190 research outputs found

    Encryption and Secure Transmission of Telemedicinal Image in Watermarking using DWT HAAR Wavelet Algorithm

    Get PDF
    This is a result paper .In this paper, watermarking using DWT Haar wavelet algorithm is used.In this papera patient brain image which is to be transmitted using telemedicine is encrypted and the records of patient brain condition is hidden along with patients document and is transmitted along the channel which can not be decrypted by any unauthorized section. The main aim of this paper is to hide the patient information along with the image and to encrypt and transmit the data along with images and to protect it from different kind of attacks and noise that mainly take place in channels. The purpose of using watermarking is that watermarking does not influence the diagnosis to be made by reducing the visual clarity of medical images. Watermarking is implemented here using DWT haar wavelet and the process include complete copyright protection. Experimental result show high imperceptibility where there is no noticeable change in the watermarked image and original image and the patients records is also hidden along with the image which is to be transmitted along the channel that cannot be hacked or attacked by any unauthorized section. The robustness of watermarking scheme is analysed by means of performance evaluation of peak signal to noise ratio (PSNR) DOI: 10.17762/ijritcc2321-8169.150516

    ICT in telemedicine: conquering privacy and security issues in health care services

    Get PDF
    Advancement in telecommunication combined with improved information technology infrastructures has opened up new dimensions in e-health environment. Such technologies make readily available to access, store, manipulate and replicate medical information and images. These technologies help reduced the time and effort in diagnoses and treatment at lower cost. However, protection and authentication of such medical information and images are now becoming increasingly important in telemedicine environment, where images are readily distributed over electronic networks. Intruders/hackers may gain access to confidential information and possible alter or even delete such vital records. The ultimate success of telemedicine demands an effective technology as well as privacy and security of records should be main concern. This paper explores recent identified privacy and security issues that affect telemedicine. Featuring threats on security and authentication of medical records, and proposing digital watermarking as a technology to curb authentication issues in telemedicine is highlighted

    Medical image encryption techniques: a technical survey and potential challenges

    Get PDF
    Among the most sensitive and important data in telemedicine systems are medical images. It is necessary to use a robust encryption method that is resistant to cryptographic assaults while transferring medical images over the internet. Confidentiality is the most crucial of the three security goals for protecting information systems, along with availability, integrity, and compliance. Encryption and watermarking of medical images address problems with confidentiality and integrity in telemedicine applications. The need to prioritize security issues in telemedicine applications makes the choice of a trustworthy and efficient strategy or framework all the more crucial. The paper examines various security issues and cutting-edge methods to secure medical images for use with telemedicine systems

    Mobile-based Telemedicine Application using SVD and F-XoR Watermarking for Medical Images

    Get PDF
    منصة الخدمات الطبية عبارة عن تطبيق متنقل يتم من خلاله تزويد المرضى بتشخيصات الأطباء بناءً على المعلومات المستقاة من الصور الطبية. يجب ألا يتم تبديل محتوى هذه النتائج التشخيصية بشكل غير قانوني أثناء النقل ويجب إعادته إلى المريض الصحيح. في هذه المقالة، نقدم حلاً لهذه المشكلات باستخدام علامة مائية عمياء وقابلة للانعكاس وهشة استنادًا إلى مصادقة صورة المضيف. في الخوارزمية المقترحة، يتم استخدام الإصدار الثنائي من ترميز بوس_شوهوري _هوكوينجهام (BCH) للتقرير الطبي للمريض (PMR) والصورة الطبية الثنائية للمريض (PMI) بعد استخدام الغامض الحصري أو (F-XoR) لإنتاج العلامة الفريدة للمريض باستخدام مخطط المشاركة السرية (SSS). يتم استخدامه لاحقًا كعلامة مائية ليتم تضمينها في مضيف (PMI) باستخدام خوارزمية تحليل القيمة المفرد (SVD) العمياء القائمة على العلامة المائية. وهو حل جديد اقترحناه أيضًا بتطبيق SVD على صورة العلامة المائية العمياء. تحافظ الخوارزمية الخاصة بنا على مصادقة محتوى (PMI) أثناء النقل وملكية (PMR) للمريض لنقل التشخيص المصاحب فيما بعد إلى المريض الصحيح عبر تطبيق التطبيب عن بعد المحمول. يستخدم تقييم الخوارزمية لدينا علامات مائية مسترجعة توضح النتائج الواعدة لمقاييس الأداء العالية مقارنتا مع نتائج الاعمال السابقة في مقاييس الكشف عن التزوير وإمكانية الاسترداد الذاتي، مع قيمة 30NB PSNR، قيمة NC هي 0.99.A medical- service platform is a mobile application through which patients are provided with doctor’s diagnoses based on information gleaned from medical images. The content of these diagnostic results must not be illegitimately altered during transmission and must be returned to the correct patient. In this paper, we present a solution to these problems using blind, reversible, and fragile watermarking based on authentication of the host image. In our proposed algorithm, the binary version of the Bose_Chaudhuri_Hocquengham (BCH) code for patient medical report (PMR) and binary patient medical image (PMI) after fuzzy exclusive or (F-XoR) are used to produce the patient's unique mark using secret sharing schema (SSS). The patient’s unique mark is used later as a watermark to be embedded into host PMI using blind watermarking-based singular value decomposition (SVD) algorithm. This is a new solution that we also proposed to applying SVD into a blind watermarking image. Our algorithm preserves PMI content authentication during the transmission and PMR ownership to the patient for subsequently transmitting associated diagnosis to the correct patient via a mobile telemedicine application. The performance of experimental results is high compare to previous results, uses recovered watermarks demonstrating promising results in the tamper detection metrics and self-recovery capability, with 30db PSNR, NC value is 0.99

    A New Watermarking Algorithm Based on Human Visual System for Content Integrity Verification of Region of Interest

    Get PDF
    This paper proposes a semi-fragile, robust-to-JPEG2000 compression watermarking method which is based on the Human Visual System (HVS). This method is designed to verify the content integrity of Region of Interest (ROI) in tele-radiology images. The design of watermarking systems based on HVS leads to the possibility of embedding watermarks in places that are not obvious to the human eye. In this way, notwithstanding increased capacity and robustness, it becomes possible to hide more watermarks. Based on perceptual model of HVS, we propose a new watermarking scheme that embeds the watermarks using a replacement method. Thus, the proposed method not only detects the watermarks but also extracts them. The novelty of our ROI-based method is in the way that we interpret the obtained coefficients of the HVS perceptual model: instead of interpreting these coefficients as weights, we assume them to be embedding locations. In our method, the information to be embedded is extracted from inter-subband statistical relations of ROI. Then, the semi-fragile watermarks are embedded in the obtained places in level 3 of the DWT decomposition of the Region of Background (ROB). The compatibility of the embedded signatures and extracted watermarks is used to verify the content of ROI. Our simulations confirm improved fidelity and robustness

    New Watermarking Scheme for Security and Transmission of Medical Images for PocketNeuro Project

    Get PDF
    We describe a new Watermarking system of medical information security and terminal mobile phone adaptation for PocketNeuro project. The later term refers to a Project created for the service of neurological diseases. It consists of transmitting information about patients \"Desk of Patients\" to a doctor\'s mobile phone when he is visiting or examining his patient. This system is capable of embedding medical information inside diagnostic images for security purposes. Our system applies JPEG Compression to Watermarked images to adapt them to the doctor\'s mobile phone. Experiments performed on a database of 30-256x256 pixel-sized neuronal images show that our Watermarking scheme for image security is robust against JPEG Compression. For the purpose of increasing the image Watermarking robustness against attacks for an image transmission and to perform a large data payload, we encode with Turbo-Code image-embedded bits information. Fidelity is improved by incorporation of the Relative Peak Signal-to-Noise Ratio (RPSNR) as a perceptual metric to measure image degradation

    Chaos-based robust method of zero-watermarking for medical signals

    Get PDF
    The growing use of wireless health data transmission via Internet of Things is significantly beneficial to the healthcare industry for optimal usage of health-related facilities. However, at the same time, the use raises concern of privacy protection. Health-related data are private and should be suitably protected. Several pathologies, such as vocal fold disorders, indicate high risks of prevalence in individuals with voice-related occupations, such as teachers, singers, and lawyers. Approximately, one-third of the world population suffers from the voice-related problems during the life span and unauthorized access to their data can create unavoidable circumstances in their personal and professional lives. In this study, a zero-watermarking method is proposed and implemented to protect the identity of patients who suffer from vocal fold disorders. In the proposed method, an image for a patient's identity is generated and inserted into secret keys instead of a host medical signal. Consequently, imperceptibility is naturally achieved. The locations for the insertion of the watermark are determined by a computation of local binary patterns from the time–frequency spectrum. The spectrum is calculated for low frequencies such that it may not be affected by noise attacks. The experimental results suggest that the proposed method has good performance and robustness against noise, and it is reliable in the recovery of an individual's identity
    corecore