32 research outputs found

    Internet of Things for Sustainable Mining

    Get PDF
    The sustainable mining Internet of Things deals with the applications of IoT technology to the coupled needs of sustainable recovery of metals and a healthy environment for a thriving planet. In this chapter, the IoT architecture and technology is presented to support development of a digital mining platform emphasizing the exploration of rock–fluid–environment interactions to develop extraction methods with maximum economic benefit, while maintaining and preserving both water quantity and quality, soil, and, ultimately, human health. New perspectives are provided for IoT applications in developing new mineral resources, improved management of tailings, monitoring and mitigating contamination from mining. Moreover, tools to assess the environmental and social impacts of mining including the demands on dwindling freshwater resources. The cutting-edge technologies that could be leveraged to develop the state-of-the-art sustainable mining IoT paradigm are also discussed

    Towards Long-Term Monitoring of the Structural Health of Deep Rock Tunnels with Remote Sensing Techniques

    Get PDF
    Due to the substantial need to continuously ensure safe excavations and sustainable operation of deep engineering structures, structural health monitoring based on remote sensing techniques has become a prominent research topic in this field. Indeed, throughout their lifetime, deep tunnels are usually exposed to many complex situations which inevitably affect their structural health. Therefore, appropriate and effective monitoring systems are required to provide real-time information that can be used as a true basis for efficient and timely decision-making. Since sensors are at the heart of any monitoring system, their selection and conception for deep rock tunnels necessitates special attention. This work identifies and describes relevant structural health problems of deep rock tunnels and the applicability of sensors employed in monitoring systems, based on in-depth searches performed on pertinent research. The outcomes and challenges of monitoring are discussed as well. Results show that over time, deep rock tunnels suffer several typical structural diseases namely degradation of the excavation damaged areas, corrosion of rock bolts and cable bolts, cracks, fractures and strains in secondary lining, groundwater leaks in secondary lining, convergence deformation and damage provoked by the triggering of fires. Various types of remote sensors are deployed to monitor such diseases. For deep rock tunnels, it is suggested to adopt comprehensive monitoring systems with adaptive and robust sensors for their reliable and long-lasting performance

    Towards Long-Term Monitoring of the Structural Health of Deep Rock Tunnels with Remote Sensing Techniques

    Get PDF
    Due to the substantial need to continuously ensure safe excavations and sustainable operation of deep engineering structures, structural health monitoring based on remote sensing techniques has become a prominent research topic in this field. Indeed, throughout their lifetime, deep tunnels are usually exposed to many complex situations which inevitably affect their structural health. Therefore, appropriate and effective monitoring systems are required to provide real-time information that can be used as a true basis for efficient and timely decision-making. Since sensors are at the heart of any monitoring system, their selection and conception for deep rock tunnels necessitates special attention. This work identifies and describes relevant structural health problems of deep rock tunnels and the applicability of sensors employed in monitoring systems, based on in-depth searches performed on pertinent research. The outcomes and challenges of monitoring are discussed as well. Results show that over time, deep rock tunnels suffer several typical structural diseases namely degradation of the excavation damaged areas, corrosion of rock bolts and cable bolts, cracks, fractures and strains in secondary lining, groundwater leaks in secondary lining, convergence deformation and damage provoked by the triggering of fires. Various types of remote sensors are deployed to monitor such diseases. For deep rock tunnels, it is suggested to adopt comprehensive monitoring systems with adaptive and robust sensors for their reliable and long-lasting performance

    Mining Safety and Sustainability I

    Get PDF
    Safety and sustainability are becoming ever bigger challenges for the mining industry with the increasing depth of mining. It is of great significance to reduce the disaster risk of mining accidents, enhance the safety of mining operations, and improve the efficiency and sustainability of development of mineral resource. This book provides a platform to present new research and recent advances in the safety and sustainability of mining. More specifically, Mining Safety and Sustainability presents recent theoretical and experimental studies with a focus on safety mining, green mining, intelligent mining and mines, sustainable development, risk management of mines, ecological restoration of mines, mining methods and technologies, and damage monitoring and prediction. It will be further helpful to provide theoretical support and technical support for guiding the normative, green, safe, and sustainable development of the mining industry

    Data Mining

    Get PDF
    The availability of big data due to computerization and automation has generated an urgent need for new techniques to analyze and convert big data into useful information and knowledge. Data mining is a promising and leading-edge technology for mining large volumes of data, looking for hidden information, and aiding knowledge discovery. It can be used for characterization, classification, discrimination, anomaly detection, association, clustering, trend or evolution prediction, and much more in fields such as science, medicine, economics, engineering, computers, and even business analytics. This book presents basic concepts, ideas, and research in data mining

    Advancements in the Industrial Internet of Things for Energy Efficiency

    Get PDF
    The Internet of Things is an emerging field that leverages the connections of everyday objects for the betterment of society. A subfield of this trend, the Industrial Internet of Things (IIoT), has been referred to as an industrial revolution that enhances both productivity and safety in the industrial environment. While still in its early stages, identified improvements have the potential to markedly improve manufacturing productivity. Energy efficiency within manufacturing plants has traditionally received little focus. The Industrial Assessment Center Program demonstrates the potential energy improvements that can be realized in manufacturing plants, but these assessments also highlight some of the traditional barriers to energy efficiency. Some of these barriers include the lack of data to justify actionable improvements, unclear correlations between improvement costs and potential cost savings, and lack of knowledge on how energy improvements provide ancillary benefits to the plant. The IIoT has the potential to increase energy efficiency implementation in manufacturing plants by addressing these challenges. This dissertation discusses the framework in which energy efficiency enhancements within the IIoT environment can be realized. The dissertation initially details the potential benefits of IIoT for energy efficiency and presents a general framework for these improvements. While proposed IIoT frameworks vary, they all include the core elements of improved sensing capabilities, enhanced data analysis, and intelligent actuation. In addition to presenting the framework generally, the dissertation provides detailed case studies on how each of these framework elements lead to improved energy efficiency in manufacturing. The first case study demonstrates improved sensing capabilities in the IIoT framework. A non-intrusive flow meter for use in compressed air and other fluid systems is presented. The second case study discusses Autonomous Robotic Assessments of Energy, which use advanced data analysis to autonomously perform a lighting energy assessment in facilities. The third case study is then presented on intelligent actuation, which uses a novel k-means algorithm to autonomously determine appropriate times to actuate compressors for air systems in manufacturing plants. Each of the presented case studies includes experimental tests demonstrating their capabilities

    Volume II: Mining Innovation

    Get PDF
    Contemporary exploitation of natural raw materials by borehole, opencast, underground, seabed, and anthropogenic deposits is closely related to, among others, geomechanics, automation, computer science, and numerical methods. More and more often, individual fields of science coexist and complement each other, contributing to lowering exploitation costs, increasing production, and reduction of the time needed to prepare and exploit the deposit. The continuous development of national economies is related to the increasing demand for energy, metal, rock, and chemical resources. Very often, exploitation is carried out in complex geological and mining conditions, which are accompanied by natural hazards such as rock bursts, methane, coal dust explosion, spontaneous combustion, water, gas, and temperature. In order to conduct a safe and economically justified operation, modern construction materials are being used more and more often in mining to support excavations, both under static and dynamic loads. The individual production stages are supported by specialized computer programs for cutting the deposit as well as for modeling the behavior of the rock mass after excavation in it. Currently, the automation and monitoring of the mining works play a very important role, which will significantly contribute to the improvement of safety conditions. In this Special Issue of Energies, we focus on innovative laboratory, numerical, and industrial research that has a positive impact on the development of safety and exploitation in mining

    Innovation in Energy Systems

    Get PDF
    It has been a little over a century since the inception of interconnected networks and little has changed in the way that they are operated. Demand-supply balance methods, protection schemes, business models for electric power companies, and future development considerations have remained the same until very recently. Distributed generators, storage devices, and electric vehicles have become widespread and disrupted century-old bulk generation - bulk transmission operation. Distribution networks are no longer passive networks and now contribute to power generation. Old billing and energy trading schemes cannot accommodate this change and need revision. Furthermore, bidirectional power flow is an unprecedented phenomenon in distribution networks and traditional protection schemes require a thorough fix for proper operation. This book aims to cover new technologies, methods, and approaches developed to meet the needs of this changing field

    Mining Technologies Innovative Development

    Get PDF
    The present book covers the main challenges, important for future prospects of subsoils extraction as a public effective and profitable business, as well as technologically advanced industry. In the near future, the mining industry must overcome the problems of structural changes in raw materials demand and raise the productivity up to the level of high-tech industries to maintain the profits. This means the formation of a comprehensive and integral response to such challenges as the need for innovative modernization of mining equipment and an increase in its reliability, the widespread introduction of Industry 4.0 technologies in the activities of mining enterprises, the transition to "green mining" and the improvement of labor safety and avoidance of man-made accidents. The answer to these challenges is impossible without involving a wide range of scientific community in the publication of research results and exchange of views and ideas. To solve the problem, this book combines the works of researchers from the world's leading centers of mining science on the development of mining machines and mechanical systems, surface and underground geotechnology, mineral processing, digital systems in mining, mine ventilation and labor protection, and geo-ecology. A special place among them is given to post-mining technologies research

    Innovation in Energy Systems

    Get PDF
    It has been a little over a century since the inception of interconnected networks and little has changed in the way that they are operated. Demand-supply balance methods, protection schemes, business models for electric power companies, and future development considerations have remained the same until very recently. Distributed generators, storage devices, and electric vehicles have become widespread and disrupted century-old bulk generation - bulk transmission operation. Distribution networks are no longer passive networks and now contribute to power generation. Old billing and energy trading schemes cannot accommodate this change and need revision. Furthermore, bidirectional power flow is an unprecedented phenomenon in distribution networks and traditional protection schemes require a thorough fix for proper operation. This book aims to cover new technologies, methods, and approaches developed to meet the needs of this changing field
    corecore