505 research outputs found

    SONAR Images Denoising

    Get PDF
    International audienc

    Wavelet Based Color Image Denoising through a Bivariate Pearson Distribution

    Get PDF
    In this paper we proposed an efficient algorithm for Colo r Image Denoising through a Bivariate Pearson Distribution using Wavelet Which is based on Bayesian denoising and if Bayesian denoising is used for recovering image from the noisy image the performance is strictly depend on the correctness of the distribution that is used to describe the data. In the denoising process we require a selection of p roper model for distribution. To describe the image data bivariate pearson distribution is used and Gaussian distribution is used to describe the noise particles in this paper. For gray scale image lots of extensive works has been don e in this field but fo r colour image denoising using bivariate pearson distribution based on bayesian denoising gives us tremendous result for analy sing coloured images which can be used in several advanced applications. The bivariate probability density function (pdf) takes in t o account the Gaussian dependency among wavelet coefficients. The experimental results show that the proposed technique outperforms sev eral exiting methods both visually and in terms of peak signal - to - noise ratio (PSNR)

    Skellam shrinkage: Wavelet-based intensity estimation for inhomogeneous Poisson data

    Full text link
    The ubiquity of integrating detectors in imaging and other applications implies that a variety of real-world data are well modeled as Poisson random variables whose means are in turn proportional to an underlying vector-valued signal of interest. In this article, we first show how the so-called Skellam distribution arises from the fact that Haar wavelet and filterbank transform coefficients corresponding to measurements of this type are distributed as sums and differences of Poisson counts. We then provide two main theorems on Skellam shrinkage, one showing the near-optimality of shrinkage in the Bayesian setting and the other providing for unbiased risk estimation in a frequentist context. These results serve to yield new estimators in the Haar transform domain, including an unbiased risk estimate for shrinkage of Haar-Fisz variance-stabilized data, along with accompanying low-complexity algorithms for inference. We conclude with a simulation study demonstrating the efficacy of our Skellam shrinkage estimators both for the standard univariate wavelet test functions as well as a variety of test images taken from the image processing literature, confirming that they offer substantial performance improvements over existing alternatives.Comment: 27 pages, 8 figures, slight formatting changes; submitted for publicatio

    Statistical model-based fusion of noisy multi-band images in the wavelet domain

    Get PDF

    A nonlinear Stein based estimator for multichannel image denoising

    Get PDF
    The use of multicomponent images has become widespread with the improvement of multisensor systems having increased spatial and spectral resolutions. However, the observed images are often corrupted by an additive Gaussian noise. In this paper, we are interested in multichannel image denoising based on a multiscale representation of the images. A multivariate statistical approach is adopted to take into account both the spatial and the inter-component correlations existing between the different wavelet subbands. More precisely, we propose a new parametric nonlinear estimator which generalizes many reported denoising methods. The derivation of the optimal parameters is achieved by applying Stein's principle in the multivariate case. Experiments performed on multispectral remote sensing images clearly indicate that our method outperforms conventional wavelet denoising technique
    • …
    corecore