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Abstract— A new method for multimodal image fusion, based
on statistical modelling of wavelet coefficients, is proposed in
this paper. The algorithm draws from the Weighted Average
scheme, but incorporates Laplacian bivariate parent–child sta-
tistical dependencies. The interscale dependency is brought in
the form of shrinkage functions. The proposed method has been
shown to perform very well with noisy datasets, outperforming
other conventional methods in terms of fusion quality and noise
reduction in the fused output.
Keywords: Image fusion, statistical modelling, multimodal,
denoising.

I. INTRODUCTION

The purpose of image fusion is to combine information
from multiple images of the same scene into a single image
that ideally contains all the important features from each of
the original images. In this work, a scenario is considered,
when sets of multimodal images are being collected for pur-
poses such as surveillance, monitoring, tracking, detection and
recognition. In all these applications, the use of complemen-
tary information from multiple modalities is beneficial in terms
of the improved performance and reduction of the information
overload. However, multimodal fusion also poses problems
related to the statistical diversity of the data and increased or
accumulated noise content caused by the use of cheap sensors
or low light conditions. It is expected that the application of
an appropriate statistical model will benefit the image fusion
both in terms of quality and robustness to signal corruption or
changing environment. The aim of this paper is to investigate
ways of employing appropriate statistical models that exploit
wavelet coefficient dependencies across spatial locations and
adjacent scales, in order to efficiently fuse multimodal images
that may be corrupted with noise.

The majority of early image fusion approaches, although
effective, have not been based on strict mathematical founda-
tions. Only in recent years have more rigorous approaches
been proposed, including those based on estimation theory
[1]. A Bayesian fusion method based on Gaussian image
model has been proposed in [2]. A general approach, allowing
modelling both Gaussian and non-Gaussian distortions to the
input images, has been proposed in [3], where a Hidden
Markov Model has been used to describe the correlations
between the wavelet coefficients across scales.

Recent work on non-Gaussian modelling for image fusion
has been proposed in [4], where the image fusion proto-

type method [5], combining images based on the “match
and salience” measure (variance and correlation), has been
modified and applied to images modelled by symmetric α-
stable distributions. Our present research follows this direc-
tion, however, the underlying distribution is described by the
Laplacian model. The advantage of the Laplacian model lies in
the availability of analytical expressions for their probability
density functions (pdf) as well as in simple and efficient pa-
rameter estimators. Additionally, the use of bivariate shrinkage
functions, allows for noise reduction in the fused output, as
well as the spatial and interscale dependencies of wavelet
coefficients to be taken into account.

 1

.

.

.

 N

.

.

.
.

.

.

.

.

DT−CWT

DT−CWT

F I

Fusion
rule Fused

coefficients

I

I
Fused
image

DT−CWT−1

 F

.

Fig. 1. Pixel-based image fusion scheme using the DT-CWT.

As is the case with many recently proposed techniques, our
developments are made using the wavelet transform, which
constitutes a powerful framework for implementing image
fusion algorithms [4], [6]. Specifically, methods based on
multiscale decompositions consist of three main steps: first, the
set of images to be fused is analysed by means of the wavelet
transform, then the resulting wavelet coefficients are fused
through an appropriately designed rule, and finally, the fused
image is synthesized from the processed wavelet coefficients
through the inverse wavelet transform. This process is depicted
in Fig. 1. The developments presented in this paper can be
categorised as fusion rule design.

The remaining part of the paper is organised as follows. The
univariate and bivariate Laplacian image distribution models
are described in Section II. In Section III, a new approach
to image fusion is proposed, based on bivariate Laplacian
modelling of wavelet coefficients. The performance of the
method is evaluated on sets of multimodal image sequences
and is compared with other standard techniques in Section IV.
Finally, Section V presents the conclusions of the study and
suggests areas for future work.
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II. GENERALISED GAUSSIAN STATISTICAL MODEL

A. Univariate Model

As a starting point towards understanding the basic prop-
erties of images, we will consider the marginal models of
their wavelet transform. Although Symmetric Alpha-Stable
(SαS) modelling have been already applied to image fusion
successfully [4], it was decided to investigate an alternative
approach, the Generalised Gaussian Distribution (GGD), with
its particular case, the Laplacian distribution. The advantage
of the Laplacian model is the availability of analytical ex-
pressions and simple parameter estimators that can be used in
image fusion and denoising.

A GGD family of distributions can be written as [7]

p(x) = K(α, β) exp
(
−

∣∣∣x
α

∣∣∣β)
, (1)

where α and β are the distribution parameters (scale and
shape parameter, respectively), K(α, β) = β/(2αΓ (1/β)) is
a normalisation constant, and Γ(t) =

∫ ∞
0

e−uut−1du is the
gamma function. Throughout this work, only signals with zero
mean are considered. Gaussian and Laplace distributions are
special cases of GGD for β = 2 and β = 1, respectively. It
is sometimes convenient to express α in terms of the standard
deviation σ:

α = σ
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)
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The marginal Laplacian pdf is then written as follows

p(x) =
1

σ
√

2
exp

(
−
√

2|x|
σ

)
(3)

whereas the marginal Gaussian pdf is written

p(x) =
1

σ
√

2π
exp

(
− x2

2σ2

)
. (4)

Examples of Generalized Gaussian family of distributions are
shown in Figure 2. Note different cusp and tail behaviour
depending on the value of the shape parameter.

Fig. 2. Examples of Generalized Gaussian family of distributions for different
values of β
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Fig. 3. Bivariate joint Laplacian distribution

B. Bivariate Model
Univariate marginal histograms characterise distributions of

wavelet coefficients without taking into account the interscale
dependencies. However, the work of many authors, for ex-
ample, [8]–[10], shows strong evidence that coefficients of
the multiscale decompositions of images exhibit significant
dependencies on subsequent locations, scales and across dif-
ferent orientations. In this study, we consider the problem of
modelling interscale dependencies between child coefficients
(yj , fine resolution) and corresponding parent coefficients
(yj+1, coarse resolution). A bivariate dependent Laplacian
model proposed in [9] is used in this work:

p(yj , yj+1) =
3

2πσjσj+1
exp

⎛
⎝−

√
3

√(
yj

σj

)2

+

(
yj+1

σj+1

)2
⎞
⎠

(5)
This anisotropic model includes the isotropic case when σj =
σj+1 is assumed. An example of a joint parent–child pdf is
shown in Figure 3.

III. PROPOSED FUSION METHOD

A. Weighted average, WA

We reformulate and modify the Weighted Average (WA)
method [5] by considering a more appropriate statistical model
(Laplacian) and interscale dependencies. The WA method has
been chosen as a starting point for several reasons: it is
based on statistical Gaussian-like modelling, it allows easy
modification and it covers a range of selection rules, from
maximum, weighted average, to average.

Although in [5] wavelet coefficients variances are used
as saliency measures, appropriate for the Gaussian model,
alternative methods for computing WA parameters can be
used. A modification of WA has been proposed in [4], based
on α-stable image modelling, with the use of the distribution
dispersions and symmetric covariation coefficients in place
of the variance and covariance. In this correspondence, two
main modifications of the WA fusion are proposed: firstly,
the model describing the wavelet coefficient is assumed to
be Laplacian; secondly, by incorporating wavelet shrinkage
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functions into averaging, both noise corruption and the parent–
child dependencies are accounted for. Both modifications
are described in details in the following sections. For the
completeness of the presentation we recall the original
method below (based on [5] and [4]):

1) Decompose each input image into
subbands.

2) For each highpass subband pair X, Y :
a) Compute saliency measures, σx and σy.
b) Compute matching coefficient

M =
2σxy

σ2
x + σ2

y

, (6)

where σxy stands for covariance
between X and Y .

c) Calculate the fused coefficients
using the formula Z = WxX + WyY as
follows:

• if M > T (T = 0.75) then Wmin =
0.5

(
1 − 1−M

1−T

)
and Wmax = 1 − Wmin

(weighted average mode, including
mean mode for M = 1),

• else Wmin = 0 & Wmax = 1 (selection
mode),

• if σx > σy Wx = Wmax and Wy = Wmin,
else Wx = Wmin and Wy = Wmax.

3) Average coefficients in lowpass
residual.

4) Reconstruct the fused image from the
processed subbands and the lowpass
residual.

B. Saliency and Matching Measures

We will show below how the saliency and matching mea-
sures in (6) can be computed for samples coming from the
assumed distribution. The maximum likelihood estimate of
variance for Laplacian distribution is

σx =
√

2
K

K∑
k=1

|xk|. (7)

The required covariance measure, can be estimated as

σxy =

(√
2

K

K∑
k=1

|xkyk| 12
)2

. (8)

The corresponding original WA measures, when x is assumed
to be Gaussian, are the familiar variance and covariance
estimates, respectively:

σ2
x =

1
K

K∑
k=1

x2
k , σxy =

1
K

K∑
k=1

xkyk. (9)
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Fig. 4. Illustration of wavelet shrinkage shrinkage function A = ŵ1/y1.

C. Bivariate Shrinkage Functions

In the following, we propose to incorporate shrinkage
functions into the fusion rule to achieve a degree of noise
reduction in the fused image. Shrinkage of wavelet coefficients
has became a very efficient tool for denoising images [9]–[11].
Recently, the one-dimensional ’soft-’ and ’hard-thresholding’
functions [11] have been modified to allow modelling of
interscale dependencies using Laplacian [9] distributions. The
shrinkage functions are derived as maximum a posteriori
estimators ŵj of noisy wavelet coefficient yj corrupted by
Gaussian white noise n: yj = wj + n, n : N(0, σn). In
particular, for the model (5) used in this study, the following
shrinkage relationship was derived in [9]:

ŵj = Ayj =

(
r −

√
3σ2

n

σyj

)
+

r
yj (10)

where r =
√

y2
j + y2

j+1 and (x)+ is a thresholding oper-
ator, setting negative values to zero. The shrinkage func-
tion A above has been limited to an isotropic case (equal
variances of parent and child coefficients assumed) based
on the recommendations of authors of [9], who claim that
there is a negligible improvement achieved from the use
of the anisotropic distribution. The input-output relationships
between noisy and estimated coefficients, and their interscale
dependency is evident when the shrinkage function (also called
transfer function), A = ŵj/yj , is analysed (see Figure 4). For
example, it can be seen that some small values of yj that would
normally be set to zero in univariate shrinkage, are not zeroed
but only shrunk, if the corresponding parent coefficient yj+1

is large. Also, large child coefficients are scaled depending not
only on their original value but also on their parent coefficient
value.

The noise standard deviation σn required to compute the
shrinkage functions, is obtained from the observed data by
computing the Median Absolute Deviation (MAD) of coeffi-
cients at the first level of an wavelet decomposition [11]

σ̂n =
MAD(y1)

0.6745
. (11)
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D. Joint Image Fusion and Denoising

In previous paragraphs, we have presented the components
of the proposed image fusion method. The complete algorithm
can be summarised as follows. The appropriate statistical
model has been incorporated into the WA scheme by replacing
in (6) the original Gaussian saliency measures (9) with their
Laplacian counterparts (7–8). Then, the bivariate shrinkage
functions, derived from the assumed model, have been applied
to wavelet coefficients of the input images.

Let us finally illustrate the significance of using shrinkage
functions into the WA scheme by rewriting the modified
matching measure (6):

M =
2AxAyσxy + ε

A2
xσ2

x + A2
yσ2

y + ε
, (12)

where Ax and Ay denote the shrinkage functions calculated
for a subband of an input image and ε is a small constant to
stabilise the measure when both nominator and denominator
are 0. In the proposed method, the saliency measures A2

xσ2
x

and A2
yσ2

y are used when deciding which coefficient should be
selected or assigned a greater weight to.

IV. RESULTS

In this section we show results obtained using the proposed
method. The results are then compared to some common
image fusion methods operating in the wavelet domain. Fusion
performance is assessed by means of quality metrics, noise
contents and visual inspection.

A. Fusion Methods

All the methods included in the comparison use the Dual-
Tree Complex Wavelet Transform (DT-CWT) [12], as imple-
mented in [13]. This type of wavelet transform has been shown
to be nearly shift-invariant and have better directional selec-
tivity compared to conventional Discrete Wavelet Transform
[12]. It was found experimentally, that AntonB filters with 5
decomposition levels gave the best results. The fusion methods
used in the comparison are briefly described below.

a) Maximum selection, MAX: The simplest and most
popular fusion method consisting of building the fused image
by picking up the coefficient with maximum absolute value
among all inputs at each location in the corresponding sub-
bands of the wavelet decomposition (see [6], for example).

b) Weighted Average with Gaussian model, WA: An
implementation based on [5] (described also in Section III-
A), with a 5 pixel (4-connected) window for computing local
statistics of the DT-CWT coefficients.

c) Weighted average with Laplacian model, LAP: The
method we propose is based on WA, however, since the
underlying model is Laplacian, different saliency and matching
measure have been used (see Section III-D).

d) Fusion with bivariate shrinkage, SHR: The method
described in Section III-D combining Laplacian modelling as
in LAP, but with bivariate shrinkage function (10), applied to
wavelet coefficients prior to parameter estimation and fusion.

e) Fusion with ’partial’ shrinkage, SHP: Here we also
propose fusion of not only ’completely’ (as in SHR) but also
’partially’ denoised images. This somewhat heuristic, option
may be used in circumstances when lower degree of denoising
is required, for example in low-noise scenarios. In such cases
denoising could remove useful visual information, readable
for a human observer or computer algorithm despite of noise
presence. We propose to denoise only those coefficients that
fall into the ’selection mode’ category, i.e. when the matching
measure value is small. The motivation for not denoising coef-
ficient in weighted average mode is twofold: the high matching
measure (and thus a high degree of similarity between the
inputs) indicates low noise contents, also, the operation of
averaging reduces the noise level to some degree, so that
applying shrinkage may not be necessary.

B. Datasets

In order to evaluate the fusion methods, datasets extracted
from two different sources have been used. Tropical dataset,
contains stills from visible and infrared light videos recorded
during Eden data gathering by University of Bristol [14]. This
imagery is characterised by low light conditions and frequent
occlusion of the objects of interest, affecting the visible light
sequences most.

A second dataset, Aviris, contains images selected from the
public AVIRIS 92AV3C hyperspectral database collected over
a test site called Indian Pine in northwestern Indiana [15]. In
this work, we fuse pairs of manually selected bands. Exten-
sion of our method to multiple bands, possibly automatically
selected, is the subject of ongoing investigation.

C. Performance Metrics

Two computational metrics were used to evaluate the quality
of fusion: a quality index measuring similarity (in terms of
illuminance, contrast and structure) between the input images
and the fused images [16] (Q1); and the Petrovic metric [17]
(Q2) measuring the amount of edge information transferred
from the source images to the fused image. In order to fully
evaluate the performance of the methods, we have also shown
the improvement in terms of Signal to Noise Ratio (SNR),
which has been calculated as follows:

ΔSNR = 10 log
σ2

n

σ2
n,f

.

Here σn,f is the noise variance in the fused output. The noise
variance has been estimated according to (11). The results
presented below are averaged over 10 image subsets drawn
from the datasets.

D. Fusion of Noisy Images

To evaluate the performance of the fusion methods in a
noisy environment the input images have been corrupted with
Gaussian white noise, with standard deviation σn scaled so
that the input SNR is 10 dB. Table I shows average metric
values of fused images, calculated between fused output and
original clean input images. As can be seen from Table I and
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TABLE I

METRIC-BASED RANKINGS OF FUSION METHODS, NOISY IMAGES (SNR=10 DB)

Tropical Aviris
Q1 Q2 Δ SNR, dB Q1 Q2 Δ SNR, dB

SHR 0.516 SHR 0.290 SHR 340.9 SHR 0.696 SHR 0.496 SHR 344.3
SHP 0.398 SHP 0.242 SHP 3.5 SHP 0.617 SHP 0.470 SHP 4.3
LAP 0.274 LAP 0.179 LAP -2.1 LAP 0.506 LAP 0.399 LAP -1.0
WA 0.266 WA 0.174 WA -3.0 WA 0.488 WA 0.385 WA -2.1
MAX 0.240 MAX 0.156 MAX -4.8 MAX 0.462 MAX 0.364 MAX -3.9

DATASET TROPICAL

VI IR MAX

WA LAP SHP SHR

DATASET AVIRIS

BAND
1

BAND
2 MAX

WA LAP SHP SHR

Fig. 5. Examples of fused noisy images (SNR=10 dB)
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Figure 5, highly consistent results have been achieved both in
terms of the quality measures and visual perception. According
to the quality measures shown, all three proposed methods
(LAP, SHP and SHR) outperform significantly WA and MAX
fusion. In all cases, some improvement has been achieved
by using Laplacian modelling alone, without even applying
shrinkage. It can be also observed that MAX fusion appears
to be very sensitive to the presence of noise. By looking at the
image examples shown in Figure 5, it can be confirmed that
the denoised (SHR, SHP) images look the most pleasing for
the Tropical sequence. For Aviris dataset, it seems, however,
that SHR ’oversmoothed’ some visually important features and
thus the SHP and LAP methods are favoured as convincing
trade-off between noise reduction and information loss.

V. CONCLUSIONS AND FUTURE WORK

In this paper we introduced a modification of WA fusion,
that has produced an improvement in quality and noise robust-
ness of image fusion. The improvement has been achieved in
two ways: i) by using a more appropriate Laplacian statisti-
cal model for wavelet coefficients, and ii) by incorporating
bivariate shrinkage functions into the weighting and saliency
measures. By doing so, the images are combined based both
on their local saliency and the noise levels, with interscale de-
pendencies taken into account. The proposed method has been
shown to perform very well with noisy datasets, outperforming
the conventional WA and MAX algorithms. The method has
also been shown to reduce significantly the noise variance in
the fused output images.

Laplacian modelling, although based on a simplification
(β = 1 assumed), appears to offer a good complexity–
accuracy trade-off compared to sophisticated shape parameter
estimation. The precision of such a model can be improved
by using other, for example noise robust, estimators of the
salience measures. Alternatively, if simplicity is not a priority,
a more complex model, such as GGD can be employed instead
of the Laplacian.

Although the bivariate shrinkage functions rely on parent–
child dependencies, their distributions could be modelled more
explicitly. For example, an image fusion method could be
based on conditional saliency measures derived from such
distributions. Also, the multidimensional extension of our
method needs to be derived if multiple inputs are to be fused.

Additional benefits of the developed method should also
be verified experimentally, for example by performing object
tracking or detection in fused images or videos.
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