3,644 research outputs found

    Extreme Value Analysis of Empirical Frame Coefficients and Implications for Denoising by Soft-Thresholding

    Full text link
    Denoising by frame thresholding is one of the most basic and efficient methods for recovering a discrete signal or image from data that are corrupted by additive Gaussian white noise. The basic idea is to select a frame of analyzing elements that separates the data in few large coefficients due to the signal and many small coefficients mainly due to the noise \epsilon_n. Removing all data coefficients being in magnitude below a certain threshold yields a reconstruction of the original signal. In order to properly balance the amount of noise to be removed and the relevant signal features to be kept, a precise understanding of the statistical properties of thresholding is important. For that purpose we derive the asymptotic distribution of max_{\omega \in \Omega_n} || for a wide class of redundant frames (\phi_\omega^n: \omega \in \Omega_n}. Based on our theoretical results we give a rationale for universal extreme value thresholding techniques yielding asymptotically sharp confidence regions and smoothness estimates corresponding to prescribed significance levels. The results cover many frames used in imaging and signal recovery applications, such as redundant wavelet systems, curvelet frames, or unions of bases. We show that `generically' a standard Gumbel law results as it is known from the case of orthonormal wavelet bases. However, for specific highly redundant frames other limiting laws may occur. We indeed verify that the translation invariant wavelet transform shows a different asymptotic behaviour.Comment: [Content: 39 pages, 4 figures] Note that in this version 4 we have slightely changed the title of the paper and we have rewritten parts of the introduction. Except for corrected typos the other parts of the paper are the same as the original versions

    Techniques for noise removal from EEG, EOG and air flow signals in sleep patients

    Full text link
    Noise is present in the wide variety of signals obtained from sleep patients. This noise comes from a number of sources, from presence of extraneous signals to adjustments in signal amplification and shot noise in the circuits used for data collection. The noise needs to be removed in order to maximize the information gained about the patient using both manual and automatic analysis of the signals. Here we evaluate a number of new techniques for removal of that noise, and the associated problem of separating the original signal sources.Comment: 9 pages, 3 figure

    Image Decomposition and Separation Using Sparse Representations: An Overview

    Get PDF
    This paper gives essential insights into the use of sparsity and morphological diversity in image decomposition and source separation by reviewing our recent work in this field. The idea to morphologically decompose a signal into its building blocks is an important problem in signal processing and has far-reaching applications in science and technology. Starck , proposed a novel decomposition method—morphological component analysis (MCA)—based on sparse representation of signals. MCA assumes that each (monochannel) signal is the linear mixture of several layers, the so-called morphological components, that are morphologically distinct, e.g., sines and bumps. The success of this method relies on two tenets: sparsity and morphological diversity. That is, each morphological component is sparsely represented in a specific transform domain, and the latter is highly inefficient in representing the other content in the mixture. Once such transforms are identified, MCA is an iterative thresholding algorithm that is capable of decoupling the signal content. Sparsity and morphological diversity have also been used as a novel and effective source of diversity for blind source separation (BSS), hence extending the MCA to multichannel data. Building on these ingredients, we will provide an overview the generalized MCA introduced by the authors in and as a fast and efficient BSS method. We will illustrate the application of these algorithms on several real examples. We conclude our tour by briefly describing our software toolboxes made available for download on the Internet for sparse signal and image decomposition and separation

    Perceptually Motivated Wavelet Packet Transform for Bioacoustic Signal Enhancement

    Get PDF
    A significant and often unavoidable problem in bioacoustic signal processing is the presence of background noise due to an adverse recording environment. This paper proposes a new bioacoustic signal enhancement technique which can be used on a wide range of species. The technique is based on a perceptually scaled wavelet packet decomposition using a species-specific Greenwood scale function. Spectral estimation techniques, similar to those used for human speech enhancement, are used for estimation of clean signal wavelet coefficients under an additive noise model. The new approach is compared to several other techniques, including basic bandpass filtering as well as classical speech enhancement methods such as spectral subtraction, Wiener filtering, and Ephraim–Malah filtering. Vocalizations recorded from several species are used for evaluation, including the ortolan bunting (Emberiza hortulana), rhesus monkey (Macaca mulatta), and humpback whale (Megaptera novaeanglia), with both additive white Gaussian noise and environment recording noise added across a range of signal-to-noise ratios (SNRs). Results, measured by both SNR and segmental SNR of the enhanced wave forms, indicate that the proposed method outperforms other approaches for a wide range of noise conditions

    Wavelet-based filtration procedure for denoising the predicted CO2 waveforms in smart home within the Internet of Things

    Get PDF
    The operating cost minimization of smart homes can be achieved with the optimization of the management of the building's technical functions by determination of the current occupancy status of the individual monitored spaces of a smart home. To respect the privacy of the smart home residents, indirect methods (without using cameras and microphones) are possible for occupancy recognition of space in smart homes. This article describes a newly proposed indirect method to increase the accuracy of the occupancy recognition of monitored spaces of smart homes. The proposed procedure uses the prediction of the course of CO2 concentration from operationally measured quantities (temperature indoor and relative humidity indoor) using artificial neural networks with a multilayer perceptron algorithm. The mathematical wavelet transformation method is used for additive noise canceling from the predicted course of the CO2 concentration signal with an objective increase accuracy of the prediction. The calculated accuracy of CO2 concentration waveform prediction in the additive noise-canceling application was higher than 98% in selected experiments.Web of Science203art. no. 62
    • …
    corecore