1,373 research outputs found

    Watermarking FPGA Bitfile for Intellectual Property Protection

    Get PDF
    Intellectual property protection (IPP) of hardware designs is the most important requirement for many Field Programmable Gate Array (FPGA) intellectual property (IP) vendors. Digital watermarking has become an innovative technology for IPP in recent years. Existing watermarking techniques have successfully embedded watermark into IP cores. However, many of these techniques share two specific weaknesses: 1) They have extra overhead, and are likely to degrade performance of design; 2) vulnerability to removing attacks. We propose a novel watermarking technique to watermark FPGA bitfile for addressing these weaknesses. Experimental results and analysis show that the proposed technique incurs zero overhead and it is robust against removing attacks

    A Survey of hardware protection of design data for integrated circuits and intellectual properties

    No full text
    International audienceThis paper reviews the current situation regarding design protection in the microelectronics industry. Over the past ten years, the designers of integrated circuits and intellectual properties have faced increasing threats including counterfeiting, reverse-engineering and theft. This is now a critical issue for the microelectronics industry, mainly for fabless designers and intellectual properties designers. Coupled with increasing pressure to decrease the cost and increase the performance of integrated circuits, the design of a secure, efficient, lightweight protection scheme for design data is a serious challenge for the hardware security community. However, several published works propose different ways to protect design data including functional locking, hardware obfuscation, and IC/IP identification. This paper presents a survey of academic research on the protection of design data. It concludes with the need to design an efficient protection scheme based on several properties

    Digital IP Protection Using Threshold Voltage Control

    Full text link
    This paper proposes a method to completely hide the functionality of a digital standard cell. This is accomplished by a differential threshold logic gate (TLG). A TLG with nn inputs implements a subset of Boolean functions of nn variables that are linear threshold functions. The output of such a gate is one if and only if an integer weighted linear arithmetic sum of the inputs equals or exceeds a given integer threshold. We present a novel architecture of a TLG that not only allows a single TLG to implement a large number of complex logic functions, which would require multiple levels of logic when implemented using conventional logic primitives, but also allows the selection of that subset of functions by assignment of the transistor threshold voltages to the input transistors. To obfuscate the functionality of the TLG, weights of some inputs are set to zero by setting their device threshold to be a high VtV_t. The threshold voltage of the remaining transistors is set to low VtV_t to increase their transconductance. The function of a TLG is not determined by the cell itself but rather the signals that are connected to its inputs. This makes it possible to hide the support set of the function by essentially removing some variable from the support set of the function by selective assignment of high and low VtV_t to the input transistors. We describe how a standard cell library of TLGs can be mixed with conventional standard cells to realize complex logic circuits, whose function can never be discovered by reverse engineering. A 32-bit Wallace tree multiplier and a 28-bit 4-tap filter were synthesized on an ST 65nm process, placed and routed, then simulated including extracted parastics with and without obfuscation. Both obfuscated designs had much lower area (25%) and much lower dynamic power (30%) than their nonobfuscated CMOS counterparts, operating at the same frequency

    Adaptive Traffic Fingerprinting for Darknet Threat Intelligence

    Full text link
    Darknet technology such as Tor has been used by various threat actors for organising illegal activities and data exfiltration. As such, there is a case for organisations to block such traffic, or to try and identify when it is used and for what purposes. However, anonymity in cyberspace has always been a domain of conflicting interests. While it gives enough power to nefarious actors to masquerade their illegal activities, it is also the cornerstone to facilitate freedom of speech and privacy. We present a proof of concept for a novel algorithm that could form the fundamental pillar of a darknet-capable Cyber Threat Intelligence platform. The solution can reduce anonymity of users of Tor, and considers the existing visibility of network traffic before optionally initiating targeted or widespread BGP interception. In combination with server HTTP response manipulation, the algorithm attempts to reduce the candidate data set to eliminate client-side traffic that is most unlikely to be responsible for server-side connections of interest. Our test results show that MITM manipulated server responses lead to expected changes received by the Tor client. Using simulation data generated by shadow, we show that the detection scheme is effective with false positive rate of 0.001, while sensitivity detecting non-targets was 0.016+-0.127. Our algorithm could assist collaborating organisations willing to share their threat intelligence or cooperate during investigations.Comment: 26 page

    SALWARE: Salutary Hardware to design Trusted IC.

    No full text
    Fabless semiconductor industries are facing the rise of design costs of integrated circuits. This rise is link to the technology change and the complexity increasing. It follows that integrated circuits have become targets of counterfeiting and theft. The SALWARE project aims to study (theoretically and experimentally) salutary hardware design in order to fight against theft, illegal cloning and counterfeiting of integrated circuits. Salutary hardware means an embedded hardware system, hardly detectable / circumvented, inserted in an integrated circuit or a virtual component (Intellectual Property), used to provide intellectual property information (eg watermarking or hardware license) and / or to remotely activate the circuit or IP after manufacture and during use

    Automatic low-cost IP watermarking technique based on output mark insertions

    No full text
    International audienceToday, although intellectual properties (IP) and their reuse are common, their use is causing design security issues: illegal copying, counterfeiting, and reverse engineering. IP watermarking is an efficient way to detect an unauthorized IP copy or a counterfeit. In this context, many interesting solutions have been proposed. However, few combine the watermarking process with synthesis. This article presents a new solution, i.e. automatic low cost IP watermarking included in the high-level synthesis process. The proposed method differs from those cited in the literature as the marking is not material, but is based on mathematical relationships between numeric values as inputs and outputs at specified times. Some implementation results with Xilinx Virtex-5 FPGA that the proposed solution required a lower area and timing overhead than existing solutions

    IP protection for DSP algorithms\u27 FPGA implementation.

    Get PDF
    With today\u27s system-on-chip (SOC) technology, we are able to design larger and more complicated application-specific integrated circuits (ASICs) and field programmable gate array (FPGA) in shorter time period. The key point of the success of SOC technology is the reuse of intellectual property (IP) cores. Consequently the copyright protection for these IP cores becomes the major concern for the development pace of SOC technology. Watermarking technology has been proved to be an effective way of copyright protection. In this thesis, the author presents two new watermarking algorithms respectively at algorithm level and FPGA layout level. The simulations and implementation results show that the new proposals have much less design and hardware implementation overheads, lower watermark embedding and extraction cost, as well as higher security strength, compared to the previously proposed methods.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .D39. Source: Masters Abstracts International, Volume: 43-03, page: 0929. Advisers: H. K. Kwan; H. Wu. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004
    • …
    corecore