins et al., 2004) with kind permission 
from Springer Science and Business Media. 
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Chapter 5 

Time-Related Risk Prediction Models5  

Myocardial infarction (MI) is one of the leading causes of death in many 

developed countries. Hence, early detection of MI events is critical for effective 

preventative therapies. One approach for early disease prediction is the use of 

prediction models developed using machine learning techniques. These models, 

we hypothesize, could be better achieved through detailed consideration of (1) 

sample age of clinical data amassed from routine medical examination, and (2) 

prediction resolution (i.e. prediction scales and intervals) used. In this chapter, 

we investigated on the effects of the aforementioned 2 factors on the 

performance of MI risk prediction models developed using Support Vector 

Machine (SVM) and Evolutionary Data-Conscious Artificial Immune 

Recognition System (EDC-AIRS) algorithms. The cardiovascular health study 

(CHS) dataset was used in this study. Results indicate that SVM algorithm is 

capable of achieving high sensitivity, specificity and balanced accuracy of 

95.3%, 84.8% and 90.1% respectively over a time span of 6 years. Further, both 

sample age and prediction resolution were found not to have a significant 

impact on the performance of MI risk prediction models developed using 

subjects aged 65 and above. This implies that risk prediction models developed 

using different sample age and prediction resolution is a feasible approach and 

could offer patients with a more comprehensive estimation of their health risk. 

 

 

 

                                                 
5 The work presented in this chapter has been accepted by IEEE Transactions on Biomedical 
and Health Informatics. This paper can be found in Appendix E. 
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5.1. Introduction 
The best practice to avoid human mortality caused by life threatening 

diseases like myocardial infarction (MI) is to detect them early and prevent its 

onset. One approach is to devise computational methods that capitalize on 

clinical biomarkers to better screen the possible risk of (future) MI so that the 

most effective, personalized and preventive measures can be offered promptly. 

This ultimately would result in a reduction in avoidable mortality. However, the 

development of reliable and accurate clinical risk prediction models for MI 

remains a challenge. 

The current approaches for assessing the risk of individuals experiencing MI 

include risk scoring system and survival curves (Clayton et al., 2005; Lloyd-

Jones et al., 2004; Levy et al., 2006). These, however, have limitations like the 

inability to substantially identify minority of individuals with subsequent risk of 

experiencing MI (Alty et al., 2007). Moreover, clinical biomarkers and 

symptoms seldom follow a linear relationship and the expected outcome at 

individual level does not always abide to the rules of epidemiology 

(Chattopadhyay, 2013). As a result, conventional risk scoring systems – which 

model relationships in a linear manner - often flounder in view of these 

challenges (Song et al., 2004; Kim et al., 2005). 

In recent years, there is an exponential increase in the amount of clinical and 

molecular data collected from routine medical examination. To overcome the 

challenges associated with human scale of thinking and analysis, data mining 

techniques – which have been postulated as a “central feature” for future 

healthcare system (Snyderman & Langheier, 2006) – became a popular method 

for extracting insights from this data deluge. Advantages of using data mining 

techniques include the capability of dealing with plethora of information, 

solving non-trivial problems, producing data-driven prediction models, and 

handling non-linear relationships among biomarkers. Examples of data mining 

techniques used to estimate disease risk include works from: (1) Wiens et al. 

(Wiens et al., 2012) who employed support vector machine (SVM) to identify 
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patients who are at high risk of experiencing hospital acquired Clostridium 

difficile (C. diff); and (2) Khan et al. (Khan et al., 2001) who used artificial 

neural network (ANN) for discriminating small, round blue-cell tumors 

(SRBCTs).  

Investigation from (Asia Pacific Cohort Studies Collaboration, 2006) 

suggests that differences in severity of cardiovascular disease (CVD) risk 

factors could contribute to age-related excess risk for CVD – i.e. the impact of a 

risk factor on one’s health could change as one ages. These, from the 

perspective of preventive medicine and clinical risk prediction, motivated us to 

hypothesize the importance of sample age and prediction resolution – 2 aspects 

that are not commonly examined in the literature – in relation to clinical risk 

prediction models. Here, sample age refers to the average age of individuals 

found in the baseline (i.e. input) dataset used to construct the clinical risk 

prediction model while prediction resolution refers to the prediction scale (i.e. 

number of years into the future where prediction of MI occurrence begins) and 

interval (i.e. time duration, in years, that marks the start and end of MI 

outcomes to be considered) employed by the clinical risk prediction model.  

This chapter presents the development of MI risk prediction models 

constructed using Support Vector Machine (SVM) (Boser et al., 1992; Cortes & 

Vapnik, 1995; Vapnik, 1999) and Evolutionary Data-Conscious Artificial 

Immune Recognition System (EDC-AIRS) (Tay et al., 2013) algorithms. 

Additionally, the effects of sample age and prediction resolution (using subjects 

aged 65 and above) on the performance of the developed models were 

examined. Participants amassed from the Cardiovascular Health Study (CHS) 

(Fried et al., 1991) were analysed. We have chosen CHS dataset in this work 

because of the wide range of clinical measurements and risk factors accrued 

during the CHS observational study.  

The rest of the chapter is organized as follows. Section 5.2 provides details 

of CHS dataset, and delineates the methodology involved in developing the 
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predictive models. Section 5.3 provides the experimental results achieved by 

the risk prediction models developed using different combinations of sample 

age and prediction resolution. Key results are discussed in Section 5.4 and 

conclusions are drawn in Section 5.5. 

 

5.2. Material and Methods 
In Section 5.2.1, details of CHS dataset are provided. This dataset, however, 

consists of a significant percentage of missing data and a highly skewed data 

distribution (commonly known as the class imbalanced data problem). Hence, 

for effective analysis, data imputation and class data balancing are performed 

and described in Section 5.2.2 and 5.2.3 respectively. Section 5.2.4 explains 

how the various MI risk prediction models based on different combinations of 

baseline data and prediction resolution were developed and validated.  

 

5.2.1. Dataset  
The CHS dataset (Fried et al., 1991), an observational study of 

cardiovascular risk factors associated with the elderly, was analysed. Further 

details of this dataset can be found in Section 3.3.1. 

 

5.2.2. Data Imputation 

Data imputation is the process of substituting missing entries in a dataset 

with plausible values and aims to improve the quality of the data. It was 

performed using weighted K-nearest neighbour (KNN) because of its excellent 

performance in estimating missing values (Troyanskaya et al., 2001; Jerez et 

al., 2010). Moreover, it has the capability to estimate both qualitative and 

quantitative attributes. Hence, it is highly suitable for interpolating the missing 

values in the CHS dataset. 
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Individuals with unknown MI status and clinical features that were 

uninformative (i.e. features with consistent value throughout) were first 

removed from the analysis. Individuals and clinical features with high 

percentage of missing entries were also removed. This is to ensure that there is 

an adequate supply of complete entries for weighted KNN to reference when 

estimating the missing values, which in turn promotes a more accurate data 

imputation process (Garcia-Laencina et al., 2008; Troyanskaya et al., 2001; 

Jerez et al., 2010). The resulting dataset was next normalized to unit variance to 

ensure that the attributes with large scale do not dominate the (Euclidean) 

distance measure (Minaei-Bidgoli et al., 2003). Subsequently, the optimal value 

of K for each clinical feature was determined by 10-fold cross-validation and 

used for the data imputation process. The type of replacement method used by 

weighted KNN depends on the data type. For instance, if categorical 

(continuous) data were encountered, the weighted-mode (weighted-mean) of 

the K nearest neighbours was used to assign the value for the missing entries. 

The use of weighted KNN estimation has been demonstrated in (Dudani, 1976; 

Troyanskaya et al., 2001) to be robust and accurate. 

 

5.2.3. Class Imbalanced Data Problem  

In order to create an unbiased dataset for SVM and EDC-AIRS algorithms to 

learn from, under-sampling of the majority class is necessary. The Kennard-

Stone (KS) algorithm (Kennard & Stone, 1969) was employed to perform this 

task because of its excellent performance as demonstrated in a comparative 

study (Wu et al., 1996). This algorithm sequentially selects representative data 

that are uniformly scattered across the data domain space. This is carried out by 

first selecting a data object that is closest to the mean of the dataset and is 

included as the first data candidate. Subsequently, the data object that is most 

distant from the first one (based on Euclidean distance) is included as the 

second data candidate. The next data object is chosen by identifying the one 
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farthest away from the previously selected data candidates. This process repeats 

until the desired number of candidates has been identified (Wu et al., 1996; 

Shahlaeiab et al., 2012).  

In this study, the KS algorithm was used to under-sample the majority class 

found in the imputed CHS dataset. The number of candidates to select is 

equivalent to the number of samples in the minority class. In other words, after 

this process, the number of controls and cases would be identical. 

 

5.2.4. MI Risk Prediction Models  

Risk prediction of MI events is a highly alluring task as it would allow early 

detection and better management of the disease, and ultimately improve the 

individuals’ quality of life. To develop such risk prediction models, 2 

algorithms (SVM and EDC-AIRS) were employed in this study. SVM 

algorithm is a robust supervised learning algorithm that is capable of yielding 

excellent generalization performance on an extensive area of problems (Chen et 

al., 2005; Osuna et al., 1997; Listgarten et al., 2004). It is derived from 

statistical learning theory and is capable of solving linearly and non-linearly 

separable problems. Fundamentally, SVM performs classification through the 

construction of an N-dimensional hyper-plane that optimally separates the data 

into two or more categories whereby the margin of separation between the 

different categories is maximized. 

EDC-AIRS algorithm (Tay et al., 2013) is a supervised classification 

algorithm inspired by the principles and processes associated with the human 

immune system. Adscititious to the typical mechanisms adopted by artificial 

immune system – like clonal expansion, somatic hyper-mutation, resource 

competition and memory cell formation – EDC-AIRS algorithm proposed 

strategies for robustly adapting memory cells to the different density,  
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Table 5.1: Details of the Imputed CHS Dataset 

Prediction Model 
Sample Size* 

(cases/controls) 
#Features Age (Mean±SD) 

yr50611 3102 (6.2%/93.8%) 237 75.7 ± 5.34 
yr50607 3102 (2.4%/97.6%) 237 75.7 ± 5.34 
yr50809 3034 (2.1%/97.9%) 237 75.7 ± 5.34 
yr51011 2978 (2.1%/97.9%) 237 75.7 ± 5.36 
yr70811 2407 (2.1%/97.9%) 233 77.2 ± 5.40 
yr70809 2407 (2.1%/97.9%) 233 77.2 ± 5.40 
yr71011 2362 (2.0%/98.0%) 233 77.2 ± 5.40 
yr91011 1909 (1.9%/98.1%) 242 78.8 ± 5.09 

*This sample size refers to the number of individuals that remain in the CHS dataset after 
removal of records with significant missing entries. 
‘yrXYYZZ’ denotes that the prediction model uses clinical measurements observed  in 
year X to make prediction of whether one would experience MI from year YY to ZZ. 

 

8 to 11, year 8 to 9 and year 10 to 11 were conducted. Likewise, clinical data 

recorded in year 9 was utilized to perform prediction of MI occurrence from 

year 10 to 11.  

Each baseline dataset was randomly split into two subsets having balanced 

class distribution. The first subset contains 70% of the initial data. Using this 

subset, the prediction model was trained and tuned based on 10-fold cross-

validation. The second subset, which contains the remaining 30% of the data, 

was used to validate the developed model. This splitting process was repeated 

3 times and independently used to develop and test the respective prediction 

model. It is highly encouraged to do so to avoid the developed model from 

capturing not only the true associations, but, also, idiosyncratic features of the 

training data, which often produces an overly optimistic model (Taylor et al., 

2008). When developing and testing each prediction model, each algorithm is 

executed 3 times. Three commonly used performance measurements were 

employed to evaluate the prediction models developed - namely sensitivity, 

specificity, and balanced accuracy (i.e. average between sensitivity and 

specificity). 
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Table 5.2: Details of Datasets Used to Build the Prediction Models 

Prediction Model #Training Instances 
#Validation 

Instances 
yr50611 270 114 
yr50607 104 42 
yr50809 92 38 
yr51011 88 36 
yr70811 136 58 
yr70809 70 30 
yr71011 66 28 
yr91011 52 20 

All training and testing datasets contain equal number of cases and 
controls. 

 

Finally, to determine whether the prediction models developed using SVM 

and EDC-AIRS algorithms are statistically different from each other, 

McNemar’s test was conducted. This statistical test was chosen as it has been 

demonstrated to have low type 1 error (Dietterich, 1998). For each prediction 

model, this test was carried out by first recording the prediction outcomes 

obtained (by each algorithm) when tested using each validation dataset. The 

results obtained from each algorithm were then used to construct the 

contingency table shown in Figure 5.2. Referring to the figure, if the sum of 

‘b’ and ‘c’ is greater than 25, chi-square test with 1 degree of freedom is used 

for performing McNemar’s test. Otherwise, to provide a better estimation of 

the small sample (i.e. b + c ≤ 25), binomial distribution is used for (exact) 

McNemar’s test. The prediction model is considered to be statistically 

different from the ground truth if the p-value computed using McNemar’s test 

is smaller than 0.05. 
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Table 5.3: Classification Performance of SVM and EDC-AIRS Algorithms (Cross-
Validated) 

Prediction 

Model 

SVM EDC-AIRS 

#Features 

Selected 
 Sensitivity  Specificity  

 Balanced 

Accuracy  

#Features 

Selected 
 Sensitivity  Specificity  

 Balanced 

Accuracy  

yr50611 130±18 0.943±0.015 0.975±0.015 0.959±0.006 113±9 0.896±0.032 0.731±0.088 0.814±0.030 

yr50607 120±17 0.974±0.011 0.974±0.011 0.974±0.011 107±10 0.974±0.011 0.750±0.084 0.862±0.045 

yr50809 109±2 1.000±0 0.978±0 0.989±0 103±8 0.971±0.013 0.899±0.070 0.935±0.029 

yr51011 111±4 1.000±0 0.970±0.013 0.985±0.007 112±8 1.000±0 0.720±0.164 0.860±0.082 

yr70811 109±16 0.900±0.136 0.967±0.016 0.951±0.040 109±9 0.966±0.022 0.838±0.039 0.902±0.022 

yr70809 105±3 1.000±0 0.990±0.016 0.995±0.008 103±9 0.981±0.033 0.848±0.044 0.914±0.014 

yr71011 104±4 1.000±0 0.970±0 0.985±0 107±10 0.980±0.017 0.828±0.046 0.904±0.032 

yr91011 111±2 0.962±0 0.962±0 0.962±0 114±6 0.962±0 0.872±0.059 0.917±0.029 

The number of feature selected refers to the number of biomarkers identified by GA as predictive towards 
the prediction of MI. All performance measurements range between 0 and 1. 

 

5.3. Experimental Results 

5.3.1. Data Preprocessing 
Efforts were taken to ensure the quality of the data. Firstly, removal of 

records and clinical features with significant missing entries were performed. 

Table 5.1 presents the details of the resulting CHS datasets. 

Subsequently, these datasets went through the weighted KNN data 

imputation process where missing values were estimated. Finally, under- 

  

Table 5.4: Classification Performance of SVM and EDC-AIRS Algorithms (Tested with 
Validation Dataset) 

Prediction 

Model 

SVM EDC-AIRS 

 Sensitivity  Specificity  
 Balanced 

Accuracy  
 Sensitivity  Specificity  

Balanced 

Accuracy  

yr50611 0.953±0.037 0.848±0.054 0.901±0.022 0.924±0.020 0.649±0.110 0.786±0.058 

yr50607 0.921±0.055 0.873±0.055 0.897±0.055 0.841±0.099 0.587±0.0550 0.714±0.024 

yr50809 0.947±0 0.772±0.030 0.860±0.015 0.772±0.219 0.667±0.122 0.719±0.080 

yr51011 0.944±0 0.852±0.085 0.898±0.042 0.926±0.064 0.574±0.032 0.750±0.048 

yr70811 0.747±0.293 0.874±0.053 0.810±0.121 0.828±0.120 0.713±0.173 0.770±0.040 

yr70809 0.844±0.102 0.800±0 0.822±0.051 0.867±0 0.556±0.077 0.711±0.038 

yr71011 0.905±0.041 0.857±0.124 0.881±0.055 0.833±0.109 0.595±0.149 0.714±0.036 

yr91011 0.967±0.058 0.700±0.173 0.833±0.115 0.967±0.058 0.467±0.252 0.717±0.126 

These performance measurements were obtained by evaluating each developed prediction model 
with their respective test dataset.  
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Table 5.5: Statistical Evaluation of Developed Prediction Models 

Prediction Model 
McNemar’s Test# (p-value) 

SVM vs EDC-AIRS 
yr50611 <0.0001 
yr50607 0.0001 
yr50809 0.0052 
yr51011 0.0009 
yr70811 0.3072 
yr70809 0.0414 
yr71011 0.0013 
yr91011 0.0654 

#The p-value of McNemar’s test is presented examining 
whether the performance of the developed prediction model is 
statistically different from the ground truth.  

 

sampling was performed with the KS algorithm to obtain a balanced number of 

cases and controls.  

These data preprocessing steps taken affected the overall size of the dataset 

used to build each prediction model. Details of the resultant datasets are 

summarized in Table 5.2. The training datasets were used to develop the 

prediction models while the validation datasets were used to evaluate the 

robustness of the developed models. 

 

5.3.2. MI Risk Prediction Models 
Prediction models - using baseline dataset with different sample age - at 

various time scales and intervals were developed using the training datasets. 

Cross-validation was carried out to evaluate the performance of each prediction 

model. For all prediction models developed, results (as shown in Table 5.3) 

indicate consistently high predictive performance was achieved by both SVM 

and EDC-AIRS algorithms. For example, a balanced accuracy of at least 0.95 

and 0.81 was achieved by SVM and EDC-AIRS algorithms respectively. 

To assess whether the prediction models developed generalize well, 

validation was performed using the validation datasets. Results, as presented in 
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Table 5.4, demonstrate that a balanced accuracy of at least 0.81 and 0.71 was 

achieved by SVM and EDC-AIRS algorithms respectively.  

McNemar’s test was conducted to determine whether the performance of 

SVM and EDC-AIRS algorithms are statistically different from each other. 

Results (as shown in Table 5.5) indicate that for most of the prediction models 

(i.e. except prediction models ‘yr70811’ and ‘yr91011’), the performance of 

SVM and EDC-AIRS algorithms are statistically different. 

 

5.4. Discussion 
MI risk prediction models developed using baseline datasets with different 

sample age, and based on different prediction resolution combinations were 

analysed. Cross-validation was utilized during the training phase as an approach 

to evaluate and develop potent MI risk prediction models. The resultant 

prediction models developed by both algorithms achieved a relatively high 

sensitivity, specificity and balanced accuracy (for SVM algorithm, the 

respective performance achieved is at least 0.90, 0.96 and 0.95; while for EDC-

AIRS algorithm, the respective performance achieved is at least 0.89, 0.72 and 

0.81). Investigation on whether the prediction models developed were over-

trained was conducted by validating each developed model with an unseen 

dataset (i.e. not used to develop the prediction model). The aim of this step was 

to assess the generalizability of the developed models. Results indicate that 

SVM algorithm (and EDC-AIRS algorithm) – across all prediction models 

tested - achieved a sensitivity, specificity and balanced accuracy of at least 0.74, 

0.70 and 0.81 (and 0.77, 0.46 and 0.71) respectively. Furthermore, it can be 

observed that in general there is a drop in the validation sensitivity (SVM: 

0.071±0.059; EDC-AIRS: 0.097±0.078), specificity (SVM: 0.151±0.061; 

EDC-AIRS: 0.210±0.104) and balanced accuracy (SVM: 0.112±0.038; EDC-

AIRS: 0.153±0.063) among all the prediction models developed. It is 

noteworthy that the drop in performance is less severe for SVM algorithm 
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(when compared to EDC-AIRS algorithm). This portends that SVM algorithm 

tends to perform better on noisy data (in contrast to EDC-AIRS algorithm) even 

after data imputation was conducted. This observation is supported by the 

results obtained from the performance of McNemar’s test. From this statistical 

evaluation, it was demonstrated that SVM algorithm outperforms EDC-AIRS 

algorithm for 6 out of 8 prediction models tested.  

Prediction models developed (with SVM algorithm) using baseline dataset 

from year 5 (and year 7), and tested using their respective validation datasets 

have shown comparable sensitivity, specificity and balanced accuracy. Analysis 

of variance (ANOVA) test was conducted on the respective group of prediction 

models (i.e. developed using either year 5 or 7 as baseline dataset) that has a 

prediction interval of 2 years. Results demonstrate that they are statistically 

comparable - with p-value of 0.473 for prediction models using baseline dataset 

from year 5 (and 0.245 for prediction models using baseline dataset from year 

7). This signifies that predication scale does not have a significant impact on 

the performance of (SVM-based) prediction models developed and tested using 

subjects aged 65 and above. Similar analysis was performed on prediction 

models developed based on different prediction interval. Results indicate that 

these models are statistically comparable – with p-value of 0.918 and 0.883 for 

prediction models developed using baseline dataset from year 5 and 7 

respectively. This means that prediction interval does not have a significant 

impact on the performance of prediction models developed using SVM 

algorithm. 

As for prediction models developed using EDC-AIRS algorithm, similar 

analysis was conducted. For prediction models developed using baseline dataset 

from year 5 (and year 7) that are based on 2-year prediction interval, and tested 

using their respective validation datasets, ANOVA test was conducted. Results 

indicate that the prediction models in their respective group are statistically 

comparable – having a p-value of 0.712 (for prediction model using year 5 

baseline dataset) and 0.926 (for prediction model using year 7 baseline dataset). 
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This indicates that predication scale does not have a significant impact on 

prediction models developed using EDC-AIRS algorithm as well. Likewise, 

prediction models developed based on different prediction interval were 

analysed. Results show that these models are statistically comparable – having 

a p-value of 0.118 and 0.139 for prediction models developed using baseline 

dataset from year 5 and 7 respectively. This suggests that prediction interval 

does not have a significant impact on the performance of prediction models 

developed using EDC-AIRS algorithm as well. In view of these observations, 

we aim to investigate the effects of prediction resolution on subjects in younger 

age groups as part of our future work. A summary of the p-values discussed is 

provided in Table 5.6. 

Analysis of prediction models that aim to predict the likelihood of MI 

occurrence in individuals’ subsequent 2 years (i.e. ‘yr50607’, ‘yr70809’ and 

‘yr91011’) indicate comparable performance – with p-value of 0.504 and 0.996 

for SVM and EDC-AIRS algorithms respectively. Comparison of age among 

individuals belonging to different baseline datasets indicates that they are 

statistically different (p-value < 0.0001). This portends that sample age does not 

have a significant impact on the performance of prediction models. 

 

Table 5.6: Statistical Evaluation of Prediction Resolution 

Prediction Models Compared 
ANOVA Test# (p-value) 

SVM EDC-AIRS 
Prediction Scale 

yr50607; yr50809; yr51011 0.473 0.712 
yr70809; yr71011 0.245 0.926 

Prediction Interval 
yr50611; yr50607 0.918 0.118 
yr70811; yr70809; 0.883 0.139 

#The p-value of ANOVA test is presented examining the significance of 
prediction scale and interval for both SVM and EDC-AIRS algorithms. 
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One benefit of performing risk prediction using different prediction 

resolution and sample age is that it allows more refined and progressive risk 

prediction to be conducted (without compromising accuracy). This provides the 

advantage of estimating the seriousness of a disease one is experiencing; 

enabling clinicians to offer a more personalized management and/or therapeutic 

strategy to the patient.  

The limitation of this investigation includes the use of a single dataset to 

evaluate the effects of sample age and prediction resolution in relation to the 

performance of MI risk prediction. This limits the power to conclusively state 

how each factor influences the performance of the prediction model. 

Nevertheless, it does provide some insights on whether sample age and 

prediction resolution have an impact on the performance of clinical risk 

prediction model. 

 

5.5. Summary 
Early detection of individuals with high risk of experiencing MI through the 

use of prediction models that are simple to use and provide instant prediction 

has been a coveted and elusive clinical task. To this end, we investigated on the 

effects of sample age and prediction resolution in relation to the development of 

accurate clinical risk prediction model. Our experiments indicate that both 

sample age and prediction resolution do not have a significant impact on 

prediction models developed using subjects aged 65 and above. In view of this 

observation, the decision of which combination of sample age and prediction 

resolution to use in clinical practice – in our opinion – would depend on the 

availability of appropriate treatment/management plans for the patients. This is 

very important as we do not want to burden the patients with unnecessary 

emotional stress (which might implicitly exacerbate their health) if we do not 

have a solution for them. Such consideration is critical in order to provide high 

quality biological, psychological and sociological care for the patients.  



[Chapter 5: Time-Related Risk Prediction Models] 

 

[Decision Support Continuum Paradigm for CVD: Towards Personalized Predictive Models] Page 115 

Overall, high validation sensitivity, specificity and balanced accuracy were 

achieved by SVM algorithm. This opens the opportunity for constructing 

predictive models capable of detecting MI early, allowing clinicians to take 

preventative measures promptly, improving the quality of individuals’ life, and 

reducing avoidable mortality. 

In view of these results, we suggest the use of different prediction resolution 

to provide a more detailed health screening of elderly subjects so that more 

appropriate preventative measurements - in relation to the individual’s risk 

level - can be taken. 

 

Disclaimer  

The CHS dataset described in this chapter is provided by the NHLBI. 
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Chapter 6 

Artificial Neural Cell System for 

Classification6 

The human brain has always been looked upon with great interests and 

studied by many researchers from multiple disciplines. It has been considered 

as the organ responsible for functions like information processing/storage and 

recall, decision making and initiating actions on external environment. The 

mechanisms that develop the brain and empowering it with such capabilities 

have strong similarity to machine learning and classification, and have inspired 

us to develop a learning algorithm for problem solving and optimization.  

Exploiting on 3 natural mechanisms responsible for developing and 

enriching the brain (i.e. neurogenesis, neuroplasticity via nurturing and 

apoptosis), we introduce a novel learning algorithm for solving classification 

problems. We call this new neural-inspired classification algorithm as the 

Artificial Neural Cell System for classification (ANCSc). Benchmark testing on 

ANCSc algorithm was conducted and highly competitive classification results 

were achieved. Through this work, we aim to suggest new approaches that 

might be of value to the construction of learning systems. 

 

 

 

 

                                                 
6 The work presented in this chapter has been submitted to Journal of Biomedical Informatics 
and is currently under review. 
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6.1. Introduction 
This chapter introduces a novel supervised learning algorithm for solving 

classification problems – one of the most common and well-studied tasks in 

predictive data mining and knowledge discovery with a wide range of 

applications such as medical diagnosis, genomic analysis, pattern recognition, 

digital security, among others. It is inspired by the characteristics exhibited by 3 

natural phenomena responsible for developing and enriching brain function - 

namely (1) neurogenesis, (2) neuroplasticity as a result of the dynamic interplay 

between nature and nurture, and (3) apoptosis. These mechanisms (among 

others) enable human to learn, identify, differentiate and organize objects, 

patterns, sounds, concepts, etc. This model of neural operations has many 

features in common, generally in the field of machine learning, to the task of 

classification – the problem of identifying which category an observation 

belongs to, on the basis of a pre-specified set of data containing observations 

with known category membership. Hence, these neural processes - which to our 

knowledge have not been exploited for the development of machine learning 

algorithms - become an ideal candidate for the study and modeling of learning 

systems.  

Neurogenesis, in neuroscience, is the process by which new neurons are 

generated in the nervous system from neural stem/progenitor cells (Wiskott et 

al., 2006). The generated neurons are not stagnant throughout the life of a 

species and can be stimulated by behavioral and environmental factors (Lillard 

& Erisir, 2011). This is vital and necessary for adapting the brain to any 

changing elements it encounters; refining the neural pathways and synapses 

essential for learning and adapting to changes, and circumvent any undesirable 

side effects. This process of molding and reshaping the brain in face of changes 

in behavior, environment and neural processes is often referred to as 

neuroplasticity (Taupin, 2006). Intentional exposure to new environments and 

(supervised/guided) inculcation of desirable information/behavior to a human 

(e.g. taught by an instructor) may trigger neuroplastic changes as well. This 

process, considered as nurturing, capitalizes on what the nature can provide (i.e. 

http://wizfolio.com/?citation=1&ver=3&ItemID=662&UserID=8301&AccessCode=6F2BA1C8E4BA4749AD21EEE023693DD7&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=662&UserID=8301&AccessCode=6F2BA1C8E4BA4749AD21EEE023693DD7&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=669&UserID=8301&AccessCode=AA3E6D6B978342E6AA82300003EF42B3&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=669&UserID=8301&AccessCode=AA3E6D6B978342E6AA82300003EF42B3&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=644&UserID=8301&AccessCode=757F51FC05CC472A986ECDC1E287EC5E&CitationSuffix=
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the individuals’ innate qualities), enriches and leverages on the individuals’ 

ability so that they can perform at their greatest potential.  

Motivated by the profound significance of the aforementioned mechanisms 

in human learning process, and the ability to autonomously trim off non-

essential cells during human development (commonly known as apoptosis), we 

introduce a novel supervised classification called the Artificial Neural Cell 

System for classification (ANCSc). In a nutshell, ANCSc algorithm bio-mimics 

the mechanisms underlying the neuronal behavior associated with the process 

of learning and interaction with the external environment. It allows artificial 

neurons (i.e. candidate solutions) to (1) proliferate in the solution space (i.e. 

bio-mimicking neurogenesis), (2) progressively and independently refine and 

adapt to the (data) environment presented (i.e. bio-mimicking neuroplasticity as 

a result of nurturing), and (3) survive or undergo programmed cell death as part 

of an effort to construct a concise and efficacious classification model (i.e. bio-

mimicking apoptosis). The utilization of these learning mechanisms is a novel 

contribution towards the development of neural-inspired learning algorithms, 

and in our opinion, would promote the development of robust classification 

models that are less complex to design; for example, the ANCSc algorithm, in 

contrast to artificial neural network (ANN), does not require the network 

architecture (i.e. number of neurons and layers) to be defined. 

The classification performance of the ANCSc algorithm, when evaluated 

with 6 benchmark datasets, demonstrates that it is a robust learning algorithm 

capable of achieving highly competitive classification results. This novel 

learning method is an important contribution as the capability to better learn 

profound data structures and make accurate prediction of new observations are 

beneficial for many classification problems. 

The rest of the chapter is organized as follows. Section 6.2 provides a brief 

overview of neural processes. A detailed description of the proposed ANCSc 

algorithm is presented in Section 6.3. Materials and methods used in this study 

are delineated in Section 6.4. Performance of ANCSc algorithm and its 
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corresponding sensitivity analysis are offered in Section 6.5. Section 6.6 

discusses the key results and properties associated with the algorithm. Finally, 

conclusions are drawn in Section 6.7. 

 

6.2. Overview of Neural Processes 
Neurons, a group of specialized impulse-conducting cells that process and 

transmit information through electrical and chemical signals, form the core 

components of the nervous system (e.g. the brain). The human brain contains 

on average 86.1 billion neurons (Azevedo et al., 2009), connected to each other 

to form neural networks. Communication among the neurons occurs via 

synapses – specialized connections between neurons that allow electrical and 

chemical signals to be transmitted. This interaction among neurons is the 

cellular basis for tasks like thinking and decision making. In particular, neurons 

are interconnected in smaller groups – called neuronal pools – defined on the 

basis of function (i.e. each neuronal pool is responsible for enabling a specific 

function to be carried out) (Martini et al., 2011).  

New neurons are generated in the human brain from neural stem/progenitor 

cells – a process called neurogenesis. It is most active during prenatal 

development and declines sharply over the adolescence period (Wiskott et al., 

2006). Neurogenesis in the adult brain occurs primarily in two discrete areas - 

namely the dentate gyrus of the hippocampus and the subventricular zone, 

along the lateral ventricles. The number of new neurons added to an adult brain 

is dependent on the rate of cell generation and the probability of cell survival 

(i.e. generated cells might undergo programmed cell death after a period of time 

– a phenomenon known as apoptosis) (Wiskott et al., 2006). As demonstrated in 

several studies, the rate at which neurogenesis occurs is modulated by several 

intrinsic and environmental stimuli. Intrinsic regulators include age (Kuhn et 

al., 1996), gender (Tanapat et al., 1999) and genetic factors (Kempermann et 

al., 1997) while environmental stimuli comprise of environmental enrichment 

(Nilsson et al., 1999), physical (Praag et al., 1999) and social (Fowler et al., 
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2002) activities, stress (Gould & Tanapat, 1999), smell (Tanapat et al., 2001) 

and diet (Stangl & Thuret, 2009). It is noteworthy that adult neurogenesis, in 

any cases, occurs (during most part of the life) at a very low rate (Wiskott et al., 

2006; Taupin, 2006). Further, there is also growing evidence suggesting an 

association between adult hippocampal neurogenesis to several processes like 

neuro-inflammation, learning and memory. It has been demonstrated that 

neuro-inflammation  inhibits neurogenesis in adult hippocampus (Ekdahl et al., 

2003) while increased hippocampal neurogenesis is potentially involved in 

ameliorated learning and memory (Neves et al., 2008; Gould et al., 1999; Shors 

et al., 2001). Long-surviving neurons in the brain have been postulated to be 

more stable and preserve the encoding of the learned environment, whereas 

newly generated neurons are more plastic – which allows the brain to adapt 

itself to the new environment (i.e. occurrence of neuroplasticity as a 

consequence of learning) (Wiskott et al., 2006).  

In the parlance of literature, neuroplasticity refers to the malleability of the 

brain - usually observable as changes in neuronal structure (e.g. changes in the 

position of the neurons) and connectivity, functional changes in the brain and 

neurogenesis. This typically occurs as a result of learning (e.g. taught/nurtured 

by an instructor), training (e.g. practicing to improve the ability to perform a 

task) and experience (e.g. exposure to certain event or environment), rendering 

the brain capable of adapting to environmental dynamics (Taupin, 2006). It is 

noteworthy that it has become increasingly evident that both neurogenesis and 

neuroplasticity occur in the human brain throughout life; instead of during 

prenatal development or juvenile period only (Gage, 2002; Lillard & Erisir, 

2011). 

Apoptosis, the process of controlled cell death, is an important feature that 

offers significant advantages during an organism’s lifecycle. It promotes 

healthy (e.g. nervous system) development where defective apoptotic processes 

would be detrimental – leading to diseases like cancer (as a result of inadequate 

apoptosis) or atrophy (as a consequence of excesses apoptosis).  
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6.3. Artificial Neural Cell System for Classification (ANCSc) 

Algorithm 
ANCSc, a novel neural-inspired learning algorithm, will be presented in this 

section. It is a supervised classification algorithm that bio-mimics how new 

neurons are populated, refined and maintained in the mammalian brain. 

Through this process, it aims to “educate” the ANCSc classification model (in 

an incremental manner) key patterns that underlie the training data.  

To provide a comprehensive description of ANCSc algorithm, Section 6.3.1 

describes the key terms and parameters vital for the understanding of the 

algorithm while Section 6.3.2 provides a tour of the training routine associated 

with the algorithm. 

 

6.3.1. Key Concept and Parameters 
This subsection describes the definitions for the key terms and parameters 

used in relation to the ANCSc algorithm.  

Key Terms 

 Affinity: The Euclidean distance between two neurons (feature vectors). In 

this implementation, this distance is between 0 and 1 (where 0 represents 

high affinity while 1 indicates low affinity). 

 Apoptosis: The removal of neurons from the artificial cognitive system 

that mimics the naturally occurring and genetically determined process of 

self-destruction of unwanted cells. It is a regulated process that offers the 

advantage of producing a parsimonious yet accurate artificial cognitive 

system for performing classification at the end of the training routine. 

 Artificial Cognitive System: A collection of representative neurons 

(which evolve during the training process of ANCSc) capable of describing 

the training data presented. Given that communication among neurons (e.g. 
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within a neuronal pool) enables human to think or recognize objects, we 

propose the use of KNN algorithm (Cover & Hart, 1967) to perform 

classification (at the end of each training cycle) due to their metaphorical 

similarity – i.e. both defines a pool of elements for conducting a task of 

interest. 

 Artificial Neuron: In neuroscience, neuroplastic changes (i.e. slight 

changes in the position of the neurons) have been proposed as the 

consequence of learning and memory formation in species like human 

(Gage, 2002). To bio-mimic this phenomenon, we propose the artificial 

neurons developed in ANCSc algorithm as feature vectors (with its 

associated class) that contribute to the formation of the artificial cognitive 

system. Synaptic connections between neurons are not considered in order 

to simplify the construction of the learning model. Artificial neurons can be 

added, modified or removed from the postulated artificial cognitive system 

during ANCSc training cycle. 

 Artificial Neuronal Pool: A group of proximal neurons that describe a 

specific pattern determined within the data problem presented. Its 

formation is regulated by the associated classification performance and 

defined on the basis of cell proliferation, adaptation and survival. The size 

of the artificial neuronal pool determines the number of neurons (i.e. k 

value) to be used for classification by KNN. 

 Class: The category assigned to a given feature vector. For binary 

classification problems, each feature vector is assigned to one of the 2 pre-

defined categories.  

 Feature Vector: An n-dimensional vector of categorical/numerical 

features that describe the characteristics of an object/observation.  

 Neuroplasticity: The adaptation of neurons (i.e. modification of the feature 

vectors) in the artificial cognitive system triggered by the process of 
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learning and generalization. This procedure aims to promote the generation 

of highly representative artificial neurons capable of describing the given 

data environment. 

 Testing Data: A collection of data items, that represent 

observations/measurements of a subject of interests, used to estimate the 

performance of the classification model trained with the training data. It is a 

distinct set of data that is used in an iterative process to evaluate and 

improve the performance of the trained model. 

 Training Data: A collection of data, similar to the testing data, used to 

develop a classification model. Training data are commonly used in various 

areas of information science for the discovery of predictive relationship 

between the feature vector and the class. In this particular context, they 

serve as the data environment that promotes proliferation, adaptation and 

survival of neural cells. 

 

Key Parameters 

 Learning Plateau Threshold (LPT): A termination criterion which 

defines the number of learning cycles that the ANCSc algorithm would 

iterate for before termination. Improvement in classification accuracy 

(during a learning cycle) would reset this (integer) parameter.  

 Neural Density (ND): This value, which ranges between 0 and 1, aims to 

spread neurons with high affinity. This offers the potential advantage of 

generating a set of representative neurons.  

 Neurogenic Space (NS): A parameter, used during the prenatal 

development phase, which determines the size of the region at which 

artificial neurons would develop in the fetal artificial cognitive system. The 

value of this parameter ranges between 0 and 1. 
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Algorithm 6.1: Overview of ANCSc Algorithm 

Input:  D  (training data) 

 T (testing data) 

Output: O (class label prediction) 
 

Initialization 

Step 1: Set t = 1. Normalize D and T to the range [0,1]. 
 

Neurogenesis Phase 

Step 2: Populate a pool of artificial neurons P1 to form the initial cognitive 

system C.  

 P1 is generated by searching for representative data items in D, P1 ⊆ 

D. 

Step 3: A1 = accuracy of classification model P1 when evaluated with D.  

 Set t = t + 1. 
 

Neuroplasticity via nurturing Phase 

Step 4: Identify pi ∈ Pt that resulted in largest number of misclassification.  

 If class label of pi contradicts with NPS artificial neurons at its 

neighborhood, removed pi from Pt.  

 Otherwise, generate centroid artificial neuron pj among the NPS 

artificial neurons (with same class label). 

 Add pj to Pt. 

Step 5: At = accuracy of classification model Pt when evaluated with D. 

 If At is greater or equals to best accuracy achieved thus far, update C 

to Pt. Otherwise, discard Pt. 

 Set t = t + 1. 

Step 6: Scatter closely clustered pi ∈ C. Resulting model forms Pt.  

Step 7: At = accuracy of classification model Pt when evaluated with D. 

 If At is greater or equals to best accuracy achieved thus far, update C 

to Pt. Otherwise, discard Pt. 

 Set t = t + 1. 

Step 8: If termination criteria are satisfied, proceed to Step 9. Otherwise, go 

to Step 4. 
 

Apoptosis Phase 

Step 9: If eradication of pi ∈  C does not deteriorate classification 

performance when evaluated with D, remove pi from C. 

 Otherwise, keep pi. 
 

Evaluation 

Step 10: Evaluate performance of classification model C on T. Generated class 

labels of T are assigned to O. 
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Neurogenesis Phase 

The primary objective of this phase is to generate a reduced set of 

representative artificial neurons (or data items) from the training dataset. This 

establishes the fetal artificial cognitive system that would be refined and 

enhanced in the later phases. It begins the process of populating new artificial 

neurons by requiring the specification of 2 parameters – namely neurogenic 

space (NS) and neurogenic rate (NR). It proceeds by searching for the region 

(radius defined by NS) that is most populated with data items (within the 

training dataset). Upon finding it, a uniformly distributed subset of data items 

from that region is selected. This selection technique of uniformly distributed 

data item is similar to the Kennard-Stone (KS) algorithm (Kennard & Stone, 

1969). However, unlike KS algorithm, we proposed that the number of data 

items (numNeurons) to be selected be dynamically determined by the following 

equation: 

numNeurons = ||NS|| * NR (8) 

where ||NS|| is the number of data items found within the defined region, and 

NR is a user-defined probability parameter that determines the proportion of 

data items that would be selected as artificial neurons for the development of 

the fetal artificial cognitive system. This NR parameter is tantamount to the 

intrinsic and environmental stimuli (described in Section 6.2) that regulate the 

rate of neurogenesis in human brain. 

Subsequently, all data items within the previously defined region are removed 

and the aforementioned process repeats to create the fetal artificial cognitive 

system. At the end of this phase, a set of representative artificial neurons would 

form the artificial cognitive system. An illustration of this process is given in 

Figure 6.2. Finally, the classification performance of the constructed fetal 

artificial cognitive system is evaluated with the initial training data.  
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Neuroplasticity via Nurturing Phase 

Neuroplasticity, as a consequence of nurturing, plays a significant role in 

promoting the construction of a robust classification model that promises 

enhanced performance over one that regurgitates memorized patterns learned 

during the neurogenesis phase. This phase was inspired by observation of how 

neuronal structures change (i.e. change in the position of the neurons) in 

tandem with healthy brain development, learning and memory formation. 

Changes in connectivity among the neurons (i.e. synaptic connection) are not 

considered in order to postulate a simple and efficient learning model.  

The primary objective of this phase is to (1) grow artificial neurons at 

locations that would contribute to better classification performance, (2) remove 

existing artificial neurons that exacerbate the classification performance, and 

(3) adapt engendered artificial neurons to the input data environment to 

promote better classification performance. This phase begins by identifying the 

artificial neuron that resulted in the largest number of misclassifications. If the 

class of this artificial neuron (for example, it is class 1) contradicts with most of 

the other artificial neurons (i.e. they are of class 0) at its proximity, it is 

removed from the artificial cognitive system. Otherwise, a new artificial neuron 

with the same class (as those at its proximity) is generated at the centroid of 

those artificial neurons, and added to the artificial cognitive system. A 

condition that must be satisfied for this addition is that the class of the artificial 

neuron to be added must belong to the minority data class. This is to encourage 

a balanced number of artificial neurons (i.e. similar number of artificial neurons 

with class 0 and 1 labels) to thrive in the developed artificial cognitive system. 

We hypothesize that this would potentially deliver a solution that could 

generalize better.  

An aging mechanism is implemented, “aging” the newly added artificial 

neurons. This is to allow “younger” artificial neurons to have an opportunity to 

be involved in the learning process (i.e. mimicking the concept - in 

neuroscience - that younger neurons in human brain are more plastic (Wiskott 
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et al., 2006)). If this phase resulted in an artificial cognitive system that shows 

improved performance, it would be kept for future development. Otherwise, it 

would be discarded.  

To better adapt the engendered artificial neurons to the input data 

environment, closely clustered artificial neurons are scattered apart if it does not 

compromise the resulting classification performance. This adaptation step 

begins by searching for the artificial neuron (dNeuron) – within a region whose 

radius is defined by the neural density (ND) parameter - that is most populated 

with other artificial neurons. Upon finding this artificial neuron, the closest 

artificial neuron (cNeuron) affiliated to it (i.e. with highest affinity to dNeuron) 

is modified so that they are more distributed apart. The degree of spread is 

determined by the neuroplastic coefficient (NPC) parameter and defined with 

the following equation: 

cNeuroni = cNeuroni + NPC*(cNeuroni – dNeuroni) (9) 

where cNeuroni and dNeuroni are the ith attribute of cNeuron and dNeuron, 

respectively. Through modicum adjustment of the artificial neurons in the 

artificial cognitive system, we aim to promote the construction of a more 

diverse set of representative artificial neurons; sequella for mitigating the risk 

of overfitting. Similar to the previous step, a (separate) aging mechanism is 

implemented. This is to ensure that different artificial neurons that are densely 

clustered together have a chance to deviate and generalize. Likewise, if this 

newly developed artificial cognitive system constructed in this phase 

demonstrates ameliorated performance, it would be saved. Otherwise, it would 

be removed from further consideration. 

 

Termination of Neuroplasticity via Nurturing Phase 

The stopping criterion for neuroplasticity via nurturing phase is reached if 

there is no improvement in the classification performance after LTP (a user-

defined value) iterations or the same classification performance is achieved 
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This process of removing redundant artificial neurons is carried out upon 

termination of the neuroplasticity via nurturing phase. It aims to eradicate 

redundant artificial neurons that do not contribute to the construction of an 

efficacious and concise artificial cognitive system, but instead exacerbate the 

overall performance. The determination of which artificial neuron to apoptosize 

is governed by 2 questions. First, whether the Euclidean distance of the 

artificial neuron under examination and another artificial neuron in the 

postulated artificial cognitive system is smaller than the product of NS and NR? 

Second, whether removal of the neuron under examination would contribute to 

an improved artificial cognitive system? If the answer is ‘yes’ to both these 

questions then that artificial neuron is removed. Otherwise, it remains in the 

artificial cognitive system. 

 

Evaluation 

At the end of the training cycle described above, KNN algorithm is used to 

predict the class value of unseen data items. It works by determining the k 

(defined by NPS parameter) artificial neurons closest to an unseen data item 

and adopting a majority vote scheme to suggest the class value. This is similar 

to activating the neurons in the corresponding neuronal pool – in human brain – 

when one recall an event or object.  

 

6.3.3. Data Class-specific ANCSc Parameters 
Neurogenesis has been shown to occur in 2 distinct areas of the brain, 

namely the dentate gyrus of the hippocampus and the anterior part of the 

subventricular zone. Each area harbors a population of neural stem/progenitor 

cells that divide and proliferate independently. Moreover, each area is 

responsible for different function - the hippocampus is claimed to be the 

putative area for information storage while the subventricular zone is associated 

with the development of the olfactory bulb. The occurrence of autonomous  

 



[Decision Support Continuum Paradigm for CVD: Towards Personalized Predictive Models] Page  

http://wizfolio.com/?citation=1&ver=3&ItemID=667&UserID=8301&AccessCode=840EBCFD575A446D90A5D7BF01D253E7&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=667&UserID=8301&AccessCode=840EBCFD575A446D90A5D7BF01D253E7&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=493&UserID=8301&AccessCode=E1655101CDE348F8A26C4F9367F4EFA0&CitationSuffix=


[Chapter 6: Artificial Neural Cell System for Classification] 

 

[Decision Support Continuum Paradigm for CVD: Towards Personalized Predictive Models] Page 133 

6.4. Material and Methods 

6.4.1. Performance Evaluation of ANCSc Algorithm 
ANCSc algorithm was evaluated with a number of widely used benchmark 

datasets to assess its learning capability and classification performance. A total 

of 9 datasets, used in (Tay et al., 2013), were employed to evaluate whether 

having independent parameter set influence the classification performance of 

ANCSc algorithm. These 9 datasets used include: Ionosphere, Fisher’s Iris, 

Wine,  

Cardiovascular Health Study (CHS), Pima Indians Diabetes, Hill Valley, 

Bupa Liver Disorder, Sonar, and Statlog Heart datasets. The performance 

yielded by ANCSc algorithm was (statistically) compared with those obtained 

by the evolutionary data-conscious artificial immune recognition system 

(EDC-AIRS) (Tay et al., 2013). We have chosen McNemar’s test to determine 

whether the performance of the 2 supervised algorithms described are 

statistically different as it has been demonstrated to have low type 1 error 

(Dietterich, 1998). To perform the test, both EDC-AIRS and ANCSc algorithms 

were first trained with the training data and tested with the testing data. The 

predicted outcome for each data item in the testing data was recorded and used 

to construct the contingency table shown in Figure 6.4. Referring to the figure, 

if the sum of ‘b’ and ‘c’ is greater than 25, chi-square test with 1 degree of 

freedom is used for performing McNemar’s test. Otherwise, to provide a better 

estimation of the small sample (i.e. b + c ≤ 25), binomial distribution is used for  

 

 
Table 6.1: Cross-Validation Scheme Employed for Each Dataset 

Dataset Number of CV Fold 
Fisher’s Iris 5 
Pima Indians Diabetes 10 
Sonar 13 
Wine 10 
Statlog Heart 10 

These cross-validation schemes were selected to remain 
comparable to other experiments reported in the literature. 
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(exact) McNemar’s test. The 2 algorithms are considered to be statistically 

different if the p-value computed with McNemar’s test is smaller than 0.05. 

Further investigation was conducted to empirically evaluate (1) the 

classification performance of ANCSc algorithm when compared to other state-

of-the-art classification algorithms, and (2) the performance and number of 

postulated artificial neurons at the end of each phase of ANCSc 

implementation. A total of 6 datasets, obtained from the data repository at the 

University of California (Irvine) (C.L. Blake & C.J. Merz, 1998), were used. 

These datasets include: Fisher’s Iris, Ionosphere, Pima Indians Diabetes, Sonar, 

Wine and Statlog Heart datasets. Hold-out validation was carried out for 

Ionosphere dataset, while cross-validation (CV) was performed on the 

remaining 5 datasets. In particular, the first 200 data items of the Ionosphere 

dataset were selected as the training data and the remaining 151 data items were 

chosen as the testing dataset. As for the rest of the datasets, the cross-validation  
 

 

Table 6.2: Empirical Experimental Results for Using Common and Independent Parameter 
Sets 

Measurement Bupa Liver 
Disorder ks_yr50611 Statlog 

Heart 
Hill-

Valley Ionosphere Iris Pima Indians 
Diabetes Sonar Wine 

#Instances 345 270 270 606 200 150 768 208 178 
#Attributes 6 253 13 100 34 4 8 60 13 
#Classes 2 2 2 2 2 3 2 2 3 
#Class1 
Instances 145 135 120 305 99 50 268 97 59 

#Class2 
Instances 200 135 150 301 101 50 500 111 71 

#Class3 
Instances - - - - - 50 - - 48 

Validation 
Type 

10-CV 10-CV 10-CV Holdout Holdout 5-CV 10-CV 13-CV 10-CV 

Acc. Obtained 
with Common 
Parameter Set 

72.8% 80.4% 86.3% 62.7% 96.7% 98.9% 75.9% 89.9% 98.9% 

Acc. Obtained 
with 
Independent 
Parameter Set 

70.1% 79.6% 85.6% 63.0% 98.0% 99.1% 77.5% 91.8% 99.3% 

Accuracy (Acc.) was used as the metric to evaluate how common and independent parameter sets 
influence the performance of ANCSc algorithm. The dataset ‘ks_yr50611’, which uses the CHS dataset, 
predicts the occurrence of MI (from year 6 to 11) based on a balanced case-control sample obtained in 
year 5. CV denotes cross-validation. 
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scheme used is described in Table 6.1. The reason for choosing these validation 

strategies was to remain comparable to other experiments reported in the 

literature. 

Experiments on each dataset were conducted 3 times to evaluate its 

consistency. It was optimized with GA with the following setup details: 

population size: 100; maximum generation: 100; natural selection: stochastic 

universal sampling; crossover type: discrete recombination; crossover 

probability: 0.8; mutation rate: 1/P, where P is the number of parameters. The 

value of the ANCSc parameters that was either assigned (i.e. given as a 

constant value) or tuned with GA (i.e. given as a range of value) are as follow: 

Seed: 1; NPS: [1, 15]; LPT: [0, 10]; NPT: [0, 100]; NS: [0, 0.5]; NR: [0, 1]; ND 

= [0, 0.5]; NPC = [0, 0.5]. These parameter values were determined 

experimentally and kept constant between benchmarks. 

 

6.4.2. Dataset 
Several standard benchmark datasets were used in this investigation. A 

succinct description of the datasets used can be found in section 4.3.2. 

 

6.5. Experimental Results 
Several experiments were conducted to investigate the properties and 

classification ability of ANCSc algorithm. Four key experiments were carried 

out and presented in this section. Their objectives are to determine: (1) the 

significance of implementing independent parameter set for each data class; (2) 

the performance of ANCSc algorithm when compared to other state-of-the-art 

algorithms; (3) the performance of ANCSc algorithm when juxtaposed with 

EDC-AIRS algorithm - one of the top performing classification algorithm 

compared; and (4) the sensitivity of each parameter that orchestrates and 

influences the development of the neurons and its impact on the classification  
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Table 6.3: Performance Comparison of Different Classification Algorithm 
 

Iris Ionosphere 
Pima Indians 

Diabetes Sonar Wine Statlog Heart 

Rank Algorithm Acc Algorithm Acc Algorithm Acc Algorithm Acc Algorithm Acc Algorithm Acc 

1 
Grobian 
(rough) 100% 

3-NN + 
Simplex 98.7% Logdisc 77.7% 

TAP MFT 
Bayesian 92.3% 

EDC-
AIRS 99.6% ANCSc 86.3% 

            

2 
EDC-AIRS 99.6% ANCSc 98.0% IncNet 77.6% ANCSc 91.8% ANCSc 99.3% 

Lin. SVM 
2D QCP 85.9% 

   DIPOL92 77.6%       

3 

ANCSc 99.1% EDC-AIRS 97.4% ANCSc 77.5% 
Nave MFT 
Bayesian 90.4% 

kNN, 
Manh, 
auto k=1-
10 

98.9% EDC-AIRS 84.8% 

    EDC-AIRS 77.3% SVM 90.4% 
IncNet, 
Gauss 

98.9% 
 

 

    
Linear Disc. 
Analysis 

77.5 – 
77.2% 

Best 2-layer 
MLP + BP, 
12 hidden 

90.4%   
 

 

4 

SSV 98.0% 3-NN 96.7% SMART 76.8% EDC-AIRS 88.5% SSV 98.3% 
Naive-
Bayes 84.5% 

C-
MLP2LN 

98.0% IB3 96.7% 
GTO DT 
(5xCV) 76.8%       

PVM 2 
rules 98.0%   

5 PVM 1 rule 97.3% MLP + BP 96.0% ASI 76.6% AIRS2 84.9% 
kNN, 
Euclidean, 
k=1 

97.8% K* 76.7% 

6 

AIRS 96.7%           

FuNe-I 96.7% AIRS2 95.6% 
Fischer 
Disc. 
Analysis 

76.5% 
MLP+BP, 
12 hidden 84.7% FSM 96.1% IB1c 74.0% 

NEFCLAS
S 96.7%       

  
  

7 AIRS2 96.0% AIRS 94.9% MLP+BP 76.4% 
MLP+BP, 
24 hidden 84.5% 

  
1R 71.4% 

 CART 96.0% C4.5 94.9%     
  

  

8 
FUNN 95.7% RIAC 94.6% LVQ 75.8% 1-NN, 

Manhanttan 
84.2%   T2 68.1% 

    LFC 75.8%       
9   SVM 93.2% RBF 75.7% AIRS 84.0%   MLP + BP 65.6% 

10  

FSM + 
rotation 92.8% 

kNN, k=22, 
Manh 75.5% FSM 83.6% 

  
FOIL 64.0% 

 
MML 75.5% 

 
    

NB 
75.5 – 
73.8% 

  
  

…     … …       
n     AIRS2 74.2%       

n+1     AIRS 74.1%       

‘Acc’ denotes the classification accuracy. The performance of EDC-AIRS algorithm without feature 
selection is shown in this comparison (as feature selection was not performed by other algorithms compared 
in this table). 

 

performance of ANCSc algorithm. For each experiment the algorithm was 

executed 3 times. Consistent classification results were obtained for all the runs 

(i.e. standard deviation of 0). This signifies that ANCSc algorithm exhibits 

deterministic learning capability. 
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Table 6.4: Performance Comparison of ANCSc and 
EDC-AIRS Algorithms using McNemar’s Test 

Dataset McNemar’s Test# (p-value) 
Bupa Liver Disorder 0.016 
ks_yr50611 0.008 
Statlog Heart 0.290 
Hill-Valley 0.016 
Ionosphere 1.000 
Iris 1.000 
Pima Indians Diabetes 0.924 
Sonar 0.144 
Wine 1.000 

#The p-value of McNemar’s test is presented, examining 
whether the performance of ANCSc algorithm is statistically 
different from EDC-AIRS algorithm. 

 

Table 6.5: Performance of ANCSc Algorithm at Each Phase of 
Implementation 

 Neurogenesis Phase Neuroplasticity via 

Nurturing Phase 

Apoptosis Phase 

Accuracy #Neurons Accuracy #Neurons Accuracy #Neurons %Neurons 

Eradicated 

Iris 97.8% 109.2±0.4 97.8% 105.8±3.0 99.1% 28.8±5.1 72.8% 

Ionosphere 94.7% 153±0 95.4% 146±0 98.0% 113±0 22.6% 

Diabetes 73.8% 555.2±1.2 74.1% 554.1±1.4 77.5% 215.6±9.6 61.1% 

Sonar 86.1% 178.5±0.9 87.5% 172.7±2.8 91.8% 105.4±1.0 39.0% 

Wine 98.5% 116.1±1.6 98.5% 116.1±1.6 99.3% 89.2±0.9 23.2% 

Heart 85.2% 92.7±1.8 85.6% 88.8±2.9 86.3% 84.8±12.2 4.5% 

‘#Neurons’ refers to the average number of artificial neurons generated in the artificial cognitive 
system after executing each phase. ‘%Neurons Eradicated’ denotes the percentage reduction in the 
number of artificial neurons after the apoptosis phase is conducted. The best performing model 
obtained for each dataset was used to perform this analysis. 
 

 

6.5.1. Performance of ANCSc Algorithm  
The importance of having independent parameter set for ANCSc algorithm 

was evaluated using 9 benchmark datasets. The corresponding classification 

performance is provided in Table 6.2. From the results, it can be observed that 6 

out of 9 datasets evaluated benefited from this implementation. Comparison of 

ANCSc algorithm with other well-known classifiers (Duch, 2000; Duch, 2000) 

is given in Table 6.3. The ANCSc algorithm has shown promising results – 

achieving highly competitive performance for all the datasets evaluated. To 

assess how ANCSc algorithm fare when juxtaposed with other top performing 
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algorithms evaluated, we statistically compare the classification performance 

yielded by ANCSc algorithm and EDC-AIRS algorithm (one of the top 

performing algorithms evaluated) using McNemar’s test. The results, as shown 

in Table 6.4, indicate that ANCSc algorithm achieved comparable, if not better, 

performance than EDC-AIRS algorithm. Specifically, ANCSc algorithm 

outperforms EDC-AIRS algorithm (with statistically significant improvement) 

for ‘Bupa Liver Disorder’, ‘ks_yr50611’ and ‘Hill-Valley’ datasets while 

comparable performance was achieved for the remaining datasets. 

The classification performance and number of artificial neurons engendered 

at each phase were scrutinized using 6 datasets (i.e. Iris, Ionosphere, Pima 

Indians Diabetes, Sonar, Wine and Statlog Heart datasets). Results, as given in 

Table 6.5, demonstrate that after the execution of each phase, improved 

classification accuracy was achieved. Moreover, significant number of 

redundant artificial neurons engendered (during the neurogenesis, and 

neuroplasticity via nurturing phases) was pruned away during the apoptosis 

phase. This resulted in the formation of a concise (i.e. memory efficient) 

classification models with ameliorated performance (having an improvement of 

up to 4.9%).  

The average computational time required by ANCSc algorithm to develop 

the best performing model (i.e. executed with parameter values that produce the 

highest classification accuracy) for the 9 benchmark datasets used was 

analyzed. For each dataset, the algorithm is executed 10 times on an Intel Xeon 

2.66 GHz (18 GB RAM) server. The average computational time required 

ranges from 4.22±0.15 seconds (for Ionosphere dataset) to 348.6±0.7 seconds 

(for Pima Indians Diabetes dataset). As part of our future work, we aim to 

ameliorate the computational efficiency of the algorithm. 
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Figure 6.6: ANCSc Sensitivity Analysis Performed on 4 Datasets 
Sensitivity analysis was performed on 4 (binary class) datasets. The effect of 11 parameters on 
ANCSc classification performance was investigated. The number suffixed to NS, NR, NPC and ND 
indicates whether it is used to model the first or second data class. 

 

 

6.5.2. Sensitivity Analysis  
The proposed ANCSc algorithm performs proliferation, adaptation and 

survival of artificial neurons based on 7 key user-defined parameters, namely 

NS, NR, ND, NPC, NPT, LPT and NPS. These parameters influence (1) the 

initial neuronal map developed in the fetal artificial cognitive system (i.e. 

parameters NS and NR); (2) the proliferation, eradication and adaptation of 

artificial neurons in response to learning the data environment (i.e. parameters 

ND and NPC); (3) the apoptosis of artificial neurons in support for the 

development of an artificial cognitive system that can generalize better (i.e. 

parameters NS and NR); (4) the duration of learning allowed (i.e. parameters 

LTP and NPT); and (5) the number of proximal artificial neurons deemed 

responsible for describing a specific pattern (i.e. parameter NPS).  

Sensitivity analysis, the study of how the uncertainty of input parameters 

would affect the output of the inference model, was carried out by varying the 

parameter under study while fixing the remaining parameters. The parameter  

 



[Chapter 6: Artificial Neural Cell System for Classification] 

 

[Decision Support Continuum Paradigm for CVD: Towards Personalized Predictive Models] Page 141 

values related to the best performing model (optimized and yielded with GA) 

was used as the base model to perform this analysis. Experiments on 4 datasets 

(i.e. Ionosphere, Pima Indians Diabetes, Sonar and Statlog Heart datasets) 

demonstrated that each of these parameters have an effect on the classification 

performance of ANCSc algorithm. The experimental results for 2 datasets 

(Sonar and Pima Indians Diabetes) are provided in Figure 6.5. From the figure, 

NPT (for values greater than 1) seems to be ostensibly redundant as it did not 

affect the classification performance. However, on further investigation with 

arbitrary values for all the 11 parameters, it was found that NPT has an impact 

on the resulting classification performance. A summarize view, given as box 

plot, of the (sensitivity analysis) results for the 4 datasets investigated is shown 

in Figure 6.6. From the boxplot, it can be observed that the interquartile range 

for all the experiments conducted tends to be small. This is highly desirable as 

it signifies that ANCSc algorithm is robust enough to postulate the optimal 

model over a wide range of parameter values.  

 

6.6. Discussion 
We have developed a novel algorithm called ANCSc. It is a supervised 

classification algorithm inspired by the importance and robustness of several 

mechanisms (i.e. neurogenesis, neuroplasticity, nurturing and apoptosis) that 

occur during the development of the brain. These mechanisms empower 

individuals with the capability and creativity to interact and solve 

environmental problems in an innovative, effective and efficient manner.  

During neurogenesis phase proposed in ANCSc algorithm, the fetal artificial 

cognitive system begins by developing artificial neurons and taking shape. It 

subsequently advances to the neuroplasticity via nurturing phases, whereby the 

initially grown artificial neurons were stimulated and “nurtured” by the data 

environment it is presented with. In this regard, the artificial neurons in the 

artificial cognitive system evolved during each learning cycle by growing new 

artificial neurons, performing niche refinement to existing ones and/or 

eradicating artificial neurons that hinder the inculcation process. Through this 
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repeated learning process, the aim is to “educate” the artificial cognitive system 

with key patterns found within the training data; enabling the artificial neurons 

to develop further and collectively realize their full potential. Experimental 

results (see Table 6.5) demonstrate that this inculcation process (i.e. 

neuroplasticity via nurturing) incrementally ameliorate the classification 

performance of the developing artificial cognitive system. Termination of this 

learning algorithm proceeds with the removal of redundant artificial neurons 

(i.e. apoptosis phase) that potentially exacerbate the resulting classification 

performance. With this implementation, it is worth noting that (based on the 6 

datasets evaluated) on average, 37.2% of neurons were removed from the 

postulated classification models while improving the classification accuracy by 

2.5%. Hence, evolution, cooperation and altruism among the neuronal cultures 

are the most important factors that resulted in the success of ANCSc algorithm.  

Further enhancement to the algorithm was carried out by empowering the 

ANCSc algorithm with the ability to model each data class autonomously. 

Locality/task specific regulation of changes in the neurons was mimicked and 

implemented by introducing an independent parameter set for each data class 

involved. Experiments on 9 benchmark datasets showed a small improvement 

in classification performance (ranges from 0.2% to 1.9%). Nevertheless, we 

believe that if the idiosyncratic characteristics of each data class under study 

differ significantly, the advantage of having such independent parameter set 

would become more prominent.  

The ANCSc algorithm has achieved promising results and outperformed 

several state-of-the-art classification algorithms. To objectively assess the 

performance of ANCSc algorithm, we have employed McNemar’s test to 

statistically compare the classification performance of ANCSc and EDC-AIRS 

(one of the top performing algorithm evaluated) algorithms. From the results, it 

was demonstrated that ANCSc classification performance is comparable, if not 

better, than EDC-AIRS algorithm.  

Sensitivity analysis was conducted on 4 binary class datasets. The average 

standard deviation for the 11 parameters analyzed ranges from 0.002 to 0.081. 
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Results indicate that NR, NPS and NS play a significant role in producing an 

optimal classification model. The average standard deviations of the top 3 most 

sensitive parameters (i.e. NR2, NPS and NS1) are 0.081, 0.030 and 0.028 

respectively. High NR and NS sensitivity signify that the fetal artificial 

cognitive system constructed during the neurogenesis phase has a significant 

impact on the performance of the final classification model generated. High 

NPS sensitivity suggests that complex and discrete patterns are ubiquitous 

within the data problem under examination where changes in the proposed 

artificial neuronal pools have a significant impact on the classification result. In 

other words, changing the value of NPS might cause distinct artificial neuronal 

pool to overlap, jeopardizing the ability of the classification model to generalize 

and predict the correct class for unseen data items.  

Although only 3 parameters were accentuated in this section, the other 8 

parameters (used during neuroplasticity via nurturing and apoptosis phases) do 

contribute to the success of the algorithm – results are as demonstrated by 

sensitivity analysis and performance at different phases of ANCSc 

implementation (see Figure 6.5 and Table 6.5). To this end, proper optimization 

of all the 11 parameters is highly recommended for the production of an 

accurate and robust classification model.  

To summarize, ANCSc algorithm has several attractive features as a 

supervised learning algorithm. These include, but are not limited to, the ability 

to: (1) autonomously develop an appropriate, representative, and concise 

cognitive architecture during the learning process; (2) incrementally learn and 

model each data class independently; (3) achieve highly competitive 

classification performance when juxtaposed with other state-of-the-art 

classification algorithms; and (4) generate an optimal model over a wide range 

of parameter values. The results, to date, show that the ANCSc algorithm is a 

robust learner that is capable of adapting to different profound data patterns and 

structures. 

It is noteworthy that every classification algorithm has its own inductive bias 

that work reasonably well for some, but not all, datasets or application domains 
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– an observation commonly referred to as the selective superiority problem 

(Brodley, 1993) in the literature. Therefore, ANCSc algorithm does not 

guarantee improved performance for all classification problems or outperform 

all other classification algorithms in view of this problem. 

We believe that future work to advance the algorithm can be carried out 

along 3 main research directions: (1) the extension of ANCSc algorithm for 

unsupervised learning and time-series analysis; (2) the study of the implication 

and possible application of ANCSc algorithm in various research fields (e.g. 

pattern recognition, bioinformatics, optimization, etc.); and (3) the exploration 

of techniques for solving large-scale problems effectively and efficiently (e.g. 

parallelism, storage efficiency, incrementally learning, etc.). 

 

6.7. Summary 
We have presented a novel supervised learning algorithm inspired by natural 

phenomena related to neurogenesis, neuroplasticity, nurturing and apoptosis. 

Leveraging on the fetal artificial cognitive system developed from the input 

data environment, ANCSc algorithm “nurture” it in an attempt to unleash its 

greatest potential. Application of ANCSc algorithm to classical classification 

problems have been performed with promising results.  

The learning approach postulated by ANCSc algorithm, in our opinion, has 

great potential for learning profound data structures and producing a concise 

model capable of descripting the problem. Additionally, it offers a novel 

learning methodology in which classification problems can be solved by 

approaching them from a different perspective. 
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Chapter 7 

Age-Related Risk Prediction Model7  

Cardiovascular disease (CVD) is currently the leading cause of mortality in 

many developed countries. One reason for this phenomenon is the poor 

understanding of the disease etiology. This, in part, is due to the confounding 

and evolving effect of risk factors associated with CVD. This, we believe, has 

an impact on computational-based risk prediction for CVD as well. To 

investigate this impact, we present in this chapter a (age-related) risk prediction 

approach that takes the effect of evolving risk factors (over a range of ages) into 

consideration. Three algorithms - namely ANCSc, EDC-AIRS and SVM - were 

employed to develop these risk prediction models. Juxtaposition of these 

algorithms was performed to investigate on their ability to generalize. Data 

from the Honolulu Heart Program (Syme et al., 1975; Marmot et al., 1975; 

Robertson et al., 1977) were utilized to perform this risk prediction task. 

Results demonstrate that age-related risk prediction outperforms unified risk 

prediction approach. 

 

 

 

 

 

 

 
                                                 
7 The work presented in this chapter has been submitted to IEEE Transactions on Biomedical 
and Health Informatics and is currently under review. 
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7.1. Introduction 
Cardiovascular disease (CVD) is an epidemic and major health concern in 

today’s world. It is the leading cause of mortality in many developed countries, 

such as the United States (US) and the United Kingdom (UK) (Go et al., 2013; 

British Heart Foundation Statistics Database, 2010). The risk of CVD death has 

been demonstrated to increase considerably with age for both genders 

(Tunstall-Pedoe et al., 1994). This has been postulated to be associated with 

differences in levels of CVD risk factors; which contribute to age-related excess 

risk for CVD (Asia Pacific Cohort Studies Collaboration, 2006). For example, 

hypertension and diabetes tend to prevail with age while total cholesterol levels 

and body mass index (BMI) often decline with age (Abbott et al., 2002). This, 

inevitably, suggests an accentuated role for hypertension and diabetes in the 

development of CVD in older individuals and an evolving role for total 

cholesterol levels and BMI in relation to age. Such evolution in risk factors, 

which may not be clinical overt to date, suggests that further research, 

discovery and development would have a beneficial impact to CVD healthcare 

– for example, early detection, ameliorated diagnostic precision, better 

understanding of risk factors evolution, effective treatments (e.g. 

recommendation of appropriate drug dosage in accordance to patient’s age), 

and cost containment. 

To this end, we aim to develop age-related risk prediction models capable of 

determining the first CVD event (over a 2-year period) experienced by 

individuals belonging to different age group – i.e. age 46 to 65, 46 to 55 and 56 

to 65. This allows the effect of age-related risk factors in relation to risk 

prediction (developed using 3 learning algorithms) to be evaluated. Further, we 

hypothesize that the performance of the prediction models could be improved 

as predictive performance not only relies on the predictive ability of the 

learning algorithms used but also on the quality and characteristics of the input 

data presented. 

The 3 learning algorithms used to develop  the prediction models include  
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approach as available participants of all ages were consolidated and used to 

build the prediction model. In the second paradigm, it comprises two 10-year 

age models consisting of participants aged between 46 and 55 (denoted as 

‘hhpAge4655’), and between 56 and 65 (denoted as ‘hhpAge5665’). We call 

this paradigm as the age-related risk prediction approach as available 

participants were stratified into different age category before being used to 

build the corresponding risk prediction models. The risk of experiencing CVD 

between exam 1 and exam 2 (as reported in the Honolulu Heart Program) was 

modelled using 3 algorithms, namely (1) Artificial Neural Cell System for 

classification (ANCSc) (Tay et al., 2014) – a novel supervised classification 

algorithm inspired by neurogenesis, neuroplasticity and nurturing; (2) 

Evolutionary Data-Conscious Artificial Immune Recognition System (EDC-

AIRS) (Tay et al., 2013) – an  immune-inspired supervised classification 

algorithm; and (3) Support Vector Machine (SVM) (Boser et al., 1992; Cortes 

& Vapnik, 1995; Vapnik, 1999) – a supervised classification algorithm based 

on statistical learning theory. Specifically, we aim to determine (1) whether 

age-related risk prediction approach outperforms unified risk prediction 

approach over a 2-year period (i.e. between exam 1 and exam 2), and (2) which 

algorithm is most capable at performing CVD risk prediction (i.e. which has the 

greatest generalization ability). The conceptual proposition for the investigation 

of the aforementioned objectives is illustrated graphically in Figure 7.1. 

For each of the age model (i.e. ‘hhpAge4665’, ‘hhpAge4655’ and 

‘hhpAge5665’), prediction models were developed based on 3 consecutive 

optimization steps - namely model selection, feature selection and feature 

construction (see Figure 7.2). This enables ceteris paribus experiments to be 

conducted by all algorithms under scrutinization. Genetic algorithm (GA), 

unless otherwise stated, was utilized in this study to optimize the parameters. 

The choice of parameter settings for GA was experimentally determined. The 

details are as follow: population size: 100; maximum generation: 100; natural 

selection: stochastic universal sampling; crossover type: discrete recombination; 
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crossover probability: 0.8; mutation rate: 1/P, where P is the number of 

parameters. 

First, model selection was conducted using 10-fold cross-validation. For 

ANCSc and EDC-AIRS algorithms, it is postulated in (Tay et al., 2014; Tay et 

al., 2013) that data class distribution plays an important role in the development 

of accurate classification models. Hence, both similar and dissimilar data class 

distribution were assumed and evaluated for these algorithms. The best 

performing model procured would be used in subsequent optimization steps. As 

for SVM, uniform design (Fang et al., 2000) method was used to determine the 

cost and gamma parameters required by SVM kernel (i.e. radial basis function). 

This approach was adopted as it has been shown to produce promising results, 

and at the same time alleviate the computational loads associated with the 

search for the optimal cost-gamma pair (Chow et al., 2008; Tay et al., 2014). 

Next, feature selection using GA was carried out independently for each 

algorithm to select informative and predictive features that could enhance the 

process of dichotomization (i.e. separating cases from controls). This process is 

capable of removing redundant and/or irrelevant features that contribute to 

potential sources of noise and ambiguity; producing more efficacious prediction 

models as a result. The set of features that yielded the highest performance 

would be delivered to the next optimization step (i.e. feature construction) to 

construct new features that have the potential to ameliorate the prediction 

performance of the algorithm.  

Feature construction is the process of discovering unknown relationship 

between features and augments the existing feature space with new composite 

features (Liu & Motoda, 1998). Cartesian Genetic Programming (CGP) (Miller 

& Thomson, 2000), a highly effective form of genetic programming that has 

demonstrated success in garnering parsimony (i.e. more human-comprehensible) 

(Kowaliw & Banzhaf, 2012), was employed to construct new features. It is 

noteworthy that we gave preference to the usage of the reduced feature set (i.e. 
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performing McNemar’s test. Otherwise, to provide a better estimation of the 

small sample (i.e. b + c ≤ 25), binomial distribution is used for (exact) 

McNemar’s test. One algorithm is considered to be statistically better than the 

other if the p-value computed with McNemar’s test is smaller than 0.05. 

 

7.2.2. Dataset & Data Pre-processing  

The Honolulu Heart Program (Syme et al., 1975; Marmot et al., 1975; 

Robertson et al., 1977), initiated in 1965 by the National Heart, Lung and Blood 

Institute (NHLBI) as a prospective study of environmental and biological 

causes of CVD among Japanese Americans living in Hawaii, was analysed in 

this study. Subjects, followed for the development of CVD, collected between 

1965 and 1968 (exam 1) were utilized as the baseline data. It consists of 8006 

Japanese-American men living on the island of Oahu, Hawaii. At the time of 

study, participants received a comprehensive examination (e.g. physical 

measures, medical history/lifestyle, dietary, anthropometric measures, etc.) 

when aged between 45 and 68 (54.4±5.60). This resulted in 412 clinical 

features being collected. Out of these participants, only individuals (a total of 

7383) who were free from angina pectoris (AP), coronary insufficiency (CI) 

and myocardial infarction (MI) were considered.  

Cardiovascular events that occurred after the baseline examination (i.e. exam 

1) were monitored through surveillance of hospital discharges, subsequent 

examinations, death certificates and autopsy records. A total of 392 individuals 

were found to experience cardiovascular diseases between exam 1 and exam 2 

(which occurred between 1968 and 1970). Cardiovascular diseases, in this 

study, include AP, CI, MI, transient ischemic attack (TIA), stroke and 

congestive heart failure (CHF). To establish the age-related risk prediction 

models, participants’ record was matched between exam 1 and exam 2 (i.e.  
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Table 7.1: Number of Instances used for Training and Validation 
Prediction Model Training Instances Validation Instance 

hhpAge4665 326 136 
hhpAge4655 172 72 
hhpAge5665 154 64 

Instances used in both training and validation phases have the equal 
number of cases and controls. 

 

follow-up examination of participants not conducted in exam 2 were removed). 

Finally, to mitigate class imbalance data problem (i.e. the tendency of the 

algorithm overwhelmed by the major class and ignores the minor one) 

(Japkowicz, 2000; Li et al., 2010), a balanced number of cases and controls 

were randomly selected. In addition, uninformative features (i.e. features with 

constant value for all participants) were removed, resulting in a total of 370 

clinical features and 326 instances.  

For each prediction model, 70% of the baseline data was used to 

develop/train the model (commonly referred to as the training instances) while 

the remaining (common known as the validation instances) was used to validate 

the developed model. Details of the datasets used for the different prediction 

models are given in Table 7.1. 

 

7.3. Experimental Results 
Several experiments were conducted to investigate on the significance of age-

related risk prediction models and the classification capability of ANCSc, EDC-

AIRS and SVM when applied to CVD prediction task. A total of 2 prediction 

paradigms, postulating either a 10-year or 20-year age model, were analysed. 

Development of the respective age-related risk prediction model was carried out 

by executing each algorithm 3 times. Consistent classification results were 

obtained for all the runs (i.e. standard deviation of 0).  
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Section 7.3.1 to 7.3.3 describes the performance obtained during the training 

phase for ANCSc, EDC-AIRS and SVM algorithms respectively. Section 7.3.4 

provides the results achieved when the developed models were tested with their 

corresponding validation dataset (i.e. results obtained during validation phase). 

Additionally, McNemar’s test results are provided to illustrate the statistical 

significance of the prediction outcomes. 

 

7.3.1. Age-related Risk Prediction with ANCSc algorithm  

ANCSc algorithm (Tay et al., 2014) - a novel neural-inspired algorithm 

developed recently – was employed to perform CVD prediction. This algorithm 

bio-mimics the neuronal behaviour associated with the process of learning and 

interaction with the external environment; embracing it with the mechanisms 

necessary for the evolution of the neurons (i.e. candidate solution).  Through 

this process, it promotes the generation of a set of representative neurons 

capable of accurately describing the underlying patterns within the data 

problem presented. Results, as demonstrated in (Tay et al., 2014), portend that 

ANCSc algorithm is a highly effective classification algorithm and has 

outperformed several state-of-the-art algorithms. 

 

Table 7.2: Performance of ANCSc Algorithm (Training Phase) 
Experiment #Features  Sensitivity  Specificity  Balanced Accuracy 

Step 1: Model Selection 
hhpAge4665 370 0.528 0.816 0.672 
hhpAge4655 370 0.721 0.744 0.733 
hhpAge5665 370 0.610 0.688 0.649 

Step 2: Feature Selection 

hhpAge4665 184 0.509 0.908 0.709 
hhpAge4655 179 0.756 0.802 0.779 
hhpAge5665 192 0.649 0.805 0.727 

Step 3: Feature Construction 

hhpAge4665 184 0.509 0.908 0.709 
hhpAge4655 179 0.756 0.802 0.779 
hhpAge5665 198 0.688 0.883 0.786 

For each step, 10-fold cross-validation was conducted (with ANCSc algorithm) on 
each age model to build the prediction model for CVD. 
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The performance of ANCSc algorithm at different optimization steps during 

model development is presented in Table 7.2 and Figure 7.4. During the model 

selection phase, the full feature set (i.e. 370 features) was used to develop the 

respective prediction models. The best prediction model computed for age 

model ‘hhpAge4665’ and ‘hhpAge4655’ is based on dissimilar data class 

distribution while age model ‘hhpAge5665’ yielded the best performing 

prediction model under the assumption of similar data class distribution. 

Results demonstrate that for age model ‘hhpAge4665’, the sensitivity 

performance achieved by the prediction model is relatively poor (0.528) in 

contrast to the other 2 age models (although it has achieved relatively good 

specificity performance – 0.816). This is not desirable as many patients who 

might experience MI would go undetected and in turn early preventive 

measures could not be offered to these patients; potentially leading to many 

avoidable deaths as a result. On other hand, age model ‘hhpAge4655’ achieved 

relatively good sensitivity (0.721) and specificity (0.744). This is much more 

desirable as patients who are likely to experience MI would have a higher 

chance of being detected whereby appropriate management strategies can be 

given early. Additionally, individuals who are healthy would be more likely to 

be detected as well - avoiding the need to undergo unnecessary tests, reducing 

the financial burden and anxiety on the patients.  

Using the best prediction model obtained, feature selection was performed. 

A total of 184, 179 and 192 features were considered to be informative for age 

model ‘hhpAge4665’, ‘hhpAge4655’ and ‘hhpAge5665’ respectively. This 

corresponds to a reduction of 50.3%, 51.6% and 48.1% in feature 

dimensionality. Performance wise, an improvement in balanced accuracy (i.e. 

average between sensitivity and specificity) of 5.51%, 6.28% and 12.0% was 

obtained for age model ‘hhpAge4665’, ‘hhpAge4655’ and ‘hhpAge5665’ 

respectively. This reduction in the number of features (with increased 

performance) is highly desirable as it reduces the number of clinical tests that 

need to be conducted on the patients – reducing any risk, cost or emotional 
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stress that patients might experience.  

After which, feature construction was performed. No informative features 

could be inferred for age model ‘hhpAge4665’ and ‘hhpAge4655’. However, 6 

new features were constructed for age model ‘hhpAge5665’, ameliorating the 

balanced accuracy by 8.12%. This is a very useful technique as it ameliorates 

the performance of the prediction models without the need to conduct any 

clinical tests on the patient. It is noteworthy that the age-related prediction 

models outperform the unified model by approximately 10% (for balanced 

accuracy). 

 

7.3.2. Age-related Risk Prediction with EDC-AIRS algorithm  

EDC-AIRS algorithm is an optimized version of Artificial Immune 

Recognition System (AIRS2) algorithm (Watkins et al., 2004) – an immune-

inspired supervised learning algorithm. EDC-AIRS algorithm extends AIRS2 

algorithm by contextualizing the immune response to the concentration, 

distribution and characteristics of the antigens. Results, as demonstrated in (Tay 

et al., 2013), indicate that EDC-AIRS algorithm is a highly competitive 

classification algorithm that shows high fidelity to the natural immune system. 

 

Table 7.3: Performance of EDC-AIRS Algorithm (Training Phase) 
Experiment #Features  Sensitivity  Specificity  Balanced Accuracy  

Step 1: Model Selection 
hhpAge4665 370 0.479 0.748 0.614 
hhpAge4655 370 0.605 0.709 0.657 
hhpAge5665 370 0.662 0.571 0.617 

Step 2: Feature Selection 

hhpAge4665 180 0.656 0.877 0.769 
hhpAge4655 174 0.721 0.837 0.779 
hhpAge5665 194 0.831 0.792 0.812 

Step 3: Feature Construction 

hhpAge4665 180 0.656 0.877 0.769 
hhpAge4655 175 0.709 0.895 0.802 
hhpAge5665 196 0.883 0.792 0.838 

For each step, 10-fold cross-validation was conducted (with EDC-AIRS algorithm) on 
each age model to build the prediction model for CVD. 
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Table 7.3 and Figure 7.5 provide the performance of EDC-AIRS algorithm 

at different optimization steps proposed for developing the prediction models. 

Similar to ANCSc algorithm, model selection was first carried out with 370 

features. In this case, the best performing prediction model was yielded under 

the assumption of dissimilar data class distribution for all age models. Results 

indicate that prediction model for ‘hhpAge4665’ achieved the worst sensitivity 

(0.479 - as compared to ‘hhpAge4655’ and ‘hhpAge5665’). This is undesirable 

despite the much higher specificity (0.748) achieved as many patients who are 

likely to experience MI will go undetected. On other hand, the age-related 

prediction models perform relatively better. Particularly, prediction model for 

‘hhpAge4655’ achieved relatively good balance of sensitivity (0.605) and 

specificity (0.709).  

The performance of feature selection resulted in a reduction in feature 

dimensionality by 51.4%, 53.0% and 47.6% and an improvement in balanced 

accuracy by 25.2%, 18.6% and 31.6% for age model ‘hhpAge4665’, 

‘hhpAge4655’ and ‘hhpAge5665’ respectively. This is highly attractive as it 

increases the chance of making the right diagnosis while eradicating the need to 

conduct a range of different tests. It is noteworthy that the age-related 

prediction models in general outperform the unified model. 

 

Table 7.4: Performance of SVM Algorithm (Training Phase) 
Experiment #Features  Sensitivity  Specificity   Balanced Accuracy  

Step 1: Model Selection 
hhpAge4665 370 0.393 0.626 0.515 
hhpAge4655 370 0.407 0.605 0.506 
hhpAge5665 370 0.156 0.935 0.545 

Step 2: Feature Selection 

hhpAge4665 177 0.546 0.583 0.564 
hhpAge4655 168 0.570 0.605 0.587 
hhpAge5665 180 0.571 0.844 0.708 

Step 3: Feature Construction 

hhpAge4665 186 0.497 0.798 0.647 
hhpAge4655 176 0.616 0.698 0.657 
hhpAge5665 184 0.584 0.883 0.734 

For each step, 10-fold cross-validation was conducted (with SVM algorithm) on each 
age model to build the prediction model for CVD. 
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Feature construction was subsequently conducted on the reduced feature set. 

No new features can be inferred for age model ‘hhpAge4665’ while 1 and 2 

new features were generated for age model ‘hhpAge4655’ and ‘hhpAge5665’ 

respectively. This resulted in an improvement in balanced accuracy by 2.95% 

and 3.20% for age model ‘hhpAge4655’ and ‘hhpAge5665’ respectively. With 

the performance of this step, the age-related prediction models remains to 

outperform the unified model by 4.3%-9.0% (for balanced accuracy). 

 

7.3.3. Age-related Risk Prediction with SVM algorithm  

SVM algorithm, a robust supervised learning algorithm that is capable of 

yielding excellent generalization performance on an extensive area of problems 

(Chen et al., 2005; Osuna et al., 1997; Listgarten et al., 2004), was employed. It 

is derived from statistical learning theory and is capable of solving linearly and 

non-linearly separable problems. Fundamentally, SVM performs classification 

through the construction of an N-dimensional hyper-plane that optimally 

separates the data into two or more categories whereby the margin of separation 

between the different categories is maximized. 

Table 7.4 and Figure 7.6 provide the results achieved when SVM was 

trained along the 3 optimization steps postulated in Figure 7.2. In the first step, 

model selection, an average balanced accuracy of 0.522 was achieved for all 3 

age models - such performance is near to random guess which is highly 

undesirable. A possible reason for SVM poor performance, in contrast to 

ANCSc and EDC-AIRS algorithms, is that the data contain multiple 

exceptional cases which SVM is bad at handling.  

Next, feature selection was conducted. Improvement in balanced accuracy 

was seen across all 3 age models with dimensionality reduction of 52.2%, 54.6% 

and 51.4% for age model ‘hhpAge4665’, ‘hhpAge4655’ and ‘hhpAge5665’ 
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Table 7.5: Performance of Developed Prediction Models (Validation Phase) 
Experiment #Features  Sensitivity  Specificity  Balanced Accuracy  

ANCSc Algorithm 
hhpAge4665 184 0.456 0.794 0.625 
hhpAge4655 179 0.611 0.861 0.736 
hhpAge5665 198 0.531 0.781 0.656 

EDC-AIRS Algorithm 

hhpAge4665 180 0.529 0.618 0.574 
hhpAge4655 175 0.667 0.500 0.583 
hhpAge5665 196 0.531 0.531 0.531 

SVM Algorithm 

hhpAge4665 177 0.25 0.632 0.441 
hhpAge4655 176 0.472 0.667 0.569 
hhpAge5665 184 0.281 0.688 0.484 

For each developed prediction model, it is validated (for generalizability) with a distinct 
and separate dataset. 

 

respectively. However, the balanced accuracy is still relatively poor (around 

0.57); except for age model ‘hhpAge5665’. Despite the improvement in 

balanced accuracy (0.708) for age model ‘hhpAge5665’, it sensitivity is still 

relatively poor (0.571) – making it a less than ideal prediction model for 

deployment in clinical settings.  

In the final step, feature construction, 9, 8 and 4 new features were inferred 

for age model ‘hhpAge4665’, ‘hhpAge4655’ and ‘hhpAge5665’ respectively. 

An improvement of 14.7%, 11.9% and 3.67% in balanced accuracy was 

obtained for age model ‘hhpAge4665’, ‘hhpAge4655’ and ‘hhpAge5665’ 

respectively. It is noteworthy that the sensitivity for all prediction models 

remains poor and the overall performance achieved by SVM is the worst 

compared to ANCSc and EDC-AIRS algorithms. 

 

7.3.4. Validation of Developed Prediction Models  

For each of the age model developed independently by the corresponding 

learning algorithm, validation of model generalizability (an estimate of how 

well the prediction models would perform when deployed in real clinical  
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Table 7.6: Statistical Evaluation of the Developed Prediction Models 

Dataset 
 McNemar’s Test# (p-value) 

 
ANCSc vs EDC-

AIRS 
 ANCSc vs SVM 

hhpAge4665 0.262 0.002 
hhpAge4655 0.022 0.019 
hhpAge5665 0.131 0.041 

#The p-value of McNemar’s test is presented, examining whether the 
performance of ANCSc algorithm (statistically) outperformed EDC-
AIRS and SVM algorithms. 

 

settings) was conducted. Results, presented in Table 7.5 and Figure 7.7, 

indicate that ANCSc algorithm outperformed the other 2 algorithms for all age 

models. Improvement was at least 8.89%, 26.2% and 23.5% for age model 

‘hhpAge4665’, ‘hhpAge4655’ and ‘hhpAge5665’ respectively.  

McNemar’s test, a statistical test used to compare 2 paired binomial samples, 

was performed to determine whether one algorithm (i.e. ANCSc) outperformed 

another (i.e. EDC-AIRS or SVM). It is conducted for all (validated) age models 

and the p-values obtained are given in Table 7.6. From the results, it can be 

observed that ANCSc algorithm outperformed EDC-AIRS algorithm for age 

model ‘hhpAge4655’, and SVM algorithm for all 3 age models.  

It is noteworthy that age model ‘hhpAge4655’ developed using the 3 

different algorithms in general performs the best when compared to the other 2 

age models while age model ‘hhpAge5665’ performs comparably with the 

unified prediction mode (i.e. ‘hhpAge4665’). This suggests that it is 

advantageous for us to build prediction models that are age specific.  

 

7.4. Discussion 
The ability to predict the first age-related CVD event experienced by 

individuals stratified to different age group was investigated. Three learning  
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Table 7.7: Clinical Features Unique to Modelling Age Model ‘hhpAge4655’ and 
‘hhpAge5665’ 

Age model ‘hhpAge4655’ Age model ‘hhpAge5665’ 
Fish intake Past weight 

Sausage intake Chest pain 
Fruit intake Serum cholesterol 

Beverage intake Blood pressure 
Total carbohydrate intake Cancer prevalence 

Percentage calories protein intake Tiffeneau-Pinelli index 
Age models ‘hhpAge4655’ and ‘hhpAge5665’ each has 6 unique clinical features.  

 

algorithms (i.e. ANCSc, EDC-AIRS and SVM algorithms) were utilized to 

develop these prediction models. A total of 3 optimization steps were 

postulated to develop the prediction models – i.e. model selection, feature 

selection and feature construction. In the first step (model selection), results 

indicate that ANCSc algorithm, compared to other algorithms evaluated, 

yielded higher performance for most of the performance metrics computed – 

ranging from 5.19% to 44.9% higher for balanced accuracy.  

In the second step, feature selection was conducted. An overall improvement 

in the performance of all prediction models (when evaluated via 10-fold cross-

validation) was observed. The algorithm that accrued the most benefits from 

this optimization step is EDC-AIRS algorithm - achieving a minimum 

improvement of 216.3%, 50.6% and 19.6% in balanced accuracy (compared to 

the other 2 algorithms) for age model ‘hhpAge4665’, ‘hhpAge4655’ and 

‘hhpAge5665’ respectively. ANCSc algorithm, on the other hand, yielded the 

smallest amount of improvement. This suggests that ANCSc algorithm, which 

achieved similar results to EDC-AIRS algorithm, is robust to high data 

dimensionality. Broadly, EDC-AIRS algorithm achieved the best performance 

for all age models in this step. 

The percentage of features reduced (upon performing feature selection) 

ranges from 47.6% to 54.6% for all age models and algorithms. Clearly, this 

signifies that there are several redundant and irrelevant features present in the 
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original clinical feature set; hindering the construction of accurate prediction 

models. It is noteworthy that the number of common features (after feature 

selection) presents between age model ‘hhpAge4655’ and ‘hppAge5665’ is 95, 

102 and 84 for ANCSc, EDC-AIRS and SVM algorithms respectively. Some of 

the key common features identified among all 3 algorithms include: age, place 

of birth, medication (particularly anti-hypertension medicine), history of CVD 

manifestation, and amount of milk, kamoboko, safflower oil, alcohol, caffeine, 

complex and simple carbohydrate intake. Concerns over alcohol intake and 

hypertension for individuals aged between 46 and 65 dovetail with the results 

stated in (Abbott et al., 2002). These common features identified overlap 

approximately 50% of the features selected for age model ‘hhpAge4655’ and 

‘hppAge5665’. This potentially portends that clinical features having statistical 

properties dissimilar between age models ‘hhpAge4655’ and ‘hppAge5665’ are 

required to better model the characteristics of individuals in different age group.  

Among the 3 algorithms analysed, key clinical features unique to describing 

age model ‘hhpAge4655’ and ‘hhpAge5665’ are listed in Table 7.7. Upon 

examining these results, it is suggestive that clinical features unique to age 

model ‘hhpAge4655’ could be potential precursors to subsequent health risk for 

individuals aged between 56 and 65.  

In the third step, feature construction, improvement can be observed for all 3 

algorithms and is most observable for age models ‘hhpAge4655’ and 

‘hhpAge5665’. This signifies that age-related risk prediction models are more 

sensitive to the health characteristics of individuals; resulting in increased 

capability of discriminating the cases from the controls. Although the number 

of new features added is relatively small (ranges from 1 to 8), the improvement 

garnered by the respective algorithm is considerable (between 2.95% to 11.9%). 

It is notable that EDC-AIRS algorithm outperforms the other 2 algorithms after 

performing feature construction.  

Finally, the generalizability of the developed prediction models was 
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determined. Clearly from the results, ANCSc algorithm yielded better overall 

performance than either EDC-AIRS or SVM algorithms (an improvement of at 

least 8.89%, 26.2% and 23.5% in balanced accuracy for age model 

‘hhpAge4665’, ‘hhpAge4655’ and ‘hhpAge5665’ respectively). This entails 

that ANCSc algorithm is a robust and versatile learning algorithm more capable 

at performing risk prediction task for CVD and less likely to be over-trained. 

Moreover, it can be observed that age-related risk prediction models (i.e. age 

models ‘hhpAge4655’ and ‘hhpAge5665’) developed using any of the 3 

algorithms are capable of achieving comparable, if not better, performance than 

a unified risk prediction model (i.e. age model ‘hhpAge4665’). 

One limitation of this study is that investigation is only restricted to 

individuals aged between 46 and 65. This constrained our ability to conduct a 

more comprehensive analysis (i.e. over a wider age range) and to determine the 

full impact of age-related risk prediction. 

 

7.5. Summary 
We have investigated on the capability of ANCSc, EDC-AIRS and SVM 

algorithms to develop age-related risk prediction models for CVD. Model 

selection, feature selection and feature construction were performed in sequence 

for all algorithms in order to adopt a ceteris paribus experimental design. 

Results indicate that both feature selection and feature construction contribute 

significantly to the development of more accurate prediction models. Validation 

of the developed risk prediction models demonstrated that ANCSc algorithm is 

capable of generalizing better than EDC-AIRS and SVM algorithms. 

Furthermore, age-related risk prediction approach was shown to perform better 

than unified risk prediction approach for all algorithms investigated. 

In terms of clinical impact, we believe that it has a significant contribution as 

it provides an easy to use prediction tool that could allow more precise and 
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early diagnosis to be carried out, promote better understanding of risk factor 

evolution and disease’s etiology, among others. 

 

Disclaimer  

The Honolulu Heart Program dataset described in this chapter is provided by 

the NHLBI. 
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Chapter 8 

Conclusions and Future Work 

8.1. Summary of Thesis Achievements 
Currently, prediction models in medicine tend to be restricted to a specific 

domain, set of clinical data, and instant in time. Further, efficient development 

of effective prediction models from a deluge of complex clinical data is also a 

challenge. This ultimately limits our ability to provide accurate personalized 

prediction and offer strategies for continuum of care. The capability to do so is 

very important as it would (1) decrease the rate of misdiagnosis, (2) reduce 

avoidable mortality, (3) provide the highest quality of continuous care, (4) 

minimise the discomfort, pain, or anxiety that is associate with a disease 

through early detect, management and treatment, and (5) improve the life of 

individuals. Therefore, in this thesis, new approaches for efficient development 

of accurate clinical prediction models are presented; aiming to promote the 

advancement towards personalized, preventative and predictive medicine.  

In chapter 3, we have demonstrated that with the employment of the 

biological continuum, up-to-date clinical classification models can be 

developed efficiently. Compared with the conventional approach, our method 

achieved a speedup of approximately 5-fold. Efficient development of clinical 

classification models is highly desirable as new biomarkers are constantly being 

introduced; this entails that analyse of the new biomarkers with the plethora of 

existing ones are necessary for the development of more accurate classification 

models. Hence, with our approach of analysing the deluge of biomarkers, 

continuous development of up-to-date clinical classification models would be 

better embraced by the clinical research community. Moreover, the etiological 

network (i.e. BCEN) constructed from the study has the potential to illustrate 

significant risk factors and provide the classification model for each subclinical 
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manifestation identified. This, we believe, is a crucial step to monitor one’s 

health along the continuum of care.  

Chapter 4 introduced an optimized immune-inspired supervised 

classification algorithm called EDC-AIRS. The development of robust and 

accurate learning algorithm is critical for many tasks, including the 

development of personalized predictive models. Therefore, through the 

observation of how natural immune system works to protect us from foreign 

antigens, we bio-mimic the mechanisms postulated by the nature and improved 

the existing AIRS2 algorithm. Results portend that inspiration from the natural 

immune system could leverage our insights and enhance our ability to solve 

computational problems in a creative, effective and efficient manner. 

Chapter 5 employed the SVM and EDC-AIRS algorithms for performing 

time-related risk prediction for MI. Detailed considerations were given to risk 

prediction over different prediction resolution (i.e. prediction time scale and 

interval), and the use of different sample age (i.e. baseline data comprising of 

individuals in different age range). Results indicate that both prediction 

resolution and sample age do not have a significant impact on the performance 

of MI risk prediction models developed using subjects aged 65 and above. This 

portends that risk prediction models developed using different sample age and 

prediction resolution is a feasible approach and could offer patients with a more 

comprehensive estimation of their health risk. 

In chapter 6, we described a novel neural-inspired supervised classification 

algorithm called ANCSc. This algorithm bio-mimics the mechanisms 

responsible for the development and enrichment of the human brain. The key 

mechanisms include neurogenesis, neuroplasticity, nurturing and apoptosis. 

Benchmark testing results show that ANCSc algorithm is capable of achieving 

highly competitive classification performance. This portends that ANCSc 

algorithm is a robust algorithm capable of adapting to different profound data 

patterns and structures. From this study, we have again demonstrated that the 
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nature is a wonderful source for inspiration where researchers can learn and 

develop techniques to solve many engineering and science problems.  

Finally, in chapter 7, the effect of evolving CVD risk factors on the 

performance of risk prediction models (built using machine learning techniques) 

was taken into consideration. Results indicate that the performance of risk 

prediction models can be improved when they are constructed with data 

consisting of individuals stratified to different age group.   

To summarize, we have developed 2 new algorithms and demonstrated the 

importance of 3 continuum models – namely biological, time and age 

continuum models. We hypothesize that analysis of health characteristics along 

continuum models is of major importance and has the significant advantage of 

leveraging the quality of continuous healthcare an individual can benefit from.  

 

Table 8.1: Classification Performance Achieved on Different Datasets 
 Dataset EDC-AIRS ANCSc SVM 

U
C

I 

B
e

n
ch

m
ar
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n

g 

D
at

as
e

ts
 

Iris 99.6% 99.1% 98.7% 
Ionosphere 97.4% 98.0% 98.0% 
Diabetes 77.3% 77.5% 76.7% 

Sonar 88.5% 91.8% 88.5% 
Wine 99.6% 99.3% 82.0% 
Heart 84.8% 86.3% 77.4% 

C
H

S 
D

at
as

e
t 

yr50611 78.6% 78.9% 90.1% 
yr50607 71.4% 78.6% 89.7% 
yr50809 71.9% 78.9% 86.0% 
yr51011 75.0% 80.6% 89.8% 
yr70811 77.0% 74.1% 81.0% 
yr70809 71.1% 80.0% 82.2% 
yr71011 71.4% 85.7% 88.1% 
yr91011 71.7% 70.0% 83.3% 

H
H

P 
da

ta
se

t hhpAge4665 57.4% 62.5% 44.1% 
hhpAge4655 58.3% 73.6% 56.9% 
hhpAge5665 53.1% 65.6% 48.4% 

The SVM classification performance presented in this table is based on the 
version used in Chapter 7 of this thesis. 
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Furthermore, we believe that disease prevention should be the ethos of future 

healthcare and treatment/surgery should not dominate the clinical practice. In 

this regard, healthcare professionals and researchers should recognize the need 

for this transition and invest efforts into the realization of this healthcare 

transformation.  

A summary of the prediction performance achieved by SVM, EDC-AIRS 

and ANCSc algorithms tested on different datasets is given in Table 8.1. From 

the table, it can be observed that EDC-AIRS and ANCSc algorithms (a type of 

instance-based classifier) tend to achieve similar performance when tested on 

the CHS and HHP datasets while SVM algorithm (a type of discriminative 

classifier) tends to achieve predictive performance of its kind. One possible 

reason for this phenomenon is that SVM tends to perform poorly on problems 

with exceptional cases while EDC-AIRS and ANCSc algorithms tend to be 

vulnerable to noisy and irrelevant features. This potentially suggests that CHS 

dataset comprises of noisy and irrelevant clinical features while HHP dataset 

contains multiple exceptional clinical cases. Similar explanation can be 

extrapolated for results achieved on the UCI benchmarking datasets.  

 

8.2. Future Work 
The final consideration is into future directions of research for personalized 

predictive models. Whilst the results demonstrated in this thesis have shown 

some approaches for enhancing the quality of predictive models, there is still 

much work that needs to be done. Some of the potential future researches that 

can be explored include: 

1. Analysis of a more comprehensive set of biomarkers across the 

biological continuum (e.g. proteomic and genomic data). This would 

allow the discovery of highly relevant and predictive biomarkers that 

can better anticipate the progression or events of a disease.  
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2. Investigation and derivation of methods for translating risk factors that 

is statistically important to one that can fill the puzzle of the disease’s 

pathology and use as part of current clinical practice. This would 

require risk factors that are identified through computational means to 

be validated by clinical experts using approaches like prospective 

clinical study. 

3. Exploration of methods for the development of accurate prediction 

models that will become an important and indispensable component in 

clinical practice. This can potentially be achieved through the (1) 

collection of more predictive, relevant and specific biomarkers, and (2) 

development of more accurate and robust learning algorithms that can 

be used to perform baseline risk assessment and selection of 

appropriate therapeutic strategies. 

4. Exploration of methods to seamlessly incorporate CDSS into routine 

clinical practice in an attempt to improve diagnosis, change patients’ 

behaviour and subsequent healthcare outcome. 

5. Investigation of the feasibility to monitor, detect and manage patients’ 

well-being along the continuum of health (i.e. prevent, detect or treat 

subclinical manifestation before they are of clinical significance; 

causing damages that are irreversible). 

6. Development of support system capable of offering real-time 

assistance. This is important as currently there is limited support at the 

patients’ bedside to assist healthcare professionals to deliver the best 

standard of care. Hence, development of accurate and robust online 

learning algorithms is necessary for (1) monitoring and detecting 

anomalies in real-time clinical data, and (2) providing reliable 

recommendation instantaneously. 
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7. Translation of research into clinical practice by integrating strategies 

that promotes personalized, predictive and preventative medicine into 

the current state-of-the-art CDSS.  
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This appendix serves to provide an introduction to Genetic Algorithm (GA). 

GA (Holland, 1992) is a type of evolutionary computing algorithm inspired by 

Darwinian evolutionary theory. It works in a parallel manner - where the 

algorithm explores the solution space in multiple directions. This differs from 

conventional mathematical analysis, making it a promising search heuristic 

method that is less likely to be trapped in a local optimal position.  

GA works with a population of candidate solutions that searches for the 

optimal solution probabilistically. It iteratively transforms the initial set of 

possible solutions encoded in chromosome-like data structure (each associated 

with a fitness value) into a population of offspring that aims to find the global 

optimum within a reasonable number of iterations. Each successive offspring is 

generated and optimized based on the Darwinian principle of natural selection, 

together with operations patterned after the natural occurring genetic operations 

(e.g. crossover and mutation).  

One application of GA is to perform feature selection, a process that 

identifies informative subset of predicators within a dataset (Huanga & Wangb, 

2006). This process is of paramount importance in view of the exponential 

growth of clinical data in recent years - making analysis of large number of 

clinical features difficult. Extraction of the least number of highly relevant and 

informative predictors that can comprehensively describe the underlying pattern 

present in the dataset results in two significant advantages. Firstly, a boost in 

the accuracy can be obtained by a classifier (e.g. SVM) - as removing irrelevant 

and redundant features can effectively ameliorate the learning capability of the 

classifier. Secondly, the computational time needed for developing the 

classification model can be decreased because, with less features, it reduces the 

data complexity - allowing the classifier to learn at a faster pace.  

Figure A.1 illustrates a generic GA evolutionary process that can be used for 

feature selection. At onset, an initial population of fixed-length bit-string 

chromosome is formulated. The length of the chromosomes is tantamount to the  
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The selected chromosomes subsequently enter into the mating pool where 

genetic operations, such as crossover and mutation, are applied. This results in 

the initial pool of candidate solution to stochastically transit to a new pool of 

possible solution (i.e. offspring).  One type of crossover operation is uniform 

crossover, where it exchanges information between 2 parent strings at the bit 

(locus) level. This differs from one-point or two-point crossovers which 

exchange information at the segment level. Mutation, on the other hand, is a 

bit-wise operation that changes a bit in the chromosome from its original state 

(e.g. from ‘0’ to ‘1’, or vice versa). The purpose of mutation is to instil some 

form of randomness into the algorithm, thus avoiding a situation where 

candidate solutions get trapped in local minima.  

The generated offspring consequently forms the new population for the next 

generation. This generation of population is then verified for convergence. If it 

fails the convergence criteria, the entire process of fitness evaluation, selection, 

crossover and mutation operations will be repeated. Otherwise, the best 

chromosome will be picked and returned as the result.  
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This appendix serves to provide an introduction to Support Vector Machine 

(SVM). SVM (Boser et al., 1992; Cortes & Vapnik, 1995; Vapnik, 1999) is a 

robust supervised learning algorithm that is capable of yielding excellent 

generalization performance on an extensive area of problems - such as intrusion 

detection, face detection, biomedical research, etc (Chen et al., 2005; Osuna et 

al., 1997; Listgarten et al., 2004). It is derived from statistical learning theory 

and is capable of solving linearly and non-linearly separable problems. 

Fundamentally, SVM performs classification through the construction of an 

N-dimensional hyper-plane that optimally separates the data into two or more 

categories whereby the margin of separation between the different categories is 

maximized. 

Considering a binary class classification problem with training dataset 

{(𝑥𝑖, 𝑑𝑖)}𝑖=1
𝑁 , where xi is the input pattern for the ith example, di is the 

corresponding desired output (di = +1 or di = -1) and N is the total number of 

training data; SVM attempts to construct a linear separating hyper-plane wTx + 

b = 0 with maximal distance between the soft margins, where w is an adjustable 

weight vector (normal to the plane) and b is the bias. The classification 

condition may be expressed in the following form: 

wTx + b ≥ 0,  for di = +1 (10) 

wTx + b < 0,  for di = -1 (11) 

In order to maximize the distance between the data vectors that belong to 

different classes, the gap between the soft margins that separates the two classes 

of data need to be maximized. These soft margins are defined as follow: 

wTx + b = 1,  for di = +1 (12) 

wTx + b = -1,  for di = -1 (13) 
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 𝑟 =  
𝒉(𝒙)

||𝒘𝒉||
 (15) 

Therefore, the distance between the positive (and negative) soft margin and 

the optimal hyper-plane is defined as: 

𝑟 =  {

1

||𝒘||
 ,           𝑓𝑜𝑟 𝑑+ =  +1

−1

||𝒘||
 ,         𝑓𝑜𝑟 𝑑− =  −1

 (16) 

Hence, the distance between the soft margins is equivalent to 2

‖𝒘‖
. The 

maximization of 2

‖𝒘‖
, which is tantamount to minimizing ||𝑤||2

2
, can be optimized 

with the employment of a constrained optimization technique such as the 

Lagrange theory. The Lagrangian dual problem used in SVM is expressed as: 

𝐿(𝒘, 𝑏, 𝜆) = ∑ 𝜆𝑖
𝑁
𝑖=1 −   

1

2
∑ ∑ 𝜆𝑖𝜆𝑗

𝑁
𝑗=1

𝑁
𝑖=1 𝑑𝑖𝑑𝑗𝑘(𝒙𝒊, 𝒙𝒋) (17) 

subjected to the following constraints: 

1. ∑ 𝜆𝑖
𝑁
𝑖=1 𝑑𝑖 = 0 

2. 0 ≤  𝜆𝑗  ≤ 𝑐, 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑁  

where 𝜆𝑖 is the Lagrange multiplier, 𝑘(𝒙𝒊, 𝒙𝒋) is the kernel function and c is a 

user-specified regularization parameter. The kernel function can be a nonlinear 

function which enables SVM to effective solves nonlinear classification 

problems like the classical XOR problem. This is because when the input space 

of a nonlinearly separable problem is nonlinearly casted into a higher 

dimensional space, it is more likely to be separated linearly than in a lower 

dimensional space, as suggested by Cover’s separability theorem (Cover, 1965).  

Several commonly used nonlinear kernel functions include polynomial - K(xi, 

xj) = (γxi
Txj + r)d; sigmoid - K(xi, xj) = tanh(γxi

Txj + r); and radial basis function 

(RBF) - K(xi, xj) = exp(-γ|| xi – xj||2), where γ , r and d are kernel parameters. In 

this work, RBF is used as the kernel function due to its ability to solve non-
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linearly separable problems, low complexity involved during model selection 

and excellent performance. It is noteworthy that the linear kernel is a special 

case of RBF kernel due to the fact that with certain cost and gamma settings, 

RBF can achieve the same performance as linear kernel with certain cost value 

(Keerthi & Lin, 2003). 
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a b s t r a c t

Clinical feature selection problem is the task of selecting and identifying a subset of informative clinical
features that are useful for promoting accurate clinical diagnosis. This is a significant task of pragmatic
value in the clinical settings as each clinical test is associated with a different financial cost, diagnostic
value, and risk for obtaining the measurement. Moreover, with continual introduction of new clinical fea-
tures, the need to repeat the feature selection task can be very time consuming. Therefore to address this
issue, we propose a novel feature selection technique for diagnosis of myocardial infarction – one of the
leading causes of morbidity and mortality in many high-income countries. This method adopts the con-
ceptual framework of biological continuum, the optimization capability of genetic algorithm for perform-
ing feature selection and the classification ability of support vector machine. Together, a network of
clinical risk factors, called the biological continuum based etiological network (BCEN), was constructed.
Evaluation of the proposed methods was carried out using the cardiovascular heart study (CHS) dataset.
Results demonstrate a significant speedup of 4.73-fold can be achieved for the development of MI clas-
sification model. The key advantage of this methodology is the provision of a reusable (feature subset)
paradigm for efficient development of up-to-date and efficacious clinical classification models.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The efficient development of accurate clinical classification
models has been a challenge for many reasons. One problem that
is commonly encountered is the ‘curse of dimensionality’ [1], where
the linear growth of clinical features (i.e. predicators) results in an
exponential growth in the search space. This inevitably hinders
the development of classification models as it becomes computa-
tionally expensive to investigate a plethora of clinical features
simultaneously using search heuristics that analyze features in
combinations (particularly, when performing multivariate analysis
based on wrapper approach). This situation is exacerbated by the
fact that up-to-date and sophisticated clinical classification models
need to be constantly developed in order to continually improve the
quality of clinical diagnosis. Specifically, the clinical classification
models need to be rebuilt whenever new clinical risk factors that
could potentially ameliorate the performance of the classification
model are introduced. An example of such clinical effort is the
perpetual studies of different types of clinical risk factors and
approaches that could improve the ability to identify events of

myocardial infarction (MI) [2,3]. This is of paramount importance
as MI is a leading cause of morbidity and mortality in many devel-
oped countries, such as the United States (US) and the United King-
dom (UK) [4–6]. Despite considerable advances in medicine, MI
approximately occurs every 34 s in the US and about 15% who expe-
rience MI will die from it [4]. Moreover, MI is difficult to ascertain in
patients presenting to the emergency department with anterior
chest pain [2]. This advocates for the need of an efficient approach
to develop up-to-date MI classification models for performing accu-
rate diagnosis.

Furthermore, investigation of the association between a range
of clinical observations (e.g. medical history, chemotherapy, stage
of disease, gene, etc.) and the disease at the human population
level is important as it has demonstrated promising potential for
improving disease classification performance [7,8]. However, when
such an investigation is carried out on a larger scale, this would
involve a large amount of clinical features, making analysis
challenging and even computationally infeasible. Additionally, it
also hinders the ability for any machine learning method to
perform accurate disease classification. One approach to mitigate
the aforementioned problems is through dimensionality reduction
– where significant clinical risk factors are identified, reducing the
total number of predicators that need to be analyzed.

In this paper, we introduce a novel clinical feature selection
methodology for the development of MI classification model. This
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approach utilizes on the conceptual framework of biological con-
tinuum (BC) [9,10], the optimization capability of genetic algo-
rithm (GA) [11] for performing feature selection and the
classification ability of support vector machine (SVM) [12–14] for
dichotomizing patients experiencing a phenotypic manifestation
from healthy individuals. The BC is the hierarchy of the human
organism comprising body, systems, viscera, tissue, cells, proteins
and genes. In this study, it provided the biological paradigm neces-
sary for segregating a range of available clinical features; offering
the advantage of reducing the number of clinical features that
needs to be analyzed concurrently. A GA based wrapper approach
using SVM, which selects significant clinical features capable of
dichotomizing patients experiencing a phenotypic manifestation
from healthy individuals, was implemented. This hybrid algorithm
(called GA-SVM) was used to identify important clinical features at
each level of the BC and incrementally built a network of clinical
risk factors, called the biological continuum based etiological net-
work (BCEN). The primary advantage of BCEN used for the con-
struction of up-to-date clinical classification model is that it
allows new clinical features to be considered for incorporation into
the classification model without the need for a total reanalysis
from scratch.

The reliability of the constructed BCEN was assessed by
comparing the set of identified risk factors found in the (obesity-
system) sub-network, with the risk factors found in previous clin-
ical studies. Promising results were obtained from this analysis. An
MI classification model was subsequently developed based on the
clinical features identified and present in the BCEN. Significant
reduction in the computational time required to develop the clas-
sification model was achieved. It is noteworthy that comparable
classification accuracy was obtained between the proposed meth-
od (i.e. pre-selection of clinical features using BCEN) and the base-
line approach (i.e. no pre-selection was performed). The
Cardiovascular Health Study (CHS) [15] dataset was analyzed in
this study.

The rest of the paper is organized as follows. Section 2 provides
the background information on feature selection. In section 3, the
experimental methodology involved in the development of the
clinical feature selection technique and the clinical classification
model is presented. The experimental results are presented in Sec-
tion 4 and discussed in Section 5. Finally, conclusions are drawn in
Section 6.

2. Background

Conventionally, clinical predictions which provide the disease
diagnosis for an individual are based on expert knowledge. How-
ever, with the exponential growth of clinical data generated in
healthcare industries, this approach has become more and more
difficult and costly. An approach to mitigate this challenge is to
process and analyze the large amount of clinical data, extracting
knowledge that enables support for cost-containment and decision
making [16]. Machine learning is one method that has been pro-
posed to address this issue. It provides the techniques necessary
for the analysis of the data, discovery of hidden patterns and pro-
vides healthcare professionals with an additional source of knowl-
edge for decision making. In the parlance of literature, machine
learning is defined as a branch of artificial intelligence that postu-
lates a set of computer-based methods for automatic analysis of
information and recognition of patterns through repeated learning
from the training data [17], and is a more powerful and sophisti-
cated descendant of traditional statistical models. It is generally
model-free and is capable of efficiently detecting and modeling
the non-linear interactions in high dimensional datasets. Addition-
ally, the associations or patterns detected by machine learning

methods tend to be logical and can be identified by human experts
if they analyze the problem carefully enough [18]. Clearly, this en-
tails that machine learning is capable of saving both the time and
effort necessary for the discovery of underlying patterns.

Clinical prediction (e.g. diagnosis of cardiovascular disease)
based on machine learning approaches has gained popularity over
the years [2,16,19–24] and shown to be an extremely useful tool in
medical innovation [21]. It is often based on the patient’s unique
clinical, genetic and environmental characteristics and plays a sig-
nificant role in healthcare decision making and planni ng. Since
each clinical feature collected is associated with a different finan-
cial cost, diagnostic value and risk [25], it is highly desirable to
reduce the number of clinical tests that need to be taken by a
patient. This would inevitably reduce the financial cost, and the
time incurred on both the analysts and patients. One approach
commonly adopted by machine learning techniques to reduce
the number of clinical features while improving the diagnostic/
classification accuracy is feature selection.

Feature selection is the process of selecting a subset of relevant
features for model construction and provides better insights into
the target concept of a real-world problem [21]. It differs from
other dimensionality reduction techniques like project and
compression where their original representation of the variables
is modified. Therefore, feature selection has the advantage of
preserving the original semantics of the features which enables
domain experts to interpret the selected features. Furthermore, it
has shifted from being an illustrative example to one of real prere-
quisite for developing classification models [26]. This is, in part, be-
cause of the exponential increase in the dimensionality of the data
(e.g. in clinical and bioinformatics domains), the fact that most
classifiers were originally not designed to handle plethora of irrel-
evant features, and the need to generate more accurate classifiers
efficiently. In general, feature selection aims to identify a parsimo-
nious subset of useful features (from a large set of features) that (1)
does not decrease the classification accuracy, (2) reduces the com-
putational time needed to learn a sufficiently accurate classifica-
tion model, (3) does not acutely changes the class distribution
while adequately representative for descripting the target concept,
and (4) reduces the amount of examples that need to be collected
in order to develop a classification model with the desired accuracy
[27,28].

Feature selection algorithms typically fall under 4 categories
depending on how it is performed in relation to the classification
algorithm. They include (1) selection based on expert knowledge,
(2) filter approach, (3) wrapper approach, and (4) embedded ap-
proach. Each has its own competitive advantages and drawbacks.
Selection based on expert knowledge (e.g. human domain expert
or referencing the scientific literature) offers a set of features with
high interpretability in relation to the target concept. However, its
major drawbacks are that it can be time consuming and human ex-
pert is required to perform the task. An illustration of this approach
is demonstrated in [25], where the number of interaction tests that
need to be performed can be limited with the use of experimental
knowledge of the biological network. More specifically, knowledge
extracted from protein interaction databases reduces the number
of interaction tests from 1.25 � 1011 to 7.1 � 104, allowing more
efficient analysis of genome-wide studies to be carried out.

Filter methods, on the other hand, evaluate the relevance of
each feature by assessing only the intrinsic characteristics of the
data. Although this approach does not need a domain expert to
intervene, is simple, efficient and can easily scale to very high-
dimensional datasets, it does not always guarantee improved per-
formance [29] as it ignores the inductive bias associated with the
classifier [30]. Examples of filter techniques include chi-square
test, t-test, information gain, correlation-based feature selection
and Markov blanket filter.
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Wrapper methods embed the inductive bias associated with the
classifier within the feature selection process. In this case, subsets
of features are generated and their performance is assessed by
training and testing them on a specific classification algorithm.
The advantages of this approach are: (1) the freedom to choose
the desired classification algorithm, (2) allowing interaction be-
tween feature selection and model selection, and (3) ensuring that
feature dependencies are taken into consideration (i.e. the need to
add or remove more than 1 feature at the same time in order to
improve the performance [25]). Consideration of feature depen-
dencies is important, especially in the medical field, as it has be-
come evident that multiple genes collectively contribute to the
etiology and clinical manifestation of human diseases [31]. Hence,
important genotypic factors might be missed if they have been
examined in isolation or in a linear fashion – without allowing
for potential interactions. This situation would be exacerbated
when performing genome-wide association studies where hun-
dreds of thousands of single nucleotide polymorphisms (SNPs)
need to be analyzed. Wrapper approach, on the downside, becomes
computationally intensive when the number of features grows
exponentially. This is because every feature subsets generated
need to be executed on the selected learning algorithm. Moreover,
it has a higher risk of over-fitting the classifier than filter approach.
Examples of this technique include sequential forward selection,
sequential backward selection, simulated annealing, genetic algo-
rithm and estimation of distribution algorithm.

Finally, embedded approach integrates the process of identify-
ing the optimal subset of features within the learning algorithm.
Based on this mechanism, it has the advantage of being more
computationally efficient (compared to wrapper approach) while
maintaining interaction with the classifier. Examples include
decision trees and weighted naïve Bayes.

3. Methodology

3.1. Dataset

The CHS dataset, as described in [15], is an epidemiology study
of the elderly (defined as adults aged 65 and older). It comprises of
elderly subjects from four US communities, namely Forsyth
County, North Carolina; Sacramento County, California; Washing-
ton County, Maryland; and Pittsburgh, Pennsylvania. A total of
5888 individuals from urban and rural areas form the baseline
cohort of CHS. Eligible individuals were sampled from Medicare
eligibility lists in each area. Eligible participants included all indi-
viduals sampled from the Health Care Financing Administration
(HCFA) sampling frame – they were 65 years or older at the time
of examination, non-institutionalized, expected to remain in the
area for the next 3 years, able to give informed consent and do
not require a proxy respondent at baseline. Individuals who were
wheelchair-bound at home at baseline, receiving hospice treat-
ment, radiation therapy or chemotherapy for cancer were
excluded. The eligible individuals were examined yearly from
1989 to 1999. Extensive physical and laboratory evaluations were
carried out to identify the presence and severity of cardiovascular
disease (CVD) risk factors – such as hypertension; hypercholester-
olemia and glucose intolerance; subclinical disease, such as carotid
artery atherosclerosis; left ventricular enlargement; and transient
ischemia. Criteria for identification of MI events include: observa-
tion of evolving Q-wave, cardiac pain and abnormal enzymes
together with an evolving ST-T pattern or new left bundle branch
block. A total of 355 clinical features related to the individual’s
health status were selected from the CHS dataset for this study.

The dataset was chosen because of (1) the relatively high
prevalence of coronary heart disease (CHD) among the elderly,

(2) worldwide demographic aging, (3) paucity of information
regarding risk factors for CHD among elderly, and (4) the changing
clinical characteristics of CHD with advancing age [4,15,32,33].

3.2. Biological continuum based etiological network (BCEN)

Several steps were taken to construct the BCEN for MI with the
canonical flow illustrated in Fig. 1. A succinct description of the key
steps taken is given below while we dedicate separate sections for
the discussion of the details:

1. Sparse records were removed and missing entries in the dataset
were imputed to ensure good quality data is used to model the
risk factors associated with MI. This was performed with the
K-nearest neighbor (KNN) algorithm [34] – it calculates the
missing value by taking the K nearest training set vectors
(based on Euclidean distance) into consideration.

2. Healthy individuals, forming a large proportion of the dataset in
relation to the number of patient records, were sampled to
avoid jeopardizing the ability of SVM to learn and generalize.
This is carried out with Kohonen Self-Organizing Map (SOM)
[35], where a representative subset of the majority class (i.e.
healthy individuals) present in the CHS dataset was selected,
a process known as under-sampling.

3. Clinical features, such as blood pressure, electrocardiography
(EKG) readings, ultrasound data, hematology data, etc., were
segregated along the BC – the hierarchy of the human organism.
It comprises 7 levels, namely the body, system, viscera, tissue,
cell, protein and gene.

4. GA-SVM, a hybrid algorithm used to identify significant clinical
features, was implemented. It is used repeatedly at each level of
the BC to identify significant risk factors that are related to the
different phenotypic manifestations, and ultimately MI.

5. With the significant risk factors identified at the different levels
of the BC, they were consolidated to construct a consensus net-
work, known as the BCEN in this work. These risk factors, in
turn, were used to perform MI classification using the GA-
SVM algorithm.

3.2.1. Data Imputation
As with many datasets collected from real subjects and patients,

missing data is unavoidable. This may be due to various factors, e.g.
the refusal of respondents, malfunction of equipment, data not en-
tered correctly and the death of patients [36]. Moreover, since the
quality of the results is largely determined by the quality of the
data used in the analysis, detailed consideration was given before
using the CHS dataset. It was found that the CHS dataset contains
a significant percentage of missing information. Hence, data impu-
tation was first conducted.

Data imputation, the process of substituting missing values in a
dataset with plausible values, was performed using KNN. KNN
imputation was used because of its excellent performance in esti-
mating missing values [37–40] and its ability to estimate both
qualitative and quantitative attributes. This makes it highly suit-
able for extrapolating the missing entries in the CHS dataset.

Firstly, individuals with unknown MI status were removed from
the analysis. Next, to foster more accurate data imputation, indi-
viduals and clinical features with high percentage of missing en-
tries were removed. It is important to have low percentage of
missing values because the accuracy of the imputed result would
suffer if too little complete entries were available for KNN to refer-
ence when estimating the missing values [37,40,41]. Hence, indi-
viduals and clinical features with more than 20% and 4.5%
missing entries, respectively, were removed. Consequently, the
resultant dataset was normalized to unit variance before data
imputation was performed using KNN. This is important as it
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ensures that variables with large scale do not dominate the
(Euclidean) distance measure [42].

The optimal value of K for each clinical feature was determined
by 10-fold cross-validation. After the value of K for each clinical
feature had been determined, data imputation for each missing
attribute was performed. The type of replacement method used
depends on the type of data present in each clinical feature. For
instance, if the data is categorical, a reliable choice is to use the
mode of the K nearest neighbors to assign the value for the missing
entries [34,38]. On the other hand, if the data is continuous, the
weighted-mean of the K nearest neighbor is used instead to
calculate the missing value. Weighted-mean estimation has been
demonstrated in [37,43] to be robust and accurate.

3.2.2. Class imbalance data problem
The class imbalance data problem is not uncommon in medical

datasets where the data is predominated by the healthy subjects
(i.e. controls), with only a small number of disease-affected sub-
jects (i.e. cases). Consequently, this limited the effectiveness ability
of standard machine learning algorithms – where the algorithms
tend to be overwhelmed by the major class and ignore the minor
one. This, in turn, hinders performance [44,45]. This class imbal-
ance data problem prevails in the CHS dataset as well. Therefore,
data balancing was performed before deploying the data to GA-
SVM.

SOM, an unsupervised (neural network) learning algorithm, was
employed to under-sample the major class. This algorithm was
chosen because it is capable of generating high quality samples
that are representative of the original dataset [35] and it has been
shown in [46] that SOM outperforms random selection. Once the
imputed dataset was obtained, the SOMwas trained in two phases;
namely, the ordering phase and the tuning phase. Two key adap-
tive parameters, neighborhood size and learning rate, were used
when training the SOM. Neighborhood size defines the number
of neurons that surround the winning neuron (i.e. most stimulated
neuron) at each epoch, while the learning rate controls the degree
of change for the adapting neurons.

During the ordering phase, large initial neighborhood size (i.e.
10) and learning rates (i.e. 0.9) were used. Conversely, small neigh-
borhood size (i.e. 1) and learning rates (i.e. 0.02) were used during
the tuning phase – where the neighborhood size will shrink pro-
gressively to 1. This is to allow the SOM to adjust quickly to the in-
put pattern during the ordering phase and to stabilize the feature
map during the tuning phase [35]. The following value for the
SOM parameters was determined experimentally and used in this
study: number of neurons: 21 by 21; topology function: hexagon;
distance function: Euclidean; epoch: 1000; ordering phase learning

rate: 0.9; tuning phase learning rate: 0.02; initial neighborhood
size: 10; final neighborhood size: 1. The reason for using these val-
ues is because they have shown to provide reasonable performance.

3.2.3. Segregation of clinical features
The Biological Continuum was central to the development of

the BCEN. It was utilized in this case to provide the necessary bio-
logical paradigm to relate the disease mechanisms to the clinical
manifestations at various levels of the biological continuum. Upon
analyzing the clinical features, it was found that these features fall
under 4 key levels along the BC, namely: body, system, viscera and
protein level. Clinical features related to medication were removed
from the study as it was difficult to adjudicate to which level of the
BC they belong. Categorization of the rest of the clinical features, in
relation to the levels of the BC, was undertaken using the following
guidelines:

� Body level – Contains clinical features related to individuals’ per-
sonal statistics (e.g. age, weight), lifestyle (e.g. smoking status,
exercise intensity) and cardiovascular events which that indi-
vidual is experiencing.

� System level – Consists of clinical features related to individuals’
medical history (e.g. arthritis, diabetes), symptoms (e.g. hear-
ing/vision problems) that the individual is experiencing and
blood pressure measurements.

� Visceral level – Clinical measurements, e.g. EKG, ultrasound data
and treatment specific to an organ were classified under this
level.

� Protein level – Clinical features related to hematology were
grouped under this level.

3.2.4. GA-SVM
GA-SVM, a hybrid algorithm that comprises of (1) SVM that

models the statistical properties necessary to distinguish healthy
individuals from patients experiencing a clinical phenotype, and
(2) GA that selects the significant features that contribute to the
construction of an accurate SVM model, was implemented. In this
work, SVM uses radial basis function (RBF) as its kernel function
and is defined as:

Kðxi; xjÞ ¼ expð�cjjxi � xjjj2Þ ð1Þ
where c is a variable used to adjust the width of the Gaussian
functions of the kernel. RBF is used due to its ability to solve non-
linearly separable problems, low complexity involved during model
selection and excellent performance. Two parameters, namely the
regularization cost and gamma (used in RBF) parameters, were
tuned over the recommended range [2�5, 213] and [2�15, 23]
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records and 
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missing values

Balancing the number 
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and patients

Evaluation of clinical 
features at adjacent 

levels to identify 
significant risk factors

Construction of 
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Continuum-based 
Etiological 
Network

N = 5888
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Data Preprocessing 

Segregation of clinical 
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N = 853
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Fig. 1. Canonical flow of the methods adopted to construct BCEN. ‘N’ denotes the number of instances and ‘F’ represents the number of features present in the dataset at
different stages.
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respectively [47]. Optimization of SVM parameters were performed
by evaluating a set of cost-gamma combinations defined using uni-
form design (UD) method [48]. UD is a technique that scatters a set
of points uniformly across the cost-gamma landscape, proposed to
alleviate the computational loads associated with the search for
the optimal cost-gamma pair [49]. This search process begins by
initializing a 30-points UD (global) search across the defined
cost-gamma landscape. Next, it identifies the top 5 most accurate
(global) cost-gamma pairs, where they form the centroid for
10-points UD (fine) search. If improved accuracy was achieved,
the points will form the centroid for another 10-points UD search.
This process repeats until no further improvement is achieved.
Fig. 2 provides an illustration of this method.

Fig. 3 provides the schematic illustration of GA-SVM algorithm.
The flow of the algorithm is as follow: GA first (randomly) initial-
izes a pool of clinical feature subsets (Fig. 3 – chromosome 1 to N)
from the CHS dataset (consisting of M clinical features). Each bit in
the chromosome is assigned with a value of either ‘1’ or ‘0’, indicat-
ing whether that feature is selected or eliminated from consider-
ation by the classifier, respectively. This produces a pool of
chromosomes representing different input features. Consequently,
each chromosome was evaluated by SVM (where optimization of
SVM parameters was performed independently for each chromo-
some) in an attempt to determine how informative and discrimina-
tive the clinical features are in relation to the associated clinical or
subclinical manifestation. This evaluation is conducted by per-
forming a 10-fold stratified cross-validation. Subsequently, these
subsets of clinical features undergo natural selection, crossover
and mutation phases postulated by GA. The process repeats until
GA converges or the maximum number of generations has been
reached. GA is considered to have converged if the maximum fit-
ness value (i.e. balanced accuracy – the average of sensitivity and
specificity) does not improve after 20 consecutive generations.
Upon termination, the subset of clinical features that yielded the
highest balanced accuracy will be selected and considered as sig-
nificant risk factors. A consensus network was constructed if sev-
eral combinations of clinical feature subset yielded the same
fitness performance. The reason for doing this is to build a parsi-
monious model that maximizes the likelihood of the clinical fea-
tures that are most influential to the development of the
phenotypic manifestation. It was derived by identifying clinical
features that existed in more than 75% of the highest-performing
clinical feature combinations. The parameters value used by GA
are as follow: population size: 250; maximum generation: 300;
natural selection: stochastic universal sampling; crossover type:

uniform crossover; crossover probability: 0.8; mutation probabil-
ity: 0.01. These values were chosen because they provided satisfac-
tory result when experimented over a range of values. The
algorithm was written in Matlab (MathWorks Inc., Natick, MA)
and executed in parallel using a high performance computer
(HPC) cluster.

3.2.5. Construction of BCEN
The underlying cause of MI is multifactorial and subtle, with

nonlinear causal dynamics. Moreover, with the plethora of clinical
predicators available, analysis of all of them becomes computa-
tionally impractical. In view of such challenges, GA-SVM, together
with the conceptual framework of the BC, were used to construct
the BCEN for MI.

Firstly, by segregating the clinical features into various levels
along the BC, the number of clinical features to be analyzed is
effectively reduced to the number of clinical features present at
each level (i.e. dimensionality reduction). Secondly, with the
employment of GA, which is capable of performing global heuristic
searches both effectively and efficiently, the computational burden
of discovering significant risk factors is alleviated. Finally, facili-
tated by SVM, which outperforms popular technique like multifac-
tor dimensionality reduction (MDR) [50], it ensures that accurate
estimation of the association between the clinical features at adja-
cent levels of the BC is being carried out.

At onset, clinical features grouped under the ‘‘body level’’ of the
BC were input into GA-SVM for investigation. This step aims to
identify clinical features that contribute significantly to the devel-
opment of an accurate inference model for MI. Consequently, sig-
nificant risk factors, defined in this work as risk factors that can
potentially contribute to the manifestation of a clinical or subclin-
ical risk, were identified - forming the top level of the BCEN. If any
of these identified risk factors are continuous, it is discretized
based on the extended v2 algorithm [51]. The reason for perform-
ing this step was to alleviate the associated computational com-
plexity when analysis was performed with SVM.

Next, clinical features categorized under the ‘‘system level’’ of
the BC were input into GA-SVM for investigation. This, similar to
the earlier step, aims to identify clinical features that have a signif-
icantly impact to the inference of the phenotypic manifestation
previously identified at the ‘‘body level’’. The resultant output from
this step forms the ‘‘system level’’ of BCEN. This procedure is
repeated for the rest of the levels along the BC, constructing a prob-
abilistic tree-structured BCEN at the end of this propagation. The
resultant BCEN is capable of scrutinizing how, for instance, clinical

Fig. 2. Graphical illustration of SVM parameter optimization using UD technique. 30-Point UD (Global) search is first performed to determine regions with cost-gamma
combinations that would produce the optimal SVM model. Subsequently, 10-point UD (fine) search is carried out to determine the optimal parameter set.
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features at the visceral level are associated with those at the sys-
tem level and, in turn, how these features at the system level are
associated with those at the body level. This concept is graphically
illustrated in Fig. 4.

3.3. MI classification with BCEN

After the construction of BCEN for MI, the distinct risk factors
present in the network were used to develop an MI classification
model. The performance (both classification accuracy and compu-
tational time) yielded with this approach was compared with an
MI classification model that uses all clinical features present in
the CHS dataset. GA-SVM was used as the classification algorithm
for both the postulated approaches; hence, any benefits or draw-
backs of using this classifier would prevail in both approaches.

4. Experimental results

4.1. Data preprocessing

Records and clinical features with considerable missing entries
were removed. In addition, only records with known MI status
were selected. This resulted in a dataset comprising of 4612

instances and 272 clinical features, with less than 1% of missing
values (with respect to the entire dataset) and 40.8% of records
with complete entries. The training and query datasets thus have
1881 and 2731 instances (both with 272 features), respectively.
Subsequently, the K neighbor value for each clinical feature was
determined based on the normalized training dataset. This yielded
an average K value of 9.80, with standard deviation of 9.38. Data
imputation was next performed to impute the missing entries
found in the query dataset.

The imputed dataset obtained has a high fraction of controls
(i.e. without MI – 4200 instances) and a relatively small portion
of cases (i.e. with MI – 412 instances). SOM was thus employed
to resolve this class data imbalanced problem. Under-sampling
was performed on the major class (i.e. controls), yielding 441
instances. The final dataset produced has 853 instances and 272
clinical features.

4.2. Segregation of clinical features

The construction of a BCEN involved the segregation of the clin-
ical features (173 diagnostic measurements and 1 MI status) along
the BC. These 173 clinical features (after excluding medication)
satisfied the characteristics of only 4 levels of the BC; namely,
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body, system, viscera and protein. Among these clinical features,
38, 74, 41 and 20 belong to the body, system, viscera and protein
levels, respectively. A description of the segregated clinical features
is provided online as an Appendix at http://www.bg.ic.ac.uk/jtay/
web/chs_appendix.html. Readers may refer to the CHS data dictio-
nary made available at the Biologic Specimen and Data Repository
Information Coordinating Center (BioLINCC) website for more
information (https://biolincc.nhlbi.nih.gov/studies/chs/).

4.3. Construction of BCEN and classification of MI

Clinical features at the body level were first deployed to
GA-SVM to determine the set of risk factors that were highly
correlated to MI (root node). A total of 11 risk factors, namely
ANGBASE (angina status at baseline), CHFBASE (congestive heart
failure at baseline), STRKBASE (stroke status at baseline), CBD
(self-reported stroke, transient ischemic attack (TIA) and cardiac
endarterectomy), SCORE03 (social support score), AMOUNT (ciga-
rettes smoked per day), WGTEEN (teenage weight category),
OVRWT120 (obesity > 120% ideal), EDUC (education level), WAIST
(waist circumference – cm) and ALCOH (number of alcoholic bev-
erages per week) were identified at the body level (note that these
modifiable risk factors are also identified in earlier reported clinical
studies [52,53]).

When extending the network, only clinical feature subsets
(child nodes) that yielded a balanced accuracy of at least 0.7 were
considered. This threshold was imposed to reflect only child nodes
that are highly correlated to their parent node. This resulted in 5
inner nodes at the body level – namely ANGBASE, CHFBASE, STRK-
BASE, CBD and OVRWT120. This criterion was applied to the rest of
the levels of the BC.

The resultant inner nodes identified at the system level include
ANBLMOD (angina modified at baseline status), CLBLMOD (claudi-
cation modified baseline status), SUPPUL16 (supine reading: 30 s
heart rate), CHSTPN (chest pain) and VISPROB (vision problem).
Table 1 provides the details of the best-performing clinical feature
subsets that satisfy the aforementioned criteria. Note that none of
the clinical features at the protein level correlated well with those
at the visceral level. The authors believe that this could be due to
the discontinuity in continuum along the BC (i.e. missing data at
the tissue and cell levels) when estimating the association between
the clinical features and phenotypic manifestation that resulted in
the low performance.

The resultant BCEN consists of 111 distinct nodes (Body level:
11; System Level: 63; Viscera Level: 37) in total, accounting for
64.1% of the original number of clinical features analyzed. The
complete BCEN for MI (created using prefuse toolkit [54]) is illus-
trated in Web Fig. 1 – available at http://www.bg.ic.ac.uk/jtay/
web/chsBCENFull.html. The BCEN provides a visual and interactive
etiological network for the user to visualize and comprehend the
relationship among the different risk factors along the BC for MI.
For our discussion here, a sub-network of the BCEN was analyzed
because of its complexity and numerous interrelated risk factors
present in the complete network. This sub-network is presented
in Fig. 5.

Referring to Fig. 5, it can be seen that obesity (OVRWT120), a
risk factor of MI, has 34 risk factors at the system level that are
highly correlated with it. These risk factors are related to rheuma-
tology, physical function, oncology, pulmonology, thromboembo-
lism, sleep disorder, ophthalmology, otolaryngology, cognitive
function and endocrinology. They account for 45.9% of the clinical
features analyzed at the system level. This suggests that not all
clinical features at the system level are good predictors of obesity
and it could be more fruitful to focus investigations on significantly
contributing clinical features.

MI classification, with GA-SVM algorithm, was next performed
with the 111 clinical features that were present in BCEN. Baseline
comparison was made with the original set of 173 clinical features
present in the imputed CHS dataset. Results, as shown in Table 2,
were obtained from averaging 3 runs of GA-SVM. For each method,
the best-performing clinical feature subset for the different runs is
the same. Comparable classification performance was achieved for
both the methods. However, the computational time required by
the proposed method (i.e. deploying only risk factors present in
the BCEN to GA-SVM algorithm) to develop the MI classification
model was much lower (approximately 14.7 h).

5. Discussion

To develop MI classification models efficiently in high dimen-
sional datasets, we introduced a novel methodology for the reduc-
tion of clinical features to be analyzed without compromising the
performance of the classification model. Classification (without
feature selection) conducted on a large number of clinical risk fac-
tors often produced low-performing classification models, as the
performance is often jeopardized by the present of irrelevant or

Table 1
Details of best-performing clinical feature subsets.

Parent node Child nodes # Inner nodes # Leaf nodes Total nodes ACC SN SP PR FM BA

MI Status Clinical features at body level 5 6 11 0.828 0.786 0.866 0.846 0.815 0.826

Body level
ANGBASE Clinical features at system level 4 19 23 0.814 0.741 0.929 0.416 0.428 0.835
CHFBASE 2 16 18 0.958 0.559 0.855 0.596 0.575 0.707
STRKBASE 0 12 12 0.958 0.701 0.905 0.878 0.672 0.803
CBD 3 18 21 0.955 0.734 0.983 0.841 0.784 0.858
OVRWT120 2 32 34 0.737 0.737 0.738 0.704 0.720 0.737

System level
ANBLMOD Clinical features at viscera level 0 25 25 0.785 0.562 0.931 0.841 0.673 0.746
CLBLMOD 0 18 18 0.955 0.426 0.991 0.767 0.548 0.709
SUPPUL16 0 9 9 0.828 0.865 0.749 0.834 0.849 0.807
CHSTPN 0 16 16 0.717 0.794 0.609 0.695 0.741 0.702
VISPROB 0 21 21 0.829 0.667 0.981 0.568 0.609 0.824

Column 1 provides the best-performing clinical features at different levels of the BC: ANGBASE = angina status at baseline; CHFBASE = congestive heart failure at baseline;
STRKBASE = stroke status at baseline; CBD = self-reported stroke, transient ischemic attack and cardiac endarterectomy; OVRWT120 = obesity > 120% ideal; ANBL-
MOD = angina modified at baseline status; CLBLMOD = claudication modified baseline status; SUPPUL16 = supine reading: 30 s heart rate; CHSTPN = chest pain; VIS-
PROB = vision problem.
Columns 6 to 11 represent the various performance measurements: ACC = accuracy; SN = sensitivity; SP = specificity; PR = precision; FM = F-measure; BA = balanced
accuracy.
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Body System Viscera

Fig. 5. Sub-network of BCEN for MI. Eleven clinical features at the body level were found to be potential etiological factors of MI. Obesity, one of the risk factor of MI, consists
of 34 highly correlated clinical features at the system level.

Table 2
Performance of classification with and without BCEN.

Experiment #Features
considered

#Gen Time taken, hours
(Mean ± SD)

ACC SN SP PR FM BA

Baseline method: classification with original set of risk
factors

173 73 69.6 ± 0.136 0.941 0.993 0.893 0.897 0.942 0.943

Proposed method: classification with risk factors present
in BCEN

111 21 14.7 ± 0.005 0.931 0.995 0.871 0.878 0.933 0.933

These experiments were executed in parallel over an 8-core computer server. The best-performing clinical feature subset is the same for the different runs. ‘#Gen’ denotes the
number of generations taken by GA before it converges.
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redundant predicators. On the other hand, the development of
classification models with feature selection (e.g. the baseline meth-
od used in this work) conducted on a large number of clinical risk
factors is usually computationally expensive. Therefore, pre-selec-
tion of clinical risk factors is vital to mitigate this problem contrib-
uted by the ‘curse of dimensionality’. This was performed by
segregating the clinical features along the various levels of the
BC. The segregation process effectively reduces the data dimension,
where its size is dependent on the number of clinical features
categorized under each level of the BC. In this study, for example,
analysis performed at the ‘‘body level’’ requires only 38 clinical
features to be considered at a time. This, in contrast to the initial
173 clinical features, offers a reduction of 4.55-fold in the data
dimension. Having to analyze a smaller number of clinical features
inevitably reduces the amount of computational time required to
develop the classification model. Moreover, if prior knowledge is
available the data dimension can be further restricted. For instance,
Emily et al. [29] utilize knowledge from protein databases to re-
duce the search of SNPs to gene pairs that are known to interact
and reference. A similar concept can be applied to other levels of
the BC to alleviate the search effort required.

Although effort is required to construct the BCEN, the resultant
network has several advantages. Firstly, with the introduction of
new clinical risk factors the entire BCEN need not be reconstructed.
It provides a reusable framework where only the level of the BC, at
which the new clinical risk factor belong to, need to be redevel-
oped. If the newly introduced clinical risk factor is identified as
an etiological factor (i.e. risk factor contributing to the cause of
the disease), then starting with that clinical risk factor as the root
node, the network is extended for levels of the BC that is below
that of the newly inserted etiological factor. This approach thus
provides a significant reduction in the time and effort required to
build up-to-date clinical classification models. Secondly, the BCEN
provides an excellent paradigm for the illustration of the potential
biological pathways that underpin the different phenotypic
manifestations and has the significant advantage of analyzing only
clinical risk factors that are biologically plausible. This not only
allows the identification of significant risk factors that can be used
for efficient development of accurate classification models, but,
also, (1) reveals relationships that are not readily apparent from
the study of individual disorders, (2) provide a global perspective
of the different risk factors and etiologic pathways associated with
the disease, and (3) identify new risk factors that could pave the
way to the development of novel diagnostic, preventive or
therapeutic strategies. Therefore, BCEN may be a simple etiological
network, but it has the potential to provide significant insights into
the mechanisms of a disease.

The constructed BCEN was validated by comparing the identi-
fied inter-relationship among different risk factors with those
reported in previous clinical studies. All risk factors found at the
body level of BCEN were also identified in previous clinical studies.
Further, comparisons of a sub-network of BCEN (i.e. obesity-
system sub-network) have shown that there is a large overlap (of
82.4%) between the identified relationships and those found in pre-
vious work. A possible reason for the identification of the addi-
tional inter-relationships is the employment of machine learning
techniques. Since previous clinical studies tend to use linear statis-
tical models to perform the analysis, non-trivial and non-linear
relationships may go undetected. Therefore, the use of machine
learning techniques in this work could potentially identify the
non-trivial, non-linear and interacting etiological factors. This
enables one to better understand the underlying causes of the
disease, allowing more appropriate and focus interventions to be
recommended to the patients. Table 3 lists the risk factors found
to be highly associated with obesity and their presence in the
clinical literature.

Arthritis, for instance, has been reported previously to be more
prevalent among obese patients [55,56]. This is primarily due to
the presence of excess biomechanical stress, inducing deleterious
effect on the joints. Similarly, obese individuals have a higher risk
of cancer related to endometrium, prostate, colon, esophagus and
stomach [57,58]. Previously reported investigations have also
shown association between obesity and bronchitis, pneumonia,
emphysema, deep vein thrombosis, intermittent claudication,
duration of sleep, blindness, hearing impairment, activities of daily
living, pulmonary embolism, ankle-arm index, loss of balance,
walking capacity, cognitive function, unstable angina, stroke, tran-
sient ischemic attack, hypertension and diabetes [59–75].

This suggests that the BCEN is feasible and effective in charac-
terizing a disease and identifying the possible etiological factors.
It is noteworthy that analysis of the obesity-system sub-network
identified 6 new clinical features that were not previously identi-
fied in previous work. This could indicate that these clinical
features are potential etiological factors of MI where further inves-
tigations could improve the understanding and treatment of the
disease. We hypothesize that the reconstruction of the etiologic
pathways is of major importance in healthcare as it would allow
a more proactive approach for providing medical interventions to
eradicate or delay the onset of a disease. This differs from the tra-
ditional reactive approach where individuals visit a physician only
when they are sick or in pain, which sometimes results in a situa-
tion where treatment is too late to achieve complete recovery.
Early medical interventions can be realized with BCEN by monitor-
ing and controlling the risk factors (especially at the lower levels of
the BC) that contribute to the development of a disease (e.g. MI).

Table 3
Obesity-system level risk factors.

Variable Description

ARTH01a Arthritis
DIAG01a Ever diagnosed with cancer
BRONCHa Bronchitis confirmed by doctor
PNEUMONa Pneumonia detected by doctor
EMPHYSEMa Emphysema detected by doctor
THROMBa Deep vein thrombosis
ROSEICa Intermittent claudication by rose questionnaire
GROGGYb Groggy in morning
TRSLEEPa Trouble falling asleep
WKERLYa Wake up far too early
RECOGNa See enough to recognize person
TELEa Hear enough to use phone
CONVERa Hear enough to converse
ADLa Activities of daily living (ADL)
IADLa Instrumental ADL score
UESb Upper extremity score
BLEED12b Bleed or bruise easily
CLOT12a Disorder related to blood clotting
LTAAIa Left ankle-arm index (%)
SUPPUL16b Supine reading: 30 s heart rate
BIORES21a Bioelectric impedance – resistance
BAL22b Dizziness, loss of balance screen
LOSBAL22a Loss of balance
DIZZY22b Dizzy/light-headed when stand up quickly
TIMEWLKa 15 feet walk time-sec
DIGCORa Digit symbol score
SCOR3510a Mini-mental score (35pt)
SCORE30a Mini-mental score (30pt)
ANBLMODa Angina modified baseline status
CHBLMODa CHF modified baseline status
STBLMODa Stroke modified baseline status
TIBLMODa TIA modified baseline status
HYPERa Calculated hypertension status
DIABADAa ADA guidelines diabetic status

a Risk factors found in previous work.
b Potential risk factors not found in previous studies (to the best of our

knowledge).
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The employment of BCEN to reduce the number of clinical
features to be analyzed significantly alleviated the computational
demands. Without acutely compromising the classification perfor-
mance, a speedup of approximately 4.73-fold was achieved. This
was possible due to the earlier convergence of GA, suggesting that
significant risk factors are already identified and present in BCEN.
This facilitates the identification of risk factors that contribute sig-
nificantly to the modeling of accurate MI classification model.

This study has a few limitations. Firstly, only a single dataset (i.e.
CHS dataset) was used to build the etiological network for MI. This
inevitably limits the power to detect all the associated risks and
conclusively state that the BCEN has described the complete etiol-
ogy of MI. Additionally, it limits the ability to state that the pro-
posed method provides efficiency for all clinical classification
problems. Nonetheless, it does shed some light to a novel approach
for investigating the etiology of MI and efficient clinical classifica-
tion. Secondly, only a single classification algorithm (i.e. SVM) has
been used to identify the association between the clinical features
and for developing MI classification model. This may hinder the dis-
covery of the underlying associations and the performance of the
classification model, as no single machine learning technique or
statistical model is optimal for every problem. The reason for this
is because each method would have its own inductive bias [76].
Hence, it is suggested in [18] that comparison between multiple
machine learning techniques, traditional statistical models and ex-
pert-based schemes should be conducted in order to assess the suit-
ability of each method for a particular problem. Finally, the CHS
dataset only contains risk factors that fall under the body, system,
visceral and protein levels. This hinders the construction of a com-
plete BCEN, limiting the ability to provide a more comprehensive
illustration of the underlying etiology of a disease and the develop-
ment of a more accurate classification model.

Nevertheless, the constructed BCEN is potentially capable of
presenting the etiology of a disease in a biologically-structured
manner that could facilitate the understanding and management
of a disease. Moreover, it offers an effective and efficient approach
for the development of MI classification model.

6. Conclusions

In view of the high prevalence of MI worldwide, better ability to
characterize and classify the disease is both appropriate and neces-
sary. In this paper we have presented an integrated approach to
build a single probabilistic network (i.e. BCEN which identifies
and relates the etiological factors associated with MI) that aims
to provide an efficient approach for the development of MI classi-
fication model.

Validation of the constructed BCEN was conducted and our re-
sults indicate that the network is reliable and capable of identifying
significant etiological factors. There is a large overlap between the
relationships identified by our approach and those found in previ-
ous work. Out of the 34 clinical features identified at the obesity-
system level, 28 (82.4%) of them were found in the previous clinical
studies. However, 6 new clinical features, that had not been identi-
fied previously, were found to be associated with obesity in this
study. These new clinical features could be probable risk factors
for MI. They indicate the need for further clinical investigations to
improve the understanding and treatment of the disease.

Based on the distinct risk factors identified and present in BCEN,
a classification model for MI was developed. The classification
model obtained demonstrated high balanced accuracy of 0.933. It
was developed at a rate of 4.73-fold faster than its counterpart that
does not adopt any pre-selection strategy. This suggests that BCEN
may be a desirable approach for developing clinical classification
models when a large number of clinical features need to be
considered.

Although further validation of this methodology is necessary,
this approach may be valuable in exploring and identifying risk
factors that underpin a disease. To conclude, the BCEN is an etio-
logical network that is simply built but profoundly useful. It has
the potential to provide insights, from a novel perspective, into
the characteristics of (current/new) diseases - allowing more
efficient and effective understanding, analysis, management and
classification to be undertaken. We look forward to a more com-
prehensive understanding of the disease etiology and eventually,
towards personalized medicine.
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ABSTRACT 
Artificial Immune Recognition System (AIRS) algorithm offers a 
promising methodology for data classification. It is an immune-
inspired supervised learning algorithm that works efficiently and 
has shown comparable performance with respect to other 
classifier algorithms. For this reason, it has received escalating 
interests in recent years. However, the full potential of the 
algorithm was yet unleashed.  

We proposed a novel algorithm called the evolutionary data-
conscious AIRS (EDC-AIRS) algorithm that accentuates and 
capitalizes on 3 additional immune mechanisms observed from 
the natural immune system. These mechanisms are associated to 
the phenomena exhibited by the antibodies in response to the 
concentration, location and type of foreign antigens. Bio-
mimicking these observations empower EDC-AIRS algorithm 
with the ability to robustly adapt to the different density, 
distribution and characteristics exhibited by each data class. This 
provides competitive advantages for the algorithm to better 
characterize and learn the underlying pattern of the data. 
Experiments on four widely used benchmarking datasets 
demonstrated promising results – outperforming several state-of-
the-art classification algorithms evaluated. This signifies the 
importance of integrating these immune mechanisms as part of the 
learning process.  

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – Concept learning, 
Induction, Knowledge acquisition, Parameter learning.  

Keywords 
Artificial immune recognition system, Classification algorithm, 
Evolutionary computation. 

*Corresponding author 

1. INTRODUCTION 
The human immune system is a highly sophisticated, distributed, 
complex and powerful natural defense mechanism that comprises 
of several functional mechanisms, positioned in strategic 
locations, conferring resistance against viruses and foreign 
pathogens. It has the ability to learn the characteristics of the 

foreign antigens and contrive a defense strategy to detect and 
neutralize them. Specifically, the immune system possesses 
properties such as the capability of recognition, memory 
acquisition, diversity and self-regulation, making it highly suitable 
for learning patterns that underlie a data. On this note, it has 
inspired the development of the artificial immune system capable 
of solving many problems related to computer science and 
engineering (e.g. computer security, anomaly detection, 
optimization, machine learning, etc.) [1, 2]. One such algorithm 
that has received escalating interests is the Artificial Immune 
Recognition System version 2 (AIRS2) [3].  

Although AIRS2 algorithm has shown to be an effective 
classification algorithm, some useful immune mechanisms are yet 
to be exploited by the algorithm. For instance, artificial 
recognition balls (ARBs) are used in AIRS2 algorithm to denote a 
representative subset of B-Cells. They would compete for survival 
based on the idea of resource limited system [4]. However, the 
creation and elimination of the ARBs do not correspond to the 
density of the data in which they cover (i.e. a larger number of 
ARBs do not survive in regions that are more densely populated 
with data). This contradicts with the natural immune system 
where macrophages would flood the extracellular space of the 
infected regions (attempting to eliminate the harmful agents) and 
B-Cells would proliferate and secrete antibodies profoundly in 
response to pathogenic agents. In other words, a larger 
concentration of defense agents would be present in regions that 
has received intense invasion from harmful antigens. Another area 
that the original AIRS2 algorithm did not explore and exploit is 
the distributed diversity exhibited by the lymph nodes found in the 
natural immune system. The AIRS2 algorithm uses a common 
parameter set to model the distribution of different data classes. 
This is undesirable in cases where the distribution of different data 
classes differ by a considerable degree. Observation of the 
strategic positioning of the lymph nodes in human bodies (which 
promotes better immune defense) advocates for the need of a 
more specific and distinct parameter set (e.g. affinity threshold 
scalar, density and total resources parameters) to model each data 
class (i.e. instances that belong to a specific class). Finally, it is 
important to generate B-Cells that can affiliate/bind well with the 
antigens. This is realized biologically through the production of 
highly specific surface receptors on the B-Cells which facilitates 
the detection and eradication of the foreign antigens. To mimic 
this concept computationally, feature selection can be performed 
where highly informative features that can describe the underlying 
association were identified and used for classification.  

This paper presents a novel algorithm called the evolutionary 
data-conscious AIRS (EDC-AIRS) algorithm, which extends the 
existing AIRS2 algorithm by contextualizing the immune 
response to the concentration, distribution and characteristics of 
the antigens and is no longer a global centralized response.  
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CandStim  stimulation(ag, mccandidate) 
MatchSim  stimulation(ag, mcmatch) 
CellAff  affinity(mccandidate, mcmatch) 
if (CandStim > MatchSim) 

if (CellAff < AT * ATS) 
MC  MC - mcmatch 

end 
MC  MC ⋃	mccandidate 

end 

Figure 2: Pseudo-code for Memory Cell Introduction used in AIRS2 
Algorithm – adopted from [3] 
CandStim (and MatchSim) denotes the stimulation level between the 
presented antigen and the candidate (and matched) memory cell. CellAff 
refers to the affinity between the candidate and matched memory cell. MC 
represents the memory cell pool. 
 
The range of the maturated value assigned to a selected attribute is 
centered at the attribute’s initial value and spanned over the 
difference between 1 and the ARB’s stimulation value. In other 
words, mutated ARB offspring of highly stimulated cells are only 
allowed to explore and mutate to a value near its initial state while 
less stimulated ARB offspring are allowed to mutate over a lager 
range.  

Next, the ARBs will compete for survival based on the concept of 
resource allocation mechanism [4], where the ARBs are allocated 
a number of resources proportional to their normalized stimulation 
values. The resulting ARBs with insufficient resources are 
subsequently pruned (i.e. meta-dynamic phase). The average 
simulation level for the ARBs is then computed based on the 
following equation: avg_stimulation୧ = 	 ∑ ௔௕ೕ.௦௧௜௠௨௟௔௧௜௢௡|ಲಳ೔|ೕసభ |஺஻೔| 	, 	ܽ ௝ܾ	 ∈  ௜ (3)ܤܣ	

where AB refers to the ARB pool, ab ε AB; |ABi| is the number of 
ARBs in class i. The average stimulation is then compared with 
the user-defined stimulation threshold. If it is greater than the 
user-defined threshold, the training cycle stops for that training 
instance. Otherwise, the training cycle repeats.  

Once the termination condition is satisfied, the most stimulated 
ARB is selected as the candidate memory (CM) cell. If this CM 
cell’s stimulation level is higher than all the memory cells in the 
established memory (EM) set (i.e. collection of ARBs that have 
survived the resource competition stage), then it is added into the 
EM set. Otherwise, this CM cell is discarded. Finally, replacement 
of the EM cells is carried out first by computing the memory cell 
replacement cutoff value as defined as: Cutoff = AT ∗ ATS (4) 

where AT refers to affinity threshold and ATS denotes affinity 
threshold scalar. If the affinity between this CM cell and the best 
affiliated memory cell found previously (i.e. EM cell) is below the 
cutoff value, the EM cell will be removed and replaced with the 
CM cell. Consequently, the next training instance is deployed to 
the AIRS2 algorithm until all the training instances are presented. 
This process ultimately identifies a set of representative memory 
cells that provides a generalized representation of the pattern that 
underlies the data, which will then be used for classification. The 
classification algorithm employed is K-nearest neighbour (KNN) 
where the classification outcome for each unseen data instance is 
determined by taking the majority vote of the k most stimulated 
EM cells. For a more detailed description of the algorithm, readers 
can refer to [3, 6]. 

  

CellAff  affinity(mccandidate, mcmatch) 
Densitycount  0 
foreach (agi in AG) 
do 

AntigenAff  affinity(agi, mccandidate) 
if (AntigenAff < AT*Radiusdensity) 

Densitycount  Densitycount + 1 
end 

done 

Densityratio  
ୈୣ୬ୱ୧୲୷ౙ౥౫౤౪ୈୣ୬ୱ୧୲୷ౣ౗౮  

if (CellAff < (1- Densityratio) * AT * ATS) 
MC  MC - mcmatch 

end 
MC  MC ⋃	mccandidate 

Figure 3: Pseudo-code for Memory Cell Introduction used in 
EDC-AIRS Algorithm  
Densitycount represents the number of antigens that is proximal to the 
candidate memory cell. Densitymax denotes the maximum number of 
antigen present in the training data. 
 

3. Material & Methods 
3.1 EVOLUTIONARY DATA-CONSCIOUS AIRS 

(EDC-AIRS) ALGORITHM 
This study formulates a novel immune-inspired (EDC-AIRS) 
algorithm that employs several natural immune mechanisms. In 
particular, how antibodies evolve and adapt to the different 
concentration, location and type of foreign antigens are being 
mimicked in addition to those proposed by the AIRS2 algorithm. 
This, when implemented as a high fidelity computational 
technique, empowers the algorithm with the ability to 
independently adapt to the distinct (1) density, (2) distribution and 
(3) characteristics of each data class. 

Firstly, the ability to adapt to the different (local) density present 
in the data was addressed by the observation of the rapid growth 
of macrophages and B-Cells in response to the invasion of foreign 
antigens (particularly, at the regions of infection). More 
specifically, a relative proportion of antibodies to antigens were 
necessary to neutralize the harmful agents. This mechanism was 
incorporated in the EDC-AIRS algorithm by allowing a relatively 
larger number of ARBs to survive in regions that are more 
densely populated with training data. Implementation was carried 
out by removing and modifying some of the criteria present in the 
original AIRS2 algorithm. In particular, the way the memory cells 
are introduced into the system is modified. The original pseudo-
code for memory cell introduction [3] used in AIRS2 algorithm is 
shown in Figure 2. The criterion that requires the candidate 
memory cell (mccandidate) to be more stimulated (by the training 
antigen, ag) than the matched memory cell (mcmatch) before it was 
added to the memory cell pool was first removed. The reason for 
doing so is to encourage new ARBs that are highly stimulated 
(ensured by the high stimulation threshold adopted) to survive 
within the system.  Secondly, computation of the density 
(Densitycount) proximal to mccandidate, based on the initial set of 
training antigens (AG), was implemented in the algorithm. The 
degree of proximity was determined by a user-defined parameter, 
Radiusdensity. Additionally, the maximum density (Densitymax) 
present in AG was also computed based on the same approach. 
However, another user-defined parameter (Radiusmax) was used to 
determine the size of the region to be considered. 
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convergence of both runs (i.e. no improvement after 10 
generations or the maximum number of generations has been 
reached), both the populations were merged and re-optimized by 
GA once again. 

Finally, the ability to adapt to the characteristics of the data was 
performed by mimicking the genetic recombination and somatic 
hyper-mutation of gene segments scattered along the chromosome 
of the genome when forming a natural antibody. This process 
produces highly specific surface receptors of B-Cell necessary to 
recognize and bind to a certain type of antigen (that possess 
distinct structure). From a computational perspective, this was 
achieved through feature selection where a subset of informative 
features, that could capture the true patterns underlying the 
particular dataset, was selected for the learning process. GA was 
selected to perform this feature selection task as it has the 
potential to generate the optimal feature subset [10]. The GA 
parameters were determined experimentally and kept constant 
between benchmarks. The setup details of GA are as follow: 
population size: 100; maximum generation: 100; natural selection: 
stochastic universal sampling; crossover type: discrete 
recombination; crossover probability: 0.8; mutation rate: 1/P, 
where P is the number of parameters. The value of the EDC-AIRS 
parameters that was either assigned (i.e. given as a constant value) 
or tuned by GA (i.e. given as a range of value) are as follow: seed: 
1; clonal rate: 10; hyper-mutation rate: 2; stimulation threshold: 
0.9; initial memory pool size: [0, 200]; K-nearest neighbor value: 
[1, 15]; affinity threshold scalar: [0, 1]; total resource: [150, 300]; 
Radiusdensity = [0, 3]; Radiusmax = [0, 3]. 

The performance of EDC-AIRS algorithm was evaluated with 4 
benchmarking datasets, namely the Fisher’s Iris, Ionosphere, Pima 
Indians Diabetes and Sonar Datasets. Hold-out validation was 
performed on the Ionosphere dataset while cross-validation was 
performed on the remaining 3 datasets. More specifically, the first 
200 data items of the Ionosphere dataset was selected as the 
training data and was tested on the remaining 151 data items. As 
for the Iris, Pima Indians Diabetes and Sonar datasets, 5, 10 and 
13-fold cross-validation was carried out respectively. The reason 
for choosing such validation strategy was to remain comparable to 
other experiments reported in the literature. Further details about 
the validation procedures applied on these benchmarking datasets 
can be found in [11]. 

3.2 Dataset 
Four benchmarking datasets obtained from [12] were used to 
evaluate the performance of the novel EDC-AIRS algorithm. A 
brief description of these datasets is as follow: 
1. Fisher’s Iris Dataset – Consists of 4 features that describe the 

length and width of the sepal and petal. Three classes exist 
which represent the type of the iris plant (i.e. Iris Sentosa, Iris 
Vericolour and Iris Virginica). It has a sample size of 150 
with 50 instances per class. The Iris Sentosa class is linearly 
separable from the other 2 classes while the Iris Vericolour 
and Iris Virginica classes are not linearly separable from each 
other. 

2. Ionosphere Dataset – A binary class classification problem 
that contains 351 instances and 34 features. The 2 classes 
represent “good” or “bad” radar returns. The “good” radar 
returns refer to those that show some types of structure in the 
ionosphere while “bad” radar returns have their signals passed 
through the ionosphere.  

3. Pima Indians Diabetes Dataset – Patients in this dataset are all 
females who are at least 21 years of age and are of Pima 
Indian heritage. It is a binary class classification problem that 
aims to distinguish between patients tested positive for 
diabetes and those who are not. It contains 768 instances and 
8 features.  

4. Sonar Dataset – The objective of this experiment is to 
determine whether an object is a mine (metal) or rock by 
bouncing sonar signal off the object at various angles and 
conditions. It contains 208 instances and 60 features. 

In order to investigate on how different data class distribution 
affects the performance of the classification algorithm, several 
additional benchmarking datasets were acquired from [12]. Both 
similar and dissimilar distributions among the data classes were 
assumed for these datasets. Experiments were then conducted 
using these 10 datasets, with different degree of data class 
distribution (as determined by the computed ATSR value), to 
determine the impact of data class distribution on the algorithm’s 
classification performance.  

 

Table 1: Empirical Experiments with ATSR based on Datasets with Different Data Class Distribution 

Measurement Ionosphere Iris Wine ks_yr50611 MAGIC 
Pima Indians 

Diabetes 
Hill-

Valley 
Bupa-Liver 

Disorder 
Sonar 

Statlog 
Heart 

#Instances 200 100 178 270 19020 768 606 345 208 270 
#Attributes 34 4 13 253 10 8 100 6 60 13 
#Classes 2 3 3 2 2 2 2 2 2 2 
#Class1 Instances 99 50 59 135 12332 268 305 145 97 120 
#Class2 Instances 101 50 71 135 6688 500 301 200 111 150 
#Class3 Instances - 50 48 - - - - - - - 
Validation Type Holdout 5-CV LOO 10-CV 5-CV 10-CV Holdout 10-CV 13-CV 10-CV 
Class 1 AT 0.437 0.106 0.162 0.308 0.160 0.217 0.121 0.157 0.271 0.427 
Class 2 AT 0.266 0.129 0.223 0.408 0.209 0.183 0.107 0.167 0.283 0.408 
Class 3 AT - 0.152 0.185 - - - - - - - 
Overall AT 0.371 0.288 0.266 0.366 0.187 0.202 0.114 0.164 0.283 0.448 
ATSR 0.609 0.698 0.727 0.756 0.764 0.842 0.885 0.937 0.957 0.957 
Acc. for Similar 
Distribution 

96.7% 99.0% 98.9% 65.9% 83.1% 77.3% 56.3% 69.9% 88.5% 84.8% 

Acc. for Dissimilar 
Distribution 

97.4% 99.6% 99.6% 67.0% 82.8% 77.1% 55.7% 69.6% 87.0% 83.7% 

Accuracy (Acc.) was used to evaluate how datasets with varying degree of data class distribution affects the performance of the algorithm. The dataset 
‘ks_yr50611’, which uses the CHS dataset, predicts the occurrence of MI (from year 6 to 11) based on a balanced case-control sample obtained in year 5.  
AT means affinity threshold, CV denotes cross-validation and LOO refers to leave-one-out cross-validation. 



Table 2: Classification Performance of the Benchmarking Datasets with Different Issues Addressed 

Experiment Description Iris Ionosphere 
Pima Indians 

Diabetes 
Sonar 

1 AIRS2 96.0% 95.6% 74.2% 84.9% 

2 GA-AIRS2 98.7% 97.4% 77.3% 86.5% 

3 Density 98.7% 96.7% 77.3% 88.5% 

4 Density & Distribution 99.6% 97.4% 77.3% 88.5% 

5 Density, Distribution and Characteristics (EDC-AIRS) 99.6% 98.0% 77.3% 90.9% 

Using GA-AIRS2 as the base algorithm, the techniques described in experiments 3, 4 and 5 are implemented respectively. 
 
A succinct description of these datasets is as follow: 

1. Wine Dataset – Contains results obtained from the chemical 
analysis of 3 different cultivars grown in the same region in 
Italy. It is a tri-nary classification problem that consists of 
178 instances and 13 features. 

2. Magic Dataset – This dataset, obtained from the Major 
Atmospheric Gamma Imaging Cherenkov (MAGIC) 
Telescope project, is a Monte Carlo generated data that aims 
to simulate the registration of high energy gamma particles in 
a ground-based atmospheric Cherenkov gamma telescope. It 
is a binary class classification problem which contains 19020 
instances and 10 features. 

3. Hill-Valley Dataset – This dataset consists of 606 instances, 
100 features and 2 classes. Each instance represents 100 data 
points. When plotted (in the given order) on a 2-dimensional 

graph, the resultant plot would represent either a hill (a 
“bump” in the terrain) or a valley (a “dip” in the terrain).  

4. Bupa Liver Disorder Dataset – This dataset contains 
examination results (e.g. quantity of alcoholic beverages 
consumed per day and blood tests) of males which are used 
to investigate liver disorders. It has a total of 345 instances 
and 6 features. 

5. Statlog Heart Dataset – Investigation of the presence or 
absence of heart disease in an individual is carried out 
based on various medical diagnoses. This result is dictated 
in this dataset, which contains 270 instances and 13 
features. 

6. Cardiovascular Health Study (CHS) Dataset – This dataset, 
as described in [13], is an epidemiology study of risk factors 
for cardiovascular diseases in elderly aged 65 and above. 

 
Table 3: Performance Comparison of Different Classification Algorithms – Modified from [3] 

 Iris Ionosphere Pima Indians Diabetes Sonar 
Rank Algorithm Acc Algorithm Acc Algorithm Acc Algorithm Acc 

1 
Grobian 
(rough) 

100% 
3-NN + 
Simplex 

98.7% Logdisc 77.7% 
TAP MFT 
Bayesian 

92.3% 

2 
EDC-AIRS 99.6% EDC-AIRS 98.0% IncNet 77.6% EDC-AIRS 90.9% 
   DIPOL92 77.6%   

3 

SSV 98.0% 3-NN 96.7% EDC-AIRS 77.3% 
Nave MFT 
Bayesian 

90.4% 

C-MLP2LN 98.0% IB3 96.7% 
Linear Disc. 
Analysis 

77.5 – 
77.2% 

SVM 90.4% 

PVM 2 rules 98.0%     
Best 2-layer 
MLP + BP, 12 
hidden 

90.4% 

4 
PVM 1 rule 97.3% MLP + BP 96.0% SMART 76.8% AIRS2 84.9% 

   
GTO DT 
(5xCV) 

76.8%   

5 
AIRS 96.7% AIRS2 95.6% ASI 76.6% 

MLP+BP, 12 
hidden 

84.7% 

FuNe-I 96.7%       
NEFCLASS 96.7%       

6 
AIRS2 96.0% AIRS 94.9% 

Fischer Disc. 
Analysis 

76.5% 
MLP+BP, 24 
hidden 84.5% 

CART 96.0% C4.5 94.9%    

7 FUNN 95.7% RIAC 94.6% MLP+BP 76.4% 
1-NN, 
Manhanttan 

84.2% 

8   
SVM 93.2% LVQ 75.8% AIRS 84.0% 
  LFC 75.8%   

9   
FSM + 
rotation 

92.8% RBF 75.7% FSM 83.6% 

10  

1-NN 92.1% 
kNN, k=22, 
Manh 

75.5%   

 
MML 75.5% 

 
NB 

75.5 – 
73.8% 

…     … …   
n     AIRS2 74.2%   

n+1     AIRS 74.1%   

‘Acc’ denotes the classification accuracy. 



The cohort consists of elderly subjects from four U.S. 
communities, namely Forsyth County, North Carolina; 
Sacramento County, California; Washington County, 
Maryland; and Pittsburgh, Pennsylvania. Data collected in 
year 5 of the CHS study was utilized. The balanced case-
control sample size consists of 270 instances and 253 
features. It is a binary class classification problem (i.e. with 
or without myocardial infarction). 

4. EXPERIMENTAL RESULTS 
EDC-AIRS algorithm was developed by extending AIRS2 
algorithm. Three areas of optimization were carried out, each 
addressing an aspect of the phenomenon observed in the natural 
immune system (i.e. the concentration, distribution and 
characteristics of the antigens). In order to better generate a set of 
representative memory cells, it is necessary to empirically 
determine the ATSR threshold first. To perform this investigation, 
10 datasets with different degree of data class distribution were 
evaluated. The ATSR value of these datasets ranges from 0.609 to 
0.957, where a lower value indicates that the distribution of the 
data classes differs by a larger degree. Both classification with a 
common set of parameter (assuming similar distribution among 
data classes) and a distinct set of parameters for each data class 
(assuming dissimilar distribution among data classes) were 
performed. Based on the results shown in Table 1, it is indicative 
that with an ATSR value of 0.756 and below, a distinct parameter 
set for each data class is capable of achieving a higher accuracy. 
Therefore, an ATSR threshold of 0.76 was used for the rest of the 
experiments. 

The performance of the proposed EDC-AIRS algorithm was 
evaluated using 4 benchmarking datasets. The algorithm was 
evaluated 3 times with consistent classification result obtained 
each time (i.e. standard deviation of 0). The classification 
accuracy for the incremental implementation of the 3 
aforementioned mechanisms is given in Table 2. Baseline 
comparison was made with GA-AIRS2 algorithm - an AIRS2 
algorithm with its parameters tuned via GA. It is noteworthy that 
GA-AIRS2 performs better than AIRS2 for all 4 benchmarking 
datasets.  

With the implementation to address the density issue (Table 2 – 
experiment 3), ameliorated performance was observed for the 
Sonar dataset. However, the performance on the Ionosphere 
dataset exacerbates while the performance for the rest of the 
datasets remains comparable. With the additional implementation 
to amortize the impact of different distribution exhibited by each 
data class (Table 2 – experiment 4), the deterioration in 
performance observed previously on the Ionosphere dataset 
vanished. Moreover, the accuracy obtained for the Iris dataset 
improved while the accuracy for both Pima Indians Diabetes and 
Sonar datasets remain the same. Finally, when the characteristic 
of the dataset was delved into (Table 2 – experiment 5), further 
improvement in accuracy for Ionosphere and Sonar datasets was 
obtained. Accuracy for Iris and Pima Indians Diabetes datasets 
remains unchanged, probably due to the limited features available 
for selection (i.e. 4 and 8 features respectively).  

A comparison of EDC-AIRS algorithm with other well-known 
classifiers (as presented in [3]) is provided in Table 3. The 
EDC-AIRS algorithm has shown promising results, clinching a 
place in the top 3 positions for all the datasets evaluated.  

5. Discussion  
We have developed an immune-inspired supervised classification 
algorithm called EDC-AIRS that have shown improved learning 

and classification capability. The success of the algorithm is 
primarily due to the recognition of the importance of additional 
immune metaphors, namely the ability to adapt to the different 
concentration, distribution and characteristics of the antigens. 
However, the EDC-AIRS algorithm did not achieve ameliorated 
performance for all classification problems investigated in this 
study (e.g. Pima Indian Diabetes dataset). This is not surprising as 
every learning algorithm has an inductive bias that would work 
reasonably well for some, but not all, datasets or application 
domains [1]. This phenomenon has been described as the selective 
superiority problem [14].  

The AIRS2 parameters reported in [3] has been tuned manually. 
This apparently hinders the true potential of the AIRS2 algorithm. 
As demonstrated, the employment of GA to optimize the AIRS2 
parameters (i.e. GA-AIRS2) improved the classification accuracy 
(ranging from 1.6% to 3.1% improvement) for all the 4 
benchmarking datasets investigated. Clearly, this indicates that 
optimization of parameters with an evolutionary computing 
algorithm (e.g. GA) that is capable of dynamically searching 
through the defined search space is invaluable in discovering the 
optimal parameter setting. This is especially so when dealing with 
datasets from various application domains where the patterns that 
underlie these data would be very different, causing exhaustive 
manual tuning of the parameters to flounder as it would be very 
time consuming to carry out this task. 

The EDC-AIRS algorithm, when juxtaposed with the AIRS2 
algorithm, has several distinctive strengths when learning the 
underlying patterns within the data. Firstly, by adopting a 
mechanism to handle the different data density exhibited at 
different regions, it is capable of producing representative 
memory cells that could better characterize and capture the real 
data pattern. As a result, it is at an advantage when applied on 
datasets (such as Sonar dataset) that have data density which tends 
to fluctuate at different regions. Secondly, the EDC-AIRS 
algorithm is more capable at dealing with difference in 
distribution among data classes, generating representative 
memory cells for each data class. The ability to do so is important 
because it is unlikely for different data classes to have the same 
distribution and even more unlikely for a classifier to recognize 
and robustly adapt to such deviation without explicitly allowing 
for it. Efforts were therefore taken in this work to calculate the 
ATSR value and to determine whether to optimize a common or 
distinct parameter set. Ten datasets from diverse domains with 
different characteristics were used to evaluate the importance of 
implementing this technique. Results shown that for datasets with 
ATSR value lesser than 0.76 (e.g. Iris and Ionosphere datasets), it 
is more desirable to have a distinct parameter set for each data 
class. The need to compute the ATSR value and differentiate them 
into similar or dissimilar distribution is not an essential step but is 
advantageous to do so. This is because it is theoretically possible 
for GA to tune the parameter set meant for dissimilar distribution 
to one suitable for similar distribution. However, it is 
computationally intensive to do so. Therefore, by performing this 
simple step of differentiation, it can help to alleviate the 
complexity involved when tuning the parameters with GA. This 
complexity is introduced by the (linear) increase in the number of 
parameters that needs to be tuned, which in turn contributed to an 
exponential increase in the search space. This makes the task of 
discovering the optimal value for the parameters very challenging. 
This problem is commonly referred to as the ‘curse of 
dimensionality’ [15].  

Finally, the EDC-AIRS algorithm is capable of selecting features 
that are highly informative and relevant. This avoids some of the 



difficulties when dealing with datasets (e.g. Ionosphere and Sonar 
datasets) that have irrelevant or redundant features which often 
jeopardize the algorithm’s ability to learn and generalize. 
Moreover, it has the crucial advantage of identifying important 
features that best associate with an outcome, building a 
parsimonious classification model as a result. This property is 
highly desirable in accordance to the law of parsimony (Occam’s 
razor principle [16]) where a simpler model with minimal 
complexity is preferred. 

When EDC-AIRS algorithm was benchmarked with 4 datasets, 
promising results were obtained consistently. It outperforms 
AIRS2 algorithm in all the 4 cases. The increase in classification 
accuracy is 3.6%, 2.4%, 3.1% and 6% for Iris, Ionosphere, Pima 
Indians Diabetes and Sonar dataset respectively. This suggests 
that EDC-AIRS algorithm is a robust learner that is capable of 
adapting to different profound data patterns and structures. 

6. CONCLUSION 
Further inspired by the characteristics of the natural immune 
system, we have developed an adaptive and robust supervised 
classification algorithm called the EDC-AIRS algorithm. The 
performance of the proposed algorithm was evaluated with 4 
benchmarking datasets. When ranked with other classifiers, the 
classification performance of EDC-AIRS algorithm is in the top 3 
positions for all the datasets evaluated. Ameliorated performance 
achieved by the algorithm signifies the importance of empowering 
an algorithm with the ability to independently adapt to the distinct 
density, distribution and characteristics of each data class. 
However, this approach does not guarantee improved performance 
for all classification problems in face of the selective superiority 
problem. 
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 

Abstract — Myocardial infarction (MI) is one of the leading 
causes of death in many developed countries. Hence, early 
detection of MI events is critical for effective preventative 
therapies, potentially reducing avoidable mortality. One 
approach for early disease prediction is the use of risk 
prediction models developed using machine learning 
techniques. One important component of these models is to 
provide clinicians with the flexibility to customize (e.g. the 
prediction range) and use the risk prediction model that they 
deemed most beneficial for their patients. Therefore, in this 
paper, we develop MI prediction models and investigate the 
effect of sample age and prediction resolution on the 
performance of MI risk prediction models. The cardiovascular 
health study (CHS) dataset was used in this study. Results 
indicate that the prediction model developed using SVM 
algorithm is capable of achieving high sensitivity, specificity 
and balanced accuracy of 95.3%, 84.8% and 90.1% 
respectively over a time span of 6 years. Both sample age and 
prediction resolution were found not to have a significant 
impact on the performance of MI risk prediction models 
developed using subjects aged 65 and above. This implies that 
risk prediction models developed using different sample age 
and prediction resolution is a feasible approach. These models 
can be integrated into a computer aided screening tool which 
clinicians can use to interpret and predict the MI risk status of 
the individual patients after performing the necessary clinical 
assessments (e.g. cognitive function, physical function, 
electrocardiography, general changes to health/lifestyle, and 
medications) required by the models. This could offer a means 
for clinicians to screen the patients at risk of having MI in the 
near future and prescribe early medical intervention to reduce 
the risk. 
 

Index Terms — Classification, clinical decision support 
system, clinical risk prediction, medical screening, myocardial 
infarction. 
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I. INTRODUCTION 
HE best practice to avoid human mortality caused by life 
threatening diseases like myocardial infarction (MI) is 
to detect them early and prevent their onset. One 

approach is to devise computational methods that capitalize 
on clinical biomarkers to better screen the patients for their 
potential risk of experiencing (future) MI. Broadly, clinical 
screening/risk prediction tools are very important as it could 
potentially lead to the following benefits at the individual 
patient-level: for example, (1) when patients become 
knowledgeable of their health risk and with good 
physician-patient therapeutic relationship, they would be 
more willing to make changes to their lifestyle and adhere to 
treatment regimens [1], (2) allows clinicians to promptly 
recommend effective therapeutic or preventive measures 
(e.g. lifestyle changes, treatment of subclinical 
manifestation, etc.) to their patients [2], and (3) if such 
screening tools were to be integrated into electronic health 
record system and executed automatically to analyze 
individuals’ health risk, the number of unscreened patients 
who are at risk of a disease could be reduced dramatically [3]. 
The key ramification of wide adoption of clinical screening 
tools is the possibility of significantly reducing the number 
of avoidable mortality. However, the development of 
versatile, reliable and accurate computer aided MI screening 
tools which the clinicians can use in the clinics/hospitals to 
instantly predict patients’ risk remains a challenge.  

The conventional approaches for assessing the risk of 
individuals experiencing MI include risk scoring system and 
survival curves [4-6]. These, however, have limitations like 
the inability to substantially identify minority of individuals 
with subsequent risk of experiencing MI [7]. Moreover, 
clinical biomarkers and symptoms seldom follow a linear 
relationship and the expected outcome at the individual 
patient-level does not always abide by the rules of 
epidemiology [8]. As a result, conventional risk scoring 
systems – which model relationships in a linear manner - 
often flounder in view of these challenges [9, 10]. 

In recent years, there is an exponential increase in the 
amount of clinical and molecular data collected from routine 
medical examination. To overcome the challenges 
associated with human scale of thinking and analysis, data 
mining techniques – which have been postulated as a 
“central feature” for future healthcare system [11] – became 
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a popular method for extracting insights from this data 
deluge. Advantages of using data mining techniques include 
the capability of dealing with plethora of information, 
solving non-trivial problems, producing data-driven 
prediction models, and handling non-linear relationships 
among biomarkers. Examples of data mining techniques 
used to estimate disease risk include work from: (1) Wiens et 
al. [12] who employed support vector machine (SVM) to 
identify patients who are at high risk of experiencing 
hospital acquired Clostridium difficile (C. diff); and (2) 
Khan et al. [13] who used artificial neural network (ANN) 
for discriminating small, round blue-cell tumors (SRBCTs).  

One important component of risk prediction tools is to 
provide clinicians with the flexible to customize (e.g. change 
the range and how far into the future the prediction would be) 
and use a risk prediction model that they deemed most 
beneficial for their patients. To this end, we explore the 
possibility of customizing MI risk prediction models to 
better meet the patients’ needs and clinicians’ expectation. 
Particularly, the effect of sample age and prediction 
resolution – 2 aspects that are not commonly examined in 
the literature – on the performance of MI risk prediction 
models constructed using Support Vector Machine (SVM) 
[14-16] and Evolutionary Data-Conscious Artificial 
Immune Recognition System (EDC-AIRS) [17] algorithms 
were investigated. Here, sample age refers to the average age 
of individuals found in the baseline (i.e. input) dataset used 
to construct the clinical risk prediction model while 
prediction resolution refers to the prediction scale (i.e. 
number of years into the future where prediction of MI 
occurrence begins) and interval (i.e. time duration, in years, 
that marks the start and end of MI outcomes to be considered) 
employed by the clinical risk prediction model.  

In view of the rapid aging population worldwide and the 
relatively high prevalence of MI among the elderly, 
participants amassed from the Cardiovascular Health Study 
(CHS) [18] – consisting of subjects aged 65 and above - 
were analyzed. Further, with the wide range of clinical 
measurements and risk factors accrued during the CHS 
observational study, it makes the CHS dataset a valuable 
source of information for this work. 
 The rest of the paper is organized as follows. Section II 
provides details of CHS dataset, and delineates the 
methodology involved in developing the predictive models. 
Section III provides the experimental results achieved by the 
risk prediction models developed using different 
combinations of sample age and prediction resolution. Key 
results are discussed in Section IV and conclusions are 
drawn in Section V. 

II. MATERIALS AND METHODS 
In Section IIA, details of CHS dataset are provided. This 

dataset, however, consists of a significant percentage of 
missing data and a highly skewed data distribution 

(commonly known as the class imbalanced data problem). 
Hence, for effective analysis, data imputation and class data 
balancing are performed and described in Section IIB and 
IIC respectively. Section IID explains how the various MI 
risk prediction models based on different combinations of 
baseline data and prediction resolution were developed and 
validated.  

A. Cardiovascular Health Study (CHS) Dataset 
The CHS dataset, as described in [18], is an epidemiology 

study of risk factors for cardiovascular diseases in elderly 
aged 65 and above. It contains 2 cohorts recruited at 
different phases. The first cohort consists of 5201 subjects 
from four U.S. communities, namely Forsyth County, North 
Carolina; Sacramento County, California; Washington 
County, Maryland; and Pittsburgh, Pennsylvania. An 
additional 687 African Americans were subsequently 
recruited forming the second cohort. Eligible individuals 
were sampled from Medicare eligibility lists in each area. 
Eligible participants include all individuals sampled from 
the Health Care Financing Administration (HCFA) sampling 
frame - they were 65 years or older at the time of 
examination, non-institutionalized, expected to remain in the 
area for the next 3 years, and able to give informed consent 
and did not require a proxy respondent at baseline. 
Individuals who were wheelchair-bound at home at baseline 
or receiving hospice treatment, radiation therapy or 
chemotherapy for cancer were excluded. Eligible 
individuals were examined yearly from 1989 to 1999. 
Extensive physical and laboratory evaluations were carried 
out to identify the presence and severity of CVD risk factors 
- such as hypertension; hypercholesterolemia and glucose 
intolerance; subclinical disease, such as carotid artery 
atherosclerosis; left ventricular enlargement; and transient 
ischemia. Criteria for identification of MI events include: 
observation of evolving Q-wave, cardiac pain and abnormal 
enzymes together with an evolving ST-T pattern or new left 
bundle branch block. The reason for choosing the CHS 
dataset was because of (1) the relatively high prevalence of 
CHD among the elderly, (2) worldwide demographic aging, 
(3) paucity of information regarding risk factors for CHD 
among elderly, and (4) the changing clinical characteristics 
of CHD with advancing age [18-21].  

B. Data Imputation  
Data imputation is the process of substituting missing 

entries in a dataset with plausible values and aims to 
improve the quality of the data. It was performed using 
weighted K-nearest neighbor (KNN) because of its excellent 
performance in estimating missing values [22, 23]. 
Moreover, it has the capability to estimate both qualitative 
and quantitative attributes. Hence, it is highly suitable for 
interpolating the missing values in the CHS dataset. 

Individuals with unknown MI status and clinical features 
that were uninformative (i.e. features with consistent value 
throughout) were first removed from the analysis. 
Individuals and clinical features with high percentage of 
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Table 1: Details of the Imputed CHS Dataset 
Prediction 

Model 
Sample Size* 

(cases/controls) #Features Age 
(Mean±SD) 

yr50611 3102 
(6.2%/93.8%) 237 75.7 ± 5.34 

yr50607 3102 
(2.4%/97.6%) 237 75.7 ± 5.34 

yr50809 3034 
(2.1%/97.9%) 237 75.7 ± 5.34 

yr51011 2978 
(2.1%/97.9%) 237 75.7 ± 5.36 

yr70811 2407 
(2.1%/97.9%) 233 77.2 ± 5.40 

yr70809 2407 
(2.1%/97.9%) 233 77.2 ± 5.40 

yr71011 2362 
(2.0%/98.0%) 233 77.2 ± 5.40 

yr91011 1909 
(1.9%/98.1%) 242 78.8 ± 5.09 

*This sample size refers to the number of individuals that remain in the 
CHS dataset after removal of records with significant missing entries. 
‘yrXYYZZ’ denotes that the prediction model uses clinical 
measurements observed  in year X to make prediction of whether one 
would experience MI from year YY to ZZ. 
 

statistical learning theory and is capable of solving linearly 
and non-linearly separable problems. Fundamentally, SVM 
performs classification through the construction of an 
N-dimensional hyper-plane that optimally separates the data 
into two or more categories whereby the margin of 
separation between the different categories is maximized. 

EDC-AIRS algorithm [17] is a supervised classification 
algorithm inspired by the principles and processes 
associated with the human immune system. It performs 
classification by first constructing a pool of memory cells 
(i.e. candidate solutions in the form of data vectors) that are 
representative of the training data through repetitive 
optimization of the (values of the) memory cells. 
Optimization was carried out by robustly adapting the 
memory cells to the different density, distribution and 
characteristics exhibited by each data class in the training 
data. Finally, with the utilization of the generated memory 
cells pool, KNN is used to classify unseen data observations. 
This algorithm, when tested on several widely benchmarked 
datasets, has demonstrated highly competitive classification 
performance [17]. To adopt a ceteris paribus experimental 
design, the parameters for both algorithms were first tuned 
using Genetic Algorithm (GA) and subsequently, feature 
selection was conducted (using GA) to identify predictive 
biomarkers. The GA parameters were determined 
experimentally to work well with this clinical prediction 
problem and kept constant for all experiments. The setup 
details of GA are as follow: population size: 100; maximum 
generation: 100; natural selection: stochastic universal 
sampling; crossover type: discrete recombination; crossover 
probability: 0.8; mutation rate: 1/P, where P is the number of 
parameters/features. The parameter details for SVM are: 
kernel function: radial basis function (RBF); cost: [2-5, 213]; 
gamma: [2-15, 23]; and for EDC-AIRS are: seed: 1; clonal  
 

Table 2: Details of Datasets Used to Build the Prediction Models 

Prediction 
Model 

#Training  
Instances 

#Validation  
Instances 

McNemar’s Test# 
(p-value) 

SVM vs EDC-AIRS 
yr50611 270 114 <0.01 
yr50607 104 42 <0.01 
yr50809 92 38 <0.01 
yr51011 88 36 <0.01 
yr70811 136 58 0.31 
yr70809 70 30 0.04 
yr71011 66 28 <0.01 
yr91011 52 20 0.07 

All training and validation datasets contain equal number of cases and 
controls. 
#The p-value of McNemar’s test is presented examining whether the 
performance of the SVM algorithm is statistically different from 
EDC-AIRS algorithm. 
 

rate: 10; hyper-mutation rate: 2; stimulation threshold: 0.9; 
initial memory pool size: [0, 200]; KNN value: [1, 15]; 
affinity threshold scalar: [0, 1]; total resource: [150, 300]; 
Radiusdensity = [0, 3]; Radiusmax = [0, 3].  

Clinical data - recorded during the 5th to 11th year in which 
the CHS clinical study was undertaken - were utilized. The 
reason for using clinical data recorded from year 5 onwards 
was because clinical examinations taken by the two different 
cohorts recruited at different phases synchronized from that 
year onward. The reason for ending the prediction at year 11 
is because from year 12 onwards, participants were only 
monitored annually via phone calls and no clinical 
examinations were conducted. 

To test the hypothesis, prediction models - using different 
baseline datasets (with different sample age) - capable of 
predicting the risk of experiencing MI at various prediction 
scales and intervals were developed. As illustrated in Figure 
1, 8 different prediction models were designed to investigate 
how time factor in relation to the onset of MI would affect 
the performance of the prediction model. Three different 
baseline datasets were used. These datasets contain clinical 
examination results recorded in year 5, year 7 and year 9 of 
the CHS study. Each of these datasets was used to predict 
future. Three different prediction scales (1, 3 and 5 years) 
and 3 different prediction intervals (2, 4 and 6 years) were 
investigated. Specifically, healthy individuals present in 
year 5 of the CHS dataset were used as the baseline data to 
predict whether one would experience MI from year 6 to 11 
(prediction scale: 1 year; prediction interval: 6 years), year 6 
to 7 (prediction scale: 1 year; prediction interval: 2 years), 
year 8 to 9 (prediction scale: 3 years; prediction interval: 2 
years) and year 10 to 11 (prediction scale: 5 years; prediction 
interval: 2 years). Similarly, clinical examination results of 
healthy participants in year 7 was initialized as the baseline 
data, where prediction of whether one would suffer from MI 
whether an individual would experience MI in the near from 
year 8 to 11, year 8 to 9 and year 10 to 11 were conducted. 
Likewise, clinical data recorded in year 9 was utilized to 
perform prediction of MI occurrence from year 10 to 11. 
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(a) Sensitivity Performance Metric 

 
(b) Specificity Performance Metric 

 
(c) Balanced Accuracy Performance Metric 

Figure 3: Classification Performance of SVM and EDC-AIRS 
Algorithms (Cross-Validated) 
These performance measurements were obtained by performing 10-fold 
cross validation for each prediction model. 

 

Each baseline dataset was randomly split into two subsets 
having balanced class distribution. The first subset contains 
70% of the initial data. Using this subset, the prediction 
model was trained and tuned based on 10-fold 
cross-validation. The second subset, which contains the 
remaining 30% of the data, was used to validate the 
developed model. This splitting process was repeated 3 
times and independently used to develop and test the 
respective prediction model. It is highly encouraged to do so 
to avoid the developed model from capturing not only the 
true associations, but, also, idiosyncratic features of the 
training data, which often produces an overly optimistic 
model [33]. Three commonly used performance 
measurements were employed to evaluate the prediction 
models developed - namely sensitivity, specificity, and 
balanced accuracy (i.e. average between sensitivity and 
specificity). 

Finally, to determine whether the prediction models 
developed using SVM and EDC-AIRS algorithms are 
statistically different from each other, McNemar’s test was 
conducted. This statistical test was chosen as it has been  
 

 
(a) Sensitivity Performance Metric 

 
(b) Specificity Performance Metric 

 
(c) Balanced Accuracy Performance Metric 

Figure 4: Classification Performance of SVM and EDC-AIRS 
Algorithms (Tested with Validation Dataset) 
These performance measurements were obtained by evaluating each 
developed prediction model with their respective validation dataset. 

 

demonstrated to have low type 1 error [34]. For each 
prediction model, this test was carried out by first recording 
the prediction outcomes obtained (by each algorithm) when 
tested using each validation dataset. The results obtained 
from each algorithm were then used to construct the 
contingency table shown in Figure 2. Referring to the figure, 
if the sum of ‘b’ and ‘c’ is greater than 25, chi-square test 
with 1 degree of freedom is used for performing McNemar’s 
test. Otherwise, to provide a better estimation of the small 
sample (i.e. b + c ≤ 25), binomial distribution is used for 
(exact) McNemar’s test. The prediction model is considered 
to be statistically different from the ground truth if the 
p-value computed using McNemar’s test is smaller than 
0.05. 

III. EXPERIMENTAL RESULTS 

A. Data Preprocessing 
Table 1 provides the details of the resulting CHS datasets 

after the removal of records and clinical features with 
significant missing entries. 
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Table 2 offers the details of the datasets used to develop 
and test the MI prediction models after data imputation and 
class data balancing were performed.  

B. MI Risk Prediction Models  
Prediction models - using baseline dataset with different 

sample age - at various time scales and intervals were 
developed using the training datasets. Cross-validation was 
carried out to evaluate the performance of each prediction 
model. For all prediction models developed, results (as 
shown in Figure 3) indicate consistently high predictive 
performance was achieved by both SVM and EDC-AIRS 
algorithms. For example, a balanced accuracy of at least 0.95 
and 0.81 was achieved by SVM and EDC-AIRS algorithms 
respectively.  

To assess whether the prediction models developed 
generalize well, validation was performed using the 
validation datasets. Results, as presented in Figure 4, 
demonstrate that a balanced accuracy of at least 0.81 and 
0.71 was achieved by SVM and EDC-AIRS algorithms 
respectively.  

McNemar’s test was conducted to determine whether the 
performance of SVM and EDC-AIRS algorithms are 
statistically different from each other. Results (as shown in 
Table 2) indicate that for most of the prediction models 
(except prediction models ‘yr70811’ and ‘yr91011’), the 
performance of SVM and EDC-AIRS algorithms are 
statistically different. 

 

IV. DISCUSSION 
 MI risk prediction models developed using baseline 
datasets with different sample age, and based on different 
prediction resolution combinations were analyzed. 
Cross-validation was utilized during the training phase as an 
approach to evaluate and develop potent MI risk prediction 
models. The resultant prediction models developed by both 
algorithms achieved a relatively high sensitivity, specificity 
and balanced accuracy (for SVM algorithm, the respective 
performance achieved is at least 0.94, 0.96 and 0.95; while 
for EDC-AIRS algorithm, the respective performance 
achieved is at least 0.89, 0.62 and 0.81). An investigation of 
whether the prediction models developed were over-trained 
was conducted by validating each developed model with an 
unseen dataset (i.e. not used to develop the prediction 
model). The aim of this step was to assess the 
generalizability of the developed models. Results indicate 
that SVM algorithm (and EDC-AIRS algorithm) – across all 
prediction models tested - achieved a sensitivity, specificity 
and balanced accuracy of at least 0.84, 0.70 and 0.82 (and 
0.84, 0.40 and 0.67) respectively. Furthermore, it can be 
observed that in general there is a drop in the validation 
sensitivity (SVM: 0.060±0.054; EDC-AIRS: 0.073±0.052), 
specificity (SVM: 0.154±0.058; EDC-AIRS: 0.219±0.124) 
and balanced accuracy (SVM: 0.107±0.036; EDC-AIRS: 
0.146±0.070) among all the prediction models developed. It 
is noteworthy that the drop in performance is less severe for  

Table 3: Statistical Evaluation of Prediction Resolution 

Prediction Models Compared 
ANOVA Test# (p-value) 
SVM EDC-AIRS 

Prediction Scale 
yr50607; yr50809; yr51011 0.47 0.71 

yr70809; yr71011 0.25 0.93 
Prediction Interval 

yr50611; yr50607 0.92 0.12 
yr70811; yr70809 0.88 0.14 

#The p-value of ANOVA test is presented examining the 
significance of prediction scale and interval for both SVM and 
EDC-AIRS algorithms. 

 

SVM algorithm (when compared to EDC-AIRS algorithm). 
This shows that SVM algorithm tends to perform better on 
noisy data even after data imputation was conducted. This 
observation is supported by the results obtained from the 
performance of McNemar’s test. From this statistical 
evaluation, it was demonstrated that SVM algorithm 
outperforms EDC-AIRS algorithm for 6 out of 8 prediction 
models tested.  
 Prediction models developed (with SVM algorithm) using 
baseline dataset from year 5 (and year 7), and tested using 
their respective validation datasets have shown comparable 
sensitivity, specificity and balanced accuracy. Analysis of 
variance (ANOVA) test was conducted on the respective 
group of prediction models (i.e. developed using either year 
5 or 7 as baseline dataset) that has a prediction interval of 2 
years. Results demonstrate that they are statistically 
comparable - with p-value of 0.47 for prediction models 
using baseline dataset from year 5 (and 0.25 for prediction 
models using baseline dataset from year 7). This signifies 
that predication scale does not have a significant impact on 
the performance of (SVM-based) prediction models 
developed and tested using subjects aged 65 and above. 
Similar analysis was performed on prediction models 
developed based on different prediction interval. Results 
indicate that these models are statistically comparable – with 
p-value of 0.92 and 0.88 for prediction models developed 
using baseline dataset from year 5 and 7 respectively. This 
means that prediction interval does not have a significant 
impact on the performance of prediction models developed 
using SVM algorithm. 
 As for prediction models developed using EDC-AIRS 
algorithm, similar analysis was conducted. For prediction 
models developed using baseline dataset from year 5 (and 
year 7) that are based on 2-year prediction interval, and 
tested using their respective validation datasets, ANOVA 
test was conducted. Results indicate that the prediction 
models in their respective group are statistically comparable 
– having a p-value of 0.71 (for prediction model using year 5 
baseline dataset) and 0.93 (for prediction model using year 7 
baseline dataset). This indicates that predication scale does 
not have a significant impact on prediction models 
developed using EDC-AIRS algorithm as well. Likewise, 
prediction models developed based on different prediction 
interval were analyzed. Results show that these models are 
statistically comparable – having a p-value of 0.12 and 0.14 
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for prediction models developed using baseline dataset from 
year 5 and 7 respectively. This suggests that prediction 
interval does not have a significant impact on the 
performance of prediction models developed using 
EDC-AIRS algorithm as well. In view of these observations, 
we aim to investigate the effects of prediction resolution on 
subjects in younger age groups as part of our future work. A 
summary of the p-values discussed is provided in Table 3.  

Analysis of prediction models that aim to predict the 
likelihood of MI occurrence in individuals’ subsequent 2 
years (i.e. ‘yr50607’, ‘yr70809’ and ‘yr91011’) indicate 
comparable performance – with p-value of 0.50 and 1.00 for 
SVM and EDC-AIRS algorithms respectively. Comparison 
of age among individuals belonging to different baseline 
datasets indicates that they are statistically different (p-value 
< 0.01). This portends that sample age does not have a 
significant impact on the performance of prediction models. 

Among all the prediction models developed, key 
biomarkers identified to be statistically significant by both 
SVM and EDC-AIRS algorithms are related to cognitive 
function, physical function, depression/life events, 
electrocardiography, general changes to health/lifestyle, and 
medications. These biomarkers, in general, are also 
identified as clinically significant in the literature [35-38]. 
This suggests that statistically significant biomarkers can 
also be clinically significant - providing a promising avenue 
for identifying the potential cardiovascular risk factors to be 
evaluated in clinical trials. 

One benefit of performing risk prediction using different 
prediction resolution and sample age is that it allows more 
refined and progressive risk prediction to be conducted 
(without compromising accuracy). This provides the 
advantage of estimating the seriousness of a disease one is 
experiencing; enabling clinicians to offer a more 
personalized management and/or therapeutic strategy to the 
patient.  

The limitation of this investigation includes the use of a 
single dataset to evaluate the effects of sample age and 
prediction resolution in relation to the performance of MI 
risk prediction. This limits the power to conclusively state 
how each factor influences the performance of the prediction 
model. Nevertheless, it does provide some insights on 
whether sample age and prediction resolution have an 
impact on the performance of clinical risk prediction model. 
In view of the observations from this study and the 
importance of screening since young, we aim to investigate 
the effect of prediction resolution and sample age on 
younger subjects as part of our future work. 

V. CONCLUSIONS 
Early detection of individuals with high risk of 

experiencing MI is very important clinically, but has proved 
to be elusive. To this end, we investigated the effect of 
sample age and prediction resolution in relation to the 
development of accurate clinical risk prediction model. Our 
experiments indicate that both sample age and prediction 

resolution do not have a significant impact on prediction 
models developed using subjects aged 65 and above. 

Overall, high validation sensitivity, specificity and 
balanced accuracy were achieved by SVM algorithm. This 
opens the opportunity for constructing predictive models 
capable of detecting MI early, allowing clinicians to take 
preventative measures promptly, improving the quality of 
individuals’ life, and reducing avoidable mortality.  

In view of these results, we suggest the use of different 
prediction resolution to provide a more detailed health 
screening of elderly subjects so that more appropriate 
preventative measurements - in relation to the individual’s 
risk level - can be taken.  
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