5,954 research outputs found

    A multiresolution approach to time warping achieved by a Bayesian prior-posterior transfer fitting strategy.

    Get PDF
    The procedure known as warping aims at reducing phase variability in a sample of functional curve observations, by applying a smooth bijection to the argument of each of the functions. We propose a natural representation of warping functions in terms of a new type of elementary function named `warping component functions' which are combined into the warping function by composition. A sequential Bayesian estimation strategy is introduced, which fits a series of models and transfers the posterior of the previous fit into the prior of the next fit. Model selection is based on a warping analogue to wavelet thresholding, combined with Bayesian inference.Bayesian inference; Functional data analysis; Markov chain Monte Carlo sampling; Time warping; Warping components; Warping function;

    Spectrum-Adapted Tight Graph Wavelet and Vertex-Frequency Frames

    Full text link
    We consider the problem of designing spectral graph filters for the construction of dictionaries of atoms that can be used to efficiently represent signals residing on weighted graphs. While the filters used in previous spectral graph wavelet constructions are only adapted to the length of the spectrum, the filters proposed in this paper are adapted to the distribution of graph Laplacian eigenvalues, and therefore lead to atoms with better discriminatory power. Our approach is to first characterize a family of systems of uniformly translated kernels in the graph spectral domain that give rise to tight frames of atoms generated via generalized translation on the graph. We then warp the uniform translates with a function that approximates the cumulative spectral density function of the graph Laplacian eigenvalues. We use this approach to construct computationally efficient, spectrum-adapted, tight vertex-frequency and graph wavelet frames. We give numerous examples of the resulting spectrum-adapted graph filters, and also present an illustrative example of vertex-frequency analysis using the proposed construction

    Spectral analysis for nonstationary audio

    Full text link
    A new approach for the analysis of nonstationary signals is proposed, with a focus on audio applications. Following earlier contributions, nonstationarity is modeled via stationarity-breaking operators acting on Gaussian stationary random signals. The focus is on time warping and amplitude modulation, and an approximate maximum-likelihood approach based on suitable approximations in the wavelet transform domain is developed. This paper provides theoretical analysis of the approximations, and introduces JEFAS, a corresponding estimation algorithm. The latter is tested and validated on synthetic as well as real audio signal.Comment: IEEE/ACM Transactions on Audio, Speech and Language Processing, Institute of Electrical and Electronics Engineers, In pres

    Landmark-Based Registration of Curves via the Continuous Wavelet Transform

    Get PDF
    This paper is concerned with the problem of the alignment of multiple sets of curves. We analyze two real examples arising from the biomedical area for which we need to test whether there are any statistically significant differences between two subsets of subjects. To synchronize a set of curves, we propose a new nonparametric landmark-based registration method based on the alignment of the structural intensity of the zero-crossings of a wavelet transform. The structural intensity is a multiscale technique recently proposed by Bigot (2003, 2005) which highlights the main features of a signal observed with noise. We conduct a simulation study to compare our landmark-based registration approach with some existing methods for curve alignment. For the two real examples, we compare the registered curves with FANOVA techniques, and a detailed analysis of the warping functions is provided

    Peaks detection and alignment for mass spectrometry data

    Get PDF
    The goal of this paper is to review existing methods for protein mass spectrometry data analysis, and to present a new methodology for automatic extraction of significant peaks (biomarkers). For the pre-processing step required for data from MALDI-TOF or SELDI- TOF spectra, we use a purely nonparametric approach that combines stationary invariant wavelet transform for noise removal and penalized spline quantile regression for baseline correction. We further present a multi-scale spectra alignment technique that is based on identification of statistically significant peaks from a set of spectra. This method allows one to find common peaks in a set of spectra that can subsequently be mapped to individual proteins. This may serve as useful biomarkers in medical applications, or as individual features for further multidimensional statistical analysis. MALDI-TOF spectra obtained from serum samples are used throughout the paper to illustrate the methodology
    corecore