We consider the problem of designing spectral graph filters for the
construction of dictionaries of atoms that can be used to efficiently represent
signals residing on weighted graphs. While the filters used in previous
spectral graph wavelet constructions are only adapted to the length of the
spectrum, the filters proposed in this paper are adapted to the distribution of
graph Laplacian eigenvalues, and therefore lead to atoms with better
discriminatory power. Our approach is to first characterize a family of systems
of uniformly translated kernels in the graph spectral domain that give rise to
tight frames of atoms generated via generalized translation on the graph. We
then warp the uniform translates with a function that approximates the
cumulative spectral density function of the graph Laplacian eigenvalues. We use
this approach to construct computationally efficient, spectrum-adapted, tight
vertex-frequency and graph wavelet frames. We give numerous examples of the
resulting spectrum-adapted graph filters, and also present an illustrative
example of vertex-frequency analysis using the proposed construction