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The European Education Initiative as a Mitigation Mechanism for Energy Transition
Reprinted from: Energies 2022, 15, 6633, doi:10.3390/en15186633 . . . . . . . . . . . . . . . . . . . 305

vi



About the Editor

Krzysztof Skrzypkowski

Krzysztof Skrzypkowski is a Professor of Mining Engineering at the AGH University of

Science and Technology, Faculty of Civil Engineering and Resource Management in Krakow, Poland.

Professor Skrzypkowski obtained his PhD (doctorate) and DSc (habilitation) degrees in AGH in 2014

and 2021, respectively. His scientific research concerns the stability of underground mine workings,

particularly the selection of support for room and roadway excavations. In addition, his research

interests focus on computer-aided design and the determination of geotechnical parameters of backfill

materials. As the head of the rock bolting laboratory, he performs model, numerical and industrial

tests on various mechanisms of cooperation between the mining support and the rock mass. He is

the author of over 120 scientific publications and several patents and a utility model regarding the

monitoring and yielding of the rock bolt and steel arch support. As an academic lecturer, he works

closely with scientific institutes, industry and universities involved in the exploitation of mineral raw

materials.

vii





Preface to ”Volume II: Mining Innovation”

This Special Issue, “Volume II: Mining Innovation”, includes seventeen articles concerning

numerical, laboratory, analytical, artificial intelligence and industrial research into underground

mining.

The issues discussed in the articles include the selection of an arch yielding support for

preparatory workings in a hard coal seam with particular emphasis on the fault zone; assessing

the performance of yielding rockbolts, which can be served as a promising tool to improve and

optimize the design of rock supporting in burst-prone ground; sill pillar recovery schemes, loss in

the stopes and assessing the feasibility of recovering two sill pillars in a hard rock mine; a method

for determining effective geomechanical parameters for technological and residual pillars with the

application of measurement data, excavation convergence measurements and statistical methods;

impact of rock mass geomechanical parameters on the stability of preparatory headings driven in

two rock mass types with different strength and deformation parameters and their influence on

the safety of mining in underground copper ore mines located within the Legnica-Glogow Copper

District; the stress evolution of the working face through an abandoned roadway in a coal mine.

Furthermore, hydraulic fracturing technology combined with floor grouting and hydraulic support

for the abandoned roadway was proposed to stabilise the working face for safe mining; and modified

long short-term memory was used to detect the formation of explosive methane–air mixtures in the

longwall face and to identify possible explosive gas accumulations prior to them becoming hazards.

A review of reliability and fault analysis methods for heavy equipment and their components used in

mining and the advantages and limitations of the algorithm are discussed, and the efficiency of new

machine learning methods was compared to the traditional methods. A description of a system for

the automatic determination of rock-breaking target poses for impact hammers used in underground

mines is available. A model of the manipulator for supporting assembly works in mining excavations

with a description of its basic functions was constructed, using kinematics and stability. A simplified

calculation method in a flood discharge system for a tailing pond was conceived of; measurements

of impact and friction sensitivity were made, measurements of the detonation velocity in blastholes

were considered and, the determination of brisance via a Hess test and analysis of rock fragmentation

was achieved. When researching the various properties of waste rock to select the appropriate cutting

methods and tools, attention was paid to the abrasive properties, i.e., the rock’s abrasiveness. It was

found that the affinity of coal for water and methanol is related to the content of oxygen in the coal

rather than the rank of the coal. Furthermore, the modified active carbons were found to be suitable

for applications in hydrogen storage systems. For the new challenges facing mining, it was noted that,

with reference to the SARS-CoV-2 virus, recommendations, guidelines and decisions were presented

which were established after the appearance of the first wave of cases in Poland. Moreover, human

resources in the field of education and the stimulation of innovation in the aspect of energy transition

were presented.

The exploitation of raw mineral and rock materials and the accompanying processes are carried

out in complex geological and mining conditions for which the presented innovations may be helpful

not only at the design stage but also during their implementation.

Krzysztof Skrzypkowski

Editor
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Abstract: The article presents a method of selecting an arch yielding support for preparatory workings
driven in a hard coal seam. Particular attention was paid to discontinuous deformation in the form
of a fault, which significantly contributes to the change of the excavation protection schemes. On
the basis of the geometry of the machines and devices in the designed excavation, the support was
selected, which was then checked for the ventilation criterion. In the next stage, analytical calculations
were carried out using the determined spacing of the steel support in the fault zone and the area
outside of it. Additionally, using the RS3 numerical software based on the finite element method,
a rock mass model with a fault was built, through which the preparatory excavation passes. The aim
of the research was to determine the total displacements occurring in the fault crossing zone for the
excavation without support and with the use of steel arch yielding and with additional reinforcement
in the form of straight segments. In conclusion, it was found that the variants of the excavation
reinforcement can be modeled and selected in advance, which allows for the fastest possible execution
of the driving and the maintenance of the minimum movement dimensions while passing through
the fault.

Keywords: arch yielding support; fault; minimal section method; RS3

1. Introduction

Underground mining of hard coal deposits requires the construction and maintenance
of many preparatory workings, which are driven by a certain time advance in relation to
the exploitation of the deposit. Such a technological process makes it necessary to ensure
the stability of workings in the long term. These issues are of particular importance in
relation to preparatory workings, the useful life of which is often related to the life of
longwalls. Preparatory workings are located in an environment with many geological
factors, such as continuous and discontinuous deformations, high stresses and natural
hazards [1], including the impact of remains and operating edges [2] that contribute to
additional loads on mining supports. Both the roadways and inclined drifts are supported
by an independent arch yielding support [3]; rock bolt and cable support [4–6], including
steel arch and bolts [7,8]; and shotcrete [9,10], or new solutions are sought with the use
of a hydraulic support [11]. The previously used steel sets support is often exposed to
the influence of saline mine waters [12]. First of all, leaks occur in different places and
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periods of the excavation’s existence, depending on the degree of fracture and crushed
rocks in the fault area [13,14]. Driven preparatory excavations in the immediate vicinity
of the fault are secured with a support, the main task of which is to ensure the stability
of the excavation throughout its lifetime and the dimensions of its cross-section, as well
as to protect people, machines and devices against rock fragments moving from the roof
or side walls [15]. In conditions of additional loads caused by the immediate vicinity of
the fault, the arch yielding support should be characterized by a defined load capacity
resulting from the strength parameters of its individual elements and the ability to deform
under control [16]. The occurrence of changes in the geometry of the support without
damaging its structural elements is ensured by the appropriate flexibility of the support
as well as its spacing. The individual arches of the steel support, set at specific intervals,
are connected with each other by means of struts that keep the distance between them
and prevent them from twisting in the event of uneven loading. The length of the struts
is usually adjusted to the spacing of the arches with a pitch of at least 0.1 m. Most often,
this pitch is 0.25 m, which translates into the distance between the frames: 0.5, 0.75, 1.0,
1.25, 1.5 m [17]. The flexibility of the support provides the possibility of displacement of
the support structural elements in relation to each other as a result of the impact of specific
load values. The selection of the arch yielding support of the preparatory workings is made
with the assumption of the safety coefficients [18]. The basic factor determining the stability
of the excavation is the correct selection of the parameters of the support, both in terms
of geometry and strength. This selection is based on the assumption that the designed
excavation is made in rocks with specific strength, deformation and structural parameters.
The mutual relation of these values determines the processes taking place in the vicinity
of the excavation exposed to the fault and directly determines the spacing of the support.
Important factors influencing the load-bearing capacity of the arch yielding support include
the physical and mechanical parameters of the steel used to make individual elements of
the support of mining excavations [19]. Currently, the most commonly used steel grades are
25G2, 34GJ, 31Mn4, S480W, G480V, S550W and HŁ CORR, which are characterized by their
yield point and minimum tensile strength of 340 MPa and 550 MPa, respectively [20]. The
need to verify theoretical solutions has led to the creation and development of laboratory
stands in research and development units, the task of which is to better understand the
behavior of the structure [21] and the cooperation of the support with the rock mass [22].
Yang et al. [23] pointed out top and bottom arch strengthening for a new steel sets designed
for underground roadways. Lv et al. [24] conducted laboratory test of square steel confined
concrete in a geometric scale 1:1 and indicated the possible places of damage. Wu et al. [25]
simulated the surrounding rock stress by means of the model tests. As a result of the
recognition of the impact of various physicomechanical factors, it is possible to make
a practical assessment of the application of the steel sets in natural conditions. Research on
physical models, which reflect the impact of the fault on the stability of the excavation, is of
particular importance. Wang et al. [26] stated that the presence of fault increases the risk of
dynamic phenomena. Wang et al. [27] pointed out that in the immediate vicinity of the fault,
there is a great risk of sudden rock fall into the excavation. A common method of reinforcing
the excavation while passing through the fault is the use of an additional bolt and cable
support [28]. Adoko et al. [29] used RS2 software to model drift with and without supports.
According to their calculations, the use of rock bolting and concrete contributed to a more
than two-fold reduction in the value of stresses around the excavation. Xiong et al. [30]
found and proved on the basis of numerical modeling that the combination of several types
of support contributes to an effective and significant reduction in roadway deformation,
thanks to which the excavation retains its functionality for longer. The irregularities
in the deposits of hard coal can be divided into primary and secondary. The primary
irregularities arose simultaneously with seam formation and secondary irregularities after
the seam formation. For the selection of the casing and operation, the greatest challenge
includes faults (Figure 1a), which are the shifts of the layers in relation to each other with
a simultaneous interruption of their continuity. The shifts occur along the cracks in the
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rock mass. In the case of a normal fault, the fault plane is inclined towards the dropped
wing. On the other hand, for an inverted fault, the layer overlap occurs in such a way that
the older layers lie partially over the younger ones. Depending on the direction of the fault
plane in relation to the seam strike, longitudinal faults (Figure 1b) and transverse faults
(Figure 1c) are distinguished. The fault is longitudinal when the contours of the step plane
run parallel to the extent of the seam, transverse when the contours run perpendicular
to the extent. In addition, there are also oblique faults where the contours of the fault
plane form a right angle with the length of the deck. The gap along which the layers have
shifted is called the fault gap. Fault fissures are often water-bearing and constitute one of
the sources of water inflow to underground mine’s workings. In hard coal seams, faults
are sometimes reservoirs of gases, such as carbon dioxide or methane. Sometimes, the
disturbed layers adhere tightly to each other in a plane smoothly polished by rock friction
while moving. The wider fault gaps are filled with rock crumbs, sand and clay.

Figure 1. Cont.
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Figure 1. Fault: (a) basic parameters; (b) longitudinal; (c) transverse.

Despite significant progress in the selection of the arch yielding support for under-
ground preparatory workings and numerous laboratory, numerical and industrial tests,
there is still a gap in the calculation algorithm in taking into account the selection of fore-
head equipment, ventilation criterion and geomechanical calculations. The article presents
a method of selecting the arch yielding support for the preparatory excavation, which
was driven in the fault zone. Based on analytical calculations, the support spacing in the
immediate fault zone as well as outside of it was calculated. Using the spatial numerical
software based on the finite element method, three variants of the excavation performance
were modeled: without support; with the use of steel arch yielding; and with additional
reinforcement in the form of straight segments. The results of the numerical simulations
were the total displacement distributions around the driven preparatory roadway.

2. Mining and Geological Conditions of the Driven Excavation

Rock lumps of hard coal, claystone and sandstone were collected from the 800 m level
roadway in one of the mines of the Upper Silesian Coal Basin in Poland. The forehead is
driven mechanically with the R-130 roadheader (Figure 2), while the excavated material
from the face is loaded with the machine loader onto the belt feeder. The extent of geological
layers in the area of the planned works generally runs along NNW–SEZ. The collapse of
the layers does not exceed 3◦, generally NE. The excavation is driven in the layer of coal
seam 207 with a thickness of about 4 m. Directly at the roof and the floor of the excavation,
there is a layer of claystone over which there is a several dozen meter layer of sandstone
(Figure 3).

Figure 2. Forehead, place of sampling.
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Figure 3. Lithological profile of the coal seam.

The roadway is driven in a rock mass where there is no methane hazard, and above
all, it is made outside the area that is subject to rock bursts and gas and rock outbursts. The
excavation is classified as “A” class of coal dust explosion hazard, which means that in
the driven coal seam or its part, there is mine dust protected in a natural way. In addition,
mine dust contains at least 80% of non-flammable solids of natural origin, the amount of
hazardous coal dust is less than 10 g/m3 of the excavation and the mass of coal dust without
non-flammable solids, settling on a given surface at a given time hereinafter referred to as
dust settling intensity, is less than 0.15 g/m2 per day [31]. Coal seam no. 207 was classified
into the fifth most dangerous group of self-igniting. The incubation period of endogenous
fire is 32 days, while the activation energy A is 46.5 kJ/mol, and the self-igniting index Sza
is 137 ◦C/min [32]. In the vicinity of the designed excavation, the temperature of rocks is
about 20 ◦C. The conducted measurements and their results as well as the practice acquired
during the exploitation of the coal seam no. 207 indicate that, during driving, the substitute
climate temperature should not exceed 26 ◦C for workplaces. In the event of a water
hazard, the excavation area was classified as the weakest in a three-point scale. Water to
the preparatory roadway can flow mainly from the depletion of carboniferous aquifers
associated with sandstones lying between seams 206 and 207 in the form of condensation
and roof leakages. In the area of the excavation, there is a geological disturbance in the form
of faults with a throw size from 1.8 m to 2.5 m, which occurred along the north–eastern
side of the side (Figure 4).

5
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Figure 4. The area of the roadway with marked faults.

Laboratory Tests of Rocks from Driven Excavation

In the laboratory of the Department of Mining Engineering and Occupational Safety
of AGH in Krakow, cylindrical samples with a diameter of 50 mm and a height of 100 mm
were cut using a core drill (Figure 5a,b). The samples prepared in this way were tested
(Figure 5c–e) on a testing machine, which was equipped with three strain gauges and
a cable encoder to measure the displacement, while the horizontal strains were measured
with three electronic dial gauges (Figure 5c). The load rate was 0.5 kN/s. The results are
summarized in Table 1. The main objective of the laboratory tests was to determine the
deformation and strength parameters of three types of rocks, coal, sandstone and clay
slate, which surround the hard coal seam. In the laboratory tests, no rheological tests of
hard coal related to creep and relaxation were performed, because the hard coal showed
the characteristics of an elastic-brittle material. The test results were used in numerical
modeling to estimate the total displacement for different variants of roadway II protection.
All types of rock were taken from the forehead of the roadway II. There was no visible
stratification in the rocks from which samples of both coal, sandstone and clay slate had
been cut.

Table 1. Summary of the results of strength and deformation tests for rocks in the area of the designed
excavation.

Type of Rock
Density
(kg/m3)

Compressive Strength
(MPa)

Tensile Strength
(MPa)

Young’s Modulus
(GPa)

Coal 1296 15.45 1.37 2.3

Claystone 2440 16.5 1.55 10.3

Sandstone 2560 47 3.62 5.4

6
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Figure 5. Preparation of samples for testing: (a) testing machine equipped with sensors; (b) cut-
ting samples in a block of coal with a trepan drill; (c) a lump of clay slate with samples cut out;
(d) electronic sensors of horizontal deformation; (e) Brazilian tensile strength test; (f) compression of
sandstone samples.

3. Choice of the Arch Yielding Support

3.1. Minimum Section Method

In order to determine the dimensions of the cross-section of roadway II, the method
of minimum sections was first used, which consists in determining the minimum width
and minimum height of the excavation. In order to determine the minimum width Smin,
all widths of devices in the excavation and the minimum movement distances between
the devices and the excavation support were added [33]. The minimum height Hmin is

7
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calculated as the minimum height, but the dimensions are summed up in the largest cross-
section. The sum of the width and height together with the movement distances should
be multiplied by 1.1 due to the possibility of clamping the excavation, thus reducing the
excavation cross-section. The individual widths and heights of machines and devices along
with the minimum movement distances are presented in Table 2.

Table 2. Dimensions of machines and devices with minimum movement distances.

Type of Machine or Device Width (mm) Height (mm)

Suspended monorail: BIZON 120-X 1200 1500

Belt conveyor: GWAREK-1000 1350 1000

Fire pipeline 315

Drainage pipeline 315

Compressed air pipeline 250

Duct diameter 1000

Passage for miners 700 1800

Rail of suspended monorail 155

Movement intervals

From To Minimum distance (mm)

Belt conveyor Arch yielding support 250

Suspended monorail Belt conveyor 400

Duct Belt conveyor 600

Floor Suspended monorail 300

Rail of suspended monorail Roof arch 500

The minimum width Smin and the height Hmin of the excavation were determined
according to Equations (1) and (2):

Smin =
(
∑ xa + ∑ xb

)
·1.1 (mm), (1)

where

xa—the width of the device (mm);
xb—minimum movement distance between individual devices and the support (mm);

Hmin =
(
∑ ya + ∑ yb

)
·1.1 (mm), (2)

where

ya—height of the device in a given cross-section (mm);
yb—minimum movement distance between the device and the support (mm).

Taking into account the dimensions of machines and devices and the movement dis-
tances (Table 2), the minimum width and height were calculated according to
Equations (3) and (4).

Smin = [(1350 + 1200 + 700 + 315) + (250 + 400)]·1.1 = 4640 mm (3)

Hmin = [(155 + 1500 + 500) + (300)]·1.1 = 2700 mm (4)

Then, based on the calculated values of Smin and Hmin, the ŁP8/V29/A three-part sup-
port was selected [34] (Table 3), which should meet the conditions of Equations (5) and (6).

Scatalogue ≥ Smin (5)

Hcatalogue ≥ Hmin (6)

8
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Table 3. Basic dimensions of the support arches ŁP8.

Type of Support
Height,

Hcatalogue (mm)
Width,

Scatalogue (mm)
Cross-Section (m2)

ŁP7/V29/A 3100 4200 11.08

ŁP8/V29/A 3300 4700 13.07

ŁP9/V29/A 3500 5000 14.76

The three types of supports are presented in the Table 3 in order to show the optimal
arch yielding support selection. The first type, ŁP7/V29/A, was not selected because it did
not meet the Smin condition. However, the third type, ŁP9/V29/A, was also not selected
due to the too high costs of roadway support; therefore, type ŁP8/V29/A was selected.
Thus, the condition was met because 4700 mm ≥ 4640 mm and 3300 mm ≥ 2700 mm. The
arrangement of machines and devices with spaces is shown in Figure 6.

Figure 6. Cross-section of the roadway II: 1—support foot; 2—belt conveyor GWAREK-1000; 3—duct;
4—double yoke stirrups; 5—roof arch of the yielding support ŁP8/V29/A; 6—multi-element strut;
7—rail of suspended monorail; 8—BIZON 120-X suspended monorail; 9—passage for miners;
10—sidewall arch; 11—compressed air pipeline; 12—drainage pipeline; 13—fire pipeline.

The arch yielding support was made of steel elements with a “V” profile. As it is
a preparatory excavation not exposed to the effects of longwall exploitation, no convergence
was observed at the driving stage. The expected course of the slide of the steel sets elements
at the longwall exploitation stage is estimated at the level of 0.3 mm/m. In order to define
the dimensions of the roadway II cross-section in the breakout, 300 mm was added to the
catalogue height and width. Therefore, the height Hw and width Sw of the excavation
cross-section in the breakout were calculated according to Equations (7) and (8):

Hw = Hkat + 300 = 3600 mm, (7)
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where
Hw—height of the cross-section of the excavation in the breakout (mm);
Hkat—catalogue height of the ŁP8 support arches (Hcatalogue = 3300 mm);

Sw = Skat + 300 = 5000 mm, (8)

where:

Sw—width of the cross-section of the excavation in the breakout (mm);

Skat—catalogue width of the ŁP8 support arches
(

Scatalogue = 4700 mm
)

.

3.2. Ventilation Criterion

The selected dimensions of the arch yielding support must meet the ventilation re-
quirements for preparatory workings [35]. For this purpose, the actual velocity Vrz of the
flowing air in the excavation was determined, and then the value was compared with the
calculated values of the minimum Vmin and maximum Vmax velocity. For the designed
roadway excavation, there must be the following relationship (9):

Vmin ≤ Vrz ≤ Vmax

(m
s

)
, (9)

where

Vrz—actual air flow velocity (m/s);
Vmax—permissible maximum air velocity in the excavation (m/s);
Vmin—the minimum permissible air velocity in the excavation (m/s).

The actual air flow velocity Vrz in the excavation was calculated according to Equation (10):

Vrz =
Qa
F

,
(m

s

)
, (10)

where

Qa—the required air flow rate at the outlet from the duct (m3/s) was calculated according
to Equation (11) [36];
F—usable cross-section of the excavation (m2), assumed F = 13.07 m2 (Table 3);

Qa =
Qb
Pq

,
(

m3

s

)
, (11)

where

Qb—fan flow, m3/s (for Axial Flow Fan—Type ES 9-500/80, Qb = 10.2 m3/s) [37];
Pq—the expenditure reserve ratio (dimensionless) is given by Equation (12):

Pq = 0.77· exp ·
⎛
⎝L· 3

√
k2

2
·r
⎞
⎠+ 0.23· exp ·

⎛
⎝−2·L· 3

√
k2

2
·r
⎞
⎠ (12)

where

L—length of the duct, m (L = 80);
k—leakage rate of the duct, m3/(sN1/2) (k = 0.003);
r—unit resistance, flow rate of the duct, Ns2/m9 (r = 0.003590).

The actual air flow velocity Vrz was 4.87 m/s.
The minimum air velocity in excavation Vmin is associated with the indication of

whether the designed excavation is subject to the methane hazard. The air velocity in the
excavation, which is ventilated by a duct in non-methane fields or in methane fields of I
category methane hazard, cannot be less than 0.15 m/s, and in methane fields II, III and
IV of the methane hazard category, it cannot be less than 0.3 m/s [35]. Roadway II is not
covered by the methane hazard, so Vmin = 0.15 m/s. The maximum air velocity in the
excavation Vmax for the exploitation excavations cannot exceed 5 m/s, for the preparatory
excavations 8 m/s, and in shafts and small shafts, it cannot exceed 12 m/s [35]. Due to the
fact that roadway II is a preparatory excavation, Vmax = 8 m/s. After specifying the value
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of the actual, minimum and maximum velocities, they were inserted into Equation (9),
which shows that the ventilation criterion for the driven excavation was met because
0.15 ≤ 4.87 ≤ 8 m/s.

3.3. Arch Yielding Support Calculation

The arch yielding support for roadway II was selected according to the method of
Professor Rułka [38]. It is one of the three methods commonly used in Polish underground
hard coal mining. This method can be used if the weighted average value of the compressive
strength of the indicated roof rock package is not less than 10 MPa; the weighted average
water permeability value of the indicated roof and floor rock packages is at least 0.5; the
energy of probable tremors in the vicinity of the designed excavation is not greater than
5 × 105 J; the angle of the transverse inclination of the rock layers is not more than 30◦;
the angle of the excavation is not more than 35◦. In addition, the designed excavation is
located at a depth of 300–1200 m and the width of the cross-section of the excavation in
the breakout is a maximum of 8 m. In order to determine the geomechanical properties of
rocks in the area of the designed excavation, the range of the Zroof and Zfloor rocks should
be determined according to Equations (13) and (14):

Zroof = 1.0·Hc (13)

Zfloor = 0.5·Hc (14)
where

Hc—height of the cross-section of roadway II in the breakout (m).

Figure 7 shows the lithological profile of the rock range, which was taken into account
when selecting the support for roadway II.

Figure 7. Lithological profile for roadway II.

The selection of the arch yielding support was calculated according to Equation (15):

d ≤ WNc

q0
(15)

where
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d—arch yielding support spacing, m;
WNc—computational index of load capacity of support arches, MN/m;
q0—computational load, MPa.

The support load index WNc = 0.0905 MPa was calculated according to Equation (16):

WNc = 0.5544·WN·0.8·kl (16)

where

WN—load capacity index of support arches, MN/m (for section V29 made of steel S480W,
WN = 0.255) [39];
kl—lining coefficient (in the designed excavation a tight lining will be used; therefore
kl = 0.8; for mechanical, loose and non-loose lining, the coefficient is, respectively: 1.0,
0.6 and 0.4);
0.5544—constant value related to the factor of utilization of the maximum load capacity
of arches;
0.8—constant value related to the load unevenness factor.

The computational load q0 = 0.0357 MPa is calculated according to Equation (17):

q0 = kg·ku·kα·kβ·ke·ks·qN + qd, MPa, (17)

where

kg—the rock mass weakening coefficient in the determined rock packet (Figure 7), which
ranges from 0.79 to 3.64, kg = 1.881, was calculated according to Equation (18):

kg = 1.7391·(1.1 − 0.007·RQD)·(2.8 − 1.8·Rs)·(1.07 − 0.0002·H), (18)

where

H—depth of roadway II, H = 800 m;
RQD—rock quality designation, RQD = 40%;
Rs—coefficient of the influence of rock moisture on their strength, Rs = 0.75;
ku—fault action coefficient for excavations that are located in the fault zone ku = 1.2;
kα—coefficient of the influence of the transverse inclination of the rock layers, for α ≤ 15◦;
kα = 1.0, while for 15◦ ≤ α ≤ 35◦ kα = 1.15;
kβ—coefficient of the longitudinal inclination of the excavation impact, for β≤ 15◦ kα = 1.0,
while for 15◦ ≤ β ≤ 25◦ kβ = 1.15 and for 25◦ ≤ β ≤ 35◦ kβ = 1.20;
ke—exploitation edge influence factor (roadway II is outside the impact range and a distance
of more than 120 m from the edge, therefore ke = 1);
ks—the impact factor of the adjacent excavation (roadway II is driven parallel to roadway I
at a distance of about 225 m) according to Formula (19), ks = 1.0:

ks = 1 +
1(

1 + xs
Wc

)2 (19)

where

Wc—width of the excavation in the breakout, Wc = 5 m (Figure 7);
xs—distance between roadways, xs = 225 m (Figure 4);
qN—the characteristic value of the vertical static loads of the supportg, qN = 0.0446, was
calculated according to Equation (20):

qN = qw·
Wca

Wc
, MPa, (20)

where

Wca—computational width, Wca = 7.1798, which is calculated according to Equation (21):

Wca = Wc + Hc·k0, m, (21)

Wc—width of the excavation in the breakout, Wc = 5 m (Figure 7);
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Hc—height of the excavation in the breakout, Hc = 3.6 m (Figure 7);
k0—coefficient of the influence of the angle of internal friction of rocks in the sidewall
(compressive strength of coal = 15.45 MPa (Table 1), k0 = 0.6055);
qw—conditional pressure. Taking into account the effect of depth, coal compression
strength and design width), qw = 0.0311 MPa, was calculated according to Equation (22):

qw = 0.001·(0.357·Wca + 21.425)·(0.0019·H + 0.4187)·(1.145 − 0.0145·Csroof), MPa, (22)

where

Wca—computational width, m;
H—depth of roadway II, H = 800 m;
Csroof—weighted average compressive strength of rocks in roof rocks (Table 1 and Figure 7),
Csroof = 32.7 MPa;
Qd—dynamic unit load was determined on the basis of Figure 8, qd = 0.015 (roadway II is
located 50 m below the shock layer, and the expected shock energy is 1 × 105 J).

Figure 8. Dependence of the unit dynamic load qd on the value of the expected shock energy Ew and
the distance of the center of the shock-producing layer from the excavation roof.

After selecting all the coefficients, the support spacing was calculated according to
Formula (15). The calculations were made for the part of the excavation without the
fault (23) and with its impact (24).

dwithout fault ≤
WNc

q0
=

0.0905
0.098

= 0.92 m (23)

dwith fault ≤
WNc

q0
=

0.0905
0.1156

= 0.78 m (24)

The calculations show that, for the part of the excavation without the fault, the support
spacing should be less than 0.92 m. However, the impact contributes to the reduction in
spacing to 0.78 m. Due to the geometry of the struts used to stabilize the support arches, it
can be assumed that, in the fault zone, support spacing should be 0.75 m and 0.9 m outside
of it.

4. Discussion

Driving preparatory workings is a fundamental goal for the exploitation of a deposit
with a longwall panel. For this reason, the optimization and continuous improvement

13



Energies 2022, 15, 3774

of the efficiency of driving and securing workings in the vicinity of faults are important
issues. A thorough analysis of the geological conditions, taking into account the experience
gained during the previous works in similar conditions, is the basis for making a decision
on the possibility and method of securing the excavation while passing through the fault.
While driving the preparatory workings, headgate and tailgate, their performance may be
suspended as a result of discontinuous deformations. A special case is the situation when
the excavation of the excavation does not reveal any significant geological disturbances that
could affect production capacities and, in the course of further progress, one encounters
obstacles such as thickness reduction and faults that prevent effective driving. This is
an obvious financial loss of underground mining plants related to the expenditure on the
construction of such workings. Due to the fact that, in Poland, the basic type of support for
preparatory excavations is the arch yielding support, and only in two underground coal
mines (“Bogdanka” and Budryk”) a separate rock bolt support was used in the research
roadway, the article attempts to present the advantages of an independent bolt support,
which can be an alternative to currently used security methods. Taking into account
the rising prices of steel, limiting its consumption by introducing the bolt support can
bring significant savings for the mining plant. Cost elements are closely related to labor,
materials, equipment and transportation. One solution contributing to the reduction in
overall costs may be to replace the arch yielding support with rock bolts, of course if the
geological conditions allow the use of this type of support. In accordance with Polish
mining regulations [35], the use of a separate rock bolt support in coal mining plants is
allowed for preparatory and room workings with a cross-sectional area not exceeding
30 m2 and a working width not exceeding 7 m. In addition, the roof rocks have an average-
weighted uniaxial compressive strength, tested for a rock packet with a thickness of 3 m,
that is not less than 15 MPa for layers with a plate structure and rock quality designation not
less than 20% or 10 MPa for layers with a massive structure, and quality designation of not
less than 40%. In addition, the rock mass is dry or non-sagging, and the water permeability
coefficient is not less than 0.8. Currently, the rock bolt support is embedded in the carbon
rock mass only by means of the resin cartridges and a cement binder. Expansion or friction
bolts are not used. A threaded rod with a length of up to 2.7 m is made of a steel ribbed bar,
while longer bolts are made as a cables or strings up to 15 m long. The calculation of the
economic effects due to the use of a stand-alone rock bolt support consists in comparing
the costs incurred for making the excavation in the bolted support with the costs incurred
for making the same excavation in the arch yielding support (Table 4).

Table 4. Cost structure for arch yielding and rock bolt supports.

Cost
Arch Yielding Support with

a Cross-Section of 13 m2
Rock Bolt Support in

Length 2.5 m

Labour, % 19.51 37.78

Material, % 71.81 51.11

Equipment, % 3.25 6.67

Transport, % 5.42 4.44

Total cost of 1 m, PLN 3690 2250

The largest issue, accounting for more than half of the total cost of a stand-alone rock
bolt support, is the materials. The costs of material, equipment and transport per meter of
the excavation are relatively constant over a certain period of time, while the labor costs
change with the increase in productivity, which in turn is conditioned by the increase in
experience acquired by the mining crew and the use of highly efficient and failure-free
equipment. Due to the compressive strength of coal, which in the area of the designed
excavation is only 0.45 MPa higher (Table 1) above the minimum value, a decision was
made not to use a separate bolt support. In order to determine the impact of the fault on the
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change in the total displacement around the roadway, a spatial numerical model was built
in the RS3 software [40] based on the finite element method. The main goal of numerical
simulations was to determine the difference in changing the total displacement distribution
for an excavation without support and that is secured by means of steel arch yielding
without and with steel segments. The rock mass model was cubic with a side length of
60 m (Figure 9a–c). In the coal layer, an excavation 5 m wide and 3.6 high was designed.

Figure 9. Cont.

15



Energies 2022, 15, 3774

Figure 9. Rock mass model: (a) spatial view; (b) side view; (c) front view.

The horizontal extent of the zone of increased impact of the rock mass on the support due
to the fault on both sides of the fault plane was determined according to Equation (25) [38]:

Lu =
2.5·√hu

sin δ
(25)

where

Lu—fault action zone (m);
hu—the height of the fault throw (m);
δ—the angle of the fault plane (◦).

For a fault with the throw size h = 1.8 m and the inclination angle of the fault plane
δ = 75◦, Lu = 3.47 m. Moreover, when the fault crosses the excavation (Figure 4), the fault
zone of the fault Lu should be double. Therefore, in the numerical model, both in front of
and behind the fault, the compaction zone of the arch yielding support was at least 7 m.
Out of several dozen possibilities of failure criteria offered by the RS3 numerical program,
the Generalized Hoek–Brown criterion was selected, which belongs to the elastic/plastic
group. The material constants were adopted from RocData software [41]. The strength,
deformation and structural parameters for the individual layers and for the fault are
presented in Table 5. In the model, it was assumed that the width of the fault gap was
0.2 m and that it was filled with crushed rocks. The arch yielding support and steel straight
segments were modeled as beam elements, for which the minimum tensile strength for
the S480W steel grade is 480 MPa. The support spacing in the fault zone and outside
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this zone was 0.75 m and 0.9 m, respectively. The results of the calculations are shown in
Figure 10a–c.

Table 5. Geomechanical parameters adopted in the numerical models.

Type of
Rock

Unit Weight
(MN/m3)

Compressive Strength
(MPa)

Young’s Modulus
(MPa)

Poisson
Ratio

Geological
Strength Index

mb s a

Coal 0.0127 15.45 2300 0.3 65 0.756 0.009 0.502

Claystone 0.0239 16.5 10,300 0.23 70 1.678 0.018 0.501

Sandstone 0.0251 47 5400 0.25 75 5.169 0.036 0.501

Fault 0.0127 12.36 2000 0.3 50 0.185 0.001 0.506

The maximum value of total displacement around the roadway without support was
0.02 m. This value occurs in the roof of the hanging part in the immediate vicinity of the
fault. Securing the excavation with the arch yielding support at a spacing of 0.9 m and
0.75 m in the fault impact zone reduces the value of total displacements by 10%. On the
other hand, the additional reinforcement of the support with steel segments causes the
value of total displacements to drop to 0.016 m, which is 80% of the value for the excavation
without the support.

Figure 10. Cont.
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Figure 10. Total displacement distribution around the roadway: (a) without support; (b) with the
arch yielding support; (c) with arch yielding and steel straight segments support.

5. Conclusions

In order to ensure the stability of the preparatory excavation, all possible negative
factors affecting the mining and geological conditions of the excavation area should be
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taken into account. As a result of the application of the minimum contours method, the
ventilation criterion and geoemechanical calculations, the ŁP8/V29 arch yielding supports
with a spacing of 0.9 m were selected. If the excavation passes through a fault, the spacing
was reduced to 0.75 m. The fault zone, both in front of and behind the fault, was calculated
at 7 m. Based on numerical calculations, the following was found:

1. The projected total displacement around the roadway without support, which crosses
the fault, was 0.02 m, while the use of the arch yielding support at a distance of 0.9 m
outside the fault and 0.75 m in the fault zone reduces the total displacement value by
10%;

2. Additional reinforcement of the support in the form of steel straight segments con-
tributes to a reduction in the value of total displacement by 11% and 20% compared
to the excavation with and without the support.

The selection of driving roadways and mining supports in the fault conditions is
associated with the necessity to use additional reinforcement and increasingly durable
mining supports. In the case of support arches made of flexible arches, increasingly larger
sizes of sections are used, which can be additionally made of steel with increased strength
parameters. Due to the implementation of more and more modern mechanization of both
transport and driving processes, the support of preparatory workings has increasingly
larger cross-sectional dimensions. It is connected with the necessity to provide more
and more working space for machines and devices, as well as for miners. Correctly
selected support for preparatory workings is one of the most important issues when
performing works in accordance with mining technology, because it plays a key role in
ensuring the safety of the crew and continuity of production. The difficulty of designing
the support increases with the deteriorating mining and geological conditions, such as
the state of increased stress or discontinuous deformation of the rock mass. Although the
method of securing workings in hard coal mines has not changed for several years, because
preparatory workings mainly use the arch yielding support, all time activities are based on
research and previous experience aimed at the most optimal selection of the support along
with its strengthening in the given conditions of the rock mass. Strengthening the support
of roadways in hard coal mines is a commonly used practice. The need to increase the
load-bearing capacity of the used support occurs both at the stage of driving the excavation
in the event of worse geological conditions, e.g., a fault, and during the operation of the
excavation associated with an additional dynamic load. The experience and practice in the
use of the support so far shows that, in most cases, the possible variants of increasing the
load-bearing capacity of the support are not planned in advance, but their ad hoc methods
are used, which have worked well in the given conditions earlier not necessarily taking into
account the fact of whether the selected reinforcement variant for a given case is an optimal
variant. However, the continuous possibility of modifying the load-bearing capacity of
the casing is its undoubted advantage and the fact that it permits the obtainment of the
expected effect, which is the smallest possible deformation of the support, allowing for the
safety and full functionality of the excavation in accordance with the assumptions.
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7. Šňupárek, R.; Konečný, P. Stability of roadways in coalmines alias rock mechanics in practice. J. Rock Mech. Geotech. Eng. 2010,
2, 281–288. [CrossRef]

8. Shan, R.; Li, Z.; Wang, C.; Wei, Y.; Bai, Y.; Zhao, Y.; Tong, X. Research on the mechanism of asymmetric deformation and stability
control of near-fault roadway under the influence of mining. Eng. Fail. Anal. 2021, 127, 105492. [CrossRef]

9. Mei, Y.; Li, W.; Yang, N.; Wang, G.; Li, T.; Sun, T. Failure Mechanism and Optimization of Arch-Bolt Composite Support for
Underground Mining Tunnel. Adv. Civ. Eng. 2020, 2020, 5809385. [CrossRef]

10. Kang, H.; Jiang, P.; Wu, Y.; Gao, F. A combined “ground support-rock modification-destressing” strategy for 1000-m deep
roadways in extreme squeezing ground condition. Int. J. Rock Mech. Min. Sci. 2021, 142, 104746. [CrossRef]

11. Liu, H.; Jiang, Z.; Chen, W.; Chen, F.; Ma, F.; Li, D.; Liu, Z.; Gao, H. A Simulation Experimental Study on the Advance Support
Mechanism of a Roadway Used with the Longwall Coal Mining Method. Energies 2022, 15, 1366. [CrossRef]

12. Horst, R.; Modrzik, M.; Ficek, P.; Rotkegel, M.; Pytlik, A. Corroded steel support friction joint load capacity studies as found in
Piast-Ziemowit coal mine. Min. Inform. Autom. Electr. Eng. 2018, 1, 81–94. [CrossRef]

13. Zhou, Q.; Herrera-Herbert, J.; Hidalgo, A. Predicting the Risk of Fault-Induced Water Inrush Using the Adaptive Neuro-Fuzzy
Inference System. Minerals 2017, 7, 55. [CrossRef]

14. Cao, Z.; Gu, Q.; Huang, Z.; Fu, J. Risk assessment of fault water inrush during deep mining. Int. J. Min. Sci. Technol. 2022,
32, 423–434. [CrossRef]

15. Chen, J.; Dai, X.; Zhang, J. Analytical Study of the Confining Medium Diameter Impact on Load-Carrying Capacity of Rock Bolts.
Math. Probl. Eng. 2021, 2021, 6680886. [CrossRef]

16. Qian, D.; Zhang, N.; Pan, D.; Xie, Z.; Shimada, H.; Wang, Y.; Zhang, C.; Zhang, N. Stability of Deep Underground Openings
through Large Fault Zones in Argillaceous Rock. Sustainability 2017, 9, 2153. [CrossRef]

17. Kalmet. Available online: https://www.kalmet.com.pl/pl/oferta/elementy_obudow_gorniczych.html (accessed on
19 February 2022).

18. Pytlik, A. Experimental studies of static and dynamic steel arch support load capacity and sliding joint temperature parameters
during yielding. Arch. Min. Sci. 2020, 65, 469–491. [CrossRef]

19. Grodzicki, M.; Rotkegel, M. The concept of modification and analysis of the strength of steel roadway supports for coal mines in
the Soma Basin in Turkey. Studia Geotech. Mech. 2018, 40, 38–45. [CrossRef]

20. Hutalab. Available online: http://www.hutalab.com.pl (accessed on 22 February 2022).
21. Rotkegel, M. ŁPw Steel Arch Support–Designing and Test Results. J. Sustain. Min. 2013, 12, 34–40. [CrossRef]
22. Li, W.; Liu, J.; Chen, L.; Zhong, Z.; Liu, Y. Roadway Support in Deep “Three-Soft” Coal Seam: A Case Study in Yili Mining Area,

China. Shock Vib. 2021, 2021, 8851057. [CrossRef]
23. Yang, R.; Li, Q.; Li, Q.; Zhu, X. Assessment of Bearing Capacity and Stiffness in New Steel Sets Used for Roadway Support in

Coal Mines. Energies 2017, 10, 1581. [CrossRef]
24. Lv, Z.; Qin, Q.; Jiang, B.; Luan, Y.; Yu, H. Comparative study on the mechanical mechanism of confined concrete supporting

arches in underground engineering. PLoS ONE 2018, 13, e0191935. [CrossRef] [PubMed]
25. Wu, H.; Jia, Q.; Wang, W.; Zhang, N.; Zhao, Y. Experimental Test on Nonuniform Deformation in the Tilted Strata of a Deep Coal

Mine. Sustainability 2021, 13, 13280. [CrossRef]
26. Wang, H.; Jiang, Y.; Xue, S.; Mao, L.; Lin, Z.; Deng, D.; Zhang, D. Influence of fault slip on mining-induced pressure and

optimization of roadway support design in fault-influenced zone. J. Rock Mech. Geotech. Eng. 2016, 8, 660–671. [CrossRef]
27. Wang, H.; Shi, R.; Lu, C.; Jiang, Y.; Deng, D.; Zhang, D. Investigation of sudden faults instability induced by coal mining. Saf. Sci.

2019, 115, 256–264. [CrossRef]

20



Energies 2022, 15, 3774

28. Lu, Y.; Wei, W.; Zhiyu, T. Study on Mechanical Mechanism and Stability of Surrounding Rock in Fault Structure Roadway.
ResearchSquare 2021, 2, 1–22. [CrossRef]

29. Adoko, A.C.; Yakubov, K.; Kaunda, R. Reliability Analysis of Rock Supports in Underground Mine Drifts: A Case Study.
Geotech. Geol. Eng. 2021, 11, 2101–2116. [CrossRef]

30. Xiong, Y.; Kong, D.; Cheng, Z.; Wen, Z.; Ma, Z.; Wu, G.; Liu, Y. Instability Control of Roadway Surrounding Rock in Close-Distance
Coal Seam Groups under Repeated Mining. Energies 2021, 14, 5193. [CrossRef]

31. Regulation of the Minister of the Environment of January 29, 2013 on Natural Hazards in Mining Plants. Natural Hazards in
Mining Plants. Available online: https://www.prawo.pl/akty/dz-u-2021-1617-t-j,17955795.html (accessed on 10 February 2022).
(In Polish).

32. Polish Standard: PN-93/G-04558. Hard Coal. Determination of Spontaneous Ignition Indexes. Polish Committee for Standardiza-
tion: Warszawa, Poland, 1993. (In Polish)

33. Polish Standard: PN-G/06009. Horizontal and Inclined Underground Roadways in Mine Enterprises–Movement Clearances and
Dimensions of Man Passages. Polish Committee for Standardization: Warszawa, Poland, 1997. (In Polish)

34. Polish Standard: PN-93/G-15000/02. Roadway Support with Susceptible Timber Frames Made of Special Sections. Arch
Susceptible Frames ŁP of Sections Type V, Series A. Dimensions. Polish Committee for Standardization: Warszawa, Poland, 1993.
(In Polish)

35. Tchórzewski, K. Regulation of the Minister of Energy on detailed requirements for the operation of underground mining plants
of 23 November 2016. J. Laws 2017, 1118, 18. (In Polish)

36. Wacławik, J. Mine Ventilation; AGH Publishing House: Kraków, Poland, 2010; Volume I, p. 391. (In Polish)
37. CST. Available online: https://cst-germany.com/pl/product/axial-flow-fan-type-es9-500-80-pu-stage-id184 (accessed on

24 February 2022).
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Abstract: In this paper, a 2D distinct element method (DEM) model of a deep tunnel in an under-
ground coal mine is built to thoroughly evaluate the effects of yielding (D-bolt and Roofex) and the
traditional rockbolt (fully resin-grouted rebar) on controlling self-initiated strainbursts. The occur-
rence of self-initiated strainbursts is judged based on the stiffness difference between the loading
system and rock masses for the first time. The results suggest that the total deformations of the tunnel
supported with Roofex and resin-grouted rebar are 1.53 and 2.09 times that of D-bolts (1411 mm). The
average velocities of detached rock blocks in the tunnel supported with Roofex and resin-grouted
rebar are 3.22 and 3.97 m/s, respectively, which are much higher than that of D-bolts (0.34 m/s).
13 resin-grouted rebar bolts are broken during the strainburst, while D-bolts and Roofex survive.
Compared with Roofex (295.16 kJ) and resin-grouted rebar (125.19 kJ), the D-bolt can reduce the most
kinetic energy (469.30 kJ). D-bolt and resin-grouted rebar can maintain high axial force levels (214.87
and 151.05 kN) during strainbursts. Both Roofex and resin-grouted rebar fail to control strainbursts.
The bolt number significantly influences the control effects of yielding rockbolts on strainbursts. 9
and 12 D-bolts cannot control the strainburst, while 15 and 18 D-bolts can make the tunnel stable. In
addition, the detachment and ejection of rocks between rockbolts can be well restrained using surface
retain elements, e.g., steel arch. This study highlights the usage of numerical modeling methods in
assessing the performance of yielding rockbolts, which can be served as a promising tool to improve
and optimize the design of rock supporting in burst-prone grounds.

Keywords: strainburst; local mine stiffness; yielding rockbolt; numerical modeling; distinct element
method; underground mining

1. Introduction

Strainburst is an unstable rock failure phenomenon at excavation boundaries of deep
tunnels in mining and civil engineering projects. It is characterized by the sudden and
violent ejection of rock materials. Strainburst is the most common type of rockbursts in all
underground excavations [1]. It can damage equipment and facilities, which will further
delay production and cause tremendous economic loss [2]. Worse still, strainburst can
also result in many injuries and fatalities [3]. Hence, much work needs to be conducted to
control and mitigate strainburst damage.

Generally, strainburst can be classified into two types: self-initiated and remotely
triggered [4]. The self-initiated strainburst occurs due to the concentration of excavation-
induced tangential stress and the existence of a relatively “soft” loading environment in
the rock mass surrounding the fracturing rock [5]. There is not a remote seismic event
involved in self-initiated strainbursts. The remotely triggered strainburst is caused by
the combination of a remote seismic event triggered by large-scale mining activities and
high static stress [6,7]. Self-initiated strainburst is a more frequently encountered type
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of strainbursts, because it happens in both mining and civil engineering projects while
remotely triggered strainburst usually occurs only in mining environments [7]. This study
specifically focuses on the investigation of the control of self-initiated strainbursts.

To date, many measures and strategies have been proposed to control and mitigate
strainburst damage. For instance, distress drilling and blasting are two standard measures
to reduce strainburst risks by transferring concentrated stresses to rock masses in-depth.
Another common tactic is using yielding rockbolts. This type of rockbolts allows yielding
to absorb more kinetic energy and have higher displacement capacities than conventional
rockbolts (e.g., expansion-shell bolt and rebar bolt). Hence, yielding rockbolts can resist the
dynamic loads and accommodate large deformation caused by rock fracturing, dilation, and
ejection during strainbursts [7]. In the last several decades, many different types of yielding
rockbolts have been developed to control rockbursts, e.g., Cone bolt [8], Roofex [9,10],
Garford bolt [11], D-Bolt [12,13], Yield-Lok [14], and He-bolt [15].

A critical task is to evaluate the effects (e.g., control of rock damage and the capacity
of energy-absorption) of yielding rockbolts on controlling strainbursts before being widely
used. The methodologies to study rockbolt performance mainly include field tests [16–18],
laboratory test, and numerical modeling. The field test method can obtain real-time data
and assess the in situ performance of rockbolts, but they are usually time-consuming, ex-
pensive, and dangerous, especially in burst-prone grounds. Compared with field tests, the
experimental methods have the advantages of repeatability, safety, and flexibility [19]. At
present, the evaluation of the rockbolt performance in strainburst conditions is conducted
mainly using the drop test [10–12,20–22]. The research has achieved many positive out-
comes, providing excellent references for understanding the behavior of different types of
yielding rockbolts under dynamic impacts. However, the drop test is straightforward and
is only a crude simulation of rockburst loading. The complex interaction between seismic
waves, rockbolts, and reinforced rock masses is not considered. For instance, Bosman
et al. [23] stated that the dynamic capacity of a rockbolt is not a constant value, and the load-
ing mode of a rockbolt will affect its dynamic capacity. Therefore, the impact loading from
conventional drop tests might not represent rockburst loading. Wu et al. [18] also pointed
out that the impact load in drop tests cannot represent the impact of ground pressure load,
and the existing test system generally cannot reproduce the complex ground support/rock
mass interaction that exists in an underground environment. Besides, original rock stress is
not considered in tests.

With the rapid development of information technology (IT) and computer equipment,
various numerical methods and codes have been developed and employed to simulate
complex physical phenomena in rock mechanics and rock engineering [24–27]. The numer-
ical simulation methods have been acknowledged as effective research and engineering
design tools as it can represent the realistic mechanical behavior of rock masses and support
elements with rational input data (e.g., excavation size and shape, material properties, and
boundary conditions) and calibration procedures [28]. Nie et al. [29] developed rockbolt
models using DDA to investigate the failure mechanism of an expansion-shell bolt, fully
grouted rebar, split set, and D-bolt in simulated pull-out and drop tests. Marambio et al. [30]
modeled a laboratory-scale test via FLAC3D to study the performance of threadbar in dy-
namic loading. The simulation results matched well with laboratory observations. Yokota
et al. [31] assessed a self-developed deformation-controlled rockbolt (DC-bolt)’s behavior
in tunnel supporting via DDA simulation. Zhang and Nordlund [19] employed the UDEC
program to investigate the differences of dynamic performances of a fully grouted rebar
between the simulated drop tests and seismic loading in the configuration where two
slightly separated rock bars were used. Zhao et al. [32] studied the influence of structure
element position on the anchoring effect of energy-absorption bolts via simulating pull-out
tests in FLAC3D.

In summary, most current work focuses on evaluating the performance of traditional
rockbolts under dynamic loading, while some researchers try to simulate the dynamic
behavior of yielding rockbolts by reproducing drop tests. Few numerical studies have been
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reported to assess the performance of yielding rockbolts during self-initiated strainbursts
with actual seismic loading. As mentioned above, the impact loading in drop tests might
not represent rockburst loading, and the rock stress is also absent. Hence, the complex
interaction between seismic waves, rockbolts, and reinforced rock masses during self-
initiated strainbursts with explicit rock detachment and ejection (requiring the distinct
element method (DEM) or DEM-related hybrid methods) needs to be further numerically
investigated.

This study aims to evaluate the effects of yielding rockbolts on controlling self-initiated
strainbursts using DEM modeling. The rationality and capability of DEM software UDEC in
modeling self-initiated strainbursts are first validated through comparison with laboratory
tests. Then, two types of yielding rockbolts (Roofex and D-bolt) and the traditional rockbolt
(fully resin-grouted rebar, for comparison) are modeled via the “rockbolt” element in UDEC
after an exact calibration procedure. Instead of conventional drop tests, a 2D model of
a deep tunnel in an underground coal mine is built to fully evaluate the performance
(e.g., the dynamic capacity of energy absorption and control of rock damage) of yielding
and traditional rockbolts during simulated strainbursts. The occurrence of self-initiated
strainbursts is judged based on the stiffness difference between the loading system and
rock masses for the first time.

2. Validation of UDEC in Modeling Self-Initiated Strainbursts

2.1. Brief Introduction of the True Triaxial Experiments of Self-Initiated Strainbursts

Considering that the self-initiated strainburst is a structural failure of rock masses
near the excavation boundary, Su et al. [33,34] conducted a series of true triaxial tests of
rock samples by reproducing strainbursts in a self-developed true triaxial testing facility
(see Figure 1a,b). In tests, rock samples with the dimension of 100 mm (length) × 100 mm
(width) × 200 mm (height) were used to simulate the burst volume of a representative rock
element (RRE) (Figure 1c,d). The cracking and ejecting processes of rock samples during
strainbursts were monitored by an acoustic emission (AE) system and two high-speed
cameras. The tangential stress concentration and radial stress distribution of near-boundary
rock masses were simulated by a loading path that keeps one face free and loads on the
other faces (Figure 1c). The detailed test procedures are as follows: (1) maintain one face of
the rock sample free (y-direction) and apply loads to the other five faces simultaneously to
a pre-defined initial stress state; (2) maintain stresses in x and y directions, and increase the
stress in z-direction until the strainburst occurs.

 
Figure 1. A true triaxial strainburst testing facility: (a,b) are the loading configuration; (c) is the
stressed rock sample; (d) shows the boundary conditions and stress state of the rock sample ((a) is
from Su et al. [34]; (b–d) are from Hu et al. [35]).
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2.2. Validation of UDEC Simulation

In order to validate the reliability and accuracy of the 2D distinct element code UDEC
in modeling self-initiated strainbursts, numerical simulation results were compared with
the laboratory test results from Hu et al. [35]. The model configuration, including the model
dimension, block shape and size, material properties, constitutive models, and loading
mode, are the same as those used by Hu et al. [36,37]. The only difference is that the 3D
distinct element code 3DEC rather than UDEC was employed in their studies.

A Trigon approach developed by Gao et al. [38] was used to generate blocks in
the model (Figure 2a), as this approach is capable of reproducing the realistic fracturing
processes (e.g., crack initiation, propagation, and coalescence) of rocks without adopting
complicated constitutive models [39–41]. In the Trigon approach, a rock or rock mass is
represented as an assembly of triangular blocks bonded together by contacts [38]. The
fracturing process can be exhibited either by the sliding or opening of contacts. In the
simulation, the blocks have an average edge length of 6 mm, which was sufficiently fine
to simulate the failure behavior of rocks [36,37]. The material properties of blocks and
contacts are listed in Table 1. In order to trigger a strainburst (unstable failure), the top
platen has a lower stiffness (4 GN/m) than the post-peak characteristic stiffness of the
rock sample (4.51 GN/m), which represents a soft loading system. Accordingly, Young’s
modulus and length of the top platen are 40 GPa and 100 mm, respectively. The stiffness of
lateral and bottom platens are 1372 GN/m and 686 GN/m, respectively, representing much
stiff loading systems, and thus the loading system stiffness (LSS) effect can be ignored [42].

Figure 2. A numerical model for simulating self-initiated strainbursts and the comparison between
the simulation and experimental results: (a) numerical model; (b) stress-strain curves obtained by the
simulation and laboratory test [35]; (c) comparison between simulated failure stages and modes and
experimental observations [35].
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The simulation was implemented as following procedures: (1) A pre-defined initial
stress state (σx = 5 MPa, σy = 45 MPa, and σz = 30 MPa) was applied to the model, and the
“geostatic equilibrium” was achieved after sufficient calculation steps [36,37]. The model
boundaries were initially fixed to simulate the in situ state. (2) One lateral platen and
its boundary conditions in x-direction were removed, while other boundary conditions
remained unchanged. A constant velocity of 0.1 m/s was applied to the surface of the top
platen until the peak strength (y-direction) was reached. (3) The dynamic mode in UDEC
was activated. The local damping ratio was set at 0.05 after a trial-and-error process. The
boundary conditions (e.g., fixed boundary) used in the static stage can cause the reflection
of outward propagating waves back into the model and do not allow the necessary energy
radiation. Thus, the viscous boundary developed by Lysmer and Kuhlemeyer [43] was
used in the dynamic calculation.

The comparison between the simulated results and laboratory test results is shown
in Figure 2b,c. It can be seen that the stress-strain curve, failure stages, and failure modes
including grain ejection, splitting and bending of rock plates, and fragment ejection during
the strainburst test, can be realistically captured by numerical modeling. Hence, the
capability and accuracy of UDEC in modeling the self-initiated strainburst are validated.
In Hu et al. [36,37], they needed to compare simulation results with laboratory test results
of cuboid rock samples and investigate the influence of intermediate stress on indoor
strainburst failure. Thus, the 3D program 3DEC was used in their research. As mentioned
above, strainbursts usually occur at the excavation boundary of a tunnel in a high geo-stress
environment. Therefore, if there are no nearby excavations, the plane strain assumption
of a 2D model would be rational. The accuracy of UDEC in modeling the self-initiated
strainburst has also been verified with experimental results in this study. Besides, the
employment of UDEC can significantly reduce the calculation cost compared with 3DEC.
Figure 3 shows an example that the run time of 3DEC is around 90 times that of UDEC
when dealing with the same problem, indicating that UDEC is more productive than 3DEC.
Therefore, UDEC is adopted considering both reliability and efficiency.

Figure 3. An example about the comparison of the run time between UDEC and 3DEC [44].

3. Numerical Modeling

3.1. Model Setup
3.1.1. Model Dimensions and Boundary Conditions

The simulation of the self-initiated strainburst at a laboratory scale is helpful to
understand its detailed damage mechanisms (e.g., fracturing process and failure mode).
However, the complex interaction between rockbolts and reinforced rock masses during
strainbursts is hard to capture in this model setup due to the size limit, which prevents the
model from being a potential design tool of rockbolting in burst-prone grounds. Therefore,
to analyze the performance of rockbolts more realistically and accurately, the self-initiated
strainburst occurring in a deep tunnel in an underground coal mine was modeled in this
research rather than simulating it at a laboratory scale as previous studies. A widely used
2D DEM software UDEC was used to construct the numerical model. The model size is
30 m × 25 m. The shape of the tunnel cross-section is semicircular, with width and height
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of 6 m and 4 m, respectively. Figure 4 shows the geometry of the numerical model, which
is based on the lithology and designed size of a deep coal mine drift.

Figure 4. 2D numerical model of a deep tunnel in an underground coal mine.

The rock masses are divided into triangular blocks using the Trigon approach [38].
In the model, the average edge length of the blocks in two coal seams and nearby clay
shale between them was set to 0.3 m. The block size with a range of 0.2–0.5 m was
sufficiently acceptable to simulate the failure behavior of surrounding rock masses for a 2D
model [38–40]. The average edge length of the blocks in the upper clay shale, sandy shale,
and fine-grained sandstone was set to 0.5 m, 0.5 m, and 1 m, respectively. The average edge
length of the blocks on the floor was set to 0.3 m and 1 m. A graded increasing edge length
of blocks can avoid the resulting loss of simulation accuracy and enhance the calculation’s
reliability.

The upper boundary of the model was free and vertical stress of 24.3 MPa (assume the
unit weight of overburden is 0.027 MN/m3 and the buried depth is 900 m) was applied
to the upper boundary to simulate the overburden weight. The roller constraints were
applied on lateral boundaries, and the bottom boundary was fixed during the static stage
(Figure 4). The ratio of horizontal to vertical stress (K) was assumed to be one since the
hydrostatic stress state is a general in situ stress state in many deep excavations [45].

3.1.2. Modeling Large-Scale Strainbursts Based on the Stiffness Theory

The loading system stiffness (also called local mine stiffness at the engineering scale)
and the post-failure stiffness of rock materials can distinguish stable or unstable failure
(rockburst) effectively based on the stiffness theory [46]. If the loading system stiffness is
smaller than the post-failure stiffness, the failure will be unstable and violent because the
excess energy will transfer to the kinetic energy of ejected rocks. When the research object
is a rock sample (e.g., [36,37]), it is simple to obtain the loading system stiffness KL by the
following equation:

KL =
AE
L

(1)

where A is the cross-section area of the loading platen; E is Young’s modulus of the loading
platen; L is the loading platen length.

However, unlike the unstable failure of rock samples, it is hard to identify the loading
system when the focus is a strainburst that usually occurs in a tunnel or roadway. Thus,
the determination of local mine stiffness becomes a more difficult task. Jaiswal and Shri-
vastva [47] proposed a method for calculating the local mine stiffness of a rock pillar by
numerical modeling. The local mine stiffness is defined as a ratio of the load F1 applied on
the rock pillar over the distance difference (d1 − d2) with and without the modeling of the
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rock pillar (Figure 5a). This study adopted this logic to calculate the local mine stiffness
for a tunnel (see Figure 5b). In Stage 1, the internal pressure P1 at the planned excavation
boundary equals the in situ stress Pi. In Stage 2, P1 is reduced to zero (P2) after excavation.
Similar to the calculation method of a rock pillar, the local mine stiffness for a tunnel can be
determined as follows:

KL =
P1

(d1 − d2)
=

Pi
U

(2)

where d1 and d2 are the tunnel diameter before and after excavation; U is the convergence
of tunnel walls after excavation. This method is the first attempt to calculate the local mine
stiffness for a tunnel to the authors’ knowledge. The excavation of the deep coal mine
drift was simulated to obtain the local mine stiffness using the proposed method in this
research. The obtained local mine stiffness is 174 MPa, where the tunnel convergence has
been normalized by the tunnel diameter for convenient comparison with the post-peak
characteristic stiffness of rock masses.

 

Figure 5. Determination of local mine stiffness by numerical modeling. (a) Local mine stiffness
calculation for a rock pillar (after Jaiswal and Shrivastva [47]). (b) Proposed calculation method of
local mine stiffness for a tunnel.

Since the main surrounding rock masses are coal seam and its strength is much lower
than clay shale and sandy shale, only the post-peak characteristic stiffness of coal masses is
determined using simulated uniaxial compression strength (UCS) tests. Considering that
the rock mass property (e.g., strength and stiffness) is scale-dependent [48], the dimension
of the rock mass model was determined based on the representative elementary volume
(REV) concept [49]. The REV refers to the minimum scale of rock masses beyond which the
material property becomes independent of the sample size (see Figure 6a). According to
Bieniawski [50] (see Figure 6b), the UCS of coal masses declines gradually with increased
sample side length. When the sample side length is less than 1.5 m, the UCS decreases
remarkably with the growth of the specimen size. However, the UCS approaches a plateau
when the sample side length exceeds 1.5 m, indicating that the scale dependency could be
negligible. Thus, the REV size of the coal mass should be at least 1.5 m. In this study, the
UCS model size is 4 m × 8 m, sufficient to eliminate the scale dependency. This model size
is identical to Yang et al. [40].

Figure 7a shows the numerical model of UCS tests. In order to obtain the post-peak
characteristic stiffness of the coal mass sample, the bulk and shear moduli of loading
platens were set at an extremely high value (1000 GPa) to simulate an ideal rigid loading
condition. As shown in Figure 7b, the obtained post-peak characteristic stiffness is 255 MPa,
greater than the local mine stiffness (174 MPa). Hence, the self-initiated strainburst can
happen. The material properties associated with coal masses are listed in Tables 2 and 3.
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Figure 6. (a) Concept of the REV (after Bear, [49]). (b) The effect of sample size on the strength of coal
(after Bieniawski, [50]).

Figure 7. (a) UCS model. (b) Stress-strain curve of the coal mass sample under an ideal rigid loading
condition.

3.1.3. Rock Mass Properties and Constitutive Model

The properties of rock masses (see Table 2) around the tunnel were obtained according
to the laboratory tests of intact rock pieces (following ISRM recommended standards, [51])
and the generalized Hoek-Brown criterion [52] using the Geological Strength Index (GSI)
system to evaluate rock mass qualities [53–55]. The UCS and deformation modulus of rock
masses were estimated from the following equations [56,57]:

σcm = σci
(mb + 4s − a(mb − 8s))

( mb
4+s
)as−1

2(1 + a)(2 + a)
(3)

Em = Ei

(
0.02 +

1 − D/2
1 + e((60+15D−GSI)/11)

)
(4)

where D is a factor that depends upon the degree of disturbance to which the rock mass
has been subjected by blast damage and stress relaxation. In this study, the value of
D is assumed to be zero considering that the mechanical tunneling results in minimal
disturbance to confined rock masses [56]. The calculated results of UCS and deformation
modulus of rock masses are also summarized in Table 2.

The elastic constitutive model was chosen for blocks composed of finite-difference
zones. The Coulomb slip model was used for contacts. The constitutive behavior of contacts
is shown in Figure 8. A spring-rider simulates the behavior of contact, and the model
deformation occurs when the contact stress is smaller than the contact strength, which is
governed by the elastic modulus of blocks and contact stiffness; contact failure occurs when
the stress exceeds its shear or tensile strength, and then blocks will slide or separate with
each other [39].
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Figure 8. Constitutive behavior of contacts. (K and G are the bulk and shear moduli of blocks. cj;
Φj, and σt

j are the cohesion force, internal friction angle, and tensile strength of contacts. Δσn and
Δun are the effective normal stress increment and normal displacement increment. σn and τs are the
normal and shear stresses of contacts).

In the Trigon approach, the deformation and failure of rock masses depend on the
properties of blocks and contacts [38,39]. Thus, the micro parameters of blocks and contacts
were calibrated against the rock mass properties (Table 2). Next, simulated UCS tests were
conducted to calibrate the micro parameters [38]. To eliminate the effect of block size on
simulation accuracy, the calibration model had a large scale (4 m × 8 m) [40] and identical
block size with the tunnel model. A displacement loading mode was used in the simulation
by applying a constant velocity of 0.1 m/s to the surface of the top platen, and the bottom
platen was fixed. The loading rate of 0.1–0.15 m/s is slow enough to avoid the dynamic
responses of models because UDEC automatically selects very small time steps (e.g., 10−7 s)
in static analysis [37,58]. The initial micro parameters were first assumed based on the macro
parameters of rock masses. Then, the modeling of UCS tests was conducted iteratively with
the adjustment of micro parameters until the simulated results were consistent with the
targeted material properties. The simulated failure modes and stress-strain curves of rock
mass samples are shown in Figure 9. The main failure modes of rock mass samples are
tensile (axial splitting) and tensile-shear failure, consistent with typical rock mass failure
modes under no or low confining pressures [59]. The calibrated micro parameters of
rock masses are listed in Table 3. The targeted and simulated deformation modulus and
UCS errors are less than 3% (Table 4), suggesting that the targeted values agree well with
calibrated rock mass parameters. Thus, the calibrated micro parameters in Table 3 could
be used for further numerical analysis to evaluate the performance of yielding rockbolts
during self-initiated strainbursts.

Table 4. Comparison between the targeted and simulated rock mass parameters.

Lithology Em (GPa) UCS (MPa)

Target Simulation Error (%) Target Simulation Error (%)

Coal 0.23 0.226 0.09 2.50 2.51 0.48
Clay shale 1.26 1.234 −1.82 7.93 7.91 −0.29

Fine-grained sandstone 2.92 2.852 −2.48 24.53 24.52 −0.05
Sandy shale 1.42 1.39 −2.11 7.11 7.02 −1.27
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Figure 9. Simulated failure modes and stress-strain curves of rock mass samples.

3.2. Properties of Rockbolts
3.2.1. Introduction of the “Rockbolt” Element

In the past, the “cable” element in UDEC was more popular used than the “rockbolt”
element to model a mechanically anchored or grouted cable or rockbolt, although both
elements can simulate the shearing resistance along their length, which is provided by the
shear bond between the grout and either the cable/rockbolt or the host rock [60]. This
could be owing to more understandable input parameters and the more straightforward
calibration process for using the “cable” element. Figure 10a shows the conceptual me-
chanical representation of the “rockbolt” element. It can be seen the “rockbolt” element is
composed of several segments and nodal points located at segment ends. It has both shear
and normal coupling springs, which are connectors that transfer forces and motion between
the “rockbolt” element and the grid points associated with the block zone, while the “cable”
element only has sliders (similar to shear coupling spring). Therefore, the “cable” element
provides little resistance to bending, and thus it is more suitable for modeling cable bolts. In
contrast, the “rockbolt” element can provide sufficient resistance for shearing and bending,
appropriate for simulating rockbolts such as rebar bolts [61]. The other strength of the
“rockbolt” element is that it can explicitly model the rockbolt breakage according to a
user-defined tensile failure strain limit εpl [62]:

εpl = ∑ εax
pl + ∑

d
2

θpl

L
(5)

where εax
pl is the axial plastic strain of rockbolt segment elements; d is the rockbolt diameter;

L is the rockbolt segment length; θ is the average angular rotation over the rockbolt. The
tensile failure strain limit provides a more accurate and realistic approach to reproduce
rockbolt performances. Thus, the “rockbolt” element was used in this study to simulate the
mechanical behavior of both yielding and conventional rockbolts.
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Figure 10. (a) Conceptual mechanical representation of the “rockbolt” element, which accounts for
shear behavior of grout annulus and bending resistance of the reinforcement. (b) Mechanical behavior
of the “rockbolt” element in the axial direction. (c) Shear force versus displacement of the shear
coupling spring. (d) Shear criterion of the shear coupling spring ((a) is modified after Itasca [62];
(b–d) are from Itasca [62]).

The “rockbolt” element has a linearly elastic material behavior that it can yield in both
tension and compression in the axial direction (Figure 10b). Therefore, the incremental axial
force in a “rockbolt” element, ΔFt, can be obtained by the calculation of the incremental
axial displacement:

ΔFt = −EA
L

Δut (6)

where Δut = Δuiti = Δu1t1 + Δu2t2 = (u1
[b] − u1

[a])t1 + (u2
[b] − u2

[a])t2; u1
[b], u1

[a], etc. are
the displacements at the bolt nodes associated with each “rockbolt” element. Subscript 1
and 2 represent the x-direction and y-direction, respectively; the superscripts [a], [b] stand
for bolt nodes. The direction cosines t1, t2 refer to the tangential (axial) direction of the
“rockbolt” element.

The applied load is axial in an ideal pull-out test as simulated in this study. Thus,
the parameters regarding resistance to bending (normal spring) are not discussed. The
shear behavior of the “rockbolt” element were briefly introduced in this study. The shear
behavior of the rockbolt/gridpoint interface is represented as a spring-slider system at
the rockbolt nodal points. This behavior during relative displacement can be described
numerically by the coupling spring shear stiffness (cssstiff in Figure 10c):

Fs

L
= csssti f f

(
up − um

)
(7)

where Fs represents the shear force that develops in the shear coupling spring (e.g., along
with the interface between the rockbolt element and the gridpoint); cssstiff is the coupling

35



Energies 2022, 15, 2574

spring shear stiffness (coupling-stiffness-shear); up is the axial displacement of the rockbolt;
um is the axial displacement of the medium (soil or rock); and L is the contributing element
length.

The maximum shear force that can be developed along the rockbolt/gridpoint interface
is a function of the cohesive strength of the interface and the stress-dependent frictional
resistance along with the interface (Figure 10d). The following equation can be used to
determine the maximum shear force per length of the rockbolt:

Fmax
s
L

= csscoh + σ′
c × tan

(
css f ric

)
× perimeter (8)

where csscoh is the cohesive strength of the shear coupling spring (coupling-cohesion-shear);
σ′

c is the average effective confining stress perpendicular to the “rockbolt” element; cssfric is
the friction angle of the shear coupling spring (coupling-friction-shear), and perimeter is the
exposed perimeter of the element.

3.2.2. Calibration of Rockbolt Properties

The pull-out test is a well-recognized test, and it can represent the static load-displacement
characteristics of rockbolts before rockbursting [63,64]. Besides, the performance of rockbolts
during strainbursts has been initially confirmed by in situ observations and others’ experimen-
tal test and simulation results in this research. Hence, only the simulated pull-out tests were
conducted to calibrate the input parameters of the “rockbolt” element with the comparison
of the laboratory test results from Charette and Plouffe [10], Stillborg [65], and Li [17]. The
model’s size is 2 m × 1 m, and the bolt length is 2 m. This model size is almost identical to
Bahrani and Hadjigeorgiou [60]. The model has a Young’s modulus of 7.5 GPa and a Poisson’s
ratio of 0.25 to represent an elastic rock mass because it has been confirmed that the elastic
properties of the rock mass do not influence the load-displacement response of the “rockbolt”
element [61] which can significantly save computation time. The rockbolt was divided into
40 segments and 41 nodes to ensure that at least one node falls into each block zone [60]. The
upper boundary of the model was free, and a vertical upward velocity of 0.08 m/s was applied
to the end node of the bolt to simulate a pull action [66]. The roller constraints were applied
on the side boundaries and the bottom boundary was fixed. A function was developed using
the FISH language (built-in programming package) in UDEC to monitor the axial force and
displacement of the last segment of the rockbolt in y-direction.

The modeling of pull-out tests was conducted iteratively to adjust input parameters
(e.g., tensile yield strength, tension failure strain, shear coupling spring stiffness, and shear
coupling spring cohesion, [62]) until the simulated results were consistent with the targeted
properties of rockbolts. Other input parameters (e.g., the diameter, length, density, and
elastic modulus of rockbolts) are the same as those used in laboratory tests. The simulated
load-displacement curves and axial force of rockbolts and the block displacement are shown
in Figure 11. The calibrated input parameters of rockbolts are listed in Table 5. The applied
load is axial in an ideal pull-test as simulated in this study. Thus, the parameters regarding
resistance to bending are not employed. The errors between the targeted and simulated
ultimate load, rupture displacement, and static energy-absorption capacity of rockbolts
are less than 5% (Table 6), indicating that the targeted values agree well with calibrated
input parameters. Thus, the calibrated parameters in Table 5 could be used to further the
numerical analysis of the performance of yielding and conventional rockbolts [9]. However,
it should be noted that the sliding or extraction of Roofex was not simulated explicitly in
the pull-out test, and its energy-absorption mechanism was simplified to the deformation
or stretch of bolt shanks. This equivalent approach could be regarded as a relatively good
selection at this stage since the complexity of simulating bolt sliding was ignored, and the
time cost was thus significantly reduced.
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Figure 11. Simulated load-displacement curves and axial forces of rockbolts and deformation of rock
masses. (Rockbolt axial force in N and block Y displacement in m.).

3.3. Simulation Procedures and Schemes

Modeling the effects of yielding rockbolts on controlling self-initiated strainbursts was
performed with the following stages and schemes.

Stage I (static stage): The in situ stress field was applied to the model, and the geostatic
equilibrium was achieved. Then, the tunnel was excavated by deleting the blocks. Ade-
quate calculation steps were run to ensure gradual and slow release of surrounding rock
stresses [38]. The installation of rockbolts was conducted immediately after the excavation
of the tunnel.

Stage II (dynamic stage): The dynamic mode was activated. The local damping ratio
was set 0.05. The viscous boundary [43] was used in the dynamic calculation to avoid
propagating waves’ reflection and allow the necessary energy radiation. The dynamic
calculation time is set to 120 ms. The pattern layout of rockbolts in the tunnel is shown in
Figure 4. The roof and two ribs of the tunnel were supported by 15 rockbolts in total, while
the floor remained unsupported, as is a common practice. The roof and rib bolts have a
length of 2.5 m and row spacing of 0.7 m. The spacing of rockbolts along the tunnel axis is
one meter by setting the “spacing” parameter in UDEC. Besides, D-bolt, Roofex, and fully
resin-grouted rebar were simulated in each scheme.
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4. Analysis of Simulation Results

4.1. Displacement and Velocity Analysis

The simulated displacement patterns of the tunnel supported by different types of
rockbolts are shown in Figure 12a. The large deformation only occurs in a local tunnel
area that D-bolts support. In contrast, noticeable roof subsidence and sidewall shrinkage
are observed when the tunnel is supported with Roofex and resin-grouted rebar. To
further investigate the effects of different types of rockbolts on controlling strainbursts,
four monitoring points were arranged at the roof, floor, and two sidewalls of the tunnel
to record the tunnel deformation (Figure 4). The comparison of the tunnel deformation in
three support schemes is shown in Figure 12b. It can be seen that the tunnel supported by
D-bolts suffers minor deformation (1411 mm in total). However, the total deformations
of the tunnel supported with Roofex and resin-grouted rebar are 2159 mm and 2946 mm,
respectively, which are 1.53 and 2.09 times that of the tunnel supported by D-bolts.

Figure 12. (a) Simulated displacement vectors of the surrounding rock masses along the tunnel
supported by different types of rockbolts. (b). Comparison of the deformation of the tunnel supported
by different types of rockbolts.

The most severe deformation is found when the resin-grouted rebar supports the
tunnel. Although the resin-grouted rebar has relatively high strength (162 kN), its elon-
gation rate is low and easy to break during dynamic shocks. As shown in Figure 13c,
many resin-grouted rebar bolts are broken during the strainburst, and therefore they are
unable to control rapid rock bulking or ejection effectively. Some in situ observations (see
Figure 14) can confirm this phenomenon. Figure 14a shows that resin-grouted rebar bolts
were broken in a rockburst while yielding rockbolts survive. Figure 14b,c also illustrate
that many rebar bolts failed in rockbursts in deep tunnels. The match between simulation
results and in situ observations verifies the reliability and rationality of the “rockbolt”
element in modeling the performance of yielding rockbolts. Roofex also fails to restrain
the large deformation because it possesses the lowest strength (77 kN) compared to D-bolt
(219 kN) and resin-grouted rebar (162 kN). In summary, Roofex and resin-grouted rebar
cannot effectively control the large deformation in self-initiated strainbursts.
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Figure 13. Simulated velocity distribution of the surrounding rock masses along the tunnel supported
by different types of rockbolts. (a) D-bolt; (b) Roofex; (c) Resin-grouted rebar.

 

Figure 14. (a) Observed performance of fully resin-grouted rebar and yielding rockbolts in a rock-
burst [67]. (b,c) are in situ observations of broken rebar bolts after rockbursts in deep tunnels
(photographs taken by authors).

The velocity distribution of tunnel surrounding rock masses in three support schemes
is shown in Figure 13. It can be seen from Figure 13 that only a few rock blocks are ejected
from a local zone when the D-bolt is adopted. For the tunnel supported by Roofex and resin-
grouted rebar, much more rock blocks are ejected from the roof and sidewalls. To further
study the effects of different rockbolts on mitigating rockburst damage, a function was
developed using FISH language programming in UDEC to record the velocity and volume
of all the detached rock blocks in the model. The detached rock blocks were detected when
blocks or the clusters of blocks have no contact normal forces on their boundaries. The
statistical analysis results are illustrated in Figure 15. As shown in Figure 15a, the average
velocity of detached rock blocks in the tunnel supported by D-bolts is only 0.34 m/s,
although a few blocks may have a relatively high velocity (e.g., 5–10 m/s). By comparison,
the average velocities of detached rock blocks in the tunnel supported with Roofex and
resin-grouted rebar are 3.22 and 3.97 m/s, respectively. Besides, the velocity distributions
of rock blocks in these two scenarios are more extensive than those in the tunnel using
D-bolts. Figure 15b shows that 99.8% of rock blocks in the tunnel supported by D-bolts
possesses a velocity lower than 5 m/s, while the velocities of most rock blocks in the other
two scenarios (95.1% for Roofex and 89.2% for resin-grouted rebar) are within the range of
0–10 m/s. In addition, many rock blocks focus on the volume range of 0.04–0.055 m3. This
is because the edge length of blocks near the tunnel was set to 0.3 m. These results suggest
that the rock ejection is much more violent when the tunnel is supported by Roofex and
resin-grouted rebar, which further confirms that these two types of rockbolts are unable to
control strainbursts.
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Figure 15. (a) is the velocity of all detached blocks versus block volume. (b) is the velocity distribution
of all detached blocks. e is the Euler’s number.

4.2. Rockburst Damage Analysis

In order to investigate the influences of different types of rockbolts on mitigating rock-
burst damage, the macroscopic failure pattern and damage degree of the tunnel induced by
strainbursts were analyzed. In this study, the rockburst damage degree was evaluated by
the volume of failed rocks [1]. A function was developed using FISH language programing
in UDEC to sum the volume of detached rock blocks. It should be noted that the volume of
detached rock blocks induced by static excavation was excluded in the calculation.

Figure 16 shows the macroscopic failure patterns of the tunnel supported by different
types of rockbolts. As shown in Figure 16a, when D-bolts are adopted in the tunnel, the
extent of the fractured zone is much smaller than that of the tunnel supported with Roofex
and resin-grouted rebar. Only a few rock blocks are ejected between bolts, and the tunnel
surrounding rock masses are overall stable. However, the surrounding rock masses are
fractured for the tunnel using Roofex and resin-grouted rebar, and many ejected rock blocks
are observed. As a result, the rockfall occurs, and the tunnel tends to be unstable.

The comparison of the volume of ejected rock blocks of the tunnel in three support
schemes is shown in Figure 16b. The volume of ejected rock blocks is the least (1.07 m3)
when the tunnel uses D-bolt support. However, the volume of ejected rock blocks of the
tunnel supported with Roofex and resin-grouted rebar is 1.54 m3 and 1.79 m3, respectively,
which are 1.44 and 1.67 times that of the tunnel supported by D-bolts. The rockburst
damage is the most serious when resin-grouted rebar supports the tunnel due to its low
deformation capacity to restrain rapid rock bulking and ejection [1,7]. This finding further
verifies that the conventional rockbolts (e.g., rebar bolts) are too stiff to control rockburst
damage. Besides, the volume of ejected rock blocks of the tunnel supported with Roofex
is moderate. This is because Roofex has the lowest strength, and its sliding mechanism
can be easily activated. Thus, it is too “soft” or “smooth” to limit ejected rocks’ movement
compared to D-bolts.
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Figure 16. (a) Macroscopic failure patterns of the tunnel supported by different types of rockbolts.
(b) is the volume of ejected rock blocks of the tunnel induced by rockbursts.

4.3. Energy Evolution Analysis

The severity of rockbursts is related to the magnitude of the kinetic energy of ejected
rock materials [1,68]. The kinetic energy is one part of the total released energy that the
whole supporting system (e.g., rockbolt, cable bolt, liner, and wire mesh) must absorb
to reduce rockburst risks [69]. Therefore, the influences of rockbolt supporting on the
distribution and change of kinetic energy were investigated in this study. The kinetic
energy of ejected rock blocks was captured by the FISH language programing in UDEC
using the following formula:

Wk = ∑
1
2

mv2 (9)

where m and v are the mass and velocity of ejected rock blocks at the current time step.
The distribution of the kinetic energy of ejected rock blocks in three support schemes

is shown in Figure 17. It can be seen that the kinetic energy pattern is very similar to that of
velocity (see Figure 13). As shown in Figure 17a, only a few rock blocks have relatively high
kinetic energy when the D-bolt is adopted. On the other hand, more rock blocks possess
higher kinetic energy for the tunnel supported by Roofex and resin-grouted rebar. The
variation of kinetic energy with time influenced by different rockbolt types is illustrated in
Figure 17b. When the tunnel is supported with D-bolts, kinetic energy evolution can be
divided into two stages: the kinetic energy first increases to the peak value from 0 to 26 ms
and then gradually declines to almost zero. For Roofex, the kinetic energy experiences fast
growth, especially after 80 ms, and reaches the peak value at 103 ms. Then, the kinetic
energy drops with time but is still high. When the tunnel is supported by resin-grouted
rebar, the kinetic energy first increases rapidly to the peak value from 0 to 54 ms and then
suffers a sudden drop. Then, it surges again at 100 ms.
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Figure 17. (a) Simulated kinetic energy distribution of ejected rock blocks in the tunnel supported
by different types of rockbolts. (b) is the evolution of kinetic energy of ejected rock blocks. (c) is the
comparison of reduced kinetic energy of ejected rock blocks.

Interestingly, kinetic energy grows again. This is because the ineffectiveness of resin-
grouted rebar results in the “Domino-like” failure fashion during the strainburst. In
summary, D-bolts absorb the kinetic energy of ejected rock blocks effectively, and the
strainburst is controlled. However, Roofex and resin-grouted rebar fail to absorb the kinetic
energy of ejected rock blocks effectively and cannot control the strainburst.

To further evaluate the dynamic energy-absorption capacity of three types of rockbolts,
the tunnel without adopting any supports during the strainburst was simulated. Then, a
new variable was defined as the reduced kinetic energy, which is the difference between the
kinetic energy of ejected rock blocks in the tunnel without and using rockbolts. Figure 17c
compares the reduced kinetic energy of ejected rock blocks in the tunnel supported by
different rockbolts. The reduced kinetic energy is the highest (469.30 kJ) when the tunnel
uses D-bolt support. In contrast, the reduced kinetic energy is the lowest (125.19 kJ) for the
tunnel supported by resin-grouted rebar, while the performance of Roofex on reducing
kinetic energy (295.16 kJ) is in between the D-bolt and resin-grouted rebar. These results
are not surprising because they agree that D-bolt has both high strength and excellent
deformation capacity, while Roofex has low strength and resin-grouted rebar has very
limited deformation capacity.

4.4. Rockbolt Force Analysis

The simulated axial force distribution of rockbolts in three support schemes is shown
in Figure 18. It can be seen that in all three cases, the tensile axial force tends to reach
the peak value at a certain distance (around 1–1.5 m) from the bolt end (head) and then
gradually decreases to a low value. The simulated axial force patterns of rockbolts agree
with some published experimental test [70] and numerical simulation results [71,72]. The
average peak values of axial forces for three rockbolt types are 214.87 kN, 76.99 kN, and
151.05 kN, respectively. Thus, both the D-bolt and resin-grouted rebar can bear the high
load of rock masses, while the Roofex cannot provide sufficient resistance to control large
rock deformation and rapid rock bulking during strainbursts.
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Figure 18. Simulated contours (a) and distribution of the axial force (b) in rockbolts for the tunnel
supported by different rockbolts. The black and red numbers indicate intact and broken rockbolts,
respectively. The positive value of axial forces represents a tensile load.

Additionally, it can be observed that 13 resin-grouted rebar bolts are broken, resulting
in the unsuccessful control of the strainburst. Again, this is because the resin-grouted rebar
has limited deformation capacity to accommodate rapid rock bulking and relieve rock
ejection [1,7]. No broken rockbolts were found for the tunnel adopting D-bolt and Roofex
supporting. In summary, the D-bolt and resin-grouted rebar can maintain a high axial force
level during the strainburst to restrain rock ejection and rock bulking, but the resin-grouted
rebar is prone to be broken due to a minimal elongate rate failing to mitigate rockburst
damage effectively. Roofex’s axial force is too low to control strainbursts, although it has
an excellent deformation capacity over the other two rockbolt types.

5. Discussion

5.1. Influence of the Bolt Number

The effects of rockbolts on controlling self-initiated strainbursts not only depend on
rockbolt types but also are affected by other factors, e.g., bolt number, bolt length, and row
spacing. Therefore, it is interesting to explore the influences of these factors on the control
and mitigation of strainburst damage, which can be used for optimizing the support design
in burst-prone grounds. Since the D-bolt performs better on controlling strainbursts than
Roofex and resin-grouted rebar based on previous analyses, it was decided to simulate the
tunnel supported by D-bolts with different bolt numbers (9, 12, 15, and 18) as an example,
while other influence factors (e.g., bolt length) can also be studied in the model.

The simulation results are shown in Figures 19 and 20. It can be seen from Figure 19a
that many rock blocks with high velocities are ejected from the roof and sidewalls when
9 D-bolts support the tunnel. A moderate number of rock blocks are ejected from a local
zone when 12 D-bolts are installed. However, only a few rock blocks are ejected for the
tunnel supported with 15 D-bolts, and almost no ejected rock blocks are found when the
bolt number is 18. The statistical analysis results of the velocity and volume of all the
detached rock blocks in the model are illustrated in Figure 20. As shown in Figure 20a,
the average velocity of rock blocks in the tunnel supported by 9 D-bolts is 4.54 m/s. By
comparison, the average velocities of rock blocks in the tunnel supported with 12, 15,
18 D-bolts are 0.48, 0.34, and 0.04 m/s, respectively. These results suggest that the rock
ejection is very violent when the tunnel is supported by 9 D-bolts, which fail to control the
strainburst.

44



Energies 2022, 15, 2574

Figure 19. (a,b) are simulated velocity distribution and macroscopic failure patterns of the tunnel. N
is the bolt number.

Figure 20. (a) is the velocity of all detached blocks versus block volume. (b) is the evolution of kinetic
energy of ejected rock blocks in the tunnel. N is the bolt number.

Figure 19b shows the macroscopic failure patterns of the tunnel supported by different
numbers of rockbolts. It can be seen that the extent of the fractured zone gradually decreases
with the growth of bolt numbers. For the tunnel using 9 and 12 D-bolts, surrounding rock
masses are very fractured, and rockfall and rock ejection are observed. The tunnel tends to
be unstable. In contrast, only a few rock blocks are ejected when 15 D-bolts are installed. No
obvious rockfall and rock ejection are observed, and the tunnel surrounding rock masses is
very stable when the blot number is 18.

The variation of the kinetic energy of ejected rock blocks with time is illustrated in
Figure 20b. When the tunnel is supported with 9 D-bolts, the kinetic energy first increases
from 0 to 40 ms and then experiences several fluctuations. After that, the kinetic energy
grows fast, especially after 100 ms, and reaches the peak value at 117 ms. In contrast, the
kinetic energy evolution trends for the tunnel using 12, 15, and 18 bolts can all be divided
into two stages: the kinetic energy first increases to the peak value and then gradually
declines to lower values (almost zero when using 18 bolts). This is because more rockbolts
are deformed to absorb the kinetic energy of ejected rock blocks, which the lower average
velocity can confirm. However, the residual kinetic energy is still high (12.7 kJ) when
adopting 12 D-bolts, indicating that this number is insufficient to control the strainburst. In
summary, 9 and 12 D-bolts cannot control the strainburst, while 15 and 18 bolts can make
the tunnel stable.
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5.2. Influence of the Surface Retaining Element

The surface retaining element (e.g., fiber-reinforced shotcrete, wire mesh, and steel
arch) is an indispensable component of the support system as it can prevent the unraveling
of fractured rocks between rockbolts. Therefore, the effects of the combination of surface
retaining elements and yielding rockbolts on controlling strainbursts should be investigated.
In this research, the tunnel supported with D-bolts and a steel arch was simulated to
demonstrate the benefits of surface retaining elements. The beam structural element
modeled the steel arch in UDEC. The input parameters of the beam structural element are
adopted from Małkowski et al. [53], as listed in Table 7.

Table 7. Input parameters of the beam structural element.

Input
Parameter

Cross-
Sectional

Area
(m2)

Moment of
Inertia

(m4)

Density
(kg/m3)

Poisson’s
Ratio

Elastic
Modulus

(GPa)

Tensile
Yield

Strength
(kN)

Shear
Coupling

Spring
Stiffness

(GN/m/m)

Normal
Coupling

Spring
Stiffness

(GN/m/m)

Beam 4 × 10−3 8.38 × 10−6 7700 0.3 210 650 104 104

It should be noted that simulating both rockbolt and beam elements in the dynamic
calculation mode in UDEC currently takes impracticable time (e.g., more than 1000 h)
to approach the equilibrium state due to intrinsic difficulties in the program. Thus, the
model’s simulation results only running 20 ms were analyzed. Figure 21 shows the macro-
scopic failure patterns of the tunnel with and without a steel arch. It can be seen that the
detachment and ejection of rock bocks between rockbolts are well restrained by the steel
arch, although the surrounding rock masses are still fractured.

 

Figure 21. (a,b) are the macroscopic failure patterns of the tunnel with and without a steel arch. The
dynamic calculation time is 20 ms.

5.3. Highlights and Limitations

The effects of yielding rockbolts on controlling self-initiated strainbursts were thor-
oughly numerically investigated using DEM. Instead of conventional drop tests, the perfor-
mance of yielding rockbolts (e.g., the dynamic capacity of energy-absorption and control of
rock damage) is evaluated during simulated strainbursts for the first time. The obtained
results suggest that the D-bolt, as a type of high strength yielding rockbolt, can effectively
control the large deformation, reduce kinetic energy, and mitigate rockburst damage, while
Roofex (low strength yielding rockbolt) and resin-grouted rebar (stiff rockbolt) fail to con-
trol self-initiated strainbursts. This finding agrees well with many others’ studies. For
instance, Li et al. [21], Li [67], and Sharifzadeh et al. [22] suggested that the high strength
yielding rockbolt should be used to control rockbursts, because this type of rockbolt can
bear high loads and displace significantly, thereby absorbing a great amount of kinetic
energy than other types of rockbolts.
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This study highlights the usage of numerical modeling methods in assessing the
performance of yielding rockbolts, which can be served as a promising tool to improve and
optimize the design of rock supporting in burst-prone grounds following the presented
modeling framework (including modeling sequence, parameter calibration method, model
validation method, etc.). For example, the support scenarios with the combination of
different bolt types (e.g., resin-grouted rebar and D-bolt), various bolt parameters (e.g., bolt
number, bolt length, bolt strength, and row spacing), and surface retaining elements (e.g.,
fiber-reinforced shotcrete, wire mesh, and steel arch) can be modeled to select the optimal
scheme that has best control effects and lowest cost.

The prerequisite for modeling self-initiated strainbursts is to determine whether the
unstable failure will occur or not, which can be judged based on the local mine stiffness
and the post-failure stiffness of rock masses. However, unlike the unstable failure of rock
samples, it is hard to calculate the local mine stiffness when the focus is a strainburst
that usually occurs in a tunnel or roadway. In this research, the authors first proposed
a novel method to calculate the local mine stiffness of a tunnel: the ratio of the in situ
stress at the designed excavation boundary to the convergence of tunnel walls. This
method is straightforward, which can be easily fulfilled in 2D and 3D numerical modeling.
The proposed method fills the gap about how to determine the local mine stiffness of a
tunnel for modeling self-initiated strainbursts and provides a tool to predict the tendency
of strainbursts using the stiffness theory during the design stage of mining and civil
engineering projects.

The presented study and obtained results also point out some limitations for further
research work:

1. The accuracy of simulation results can be improved if the dynamic mechanical prop-
erties of rock masses and joints and related constitutive relationships are known
and used.

2. There is no energy dissipation when two contact faces are separated. Further studies
(e.g., setting residual values of contacts or selecting more representative constitu-
tive models) need to be conducted to consider the influences of fracture energy on
simulation results.

3. The performance of yielding rockbolts during strainbursts has been initially confirmed
by in situ observations and others’ experimental test and simulation results. However,
the simulation results will be more accurate and reliable if field monitoring data (e.g.,
dynamic strength and elongation rate) of yielding rockbolts during strainbursts are
available to calibrate simulation parameters.

4. The sliding or extraction mechanism of Roofex should be simulated explicitly to better
evaluate its performance during strainbursts. Setting reasonable parameters of the
bolt-grout/rock interface will be a choice.

5. The performance of yielding rockbolts was mainly evaluated from the “macro” views
of the dynamic energy-absorption capacity and the control of the deformation and
damage of rock masses. Other “micro” behavior of rockbolts, e.g., the shear force and
failure of bolt-grout/rock interfaces, can be studied in future research.

6. Conclusions

In this paper, a 2D DEM model of a deep tunnel in an underground coal mine is
built to thoroughly evaluate the effects of yielding (D-bolt and Roofex) and the traditional
rockbolt (fully resin-grouted rebar) on controlling self-initiated strainbursts. The occurrence
of self-initiated strainbursts is judged based on the stiffness difference between the loading
system and rock masses for the first time. The main conclusions are as follows:

(1) The total deformations of the tunnel supported with Roofex and resin-grouted rebar
are 1.53 and 2.09 times that of D-bolts (1411 mm). The average velocities of detached
rock blocks in the tunnel supported with Roofex and resin-grouted rebar are 3.22 and
3.97 m/s, respectively, which are much higher than that of D-bolts (0.34 m/s). 13 resin-
grouted rebar bolts are broken during the strainburst, while D-bolts and Roofex
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survive. This phenomenon agrees well with some in situ observations, verifying the
reliability and rationality of the “rockbolt” element in modeling yielding rockbolts.

(2) The volume of ejected rock blocks can be obtained by the developed FISH function in
the numerical model. The volume of ejected rock blocks in the tunnel supported by D-
bolts is 1.07 m3, which is the least compared with Roofex (1.54 m3) and resin-grouted
rebar (1.79 m3).

(3) The dynamic energy-absorption capacity of rockbolts can be evaluated by a proposed
variable, reduced kinetic energy. Compared with Roofex (295.16 kJ) and resin-grouted
rebar (125.19 kJ), the D-bolt can reduce the most kinetic energy (469.30 kJ).

(4) The simulated axial force patterns of rockbolts agree with some published experi-
mental test and numerical simulation results. The average peak values of axial forces
for D-bolt, Roofex, and resin-grouted rebar are 214.87 kN, 76.99 kN, and 151.05 kN,
respectively.

(5) The bolt number significantly influences the control effects of yielding rockbolts on
strainbursts. For example, 9 and 12 D-bolts cannot control the strainburst, while 15
and 18 D-bolts can make the tunnel stable. In addition, the detachment and ejection
of rocks between rockbolts can be well restrained using surface retain elements, e.g.,
steel arch.

In summary, D-bolt can effectively control the large deformation, reduce kinetic energy,
and mitigate rockburst damage, while Roofex and resin-grouted rebar fail to control self-
initiated strainbursts. This study highlights the usage of numerical modeling methods in
assessing the performance of yielding rockbolts, which can be served as a promising tool to
improve and optimize the design of rock supporting in burst-prone grounds.
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55. Szott, W.; Słota-Valim, M.; Gołąbek, A.; Sowiżdżał, K.; Łętkowski, P. Numerical studies of improved methane drainage technolo-

gies by stimulating coal seams in multi-seam mining layouts. Int. J. Rock Mech. Min. Sci. 2018, 108, 157–168. [CrossRef]
56. Hoek, E.; Carranza-Torres, C.; Corkum, B. Hoek-Brown failure criterion-2002 edition. In Proceedings of the NARMS-Tac, Toronto,

ON, Canada, 10 July 2002.
57. Hoek, E.; Diederichs, M. Empirical estimation of rock mass modulus. Int. J. Rock Mech. Min. Sci. 2006, 43, 203–215. [CrossRef]
58. Gao, F.; Kaiser, P.K.; Stead, D.; Eberhardt, E.; Elmo, D. Strainburst phenomena and numerical simulation of self-initiated brittle

rock failure. Int. J. Rock Mech. Min. Sci. 2019, 116, 52–63. [CrossRef]
59. Diederichs, M.S. The 2003 Canadian Geotechnical Colloquium: Mechanistic interpretation and practical application of damage

and spalling prediction criteria for deep tunnelling. Can. Geotech. J. 2007, 44, 1082–1116. [CrossRef]
60. Bahrani, N.; Hadjigeorgiou, J. Explicit reinforcement models for fully-grouted rebar rock bolts. J. Rock Mech. Geotech. Eng. 2017, 9,

267–280. [CrossRef]
61. Tomasone, P.; Bahrani, N.; Hadjigeorgiou, J. Practical considerations in the modelling of resin-grouted rockbolts. J. S. Afr. Inst.

Min. Metall. 2020, 120, 385–392. [CrossRef] [PubMed]
62. Itasca. UDEC, Version 7.0 Manual; Itasca Consulting Group, Inc.: Minneapolis, MN, USA, 2020.
63. Skrzypkowski, K.; Korzeniowski, W.; Zagórski, K.; Zagórska, A. Modified Rock Bolt Support for Mining Method with Controlled

Roof Bending. Energies 2020, 13, 1868. [CrossRef]
64. Skrzypkowski, K. An Experimental Investigation into the Stress-Strain Characteristic under Static and Quasi-Static Loading for

Partially Embedded Rock Bolts. Energies 2021, 14, 1483. [CrossRef]
65. Stillborg, B. Professional Users Handbook for RockBolting; Trans Tech Publications: Clausthal, Germany, 1994.
66. Zhu, D.; Wu, Y.; Liu, Z.; Dong, X.; Yu, J. Failure mechanism and safety control strategy for laminated roof of wide-span roadway.

Eng. Fail. Anal. 2020, 111, 104489. [CrossRef]
67. Li, C.C. Principles and methods of rock support for rockburst control. J. Rock Mech. Geotech. Eng. 2020, 13, 46–59. [CrossRef]
68. Gao, F.; Kaiser, P.K.; Stead, D.; Eberhardt, E.; Elmo, D. Numerical simulation of strainbursts using a novel initiation method.

Comput. Geotech. 2019, 106, 117–127. [CrossRef]
69. Raffaldi, M.; Chambers, D.; Johnson, J. Numerical study of the relationship between seismic wave parameters and remotely

triggered rockburst damage in hard rock tunnels. In Proceedings of the Eighth International Conference on Deep and High Stress
Mining, Australian Centre for Geomechanics, Perth, Australia, 28–30 March 2017.

70. Hyett, A.; Moosavi, M.; Bawden, W. Load distribution along fully grouted bolts, with emphasis on cable bolt reinforcement. Int. J.
Numer. Anal. Methods Geomech. 1996, 20, 517–544. [CrossRef]

50



Energies 2022, 15, 2574

71. Lisjak, A.; Young-Schultz, T.; Li, B.; He, L.; Tatone, B.S.A.; Mahabadi, O.K. A novel rockbolt formulation for a GPU-accelerated,
finite-discrete element method code and its application to underground excavations. Int. J. Rock Mech. Min. Sci. 2020, 134, 104410.
[CrossRef]

72. Ma, S.; Nemcik, J.; Aziz, N. Simulation of fully grouted rockbolts in underground roadways using FLAC2D. Can. Geotech. J. 2014,
51, 911–920. [CrossRef]

51





Citation: Xu, H.; Apel, D.B.; Wang, J.;

Wei, C.; Skrzypkowski, K.

Investigation and Stability

Assessment of Three Sill Pillar

Recovery Schemes in a Hard Rock

Mine. Energies 2022, 15, 3797.

https://doi.org/10.3390/en15103797

Academic Editor: Manoj Khandelwal

Received: 11 April 2022

Accepted: 19 May 2022

Published: 21 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Investigation and Stability Assessment of Three Sill Pillar
Recovery Schemes in a Hard Rock Mine

Huawei Xu 1, Derek B. Apel 1,*, Jun Wang 1, Chong Wei 1 and Krzysztof Skrzypkowski 2,*

1 School of Mining and Petroleum Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada;
hx1@ualberta.ca (H.X.); jun8@ualberta.ca (J.W.); cwei4@ualberta.ca (C.W.)

2 Faculty of Civil Engineering and Resource Management, AGH University of Science and Technology,
30-059 Kraków, Poland

* Correspondence: dapel@ualberta.ca (D.B.A.); skrzypko@agh.edu.pl (K.S.)

Abstract: In Canada, many mines have adopted the sublevel stoping method, such a blasthole stoping
(BHS), to extract steeply deposited minerals. Sill pillars are usually kept in place in this mining
method to support the weight of the overburden in underground mining. To prolong the mine’s life,
sill pillars will be recovered, and sill pillar recovery could cause failures, fatality, and equipment loss
in the stopes. In this paper, three sill pillar recovery schemes—SBS, SS1, and SS2—were proposed and
conducted to assess the feasibility of recovering two sill pillars in a hard rock mine by developing a
full-sized three-dimensional (3D) analysis model employing the finite element method (FEM). The
numerical model was calibrated by comparing the model computed ground settlement with the
in situ monitored ground settlement data. The rockburst tendency of the stope accesses caused
by the sill pillar recovery was assessed by employing the tangential stress (Ts) criterion and burst
potential index (BPI) criterion. All three proposed sill pillar recovery schemes were feasible and safe
to recover the sill pillars in this hard rock mine, and the scheme SBS was the optimum one among
the three schemes.

Keywords: hard rock mine; sill pillar recovery; upper bench level; ground settlement; tangential
stress criteria; burst potential index (BPI)

1. Introduction

In underground mining, to improve production, several mining levels are generally
active in the mining process at different mining depths, simultaneously. The mining
process will cause redistributed stresses, which may transfer horizontally and vertically.
The transferred stress may contribute to failure of the stopes and damage to the mining
equipment. For the sake of mining zone safety, sill pillars are commonly reserved to prevent
the transfer of the redistributed stress, especially in the steeply dipping orebodies. In most
cases, sill pillars are recovered to prolong the mine life and maximize the usage of minerals.
Pillar recovery is the practice of developing several pillars and then extracting the pillars,
and it is considered the most hazardous form of underground mining [1,2]. It can trigger
risks during pillar recoveries such as overlaying rock breakage, stope failure, and pillar
failure [1–4].

To better assess the stability and improve the safety of miners and mining equipment
during sill pillar recovery, scholars initiated and proposed empirical, analytical theories, and
numerical modelling methods. To understand the mechanisms of pillar failures, Hudyma
and Potvin [5,6] studied the conventional ground control instruments, in situ field visual
observations, and numerical analysis modelling. Mark [1,7–13] and Iannacchione [14]
assessed the major hazard risks and analyzed the MHRA techniques to evaluate sill pillar
recovery in the room-and-pillar mining method. Zur [15] proposed the enhanced cemented
rockfill to recover pillars and revealed that the pillars used the passive confinement effect
of cemented rockfill (CRF) to increase the post-peak load-bearing ability. Zhukova [16]
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employed the monitored underground seismic registrations and proposed mathematical
models to improve the safety operations in pillar recovery. Langston [17] designed the
stope layout, pillar extraction schedule, and ground support to recover sill pillars safely.
Sainsbury [18–20] examined sill pillar stability and failure mechanisms and simulated pillar
recovery by replacing the orebodies with laboratory-tested stabilized rockfill to solve the
technical risks caused by the proposed extraction method. Ghasemi [21,22] assessed the
risk of pillar recovery operations and classified that risk into four categories by using failure
indicators. Beruar [23] and Valley [24] developed and optimized the mining sequence and
suggested new directions for the different methods and potential shortcomings to avoid
during pillar recovery. Townend [25] initiated five mitigation strategies to mitigate the
high-stress concentration while mining sill pillars. Zhou [26] investigated the instability
of large mined-out areas triggered by dynamic disturbance resulting from residual pillar
recovery. Kyei [27] selected the suitable blasted rock particle size for making CRF to backfill
the mined-out stopes for sill pillar recovery.

Cemented rockfill (CRF) is widely used to improve the stability and safety of the
whole mining pipe and the sill pillar recovery, while, in many cases, compared with the
host rocks, the strength of the CRF is relatively lower [18–20,28–33]. Sill pillar recovery
with the influence of backfilled CRF in the blasthole stoping (BHS) mining method has not
been widely discussed. In this paper, three schemes of sill pillar recovery were proposed
and implemented to investigate and assess the feasibility of recovering the two sill pillars
in a hard rock mine by applying the finite element method (FEM).

2. Background and Methodology

The hard rock mine in this study initially operated as an open pit mine. Once the
open-pit mining was completed, the mining operation shifted to the underground. Due to
the geological structure and deposition of the minerals, the blasthole stoping (BHS) mining
method was used to excavate the steeply dipped mining pipe. According to the mining
plan, there are three planned mining blocks in mining pipe MP#1, namely Block-A, Block-B,
and Block-C, as shown in Figure 1. There are two initially kept sill pillars between the
mining blocks—Sill-1 and Sill-2. The two sill pillars work as the protective pillars, which
can effectively prevent the transfer of redistributed stress from one block to another [30].
After the completion of the excavation of three mining blocks, the feasibility of recovery of
these two sills then plays a significant role in the resource development plan and prolonging
the mine’s life.

Figure 1. Two sill pillars in pipe MP#1.
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Full-sized 3D models can estimate the deformations of underground openings and ex-
plore the mining-induced stress redistribution paths better than 2D analysis models [30,34–37].
Therefore, to better represent the complicated geometry of the stopes and haulages in the
mining pipe at the hard rock mine, a full-sized elastoplastic three-dimensional (3D) model
was developed by employing ABAQUS codes [38]. As illustrated in Figure 1, to better
simulate the stress change paths in the stopes and haulages, the ten-node quadratic tetrahe-
dron mesh element type (ET: C3D10) was used to mesh the stopes and analysis domain to
conduct the simulation [38]. To make precise predictions, the model was created based on
the real geometry of the stopes and haulages at the mine, and some modifications were
made. To eliminate the influence of boundary effects of the model, an optimization study of
the size of the analysis domain and a mesh convergence were conducted, and the analysis
domain has a size of 1200 m × 1200 m × 700 m (length × width × depth), as shown in
Figure 1 [39]. At the bottom of the model, the boundary conditions are applied to fix the
bottom, and the top surface is set free. In addition, the horizontal restraints on both X and
Y directions are applied to the four vertical boundaries of the model.

To achieve the parameters of the rock samples, several laboratory tests were conducted.
Table 1 shows the rock mechanical properties applied in the model in this study [39]. Here,
γ is the unit weight, C is the cohesive strength, φ is the angle of friction, E is the elastic
Young’s modulus, ν is the Poisson’s ratio, and σc is the uniaxial compressive strength.

Table 1. Properties applied in the numerical model.

Rock Mass
γ

(MN/m3)
C

(MPa)
φ
(◦)

E
(GPa)

ν
σc

(MPa)

MP#1 0.024 4.7 28.1 19.6 0.24 79
CRF 0.022 1.2 35 2 0.3 1.5

Granite 0.026 9.3 45 24 0.3 130

3. Calibration and Verification of the Finite Element (FE) Model

The finite element (FE) numerical analysis model is capable to conduct general study
and helping the engineer to understand better the “real world” of the underground
space [40–45]. Model calibration is a vital step in checking the reliability of the devel-
oped numerical model by comparing the monitored and recorded in situ data with the
computed data from the developed numerical model.

In this paper, to calibrate the developed FE model, several monitor prisms were
installed on the open pit benches to measure the ground surface subsidence induced by
the mining activities in the mining pipe. Figure 2 presents the location of the installed
monitor prisms on the benches. Monitoring zone 1 has two prisms: CRF-S01 and CRF-
S02. Monitoring zone 2 has two prisms: CRF-N01 and CRF-N02. Both monitoring zone 1
and monitoring zone 2 are on the boundary of the top surface of the mining pipe MP#1.
Monitoring zone 3 also has two prisms: 280-10 and 280-12.

Before implementing the simulation of the recovery process of the sill pillars, the
developed numerical model was calibrated by comparing the ground surface settlement
at monitoring zone 1 (prism CRF-S01, CRF-S02) and monitoring zone 2 (prism CRF-N01,
CRF-N02) with the computed ground surface settlement from the numerical model. As a
result, it takes 83 simulation steps, based on in situ production schedules, to excavate and
backfill the three mining blocks in the developed analysis model.

55



Energies 2022, 15, 3797

 
Figure 2. The open pit bench at the mine [30].

The profile of the computed displacement of the open pit slopes in the FE model
is shown in Figure 3. The main areas with maximum ground settlement are over the
mining pipe MP#1, where the mining activities are in active production. Though the three
mining blocks were backfilled with cemented rockfill (CRF), the open pit boundary in the
developed model, where the dike is located, still sees a tiny increase in displacement after
the completion of the excavation and backfilling of the three mining blocks. The stability
and safety of the protective dike play a significant role in mine site safety.

Figure 3. Computed displacement in the FE model before sill pillar recovery.

The comparison of the accumulated ground displacement between the in situ recorded
data and the computed FE model results is shown in Table 2. The relative errors in different
zones are 2.57% and 8.01% in zone 1 and 2, respectively. The average relative error is 5.29%,
which is acceptable in mining engineering simulation analysis [30,46–48].
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Table 2. In situ displacement and the FE model computed displacement.

Monitoring Prism Location
FE Model

(mm)
In-Situ Data

(mm)
Relative Error

(%)

Monitoring zone 1 (Ave-S01 & S02) 45.50 46.7 2.57
Monitoring zone 2 (Ave-N01 & N02) 36.38 39.55 8.01

Average relative error 5.29

The analysis model calibration conducted via comparison of the ground displacement
caused by the excavation and backfilling process of the three mining blocks, between the
recorded in situ data and the computed simulation results of the FE model verifies that the
developed FE analysis model is reliable and capable of conducting and implementing the
simulation steps of the sill pillar recovery process.

4. Schemes of Sill Pillar Recovery

From the above FE model calibration, by comparison of the in situ recorded displace-
ment and the computed results in the developed FE model, the developed FE model is
capable and precise in conducting the numerical simulation to assess the feasibility of the
recovery of the two sill pillars in the mining pipe MP#1.

4.1. Primary and Secondary Mining Sequence in Blasthole Stoping Mining Method

All three sill pillar recovery schemes follow the primary and secondary mining se-
quence to keep the sequence constant with the three mining blocks’ mining schedules. The
primary sequence stopes will be excavated firstly, and then the secondary sequence stopes
will be excavated. Figure 4 shows an example configuration of the mining stopes of two
mining levels. The colors orange, blue, purple, and green represent the mining sequence.
Blue and green represent the primary mining sequence, and orange with purple for the
second mining sequence. Here, P stands for the primary sequence, P1 means those stopes
will be mined first in the primary sequence, and P2 stands for the second round of mined
stopes in the primary sequence. Then, S stands for the secondary sequence, S1 means the
first round of mined stopes in the secondary sequence, and S2 means the second round of
mined stopes in the secondary sequence. When the stoping starts, stope P1-65 will first
be mined out, followed by P1-95. After the first round in the primary sequence finishes,
the second round of the primary sequence starts, and then the first round in the secondary
sequence starts, followed by the second round in the secondary sequence. The stope of
S2-193 will be the last mined-out stope in this level. Each stope will be backfilled as soon as
it is mined.

Figure 4. The stope mining sequence in the example two levels.

4.2. Three Proposed Sill Pillar Recovery Schemes

Three sill pillar recovery schemes are proposed to recover the two sill pillars. To
keep the mining sequence consistent with the designed sequence schedule at the mine,
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the mining sequence to recover the two sill pillars follows the sequence of mining and
backfilled the three mining blocks in mining pipe MP#1. The first mined stopes in the
three recovery schemes of the two sill pillars are labelled with the color magenta, as shown
in Figure 5.

 

Figure 5. Profile of the sill pillar recovery scheme of SBS, SS1, and SS2.

The first proposed scheme of the recovery process starts at both sill pillars (SBS), from
the stope P1-65 to the two sill pillars are excavated and backfilled, and the simulation steps
start from step S84 to step S94. The second proposed scheme of the recovery process starts
at Sill-1 (SS1), as shown in Figure 5, from the stope P1-65, and when all the stopes are
excavated in Sill-1, then the mining process moves to Sill-2, until the two sill pillars are
recovered and backfilled, and then simulation steps start from step S84 to step S98. Finally,
the third proposed scheme of recovery process starts at Sill-2 (SS2), as shown in Figure 5,
from the stope P1-65, and when all the stopes in Sill-2 are excavated, the mining process
moves to Sill-1, until all the sill pillars are recovered and backfilled, and similarly with SS1,
the simulation steps start from step S84 to step S98.

5. Displacement Caused by the Three Sill Pillar Recovery Schemes

5.1. Displacement at the Three Monitoring Zones

When conducting the recovery of the two sill pillars, the open pit benches are still in
function to transport the orebodies from the sill pillars in mining pipe MP#1 to the ground
surface. Then, the benches’ stability is still a key issue to be considered.

From simulation step S84, the recovery process starts. Scheme SBS takes 11 simulation
steps to recover and backfill the two sill pillars, and the simulation step ends at step
S94. Both schemes SS1 and SS2 take 15 steps to recover and backfill the two sill pillars,
and the simulation step ends at step S98. Though it takes different simulation steps to
recover and backfill the two sill pillars, the mining-induced displacements at the monitored
zones during the recovery process are almost the same. Figure 6 presents the computed
displacement from the FE model at prisms 280-10 and 280-12. The final three displacements
at prism 280-10 are −19.42 mm, −19.34 mm, and −19.43 mm, from recovery schemes
SBS, SS1, and SS2, respectively. For the prism 280-12, the final three displacements are
−22.24 mm, −22.20 mm, and −22.25 mm, respectively, from recovery schemes SBS, SS1,
and SS2.
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Figure 6. A comparison of displacement at monitored prism 280-10 and 280-12.

The displacements at monitoring zone 1 and zone 2 are shown in Figure 7. Like the
displacement at monitoring zone 3, the final displacements of three different recovery
schemes are very close at both monitoring zone 1 and zone 2. At the prism CRF-S, the
three displacements are −48.49 mm, −48.39 mm, and −48.47 mm, respectively, from
recovery schemes SBS, SS1, and SS2. The three displacements at the monitoring prism
CRF-N are −38.45 mm, −38.38 mm, and −38.44 mm, from recovery schemes SBS, SS1, and
SS2, respectively.

Figure 7. A comparison of the displacement at monitored sites S01-02 and N01-02.

During the mining and backfilling of the three mining blocks, the mining-induced
displacement at the three monitoring zones reaches a value of 46.7 mm (CRF-S) and
39.55 mm (CRF-N), respectively. From the mining-induced displacement view, the three
different schemes of sill pillar recovery have very close results at the two monitoring zones.
Also, the displacement induced by the process of sill pillar recovery sees a slight increase at
all three monitoring zones. Table 3 presents the displacement induced by the process of sill
pillar recovery at the monitoring prisms.
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Table 3. Sill pillar recovery induced displacement at monitoring zones.

Monitoring Zone
Displacement Caused by Recovery Scheme

SBS (mm) SS1 (mm) SS2 (mm)

280-10 1.77 1.73 1.78
280-12 0.97 0.86 0.98
CRF-S 2.99 2.89 2.97
CRF-N 2.07 2.00 2.06

All displacements induced by the three sill pillar recovery schemes are not more than
3 mm. Therefore, the backfilled CRF in the three mining blocks provides sufficient support
for the process of sill pillar recovery. Furthermore, all three schemes of sill pillar recovery
can be implemented.

5.2. Displacement of the Upper Levels

From the upper levels to the MP#1 mining pipe, there are four levels of open-pit
benches, as shown in Figure 8. Several locations are chosen on bench levels in the numerical
FE model to monitor the displacement on the benches caused by the mining activities and
sill pillar recovery process in the mining pipe MP#1.

Figure 8. The chosen monitored location on the upper bench levels.

The four selected upper levels are marked with upper level-1 (UL-1), upper level-2
(UL-2), upper level-3 (UL-3), and upper level-4 (UL-4), as shown in Figure 8. Here, upper
level-4 (UL-4) is the ground surface at the mine. The elevation between the top surface
of mining pipe MP#1 and the ground surface is 94 m. Therefore, the depths of the four
bench levels are 0 m, −14 m, −34 m, and −64 m, from upper level-4 (UL-4) to upper level-1
(UL-1), from the ground surface to the top surface of the bench level-1 (UL-1).

The average displacements at the analyzed locations on the four upper bench levels
in the numerical model caused by the mining activities and the three sill pillar recovery
schemes process are presented in Figure 9. From the beginning of the mining production in
mining pipe MP#1 to the state of three mining blocks which were all mined and backfilled,
the process of mining and backfilling in pipe MP#1 caused the displacement of −13.50 mm,
−11.56 mm, −10.73 mm, and −9.76 mm, from upper bench level-1 (UL-1) to upper bench
level-4 (UL-4). Compared to the displacement of the monitored prisms at the monitoring
zones around the boundary of the top surface of mining pipe MP#1, the displacements at
the upper bench levels caused by the mining activities of three mining blocks in mining
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pipe MP#1 are much smaller. From upper bench level-1 (UL-1) to upper bench level-4
(UL-4), the mining-induced ground displacement at the bench level decreased constantly,
which proves the influence on the displacement of the upper benches caused by the mining
activities in mining pipe MP#1 decreasing with the increase of the distance between the
upper benches and the top surface of the mining pipe MP#1.

Figure 9. A displacement comparison at the monitored locations.

The sill pillar recovery process commences from simulation step S84 and ends at steps
S94, S98, and S98 by scheme SBS, SS1, and SS2, respectively. Table 4 presents the average
displacements at the upper bench levels of the analyzed locations induced by the sill pillar
recovery and backfilling process.

Table 4. Sill pillar recovery induced displacement at upper levels.

Analyzed Location
Recovery Scheme

SBS (mm) SS1 (mm) SS2 (mm)

UL-1 0.168 0.147 0.180
UL-2 0.128 0.111 0.139
UL-3 0.284 0.294 0.294
UL-4 0.294 0.282 0.303

From Figure 9 and Table 4, the displacements of the analyzed locations at the upper
bench levels caused by the process of sill pillar recovery conducted by the three sill pil-
lar recovery schemes have a slight increase from upper level-1 (UL-1) to upper level-4
(UL-4). The maximum one is 0.303 mm at the upper level-4 (UL-4) from sill pillar recovery
scheme SS2. The three sill pillar schemes are feasible because of the small displacements
of the analyzed upper-level locations in the numerical model and monitoring prisms
at the in-situ field.
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6. Assessment of the Stope Accesses Stability among Three-Pillar Recovery Schemes

In underground mining, stope accesses are excavated to connect the stopes and
haulages, and stope accesses are used as paths to transport the minerals and other materials
between the ground surface and underground working sites. Compared to other under-
ground mining structures, stope accesses serve the longest time for the production in the
mine. Therefore, the stability of the stope accesses has a significant effect on the production
schedule. Thus, assessing the stability of the stope accesses is critical in assessing the
feasibility of the sill pillar recovery.

According to the studies done by Sepehri [30], Leveille [49,50], and Pu [51], kimberlite
and granite in the hard rock mine have the potential for rockburst, which could cause
severe damage to the roofs and sidewall surfaces in the stopes and crosscuts. In addition,
some reported rockburst failure cases located near the stope accesses in this hard rock mine,
as shown in Figure 10. Hence, the stability of the stope access is a key issue to be assessed.

 
Figure 10. Failure cases near the stope access.

6.1. Stress Condition in the Two Sill Pillars Pre-Sill-Pillar-Recovery

In this hard rock mine, the reserved sill pillar consists of several mining stopes, and
each stope can contain thousands of tons of minerals. Compared with the backfilled CRF
in the mined voids, the unmined stopes in the sill pillar will provide more support than the
backfilled CRF [39]. After completing the excavation and backfilling of the three mining
blocks, the stress field changed and was redistributed. Due to the vast volume of the
backfilled CRF, there are some yield zones in the unmined sill pillars. Figure 11 presents
the yield zone in the two sill pillars at steps S1 and S83. In Figure 11, in the mining pipe
MP#1, the yellow areas are the two sill pillars, and the other zones are backfilled CRF.
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Figure 11. Yield zones in the MP#1 at step S1 and step S83.

6.2. Assessment of the Stope Access Stability among Three-Pillar Recovery Schemes
6.2.1. Tangential Stress Criterion (Ts)

For a rockburst to occur, the rock mass must have the ability to store a considerable
amount of strain energy which can be released violently at failure, and there must be
an environment for stress concentration and energy accumulation [33,52,53]. Here, the
tangential stress criterion was used to compare the stability assessment among the three sill
pillar recovery schemes, SBS, SS1, and SS2. According to Wang and Park [53], the rockburst
tendency can be evaluated using Ts criterion, as presented in Table 5.

Table 5. Rockburst tendency prediction based on tangential stress criterion.

Tangential Stress Criterion (Ts) Rockburst Tendency

Ts ≥ 0.7 Violent
0.5 ≤ Ts < 0.7 Strong
0.3 ≤ Ts < 0.5 Weak

Ts < 0.3 No rockburst

In a two-dimensional study, with the influence of the backfilled CRF, in the process of
sill pillar recovery, the two edges of the mining pipe have a higher possibility of instability
in the overcuts and undercuts compared to the crosscuts in the middle area of the mining
level [32,33]. The stope access from three representative locations of left-edge, middle line,
and right-edge are analyzed to conduct the assessment, as shown in Figure 12. Both the
left-edge stope access and right-edge stope access are close to the boundaries between
the mining pipe MP#1 and the host rock granite. The stope access has a section size of
5 m × 5 m (height × width).
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Figure 12. Analyzed stope access in sill pillar Sill-1.

According to Sepehri [30] and Xu [32,33,39], the boundaries of the mining pipe MP#1
have higher tangential stress than the center of the mining pipe, and with the increase of
the mining depth, the possibility of the potential rockburst is higher. Hence, the stope
accesses to the undercuts of stopes in Sill-1 from the three locations are chosen to conduct
the assessment.

In underground rectangular openings, the four corners will easily generate the stress
concentration effect, which may cause failures at these locations [33]. Four corners in the
overcut and undercut are chosen to conduct the stability assessment comparison among
the three sill pillar recovery schemes; UP1 is the left roof corner, UP2 is the right roof corner,
DN1 is the left floor corner, and DN2 is the right floor corner, as shown in Figure 13.

 
Figure 13. A profile of the chosen corners in the overcut and undercut accesses.
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All three sill pillar recovery schemes start at simulation step S84; the following figures
start from simulation step S83, which is the last step of excavation and backfilling of the
three mining blocks, and simulation step S84 is the first step to recover the sill pillars
by three recovery schemes. The Ts values are compared among three sill pillar recovery
schemes at the four corners in the stope access section at three stope locations.

The Ts of the four corners at the undercut access in the right-edge stope in Sill-1 is
shown in Figure 14. For the left roof corner UP1, the Ts value is less than 0.3, though at
some step it reaches 0.3, and with the backfilling coming into effect at the flowing step,
it goes down to a value under 0.1, then is safe for this corner based on the Ts value, and
according to Table 5, there is no rockburst tendency. For the right roof corner UP2, from the
beginning of the recovery, it is over 0.3, which means it is not stable as the left roof corner.
Referring to Table 5, with a Ts value between 0.3 and 0.5, there is a rockburst tendency,
though it is weak. For the left floor corner DN1, the Ts value is always under 0.1, which
means there is no tendency of rockburst. For the right floor corner DN2, similar to the right
roof corner, the value of Ts is between 0.3 and 0.5, presenting a weak tendency of rockburst.
Comparing the Ts value at the four corners in the stope access to the undercut of the right
edge in the Sill-1, the right side of the undercut access is more unstable than the left side.
The right roof corner and floor corner present weak rockburst tendency, while the left side
has no rockburst tendency.

Figure 14. Ts value of the right-edge stope access to undercuts in Sill-1.

The rockburst tendency at the four corners in the middle stope undercut access in Sill-1
is shown in Figure 15. Unlike the right-edge stope access to the undercut, the four corners
in the middle stope access to undercut show no rockburst tendency. Both the corners of the
floor have a value of Ts less than 0.1, while the roof corners have a more considerable Ts
value, though it is under 0.3. In Figure 13, the roof corners are in the unmined kimberlite
rock mass, while the floor corners are in the backfilled CRF block. Although, according to
the rock mechanics properties parameters in-put in the developed FE model in Table 1, the
backfilled CRF has lower strength and elastic properties than the kimberlite block, when
the backfilling finishes, the backfilled CRF could fail, but not in the type of rockburst.
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Figure 15. Ts value of the middle stope access to undercuts in Sill-1.

The rockburst tendency of the four corners in the left-edge stope access to the undercut
is illustrated in Figure 16. Like the middle stope access to undercut, there is no rockburst
tendency in the four corners. While compared with the floor corners, the roof corners have
high values of Ts. The floor corners have a Ts value under 0.05 among the three sill pillar
recovery schemes. For the roof corners, UP1 and UP2, though the three sill pillar recovery
schemes cause a different value of Ts, the Ts is under 0.2, and after the completion of the
recovery and backfilling of the two sill pillars, the Ts values of the three sill pillar recovery
schemes reach the same final state of Ts.

Figure 16. Ts value of the left-edge stope access to undercuts in Sill-1.
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Referring to Figure 12, in which the locations of the three analyzed stope accesses were
marked, based on the results presented in Figures 14–16, the right-edge stope access has
a higher value of Ts, indicating the rockburst tendency at the right side of the right-edge
stope access is higher than any other location in the other two stope accesses, the left-edge
one and the middle one.

6.2.2. Energy-Based Burst Potential Index Criterion (BPI)

According to the studies of [30,49–51], the rockburst that occurred at this mine was
classified as strainburst. Mitri [54] proposed the energy-based burst potential index (BPI)
to better assess and predict the rockburst in the underground rock mass. Violent failure
(rockburst) will occur when the energy stored in the rock mass exceeds the critical energy
value (ec) [54–58]. The ec is the maximum capacity of the rock mass to store energy, and it
can be obtained from the uniaxial compressive strength (UCS) test or the UCS hysteresis
looping test curve with the following equation:

ec = σ2
c /2E (1)

where σc is the UCS and E is Young’s modulus in the UCS test. It should be noted that
estimating ec using Equation (1) is a conservative approach because the energy dissipated
by fracturing and plastic deformations is neglected. Therefore, the BPI can be defined as

BPI = ESR/ec × 100% (2)

where ESR is the energy storage rate (kJ/m3) in the rock mass, and ec is the critical elastic
strain energy density (SED) (kJ/m3) of the rock. The larger the value of the BPI, the higher
the probability of a rockburst occurring. According to Leveille [48], kimberlite’s average
critical energy (ec) value in mining pipe MP#1 is 119.7 kJ/m3.

Based on the computed ESR from the FE analysis model, the burst potential index
(BPI) of the four corners of stope accesses to the undercuts and overcuts in the Sill-1 and
Sill-2 during the process of recovery of two sill pillars conducted by the three recovery
schemes can be calculated, and the following figures present the results.

At the right-edge stope access, all four corners have a low value of BPI, as shown in
Figure 17. For the left roof corner UP1, during the whole process of recovery, among the
three recovery schemes, the BPIs are less than 10%, though with a slight increase caused
by the excavation. On the other hand, for the right roof corner UP2, the BPIs see a swift
increase caused by the excavation of the stope access at the specific simulation steps among
the three recovery schemes.

Before the excavation occurs, the BPIs stay at a stable value of 12.5%; due to the
excavation, it increases to 20%, after the backfilling, and then comes down to the initial
value of 12.5%, which proves the backfilled CRF can effectively lower the BPI by providing
the immediate support. The left floor corner DN1 has the lowest BPI among these four
corners in the stope access, and it is 5%, keeping stable. For the right floor corner, with an
increase of 4.5% from 10.5% to 15%, all three recovery schemes end at 14%.

For the middle stope access to undercut in Sill-1, compared with the right-edge one,
the BPIs are much smaller, as shown in Figure 18. For the two roof corners, UP1 and UP2,
which have the highest BPI compared to the floor corners, the BPIs are not larger than 5%,
and the excavation simulation step causes a decrease at both roof corners, as shown in the
first and second pictures. On the two-floor corners, DN1 and DN2, as shown in the third
and fourth pictures, the BPIs are even much smaller; both are less than 2%, though with the
process of excavation, among the three recovery schemes, for recovery schemes SS2, before
the excavation occurs, the BPI keeps stable as 2%.

67



Energies 2022, 15, 3797

Figure 17. BPI value of the right-edge stope access to the undercut in Sill-1.

Figure 18. BPI value of the middle stope access to the undercut in Sill-1.

Figure 19 illustrates the BPI of the four corners in stope access to undercut in the
left-edge stope in Sill-1. Like the right-edge stope access, the left roof corner UP1 increases,
caused by the excavation, and the subsequent decrease, caused by the backfilled CRF,
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among the three recovery schemes. All the BPIs of the three recovery schemes are less than
9%, though the excavation caused the increase. The right roof corner, UP2, sees a constant
decrease during the excavation and backfilling sill pillar recovery, and it is under 6% the
whole process. For the two-floor corners, DN1 and DN2, the BPIs are under 3%, and for
DN2, the BPI is even under 1.5%.

Figure 19. BPI value of the left-edge stope access to the undercut in Sill-1.

Similar to the tangential stress criterion (Ts) results, compared with the stope accesses
to the undercuts in left edge-located stope and middle stope in Sill-1, the right-edge stope
access has a higher value of BPI due to the contact boundary of kimberlite and granite.

7. Discussion

In the previous studies [32,33], the authors used the two-dimensional (2D) models
to analyze the displacement of the crosscuts to assess the stability of the stopes, and the
displacement was the only factor in conducting the assessment. To make a more precise
and comprehensive analysis and prediction, a full-sized elastoplastic three-dimensional
(3D) model was developed in this paper by simulating the whole mining schedule process
of stope excavation and backfilling. Different from other studies [1–7,12,14,16,17], in the
presented research, a full-size 3D analysis model of the mine was constructed to make
the predication and analysis more precise and accurate by simulating the whole process
of excavation and backfilling of the stopes, and rockburst tendency as the key factor was
considered, and three different sill pillar recovery schemes were proposed.

The developed three-dimensional (3D) finite element (FE) analysis model was firstly
calibrated and verified. Then, the sill pillar recovery simulation by three recovery schemes,
SBS, SS1 and SS2, was conducted to investigate the feasibility of two sill pillars recovery.
Finally, the displacement of the four monitoring prisms and four upper levels were chosen
as indicators of the failure of the protective dike.

According to the displacement results of the four upper bench levels, the three sill
pillar recovery schemes had an extremely low possibility of causing failures of the four
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upper bench levels and the dike since the maximum displacements of the monitoring prism
and the upper level was 2.99 mm (CRF-S) and 0.303 mm (UL-4), respectively.

The tangential stress criterion (Ts) and burst potential index criterion (BPI) were
introduced and applied to assess the stability of the stope access to the two sill pillars
during the process of the sill pillar recovery. The results of the sill pillar Sill-1 were
presented since the mining depth of sill pillar Sill-1 was deeper. Though, at the access to
the right-edge stope, weak rockburst tendency presented, advanced measures, such as
stress-release, can be taken to reduce the damages caused by rockburst occurrence.

8. Conclusions

With an average relative error of 5.29% from the displacement comparison between
the in situ recorded data and the FE model computed results, the developed numerical
model was calibrated and proved to be capable of assessing the feasibility of the sill pillar
recovery in the hard rock mine.

The maximum ground displacements caused by the recovery of the two sill pillars at
the four monitoring prisms were 1.78 mm (280-10), 0.98 mm (280-12), 2.99 mm (CRF-S),
and 2.07 mm (CRF-N), respectively. In addition, the displacements of the four upper
bench levels caused by the sill pillar recovery were also presented, and the maximum
displacement at each upper bench level was 0.18 mm (UL-1), 0.139 mm (UL-2), 0.294 mm
(UL-3), and 0.303 mm (UL-4), respectively, which indicated that the protective dike would
be stable during the sill pillar recovery.

During the process of sill pillar recovery, according to the tangential stress criterion (Ts)
results, in Sill-1, the stope accesses to the right-edge stope had a weak rockburst tendency,
while the accesses to the left-edge and middle stope did not tend rockburst. Similar to the
Ts criterion scenarios, the results of BPI criterion showed that only the right-edge stope
access in Sill-1 has a possible rockburst tendency at the right roof corner and the right
floor corner.

Considering the displacement of the monitoring prisms and the upper bench levels
above mining pipe MP#1, and the stability of the stope accesses in the sill pillar Sill-1,
all three sill pillar recovery schemes are feasible and rational. Therefore, any scheme can
recover the two sill pillars. However, the recovery scheme SBS, starting the sill pillar
recovery process from both sill pillars, is the optimum one among the three schemes.
This is because the recovery scheme SBS simultaneously conducts the mining activities in
both two sill pillars, which takes less time than the other two recovery schemes. Hence,
recovering the two sill pillars by scheme SBS is more productive than the other schemes. In
addition, recovering the two sill pillars by scheme SBS will reduce the cost of ventilation
and other maintenance by taking less time in the recovery process, thus increasing the
profit of the mine.
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Abstract: An important element of numerical modeling for specific mining issues is the selection
of model parameters. The incorrect determination of geomechanical parameters can result in sig-
nificant calculation errors carried throughout the entire problem. This paper presents a method for
determining effective geomechanical parameters for technological and residual pillars through the
use of numerical modeling, specifically, back-calculation. This is based on the results of numerical
simulations, measurement data (e.g., excavation convergence measurements), and statistical methods
(a non-linear regression model with “dummy” variables). The result is that appropriate parameters
of pillars are set out iteratively so that the displacements of selected points in the numerical model
correspond (with some approximation) to the results of mine measurements. The procedure of
determining pillar parameters is presented using a case study of one mining field in an underground
copper mine, where the deposit is mined using the room and pillar system. Numerical calculations
were performed using a Phase2 v. 8.0 program (Rocscience, Toronto, Canada), while statistical calcu-
lations used a Statistica computer program. The results of excavation convergence measurements
performed in the analyzed mine have been applied. This paper shows that for the presented method,
the resulting matching of theoretical values of convergence determined numerically for specified
pillar parameters to in-situ results of convergence measurements, is very good (R2 = 0.9896). This
work exemplifies a set of the parameters of pillars for an elastic model of rock mass, but this method
can also be applied to other models.

Keywords: back-calculation in geomechanics; rock mechanics; numerical modeling; room and
pillar mining system; non-linear regression

1. Introduction

In the past, rock mechanics was primarily described using empirical methods, based
on experience and analytical methods giving a closed form of solution. As a result of the
development of computer technology and computational methods, the most common meth-
ods used to solve geomechanics problems are numerical methods, which allow for the
analysis of complex geometry (in close to real conditions) and different material behaviors.
Both two- and three-dimensional tasks are solved. The most commonly used numerical cal-
culation methods in geomechanics are the finite difference method, finite element method,
and the boundary element method; though the discrete element method or hybrid methods
(hybrid continuum/discrete methods) [1,2] are quite often used. Numerical modeling
plays a very important role in the design of underground mines. It allows assessment
of the current mining situation and predicts the behavior of rock mass along with the
progress of work. Numerical methods in underground mining are used for, among others,
stability analysis of mining excavations and the design of their support [3–10], to compare
different types of support [11], for simulation of deposit excavation using various mining
systems [12–20], for studies of the behavior and stability of pillars and remnants [21–29],
for analysis of mining salt deposits with backfill and the determination of the backfilling
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influence on the dynamics of deformation of the undermined rock mass [30], as well as for
the assessment of seismic and rockburst hazard [20,22,27,28,31–35], etc.

A key element of any rock mass behavior modeling is the correct determination of its
parameters and verification of obtained results. The introduction of incorrect parameters
into the model will result in incorrect results. These parameters should be chosen so that
the values set out as a result of numerical calculations correspond to actual values obtained
on the basis of observations and mine measurements. The main source of input data for
a numerical model are laboratory tests of rock samples and field tests. The impact of the
sample size on the mechanical characteristics of rock samples is referred to as the “size
effect” and is a significant issue [36,37]. The values of strength and deformation parameters
set out by laboratory tests are often reduced to take into account the “size effect” between
the sample (micro scale) and the rock mass (macro scale). The parameters of rock mass for
numerical calculations can be set out using rock mass weakening factors chosen depending
on the structure of the rock mass and the compressive strength of the rock samples or by
using Hoek–Brown classification [38–40].

In practice, however, it happens that the obtained calculated values (e.g., of rock mass
displacements) differ significantly from the values measured in mining conditions. The
choice of suitable geomechanical parameters for numerical calculations is a particularly
important issue in the case of technological and residual pillars in room and pillar min-
ing systems and when considering their progressive destruction, when the mining front
is moved. The yielding of pillars in numerical calculations is introduced by reducing their
strength and deformation parameters. In order to make the best projection of the actual
working conditions of pillars, the strength and deformation parameters are chosen most
often using a method called “back-calculation”. The required parameters are set out based
on in-situ measurements in such a way, that a numerical model should fit best to the actual
behavior of the object. Back-calculation based on measurements of displacements was
initiated by Sakurai in 1981 [41] and is widely applied in geomechanics.

This paper presents a method for determining effective geomechanical parameters
for technological and residual pillars used in numerical calculations for room and pil-
lar mining systems using back-calculation, which is based on the results of numerical
simulations, measurement data (e.g., excavation convergence measurements), and statisti-
cal methods. Numerical calculations have been performed as a plane strain problem using
Phase2 v. 8.0 program (Rocscience, Toronto, Canada), which uses the finite element method,
while the statistical analysis was done using Statistica. The above method is applied to one
of the mining fields of the underground copper mines belonging to KGHM Polska Miedz
SA. The analysis covered the D-IE mining field located in the Polkowice-Sieroszowice mine
in south-western Poland. Copper ore deposit in the analyzed field was mined using the
room and pillar system with a roof deflection. This work exemplifies how to set out the
parameters of pillars for an elastic model of rock mass, but this method can also be used for
other models.

2. The Method of Determination of Effective Geomechanical Parameters for
Technological and Residual Pillars for Numerical Modeling Using Back-Calculation
Based on the Results of Numerical Simulations, Measurement Data,
and Statistical Methods

For the best projection of reality to determine the effective geomechanical parameters
of technological and residual pillars applied to numerical calculations for room and pil-
lar mining systems, back-calculation has been suggested based on the results of numerical
simulations and measurement data, in which a non-linear regression model was applied
with so-called dummy variables. This allows determining the values of the pillars parame-
ters, for which the values of excavation convergence calculated in the numerical model will
be most closely related to the results of convergence measured is-situ in this excavation.
The model of non-linear regression with “dummy” variables is described by the formula:

Y = P1Z1 + P2Z2 + P3Z3 + . . . + PkZk, (1)
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where:

Y—explained variable (results of in-situ measurements of convergence for a chosen excavation),
Z1, . . . , Zk—so-called “dummy” variables (with a value of 1 or 0),
P1, . . . , Pk—quadratic functions acting as parameters of a regression model with “dummy”
variables.

The established effective geomechanical parameters of technological and residual
pillars are independent variables of quadratic functions P1, . . . , Pk. The number of vari-
ables in a quadratic function depends on the number of determined pillar parameters.
Therefore, the actual determined parameters of a regression model with dummy variables
are independent variables of the quadratic function being the parameters of pillars. In a
case when all technological and residual pillars are characterized by one parameter such as
E then functions P1, . . . , Pk take the form of a quadratic function of one variable:

P = β0 + β1E + β11E2 (2)

If we use more parameters to characterize the work of technological and residual
pillars, the Formula (1) takes the form:

− for two parameters (e.g., E, c):

P = β0 + β1E + β2c+ β11E2 + β12Ec + β22c2, (3)

− for three parameters (e.g., E1, E2, c):

P = β0 + β1 E1+ β2 E2 + β3 c + β11 E1
2 + β12 E1 E2 + β22 E2

2 + β13 E1 c + β33 c2 + β23 E2 c (4)

The parameters of quadratic functions: β0, β1, β2, β3, β11, β12, β13, β11, β22, and β33
are set out by the least square method on the basis of convergence values defined in
numerical simulations for different combinations of established values of the parameters
characterizing the pillars (the matrix of the numerical experiment). The matrix of the
numerical experiment is selected iteratively in such a way that the calculations are based
on interpolation, i.e., the calculated parameters of pillars should be within a space defined
by the matrix of the numerical experiment.

In order to match the results of the numerical experiment to measurement data, the
regression model parameters are set out using backward stepwise regression. This involves
eliminating from the model the effective geomechanical parameters of pillars, which had
no significant effect on the optimal adjustment of convergence values (identified on the
basis of numerical modeling) to the measurement data. The statistical significance of
respective parameters is evaluated on the basis of confidence intervals or p-values for
the assumed level of significance α. The regression model with dummy variables, which
incorporates all the selected parameters of pillars, is individually deprived of those where
p > α (and therefore those for which there was no reason to reject the hypothesis, that
the established parameter is equal to 0). In the next step, a new regression model is
set out with a number of parameters reduced by 1. Finally, when all parameters of the
pillars are considered statistically significant (significantly different from 0), the process
of elimination is interrupted and matching of the results of the predicted excavation
convergence to measurement data is estimated based on the coefficient of determination
R2. On this basis, a decision is made about the values of the geomechanical parameters for
technological and residual pillars adopted for further numerical calculations.

The procedure of determining effective geomechanical parameters for technological
and residual pillars based on the results of numerical simulations and data from mine mea-
surements using statistical methods is presented in Figure 1. According to Figure 1, the
first step (1) includes the choice of strength and deformation parameters of pillars, which
have a decisive impact on the value of calculated vertical displacements for a given model
of rock mass. Then, after construction of a numerical model of the selected mining field,
(2) one should specify the number of quested effective geomechanical parameters charac-
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terizing the work of technological and residual pillars (3) and select the values of these
parameters, for which numerical simulations will be carried out (construction of the nu-
merical experiment matrix) (4). In the case of a numerical experiment matrix consisting
of three parameters describing the work of the pillars (e.g., E1, E2, and c) and three differ-
ent values adopted for each parameter, the number of numerical simulations will be 27.
Simulations performed for a numerical experiment matrix are a basis for determining a
convergence graphs model in a chosen excavation in the following steps of mining excava-
tion (5). On the established convergence curves, one should choose representative points
for the regression analysis (6) and determine the quadratic functions of an appropriate
number of variables depending on the number of sought geomechanical parameters of
the pillars (7). Knowing the quadratic functions serving as model parameters, one can
specify the non-linear regression model with “dummy” variables (8) and determine the
values of effective geomechanical parameters for the technological and residual pillars (9).
The next step is to examine whether the received parameters have physical meaning (e.g.,
c ≥ 0, E ≥ 0, ϕ ≥ 0) (10). If not, calculations should be terminated (11), as this may mean
that the numerical model has not been properly constructed: too small density of the
grid, insufficient accuracy of calculations, etc. When the calculated parameters have physi-
cal meaning, it should be checked whether they belong to one type of parameter (12). If
not, then one should check whether the set parameters are statistically significant (14) and
if so, it should be checked whether the parameters belonging to one type are significantly
different from each other (13). If among the established pillar parameters are those for
which there are no grounds to reject the statistical hypothesis that they are equal, one
should eliminate one of them, reduce the number of sought pillar parameters, (15) and
repeat the procedure. If all set-out parameters are significantly different from each other
and in the case of parameters not belonging to one type, one should check their statistical
significance (14). In a case when among the established parameters are those not statistically
significant, one of them must be eliminated (15), and following the steps of the procedure
should be repeated. However, when all pillar parameters have been considered statistically
significant, one should check whether they are in a space defined by the experiment matrix
(16). If the set parameters do not belong to this space, one should return to the construction
of the experiment matrix (4) and change the range of selected values. Otherwise, the set of
effective geomechanical parameters for technological and residual pillars can be applied
for further numerical modeling, evaluating the matching of numerical experiment data
to measurement data on the basis of the coefficient of determination R2 (17). The procedure
of selecting pillar parameters based on numerical simulations and measurement data can be
performed repeatedly for different models of rock mass, searching for optimal parameters
that will produce the best match of numerical experiment data to measurement data.
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Figure 1. Method of determination of effective geomechanical pillar parameters on the basis of
numerical simulations and measurement data using statistical methods.
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3. Case Study in Polkowice-Sieroszowice Mine

3.1. Characteristics of Research Area

The method of determining effective geomechanical method parameters for technolog-
ical and residual pillars for numerical modeling using back-calculation based on the results
of numerical simulations, measurement data, and statistical methods are presented in the
example of one mining field (D-IE) in Polkowice-Sieroszowice underground copper mine.
The Polkowice-Sieroszowice mine belongs to KGHM Polska Miedz SA. It is located in the
south-western part of Poland and mines the copper ore deposit which covers the central
part of a geological unit known as Sudetic Monocline. Sudetic Monocline falls gently
towards the northeast. It is constructed of Permian and Triassic sediments, which have a
base made from Proterozoic crystalline rocks and Carboniferous sedimentary rocks. The de-
posit occurs in Permian formations, contacted by a dolomite limestone series, red sandstone,
and Lower Permian limestone. Shaped in the form of a pseudobed of variable thickness
(from 0.4 to approx. 20 m) and low gradient (approx. 4◦), it lies at great depth (from 600 to
1400 m). The copper ore deposit is formed by an accumulation of sulfides, mainly chalcocite,
bornite, and chalcopyrite. Sulfide mineralization occurs at the contact of red sandstone
and Permian limestone layers. It includes carbonate rocks (dolomites and limestones),
copper-bearing shales in the bottom part of the Permian limestone, and white sandstones.
The deposits of the Polkowice-Sieroszowice mine subject to ore mineralization are mainly
carbonate rocks and shales. Mining of the deposit is performed using a variety of room and
pillar systems, depending on geological and mining conditions in a given mining field [29].

D-IE mining field was located in the mining area Sieroszowice I, in the Polkowice-
Sieroszowice mine. It was a closing field explored since March 2005, where mining works
were carried out in the vicinity of gobs. In February 2008, due to problems with maintaining
roof stability, the remnant was left behind on the right side of the D-IE mining field
(Figure 2).

Figure 2. Mining field in the Polkowice-Sieroszowice mine where remnant has been left.

In the D-IE mining field, the deposit balance occurs in the lower part of a carbonate
series of Permian limestones and the roof part of new red sandstone; it is comprised of
grey quartz, fine-grained sandstone, loamy copper-bearing shale, and dolomite loamy
shale, as well as streaked, dark grey, crypto-crystalline dolomite. The roof is made of rock
layers, being part of a Permian limestone carbonate series, namely of calcareous dolomites
with clear divisibility of bed (occurring in intervals of 0–2 m above the excavation roof), of
concise calcareous dolomites with quite clear divisibility (occurring in intervals of 2–5 m
above the excavation roof), and calcareous dolomites and dolomitic limestones with a bed
structure (that occur in intervals of more than 5 m above the excavation roof). The carbonate
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series is directly covered by anhydrites. The direct floor is built of grey sandstones of red
Permian sediment rock. These are fine-grained quartz sandstones with a loamy bond,
carbonate-loam bond, and locally anhydrite bond (in the eastern part of the area). The roof
part of the sandstones, due to the larger amount of carbonate bond, is harder and more
concise. The deposit is oriented towards NW-SE and its decline (2–3◦) towards NE. The rock
formation has marginal tectonic sensitivity. The height of the mined deposit is 2.0–2.8 m.

Until 2008 mining of the deposit in the discussed area was conducted using a room and
pillar system with roof deflection and closing pillar (J-UGR-PS), while in 2008 the closing
pillar was liquidated, and further works were performed using a room and pillar system
with roof deflection (J-UG-PS). Exploration using the room and pillar system consists in
cutting the deposit with rooms and strips with separation of technological pillars of a
certain geometry, which protect the roof over the working area. The size of the pillars is
chosen to provide its work in the post-critical state. In the D-IE mining field, the cutting
work was carried out using technological pillars situated perpendicular to the mining front,
with basic dimensions of 6 × 8 m (J-UGR-PS and J-UG-PS). In the discussed mining systems,
the height of excavation in the cutting phase depends on the thickness of the deposit and
the requirements of working machines and is not more than 4.5 m. The width of excavations
does not exceed 7 m. The minimum size of the opening face of the mining front is equal
to the sum of two strips and the length of two rows of pillars into undisturbed rock. In
the D-IE mining field, the width of the opening was 4–5 strips. Along with the progress of
the mining front, the technological pillars from the last row before gobs, depending on the
degree of their disintegration, are adjusted or cleft into smaller ones. The resultant support
pillars are adjusted to residual dimensions in elementary plots and then left in gobs. They
work as supports to mitigate the deflection of roof layers. For D-IE field size of residual
pillars left in the gobs amounted to approx. 5.2 m2. In a room and pillar system with roof
deflection and a closing pillar, the technological pillars are left in a separated part of the
field, creating a gradually lengthening closing pillar. In one of the excavations of this pillar,
a conveyor belt is assembled, which successively extends along with the progress of cutting.
The width of a closing pillar depends on local geological and mining conditions and is
generally 40–120 m [39]. The work of mining systems J-UGR-PS and J-UG-PS are shown in
Figures 3 and 4.

Figure 3. Room and pillar mining system with closing pillar J-UGR-PS [42].
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Figure 4. Room and pillar mining system with roof deflection J-UG-PS [42].

3.2. Characteristics of Numerical Modeling

Numerical calculations were performed in a plane strain state by a computer program
Phase2 v. 8.0 (Rocscience, Toronto, ON, Canada) [43]. The computational model was a plate,
which comprises the rock layers creating the rock mass (Figure 5). Construction of the mass
resulted from geological recognition conducted in the analyzed field. The upper edge of
the model was loaded with vertical pressure, replacing the influence of overlaying rocks. It
was assumed that at the upper edge of the plate the stress should be equal to 17.657 MPa,
corresponding to the value of the vertical stress set out for the D-IE mining field on the
basis of data from the borehole S-294. The calculations considered the deadweight of rock
layers. Horizontal stress values were determined on the basis of Poisson’s ratio υ of a given
rock layer. For the edges of the plate, the displacement edge conditions were assumed. At
the lower edge of the model—lack of vertical displacements while at the side edges—no
displacements in directions perpendicular to the surface of the edge. An applied grid of
finite elements was composed of three nodal elements of triangular shape. In the central
part of the plate, adjacent to the excavations, the grid was densified to improve the accuracy
of numerical calculations.

 

Figure 5. Calculation scheme for D-IE mining field.
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The calculations were performed stepwise, simulating the mining carried out using
a room and pillar system with parameters characteristic of an analyzed mining field
(64 calculation steps). The first step covered the situation in the rock mass before the
creation of mine excavations (Figure 6a). The second step consisted of the cutting of
undisturbed rock into technological pillars (8 m in width) (Figure 6b). In the next steps,
the size of the technological pillars was reduced to residual size (3 m width) and further
technological pillars were cut out (Figure 6c). Cutting of the deposit was carried out with
strips having dimensions 6 m width under the roof. Numerical simulations considered the
width of the working area opening consisting of 5 strips.

(a) 

Figure 6. Simulation of room and pillar mining in the analyzed field: (a) step 1, (b) step 2, (c) step 4.

3.3. Determination of Parameters for Rocks and Rock Mass

The parameters of rock mass, which were assumed for numerical modeling, were
determined based on Hoek–Brown classification. The results of laboratory tests of rock sam-
ples taken from geotechnical boreholes located in the analyzed mining field were applied.
The averaged parameters of the rocks, which were designated in the laboratory for the D-IE
field, are shown in Table 1, while the parameters of the rock mass are shown in Table 2.
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Table 1. Averaged geomechanical parameters of rock.

Location Name of Rock h [m] ρ [kg/dm3] Rc [MPa] Rr [MPa] Es [MPa] v [-]

ROOF

Main anhydrite 100.0 2.90 93.1 6.4 56,100 0.24
Loamy anhydrite breccia 10.0 2.25 36.0 1.7 13,650 0.18

Basic anhydrite 73.0 2.90 95.5 5.5 54,600 0.25
Calcareous dolomite I 15.0 2.53 132.5 8.3 51,090 0.24
Calcareous dolomite II 2.0 2.74 213.0 16.0 99,320 0.27

MINED DEPOSIT Mined deposit 2.7 2.63 110.9 7.4 34,450 0.21

BOTTOM
Quartz sandstone I 8.2 2.12 22.1 1.4 8190 0.15
Quartz sandstone II 194.5 1.95 16.7 0.7 6190 0.13

Table 2. Parameters of rock mass assumed for numerical modeling.

Location Name of Rock h [m] Es [MPa] v [-] σt [MPa] c [MPa] ϕ [◦]

ROOF

Main anhydrite 100.0 41,110 0.24 0.746 6.967 38.66
Loamy anhydrite breccia 10.0 7100 0.18 0.093 2.507 39.06

Basic anhydrite 73.0 40,010 0.25 0.765 7.146 38.66
Calcareous dolomite I 15.0 44,980 0.24 2.933 12.085 39.00
Calcareous dolomite II 2.0 87,440 0.27 4.715 19.895 39.00

MINED DEPOSIT Mined deposit 2.7 25,240 0.21 0.825 8.424 39.31

BOTTOM
Quartz sandstone I 8.2 4260 0.15 0.057 1.538 39.06
Quartz sandstone II 194.5 3220 0.13 0.043 1.160 39.06

Marking in the above tables: h—thickness of rock layers, ρ—volume density, Rc—rock sample uniaxial com-
pression strength, Rr—rock sample tensile strength, Es—longitudinal elasticity modulus, v—Poisson coefficient
σt—tensile strength of rock mass, c—coefficient of cohesion, φ—angle of internal friction.

3.4. Determination of Effective Geomechanical Parameters for Technological and Residual Pillars by
Numerical Modeling Using Back-Calculation Based on the Results of Numerical Simulations,
Measurement Data and Statistical Methods

The parameters of the technological and residual pillars described by an elastic model
were determined using the procedure presented in the article. On the basis of in-situ tests
carried out in the ZG Polkowice-Sieroszowice mine in 2002–2007, the course of the excava-
tion convergence in time was determined for room and pillar mining systems with roof
deflection and closing pillar. The pattern convergence curve, which was adopted as a reference
for numerical calculations performed for the D-IE field, is shown in Figure 7. Each measure-
ment of convergence made on a chosen test post was referred to as the mining step and the
position of the working front line on a given day of measurement. This enabled the construction
of a model that would fit the actual situation in the field and allow the determination of the
effective geomechanical parameters of the technological and residual pillars.

The values of longitudinal elasticity modulus E were determined for an elastic model,
(the parameter having a decisive impact on the numerically calculated values of displace-
ments). Depending on the distance from the face of the mining front, the degree of pillar
disintegration is varied. In the first step, the pillars were divided into three groups. Three
technological pillars (located close to undisturbed rock) were characterized by longitudinal
elasticity modulus E1, the other two technological pillars with modulus E2, and the residual
pillars with modulus E3 (Figure 8). It was assumed that E1 = E2 + a. The following values
of E1, E2, and E3 were adopted for the matrix of the numerical experiment:

E1 E2 E3

2000 MPa 500 MPa 100 MPa

6000 MPa 1500 MPa 150 MPa

10,000 MPa 2500 MPa 200 MPa
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Figure 7. The results of excavation convergence measurements for J-UGR-PS mining system in
Polkowice-Sieroszowice mine.

 

Figure 8. Fragment of the model of analyzed exploration field with marked division of pillars.

27 numerical simulations were performed for all combinations of assumed values of
Young’s modulus E. The convergence of the selected excavation in subsequent steps of the
executed mining for a few chosen cases is presented in Figure 9.

Using the method of surface regression with Statistica v. 10 program, the quadratic
function parameters of three variables were determined for selected points that are included
in a non-linear regression model with dummy variables:

Y = Z1(−145.75967 + 0.01(E2 + a) − 0.00000046(E2 + a)2 + 0.05718E2 − 0.00001043E2
2 − 0.1659E3 + 0.00054E3

2

0.00000100(E2 + a)E2 + 0.00000087(E2 + a)E3 + 0.00000142E2E3) + . . . + Z9(−4620.2027 + 0.0405(E2 + a) −
0.00000188(E2 + a)2 + 0.36882E2 − 0.00006627E2

2 + 22.9864E3 − 0.04617E3
2 − 0.00000146(E2 + a)E2 +

0.00002395(E2 + a)E3 − 0.00019174E2E3)

(5)

The values of a, E2, and E3 calculated using Statistica v. 10 are shown in Table 3.

E1 = E2 + a = 725.066 + 5541.145 = 6266.211 MPa

Based on confidence intervals, statistical inference was performed to check whether E1
and E2 are significantly different from each other, namely if the added value of a is different
from zero. The assumed level of significance α = 5%.

H0: a = 0
H1: a �= 0
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Table 3. Parameters of pillars determined for the elastic model using Statistica v. 10.

Parameter Estimation p Lower Confidence Limit Upper Confidence Limit

E2 725.066 0.739776 −4582.5 6032.6
a 5541.145 0.893210 −95,323.3 106,405.6

E3 135.808 0.000182 122.6 209.0

Figure 9. Chart of convergence determined numerically for chosen excavation in D-IE mining field
for different combinations of parameter values assumed for pillars.

The a = 0 parameter is within 95% of the confidence interval, which indicates that
there is no basis to reject the zero hypothesis H0 (Figure 10). Therefore, it cannot be stated
that at the level of significance α = 5% E1 �= E2. In addition, statistical inference based on
test probability of p-value (p = 0.893210 > α = 0.05) also indicates that there is no basis
to reject H0: a = 0 hypothesis. In such a situation, it is assumed that E1 = E2 and the
number of sought parameters of pillars was reduced to two. Technological pillars were
characterized by longitudinal elasticity modulus E1, while residual pillars with longitudinal
elasticity modulus E2 (Figure 11). It was assumed, that E1 = E2 + a and the following values
of E1 and E2 were applied to the matrix of the numerical experiment:

E1 E2
200 MPa 80 MPa
400 MPa 120 MPa
600 MPa 160 MPa

There were nine numerical simulations. Convergence in the selected excavation is
shown in Figure 12 in subsequent steps.
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Figure 10. Intervals of confidence for a.

 

Figure 11. Fragment of the model of analyzed mining field with marked division of pillars.

 
Figure 12. Results of convergence calculated numerically for the matrix of the experiment.

Using the method of surface regression with Statistica v. 10 program, the quadratic
function parameters of two variables were determined for selected points that are included
in the non-linear regression model with dummy variables:

Y = Z1(−220.077 + 0.424(E2 + a) − 0.000322(E2 + a)2 − 0.0178E2 + 0.00005993E2
2 + 0.00000610(E2 + a)E2)

+ . . . + Z16(−4746.12 + 1.84(E2 + a) − 0.000983(E2 + a)2 + 28.539E2 − 0.06987090E2
2 − 0.00252617(E2 + a)E2)

(6)
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The values of a and E2 were determined using Statistica v.10 presented in Table 4.

E1 = E2 + a = 136.931 + 174.424 = 311.355 MPa

Table 4. Pillar parameters set for the elastic model using the Statistica v. 10 program.

Parameter Estimation p Lower Confidence Limit Upper Confidence Limit

E2 136.931 0.0000000000119 122.134 151.729
a 174.424 0.0000162422638 238.441 391.832

Statistical inference carried out based on confidence intervals was performed to check
whether E1 and E2 are significantly different from each other, namely if the added value of
a is different from zero. The assumed level of confidence α = 5%.

H0: a = 0
H1: a �= 0
The parameter a = 0 is located outside the 95% of confidence interval, which leads

to rejection of zero hypothesis H0 (Figure 13). It can therefore be stated that at signif-
icance level α = 5% E1 �= E2. Statistical inference based on test probability of p-value
(p = 0.010470 < α = 0.05) also suggests rejection of hypothesis H0: a = 0.

Figure 13. Confidence intervals for a.

The final values of E1 and E2 parameters determined using Statistica v.10 are shown
in Table 5.

Table 5. Pillar parameters set for the elastic model using the Statistica v. 10 program.

Parameter Estimation p Lower Confidence Limit Upper Confidence Limit

E1 311.355 0.0000364562557 198.823 423.887
E2 136.931 0.0000000000119 122.134 151.729

On the basis of p-values it can be concluded that E1 and E2 parameters are statistically
significant (E1: p = 0.0000364562557 < α = 0.05; E2: p = 0.0000000000119 < α = 0.05). The
effective parameters of pillars E1 = 311.355 MPa and E2 = 136.931 MPa are also located
in the space defined by the matrix of the numerical experiment. The resulting matching
of theoretical values of convergence determined for specified pillar parameters, to in-situ
results of convergence measurements is shown in Figure 14.

Reduced values of elasticity modulus for technological and residual pillars were
adopted for further numerical modeling of the geomechanical situation in the D-IE mining
field. The final validation of the numerical models was based on the results of conver-
gence measurements of excavations carried out in this field.
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Figure 14. Matching of results of in-situ convergence measurements in Polkowice-Sieroszowice mine
to convergence values obtained for effective parameters of pillars determined using statistical methods
(elastic model).

4. Conclusions

In this paper, the innovative method for determining the geomechanical parameters
of technological and residual pillars by numerical calculations using back-calculation
based on the results of numerical simulations, in-situ measurement data, and a non-linear
regression model with dummy variables, has been presented. The method has the potential
to be useful in numerical modeling for specific mining issues due to the importance of model
parameter selection. Incorrect determination of the geomechanical parameters results in
significant calculation errors throughout the entire analyzed problem. These parameters
should be chosen so that the values set out as a result of numerical calculations correspond
to actual values obtained on the basis of observations and mine measurements.

In the case of room and pillar mining system modeling, a particularly difficult issue is
the choice of parameters for technological and residual pillars (considering the progress of
their destruction when a mining front is moved). Incorrect determination of the geome-
chanical parameters of pillars results in significant calculation errors throughout the whole
analyzed mining field. The presented method enables the determination of pillar parameter
values, for which the calculated numerical values of convergence of a chosen excavation in
the model would be most closely related to the results of excavation convergence measure-
ments carried out in mining conditions. This method facilitates estimation of the matching
of predicted excavation convergence results to measurement data (based on the coefficient
of determination, R2. The case study presented in this paper proved that by using the
described method, the matching between results of in-situ convergence measurements
in mines to convergence values obtained for effective parameters of pillars determined
using statistical methods is very good, with R2 is equal to 0.9896.

The method has a lot of advantages and can be used to calibrate the numerical models
of other engineering problems, e.g., for the determination of gob parameters for differ-
ent mining systems. The method allows the determination of pillar parameters for differ-
ent models of rock mass. In the case of an elastic-plastic model, it enables the description
of the post-destructive part of stress-strain characteristics using the appropriate values of
strength parameters such as the Coulomb–Mohr hypothesis. This is of vital importance
for the accuracy of obtained results of numerical modeling and thus for the degree of real
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situation representation (e.g., a real situation in a modeled mining area). An appropri-
ately verified numerical model allows for accurate analysis of the current situation in an
analyzed region, for forecasting rock mass behavior during the progress of work, and for
identification of dangerous phenomena which might create a threat to people working in
a particular area. Future research will include the application of the method described in
this manuscript to the numerical analysis of different mining situations.
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Abstract: This paper presents the results of a numerical analysis of the impact of rock mass geome-
chanical parameters on the stability of preparatory headings located within the Legnica-Glogow
Copper District. The paper shows the results of numerical calculations prepared for headings driven
in two rock mass types with different strength and deformation parameters, which allow illustrating
their influence on the safety of mining performed in underground copper ore mines. Numerical
modeling was performed using the Examine2D 7.0 software, in the plane strain state. Numerical
simulations were performed for an isotropic and for a homogenous medium. The rock medium
was described with an elastic model. The parameters of the rock mass for numerical modeling were
calculated using the Hoek–Brown classification. The Coulomb–Mohr strength criterion was adopted
as a measure for assessing the rock mass effort. Numerical simulations confirmed the dependance
between the stability of the analyzed excavations and rock mass geomechanical parameters.

Keywords: rock mass stability; copper ore mining; numerical modeling

1. Introduction

Along with the development of deep underground mines appears an increasing
difficulty in understanding the failure mechanism of a rock mass surrounding roadways
and introducing deformational control. The geological surroundings of shallowly located
headings are often simpler, e.g., lower values of the primary stress and less influenced
by geological faults, while deep mining faces complicated problems such as in situ stress
increase, a varied geological environment, and combinations of multi-type rock masses.
Due to these factors, the instability mechanism of deep rock structures and the mechanical
properties of underground rock masses are becoming more complex. It is difficult to
precisely estimate the deformation of rock masses surrounding the headings located at a
great depth, which makes the prevention of keeping their structural stability increasingly
difficult. Unpredicted loss of rock stability may cause dynamic disasters such as roof
collapse, rock bursts, gas and coal outbursts, or large-scale subsidence [1]. Owing to a
large excavation dimension and heading height, any dynamic event can have a ruinous
effect when it occurs [2]. In Poland, copper ore mining has exceeded 1200 m below the
ground level and is strongly affected by difficult geology and mining conditions. Due to
the extraction depth, copper ore mining is influenced by a growing number of problems
connected with the rock mass stability and the occurrence of dynamic events. Therefore,
there is a need to perform further research on the prediction and prevention of the potential
stability loss in the future [3].

The deflection of the overlaying strata or block disintegration is related to the rock mass
parameters. The most important factors playing a substantial role in forming subsidence
and ground shifts are the strength and deformational characteristics of the rock mass [4].
For example, the strength and stiffness properties of the rock mass impact the angle of
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draw, being one of the key parameters in subsidence analysis and prediction [5]. As the
rock mass increases, the angle of draw decreases. In contrast, weak rocks extend the scope
of subsidence at the surface. A strong rock layer tends to decrease the extent of subsidence,
and a weak layer increases the area of deformation. Moreover, the weak strata could impact
the scope of subsidences significantly more than the strong layer could [4].

The proper design of the rock headings demands an accurate understanding of the
rock mass mechanical properties. There have been numerous attempts to find a way to
correctly estimate the rock material parameters being used as the input for analytical and
numerical simulations [6–9]. The results of these simulations are strongly influenced by the
entered values. An undue trust in the simulation output without controlling the accuracy
of the input parameters may cause devastating disasters in rock engineering ventures [4].
The parameters defining the rock mass material properties are mainly cohesion, tensile
strength, internal friction angle, vertical stress, and the lateral pressure coefficient of the
deeply located headings’ surroundings [1]. Deformation of rock material is expressed,
among others, through Poisson’s ratio ν and the longitudinal modulus of elasticity E [3].

Understanding rock mass parameters enables the use of numerical analysis methods.
Numerical simulations meaningfully expand the scope of research related to the evaluation
of the rock mass stability [10,11]. Numerical modeling gives the possibility to define the
stress concentration locations and potential regions endangered by the stability loss [12].
The numerical analysis approaches can be divided into the conventional and advanced
data processing methods. Unlike the analytical approaches, numerical simulation can be
applied to assess the stability of both the room and pillar or longwall mining methods.
Numerical methods can be classified into one of three main groups. The first one, the
continuous method, includes the Finite Element Method (FEM), the Boundary Element
Method (BEM), and the Finite Difference Method (FDM). The second and third groups
consist of more complicated and complex numerical methods, such as the Distinct Element
Method (DEM) or the coupled Finite Element-Discrete Element Method (FEM-DEM), being
recently introduced to the excavation stability analysis. Numerical methods allow the
accurate assessment of mining subsidences and the magnitude of ground movements
and preventing dynamic events. Numerical analysis considers the nonlinear behaviors of
the pillars and rock floor materials. Moreover, numerical modeling enables the design of
the complex deposit geometry and boundary conditions [4]. Numerical simulations and
stability assessment performed may lead to further development of more efficient mining
technologies and solutions designed to improve safety in underground mine plants [13].

This article aims to research the influence of the rock mass geological structure on the
headings’ stability and deep underground copper mining safety with the use of numerical
analysis based on the boundary element method.

2. Geological Conditions of the Legnica-Glogow Copper District Mines

Copper deposits mined by KGHM Polska Miedz S.A. within the Legnica-Glogow
Copper District are a fragment of the Fore-Sudetic monocline. The Fore-Sudetic monocline
is a geological unit in southwest Poland, bordering the Zar pericline to the west, the
Silesian-Krakow monocline to the east, the Fore-Sudetic block to the southwest, and the
Szczecin-Lodz synclinorium to the northeast [14].

The Fore-Sudetic monocline consists of sedimentary rocks that cover a substrate made
of Proterozoic crystalline rocks. The results of dating the copper-laden rock layers indicate
that the balance reserves of this ore originated in the Permian. The top of the deposit
is made of dolomite-limestone rocks of the Lower Zechstein, and the bottom is made of
Rotliegend sandstones. The balance thickness of the deposit varies locally and ranges from
several dozen centimeters to several meters. The rock layers that make up the monocline
are inclined at an angle of 3–5◦, and the depth at which they are located increases to the
northeast [14].

As a result of geological and exploratory work around copper deposits in today’s
Legnica-Glogow Copper District, the presence of 1,403,467,000 balance tons of copper ore
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resources was confirmed with an average thickness of 3.45 m and a copper content of 2.09%.
The presence of 29,362,000 tons of copper has also been documented [15].

The area of the deposit is located between Legnica and Glogow. The deck has the shape
of an elongated polygon 30–35 km long and 7–10 km wide, and its area is approximately
300 km2. Copper mineralization includes Lower Zechstein limestones, dolomites and
shales, and Weissliegend or Rotliegend sandstones. The copper content in the deposit rocks
is heterogeneous. In practice, only those parts of the seam in which the copper-bearing
series meets the balance criteria of at least 0.9% copper content are considered a deposit [16].
Copper shale has the highest content of copper. Sandstone mineralization is significant in
the area of operation of the Rudna mine and irregular in the area of Polkowice. In some
areas, the dolomites show little mineralization, and in others, they are the main carrier of
copper (e.g., in the area of Polkowice) [17].

Violation of the original state of stress and deformation of the rock mass leading to
the loss of stability are greater the more anisotropic the rock mass is. This type of rock
mass occurs within the Legnica-Głogow Copper District mine. The anisotropy of the rock
headings in this area results not only from the lithological variability of the rocks (the rock
mass is made up of carbonate rocks, sandstones, and shales with different geomechanical
properties), but also from the presence of tectonic geological disturbances. Roof rocks of
established headings in the Lower Silesian Copper District have a layered structure, in
which the spaces between the layers are filled with rock material with reduced strength
parameters, composed of gypsum, calcite, or slate. The sandstones that make up the bottom
part of the exploitation door contain binders of different compositions, which translates
into the variability of the physical factors and strength properties of the bottom rocks [16].

Today, three copper ore mines of KGHM Polska Miedz S.A. operate in the area
of the Legnica-Glogow Copper District. These include the mines “Lubin”, “Polkowice-
Sieroszowice”, and “Rudna”. The “Lubin” mine exploits the “Lubin-Malomnice” field.
This deposit is dominated by sandstone rocks, which constitute about 67% of all rocks
in this area. Eighteen percent of the resources are Zechstein limestone carbonate rocks
and 15% Zechstein copper shales. The average thickness of the deposit is 2.33 m, and the
depth of deposition varies from 368 to 1006 m. This part of the seam shows a high tectonic
involvement of the deposit rocks. The deposit is shallow, not much deeper than the loose
Cenozoic sediments. As a result of dislocation, the rock series building this fragment of the
deck was divided into blocks of various shapes, which then moved relative to each other
vertically and horizontally, creating ditches, frameworks, and stair systems. There are no
clear discontinuous dislocation lines in the deposit area, only fault zones, the discharges
of which range from a few centimeters to several dozen meters. The width of the faults
ranges from 250 to 1500 m [18].

The “Polkowice-Sieroszowice” mine extracts the ore in the “Polkowice”, “Sieros-
zowice”, and “Radwanice-Wschód” deposits. Mining is carried out at a depth of 676 to
1084 m. In addition to copper, rock salt is present in the deposit rocks. The rock salt
seam is the largest in the central and northern part of “Sieroszowice”. The copper-bearing
carbonate rocks of the Zechstein limestone dominate in the mine and account for 80%,
55%, and 93% of the deposit rocks of individual deposits, respectively. The resources of
the Zechstein copper shale amount to 12%, 14%, and 7% of the total deposits, respectively.
Weissliegend sandstone is found only in the “Polkowice” and “Sieroszowice” deposits,
and its content is 8% and 31%, respectively. The series of copper-bearing shale located in
the mining area contains large amounts of copper and silver, but the seam thickness does
not usually exceed 1 m. The “Polkowice” and “Sieroszowice” deposits are located in the
areas with developed tectonics. In zones deformed by faults or folds of the layers, the
collapse of the series of rocks that make up the seam increases or decreases in relation to the
usual inclination of the layers at an angle of 3–6◦. The deviation from the general course
of the layers varies locally, and the changes can be as high as 90◦. There are numerous
discontinuous dislocations in the “Polkowice” and “Sieroszowice” deposits. The range
of shifts in the “Polkowice” area usually does not exceed 1 m, and the sum of shifts may
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reach a value of several dozen meters. Apart from discontinuous dislocations, there are
fold–fault structures around “Sieroszowice” [18].

The “Rudna” mine extracts from the “Rudna” and “Sieroszowice” deposits. The
exploitation depth ranges from 920 to 1170 m. The average thickness of the seam within the
“Rudna” deposit is 4.26 m. The deposit rocks are composed of Zechstein carbonate rocks
and clay-dolomite shales, as well as Weissliegend sandstones. The presence of depression
zones influenced the lithological development of the deposit rock layers. In depression
zones, copper is found in sandstones, copper-bearing shales, as well as clay and dolomites.
Carbonate ore constitutes 11%, shale ore 6%, and sandstone ore 83% of all ore resources of
the Rudna deposit. The deposit layers fall at an average angle of 1–6◦, but locally, the fall of
the layers can even reach 45◦. There are discontinuous dislocations in the deposit, which
together form a system of numerous block structures [18].

3. Numerical Analysis of Headings’ Stability in the Legnica-Glogow Copper
District Mines

Numerical modeling in this article was performed with Examine2D 7.0, using the
boundary element method. The boundary element method is a numerical modeling method
that divides a given area into finite elements. In the connecting nodes of these elements,
differential calculations are performed, the results of which allow modeling, e.g., the stress
distribution around the analyzed element [19].

After a few decades of development, the Boundary Element Method (BEM) has found
its place around numerical methods for differential equations. While more popular meth-
ods such as the Finite Element Method (FEM) or Finite Difference Method (FDM) can be
classified as the domain method, the BEM differs in terms of the numerical discretization
being conducted at a reduced spatial dimension. For three spatial dimensions, the dis-
cretization is only performed on the boundary surface of the analyzed element. For two
spatial dimension problems, the discretization is performed only on the boundary con-
tours. This solution leads to linear systems and computer memory requirement reduction,
which makes the calculations more efficient. This effect is most visible when the domain is
unbounded. Such domains need to be truncated and approximated in domain methods.
The BEM automatically models the behavior of the element’s surroundings without the
need to construct a mesh to estimate it. Since mesh preparation seems to be the most labor
intensive and cost consuming in numerical modeling, especially for the FEM, the BEM is
more effective in terms of mesh deploying. When the problem includes moving boundaries,
it is easier to adjust the mesh using the BEM, which makes the method preferably used. The
advantages of the BEM are essential for choosing the right method to solve numerical prob-
lems [20]. The are several publications regarding the BEM, describing the characteristics of
the method and the equations used during the calculations. Additional information on the
method can be found in the studies performed by Beskos, Kythe, Balaš, and others [21–23].

3.1. Problem Geometry

In the Polish copper mines, the room and pillar mining system is used. Mining the ore
using the room and pillar system consists of cutting the deposit with rooms and strips with
the separation of technological pillars of a certain geometry, which protect the roof over
the working area. The size of the pillars is chosen to provide the work in the post-critical
state. In the discussed mining system, the shape of the excavation is an inverted trapezoid.
The height of excavation in the cutting phase depends on the thickness of the deposit and
the requirements of the working machines. The width of excavations does not exceed
7 m. The minimum size of the opening face of the mining front is equal to the sum of
two strips and the length of two rows of pillars into undisturbed rock. Along with the
progress of the mining front, the size of the technological pillars from the last row before
gobs, depending on the degree of their disintegration, is reduced and remnant pillars are
created. The remnant pillars are left in the gobs. They work as supports to mitigate the
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deflection of roof layers [24]. The currently used mining system allows obtaining from 75%
to even 90% of the deposit ore [17].

Mining the minerals in the KGHM mines includes the preparatory works, consisting
of contouring the deposit with a network of underground roadways [18]. Preparatory
excavations are protected with rock bolt support, which is the primary support for all
excavations in the mines [17].

In this paper, preparatory excavations mined for the use of the room–pillar with roof
deflection (J-UG-PS) mining system are analyzed. In the J-UG-PS system, the copper ore
deposit is mined with rooms and strips up to 7 m wide, excavated to the full thickness of the
deposit. During the work, technological pillars with the basic geometry of 6–9 m × 8–16 m
are separated and located with the axis perpendicular to the mining front line [24]. Figure 1
shows a scheme of the J-UG-PS mining system.

Figure 1. Room–pillar mining system with roof deflection (J-UG-PS) [24].

The geometry of the excavations analyzed in this study was determined based on two
different cross-sections of the preparatory excavations driven around one of the mining
fields located in the Legnica-Glogow Copper District, where ore was mined using the
J-UG-PS system. The first cross-section runs through the ramps, the second through the
entries. The geometrical data of the cross sections are presented in Table 1.

Table 1. Geometric cross-section data.

Parameter Value (m)

Excavation height 4.30
Excavation roof length 7.00

In the Legnica-Glogow Copper District mines, the headings have the characteristic
shape of an inverted trapezoid. Figure 2 presents ca ross-section through an analyzed
single heading; Figure 3 shows cross-sections through ramps and entries.
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Figure 2. Heading profile.

(a) 

(b) 

Figure 3. (a) Cross-section through the ramps; (b) cross-section through the entries.

3.2. Geological Conditions and Rock Mass Parameters

The analysis was performed for representative rock layers occurring in the Legnica-
Glogow Copper District mines. Two different rock layer systems were analyzed, the
parameters of which are presented in Tables 2 and 3. The headings are located at a depth of
1000 m, respectively in sandstone (Table 2) and in dolomite (Table 3).

Table 2. Rock mass parameters for the excavation drilled in sandstone.

Rock Layers
Rock Layer

Thickness (m)
Rock Layer Density

(g/cm3)
Rock Layer Poisson

Ratio (-)

Overburden 500 ρ = 2.70 v = 0.20
Anhydrite 250 ρ = 2.95 v = 0.25
Dolomite 100 ρ = 2.80 v = 0.25

Sandstone I 100 ρ = 2.40 v = 0.20
Sandstone II 50 ρ = 2.30 v = 0.15

Table 3. Rock mass parameters for the excavation drilled in dolomite.

Rock Layers
Rock Layer

Thickness (m)
Rock Layer Density

(g/cm3)
Rock Layer Poisson

Ratio (-)

Overburden 500 ρ = 2.70 v = 0.20
Anhydrite 250 ρ = 2.95 v = 0.25
Dolomite 100 ρ = 2.80 v = 0.25
Dolomite 100 ρ = 2.80 v = 0.25
Dolomite 50 ρ = 2.80 v = 0.25

Numerical modelling was performed using the Examine2D 7.0 software, in the plane
strain state. Numerical simulations were performed for an isotropic and for a homogenous
medium. The rock medium was described with an elastic model. The parameters of the
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rock mass for numerical modeling were calculated using the Hoek–Brown classification.
The Coulomb–Mohr strength criterion was adopted as a measure for assessing the rock
mass effort [25]:

σ1 = σ3·1 + sin ϕ

1 − sin ϕ
+

2c· cos ϕ

1 − sin ϕ
, (1)

where:
σ1, σ3—maximum and minimum stress at failure;
ϕ—angle of internal friction;
c—cohesion.
The cohesion and the angle of internal friction were calculated based on the Hoek–

Brown classification from the formulas [26–29]:

c =
σci·
[
(1 + 2a)·s + (1 − a)·mb· σ3max

σci

]
·
(

s + mb· σ3max
σci

)a−1

(1 + a)·(2 + a)·
√

1 +
6·a·mb ·

(
s+mb · σ3max

σci

)a−1

(1+a)·(2+a) ,

, (2)

ϕ = arcsin

⎡
⎢⎣ 6·a·mb·

(
s + mb· σ3max

σci

)a−1

2·(1 + a)·(2 + a) + 6·a·mb·
(

s + mb· σ3max
σci

)a−1

⎤
⎥⎦, (3)

where:
σ3max =

σci
4

. (4)

Performing these calculations allowed determining the parameters then adopted as
assumptions for numerical modeling in Examine2D 7.0. The calculated parameters are
shown in Table 4.

Table 4. The results of calculations based on the Coulomb–Mohr strength criterion.

Rock Type h (m) σ3max (MPa) σt (MPa) c (MPa) ϕ (o)

Sandstone 1000.0 3.75 −0.04 1.04 39.06
Dolomite 1000.0 37.50 −3.32 13.68 39.00

The numerical model was based on the values of primary stresses calculated according
to the Therzagi formula, taking into account the weight of the overlying rock layers. The
calculated vertical and horizontal stresses are included in Table 5.

Table 5. Primary stresses.

Rock Type Thickness h (m)
Unit Weight of

Rock
γ (g/cm3)

Vertical Stress
σz (MPa)

Horizontal
Stress σx (MPa)

Sandstone 50.0 2.30 26.71 4.71
Dolomite 50.0 2.80 27.22 9.07

The numerical model was a plate where boundary contours were discretized. The
plate edges were assumed to be at a 150.0 m distance from the extreme points on each
side of the analyzed headings (the roof, the floor, and the side walls). Based on the
numerical calculations of the headings’ stability for each model, the following parameters
were determined:

- Distribution of principal stresses σ1;
- Distribution of principal stresses σ3;
- Horizontal stress distribution σXX;
- Vertical stress distribution σYY;
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- Total displacements;
- Strength factor.

The analysis of the results indicated that the optimal measure of the stability of the
headings is the range of the strength factor zone. The strength factor is calculated by
dividing the rock strength (based on defined failure criteria) by the induced stress.

4. Discussion of Numerical Modeling Results

The distribution of the σYY stresses in the ramps and entries is shown in Figures 4–8.
The conducted analysis showed that for both types of analyzed rock masses in which the
excavations were established, the distribution of the σYY stresses in the vicinity of excavation
was similar. Numerical simulations showed that the tensile stresses are concentrated in the
roof and, to a lesser extent, in the bottom of the heading. Compressive stresses arise in the
excavation’s ribs, particularly in the corners. σYY stresses between the excavations obtain
values like the ones within the primary stress field, which proves the correct design of
the protective pillars. The proper selection of the pillar sizes is conducive in terms of
maintaining the stability of the headings located in their vicinity. In the cross-section
of the ramps and entries, it is shown that σYY stresses acting on the protective pillars
located between the ramps have a shorter range than the stresses acting on the protective
pillars between the entries. In the central zone of the protective pillars located between the
sandstone entries, the stresses are lower than in the case of dolomite pillars.

  
(a) (b) 

Figure 4. Distribution of σYY stresses in the cross-section through ramps drilled in: (a) sandstone;
(b) dolomite.

  
(a) (b) 

Figure 5. Distribution of σYY stresses in the cross-section through entries drilled in: (a) sandstone;
(b) dolomite.
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(a) (b) 

Figure 6. Distribution of σYY stresses in the cross-section through ramps drilled in sandstone:
(a) view of both headings; (b) close-up of a single excavation.

  
(a) (b) 

Figure 7. Distribution of σYY stresses in the cross-section through ramps drilled in dolomite: (a) view
of both headings; (b) close-up of a single excavation.

  
(a) (b) 

Figure 8. Close-up view of σYY stresses values in the cross-section through entries drilled in:
(a) sandstone, (b) dolomite.
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The location of roof stress measurement is presented in Figure 9. Graphs illustrating
the dependence of distance to the excavation boundaries on the σYY values show that
the tensile stresses acting on the heading roof in dolomite, having better strength and
deformation parameters, reach slightly higher amounts than those occurring in sandstone
(Figure 10).

  
(a) (b) 

Figure 9. Stress measurement location used to create a graph presenting the distribution of stress
acting on the excavation roof in cross-section through: (a) ramps; (b) entries.
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Figure 10. Distribution of σYY stresses acting on the excavation roof in the cross-section through the
(a) ramps and (b) entries drilled in sandstone and dolomite.

The protective pillars’ stress measurement location is shown in Figure 11. The stress
values affecting the external part of the protective pillar in cross-section through the entries
are bigger than the ones acting on the internal part of the pillar. The stresses affecting the
protective pillars located between the ramps have similar values on both sides of the pillar.
The stresses’ distribution in the excavation ribs of the ramps and entries, drawn based on
σYY distribution models in individual sections, prove that the compressive stresses reach
similar values both in the internal and external ribs (Figures 12 and 13), comparable for
sandstone and dolomite.
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(a) (b) 

Figure 11. Stress measurement location used to create a graph presenting the distribution of stress
acting on protective pillars in the cross-section through: (a) ramps; (b) entries.
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Figure 12. Distribution of σYY stresses acting on the protective pillars in the cross-section through
the ramps.
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Figure 13. Distribution of σYY stresses acting on the protective pillars in the cross-section through
the entries.

The stability of the analyzed headings was assessed based on the numerically defined
distributions of the strength factor. The strength factor is calculated by dividing the rock
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strength (based on the failure criteria) by the induced stress. The strength factor allows
recognizing areas of potential rock mass instability, and its limit value is 1. Places where
the index value falls below the limit are places of potential rock mass stability loss.

The strength factor value is related to the rock geomechanical parameter. The lower
the strength and deformation parameters of the rock material in which the excavation is
located, the greater the probability of losing the excavation stability is. A lower risk of
instability occurs in the headings driven in dolomite and is greater in the headings created
in sandstone (Figure 14).

  
(a) (b) 

Figure 14. Distribution of strength factor values in the cross-section through ramps drilled in:
(a) sandstone; (b) dolomite.

Figures 15 and 16 show close-up views of a single excavation with the extent of stability
loss zone measured. The results of the strength factor distribution calculated using the
numerical methods for headings located in sandstone show that the greatest risk of loss of
stability occurs in the roof and floor of the excavation. The extent of the destruction zone is
greater in the ribs than in the central part of the excavation, which may indicate the need to
cover the area with longer bolts to protect the side fragments of the headings. As we move
away from the boundaries, the strength factor reaches higher values, which is related to the
rock mass returning to its primary stress field.

  
(a) (b) 

Figure 15. Distribution of strength factor values in the cross-section through ramps drilled in
sandstone: (a) view of both headings; (b) close-up of a single excavation.
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(a) (b) 

Figure 16. Distribution of strength factor values in the cross-section through ramps drilled in dolomite:
(a) view of both headings; (b) close-up of a single excavation.

In the excavations driven in dolomite, being a material with high strength and defor-
mation parameters, the risk associated with instability covers mainly the roof and floor of
the excavation. The range of zones threatened by stability loss is greater within the roof and
smaller within the floor, which is related to the intensification of the tensile stresses affecting
the indicated heading fragments. In the immediate ribs’ vicinity, the strength factor values
are higher than in the roof and floor area, but remain lower than 1. The extent of the zones
at risk of instability is noticeably smaller for dolomite than for sandstones. Directly after
the zones at risk of stability loss within the roof and floor of the excavation, there are zones
with a very high strength factor. Most of the area analyzed in the numerical simulations
is covered by safe values of the strength factor, indicating the ability to maintain the rock
mass stability. Distribution of strength factor values in the cross-section through entries
drilled in sandstone and dolomite is presented in Figure 17.

  

(a) (b) 

Figure 17. Distribution of strength factor values in the cross-section through entries drilled in:
(a) sandstone; (b) dolomite.

5. Conclusions

The performed numerical modeling confirmed the dependence of the heading stability
on the strength parameters of the rock mass. Having a lesser impact on the values of
stresses affecting the driven heading, different geomechanical parameters of the rock
mass determine its stability, as well as the size of emerging displacements. Rock material
displacements create heading deformation, being a direct symptom of stability loss, and
increase the probability of sudden roof collapses or (under appropriate conditions) even
dynamic stress relief phenomena. Detailed analysis of the strength and deformation
parameters of the rock mass type and the strength factor distribution will allow the optimal
selection of the excavations’ lining, creating less of a threat to miners’ health and lives.

Numerical methods allow a broad analysis of mining excavations’ stability. Accurate
recognition of stresses affecting the excavation and modeling the effects of their impact
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enable the development of appropriate prevention methods and excavation conditions’
monitoring. Analysis of the models created for the needs of the article showed that having
knowledge of the geomechanical parameters forming the rock mass is important in the
context of ensuring safe and effective exploitation of copper ores in the conditions of the
Legnica-Glogow Copper District. The results of the numerical modeling gave much crucial
information about rock mass behavior in the vicinity of excavations. The innovativeness of
the simulations performed is based on the possibility to predict the behavior of the rock
mass in advance, without the need to perform labor-intensive and costly in situ experiments.
This in turn allows the development of appropriate guidelines and new mining technologies
designed to solve the problems of rock mass stability. Numerical modeling simulation
results may enhance the deployment of the improved ongoing monitoring system of rock
mass parameters, enabling the prediction of dynamic phenomena affecting the rocks. The
future research will contain an analysis of the complex geological situation and different
types of excavations located in Polish mines.
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15. Paździora, J. KGHM Polska Miedź S.A.—Monographic outline 1960–2020. Cuprum. Sci. Tech. J. Ore. Min. 2019, 4, 5–28. (In Polish)
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Abstract: An advanced break or a vast region of pressurisation may occur when the working face
passes through an abandoned roadway, resulting in a roof falling or water inrush. The stress evolution
of the working face passing through an abandoned roadway in a coal mine was comprehensively
discussed using theoretical analysis, numerical simulation, and field monitoring. In this study, the
calculated critical width of the abandoned roadway where the main roof was bound to an advanced
break was 5.4 m. Reducing the suspended length of the main roof is beneficial to the stability of the
working face’s passage across the abandoned roadway. The maximum abutment stress on the roof
occurred at the working face through a semi-abandoned roadway, reaching 44.3 MPa. Subsequently,
it decreased sharply until the working face completely passed and returned to the normal level.
The damage depths of the floor strata from the field monitoring were 15 and 20 m, which showed
that the use of hydraulic fracturing technology combined with floor grouting and hydraulic support
for the abandoned roadway was proposed to stabilise the working face for safe mining.

Keywords: adjacent working face; abandoned roadway; stress evolution; numerical simulation;
field monitoring

1. Introduction

The coalfields in northern China are an important coal mining base and mining in this
region is often affected by Ordovician limestone aquifer, which hides the safety risk of major
water-inrush accidents [1]. However, as most of China’s traditional coal industry adopted
a relatively crude operation method for mining, the resource utilisation rate remained low,
and many old and abandoned roadways have been left as a result of disorderly mining,
which has caused great difficulties in the recovery of working faces [2]. Consequently,
mining is plagued by the working face passage through the front roadway. If the main roof
of the coal seam breaks in advance when the working face passes through an abandoned
roadway, the length of the primary fracture of the basic roof will be greater than that of the
normal working face. The main roof may have an advanced or longer break than normal
when the working face passes through the forward abandoned roadway [3,4]. This could
result in a vast region of pressurisation, which could cause roof falling or coal wall spalling
in less serious situations, or it could deepen the damage to the floor strata and result in a
water-inrush accident.

Many studies have investigated the stability of roofs and working faces through
abandoned roadways. Strength degradation is believed to be the root cause of fracturing
of the main roof, which eventually leads to collapse [5–7]. Bai et al. suggested that roof
collapse can be controlled by changing the width of coal pillars and the stopping time of
excavation [8]. Coggan et al. suggested that the thickness of the weak layer of the roof
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has a significant impact on the degree of damage, and this part needs to be reinforced [9].
Cheng and Jiang believed that the width of the coal pillar is the main factor affecting the
stability of the roadway roof. Under in situ stress, structural integrity can be maintained
through appropriate support [10,11]. Yu et al. analysed the differences in the stress and
plastic zones of different support schemes and proposed a method of using long and
short bolts for collaborative support, which can significantly improve the stability of the
roadway [12]. Yuan et al. revealed the interaction mechanism of rock-bolt structures in large
deformation roadways and increased the thickness of bolts to improve their compression
and shear resistance [13]. Jing et al. examined numerous numerical simulation instances
and concluded that numerical simulations are crucial for understanding the fundamentals
of rock mechanics and the design of rock engineering systems [14]. Ma et al. improved
the reinforcing performance of rock bolts by examining the interaction between the rock
bolts and rock mass [15]. Xuesheng et al. [16] concluded that an increase in the working
face length and mining thickness aggravates the degree of stress concentration, resulting
in an increase in the height of the water-flowing fracture zone of the floor. Bai, Jiang, and
Zhang et al. studied various support methods such as high-water materials, wooden piles,
pumping pillar supporting, backfilling gangue, and anchor cables, and believed that the
pre-filling and support method for the abandoned roadway could effectively reduce the
stress concentration of the surrounding rock, and is an effective method to prevent the
roof from an advanced break [17–20]. Pan et al. deduced the critical width of coal pillar
instability using the key block theory [21]. Luo et al. believed that the existence of an
abandoned roadway intensifies the joint action of water pressure, mining disturbances, and
flooding, which is the main cause of water inrush accidents [22]. Yasitli et al. concluded
that the uniform fracturing of the coal seam roof, which could form cracks on the roof,
can maintain the uniform collapse of the roof and improve coal mining efficiency [23].
Wang et al. studied the influence of large-section abandoned roadways and the application
of high-water-filling materials [24]. Ju et al. studied the influence of the coal pillar depth
and interlayer thickness on the coal seam roof collapse and believed that the rotation and
movement of the key blocks in the roof above the coal pillar might cause the overlying stress
to concentrate on the coal pillar, resulting in coal pillar instability [25]. Esterhuizen et al.
verified the feasibility of an entrance support system by monitoring the displacement and
stress of a rock mass [26]. Pan et al. studied the stress state of short-distance coal mining
and concluded that when mining under a goaf, the weighting step and abutment stress
were lower than the normal level [27]. Sun et al. systematically studied the deformation
mechanism and support technology of underground roadways and proved and improved
the application of stress relief technique and pre-grouting technique underground [28–30].

In summary, most of these studies on the stability of the working face passing through
the abandoned roadway are focused on a pre-filling and supportive manner of reducing the
stress concentration at the abandoned roadway and restoring the original stress state of the
coal seam. However, it is rare enough to support the roadway alone in engineering cases,
owing to multiple influences, including groundwater, the small distance to other mining
fields, and the layout of diagonally intersecting roadways. Additionally, most studies are
based on underground mine pressure data, ignoring the influence of the depth of floor
damage, which may cause floor water-inrush accidents. To comprehensively understand
the stability of the working face through the abandoned roadway, both theoretical analysis
and numerical simulations were utilised to model the stress evolution. The reliability of
the calculated results was verified by field monitoring of the damage depth of the floor
strata. Based on the results, comprehensive measures, including hydraulic fracturing
technology to produce active roof release, auxiliary floor grouting reinforcement, and
hydraulic support for the abandoned roadway, are proposed to improve the stability of the
working face.
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2. Project Overview

The Dongpang Mine is part of the Xingtai mining area of the coalfield in Xingtai City,
Hebei Province, northern China. The main tectonic lines in this mine area are primarily
east–west, north–east, and north–south. The Ordovician, Cambrian, Metasedimentary
Great Wall System, and Taikoo Zanhuang Group are the underlying strata of the coal seam,
with the Cambrian and Ordovician strata having a greater influence on coal mining. The
No. 9119 working face at Dongpang Mine has an underground elevation of −220 to −274 m,
leaving a 6 m net coal pillar in the middle of the No. 9118 working face that was previously
recovered. An abandoned roadway is located between the track roadway and the belt
roadway along the No. 9 coal seam. The sections of the roadway measure 4 m in width and
3 m in height. The layout of the working faces and the location of the abandoned roadway
is shown in Figure 1.

 

Figure 1. Layout of the working faces and location of the abandoned roadway.

The Daqing limestone aquifer in the roof strata, Benxi limestone aquifer, and Ordovi-
cian limestone aquifer in the floor strata constitute most of the water source for the No. 9119
working face. The water from the Daqing limestone aquifer is released along the No. 9118
mining field and roadways, posing no threat to this working face. From the base of the
No. 9 coal seam, the heights of the Benxi limestone aquifer and the Ordovician limestone
aquifer are approximately 13.39–33.38 m (average 22.86 m) and 30.78–54.57 m (average
43.92 m), respectively. The failure zone on the floor of the No. 9 coal seam serves as the
primary conduit for water from the Benxi limestone aquifer. However, it can be employed
as an early detection and release method because it has a low water head and a steady
amount of water. The greatest danger to this mining operation comes from the irregular
water-rich and somewhat high-head Ordovician limestone aquifer. A geological histogram
of the No. 9119 working face is shown in Figure 2.

Figure 2. Geological histogram.
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3. Stress Evolution of the Working Face Passing through an Abandoned Roadway

With roadway excavation and working face mining, the in situ stress will be redis-
tributed, so the coal walls on both sides of the abandoned roadway and in front of the
working face will produce abutment stresses of different widths, W1 and W2. When W1
and W2 do not overlap, the working face is mined normally, preventing the coal pillar
between the working face and the abandoned roadway from becoming unstable. With the
continuous advancement of the working face, the coal pillar width gradually decreases,
and the load above the pillar continues to increase, leading to a width where the coal pillar
is bound to lose stability. This is known as the critical width of the coal pillar instability
(W∗). There are three types of abutment stresses which can be distinguished by the width
of the coal pillar (W).

(1) When W ≥ W1 +W2, the working face is not impacted by the abandoned roadway;
therefore, the abutment stress can be divided into the raised stress on each side and the
original rock stress in the middle. The abutment stress state, which resembles an asymmetric
saddle type, is shown in Figure 3. The peak value and width of abutment stress are greater
on the goaf-side because the suspended length on the goaf-side is larger than that on the
roadway-side. When W > W1 + W2, original rock stress exists in the coal pillar. When
W = W1 + W2, the width of the original rock stress is exactly zero, and at that time, the
abutment stresses on the goaf-side and roadway-side start to intersect. In this situation,
the coal pillar has a good bearing capacity. The roof of the abandoned roadway can be
approximated as a beam with a fixed support at both ends and an even load above, and the
roof of the mining field can be approximated as a cantilever beam with an even load above.
When the suspended length of the main roof (Lx) is greater than the periodic weighting step
(l), that is, Lx ≥ l, the cantilever beam cannot carry the top load, resulting in the fracture of
the main roof at the fixed end. The periodic break line, in this instance, moves forward to
the working face via a periodic weighting step.

Figure 3. Saddle type.

(2) When W∗ < W < W1 + W2, the evolution of the abutment stress changes from the
saddle-type to the oblique-table type, as indicated in Figure 4, because of the overlap of
the abutment stresses on the goaf- and roadway-side. The coal pillar is stable because W is
greater than W∗, which means that the working face does not have an advanced break.

(3) When W ≤ W∗, the distribution of abutment stress is presented as a solitary
peak. The maximum abutment stress value is obtained when W = W∗. If the working
face advances further, the middle coal pillar will remain in a state of plastic flow for a
considerable amount of time, which will cause serious damage and deformation, and
the strength and bearing capacity will be significantly reduced, resulting in instability
and damage. At this moment, the suspended length of the main roof (Lx) increases
from D to A + W + D, that is, Lx = A + W + D, which occurs in two ways. When
Lx = A +W + D < l, the fixed end of the cantilever beam can support both its own weight
and the upper loads without breaking. When Lx = A + W + D ≥ l, the cantilever beam
fractures at the fixed end, and the main roof undergoes an advanced break, creating a
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vast region of pressurisation that might seriously threaten coal mining safety, as shown in
Figure 5.

Figure 4. Oblique table type.

Figure 5. Solitary peak type.

Based on the Bieniawski formula [31]:

σp = 0.235σc(0.64 + 0.36
W
M

) (1)

where σp is the ultimate compressive strength of the coal pillar (MPa), W is the width of
the coal pillar between the working face and abandoned roadway (m), σc is the uniaxial
compressive strength of the standard sample of the coal pillar (MPa), and M is the height
of the coal pillar (m).

The coal pillar is not only required to carry the load of its own overlying strata but
also the load of the overlying strata of one-half of the abandoned roadway and a significant
portion of the load of the overlying strata of the cantilever beam on the goaf-side, so the
static load set on the coal pillar is:

q = γH(
W + A

2 + kD
W

) (2)

where q is the static load setting on the coal pillar, γ is the average volume weight of the
overlying rocks (kN/m3), H is the average thickness of the overlying strata (m), A is the
width of the abandoned roadway (m), k is the stress concentration factor (k = 1.5~5.0), and
D is the length of the cantilever beam (m).

When the ultimate compressive strength of the coal pillar is equal to its static load,
that is σp = q, coupling (1) to (3) results in

0.235σc(0.64 + 0.36
W
M

) = γH(1 +
A
2 + kD

W
). (3)
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The critical width of coal pillar instability can be derived from Equation (4):

W∗ = −b +
√

b2 − 4ac
2a

(4)

where a = 0.085σc
M , b = 0.15σc − γH, and c = −γH( A

2 + kD).
If the width of the coal pillar is less than the critical width, an advanced break occurs

in the main roof. Because the suspended length on the goaf-side (D) is uncertain, the static
load applied to the coal pillar is the smallest when D is 0, and at that time, the critical width
of the abandoned roadway, where the main roof will inevitably experience an advanced
break, can be deduced.

A∗ = l − W∗ − D = l − −b +
√

b2 − 4ac
2a

. (5)

According to the field data, the periodic weighting step of the No. 9119 working
face was 20 m, the height of the coal pillar was 6 m, the uniaxial compressive strength of
the No. 9 coal seam was approximately 20 MPa, the overlying strata was 250 m from the
ground level, and its average volume weight was 24,000 kg/m3. Using Equation (5) and
the above data, we can obtain A∗ as 5.4 m. Therefore, an advanced break in the main roof
will undoubtedly occur when the width of the abandoned roadway is greater than 5.4 m.
Because the width of the abandoned roadway in this mining area is 4 m, which is less than
the necessary width, an advanced break may not occur in the main roof.

According to Lx = A + W + D, the width of the coal pillar, suspended length of the
main roof, and width of the abandoned roadway are all significant factors in determining
whether the main roof will advance break. W∗ is used as a rough alternative to W because
the strength of the coal pillar rapidly declines when its width is below the critical width. W∗
is positively correlated with D in Equation (4). Therefore, after the width of the abandoned
roadway is established, there is a positive association between Lx and D. For the working
face to pass through the abandoned roadway safely, it is crucial to reduce the suspended
length of the main roof.

4. Numerical Simulation

Theoretical analysis is often based on idealised models and necessary assumptions.
Considering the complexity of the project, a 3D numerical model created with Flac3D

software can more accurately depict the dynamic evolution of the No. 9119 working face
passing through the abandoned roadway.

4.1. Three-Dimensional Numerical Model

A 3D model with an x-axis of 302 m, y-axis of 180 m, and z-axis of 80 m was created,
as shown in Figure 6a. The working face was 90 m long. Each cross-section of the track,
belt, and abandoned roadways measured 4 m in width and 3 m in height, with a 53◦ angle
between them. Given the lateral abutment stress, two coal pillars of 50 m width were set
aside on either side of the No. 9118 and No. 9119 working faces. The main roof fractured
periodically owing to the large distance of the open cut from the roadway intersection,
which allowed the model to be excavated from the boundary section. The bottom of the
model was fixed, and the horizontal movement of its four sides was constrained. The upper
surface of the model, whose boundary conditions are schematically depicted in Figure 6b,
was subjected to an even load of P = γh = 6.0 MPa.

The physical and mechanical parameters of the rock formation at the working face
based on drilling data collected on-site are listed in Table 1.
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(a) (b) 

Figure 6. Three-dimensional model and boundary conditions: (a) three-dimensional model;
(b) boundary conditions.

Table 1. Physical and mechanical parameters of rock formation.

Rock Formation
Thickness

(m)

Bulk
Modulus

(GPa)

Shear
Modulus

(GPa)

Cohesion
(MPa)

Internal
Friction

Angle (◦)

Tensile
Strength

(MPa)

Density
(kg/m3)

Siltstone 6 13.7 9.4 6.0 35 1.5 2400
Fine-sandstone 11 17.9 11.8 4.9 36 2.5 2500

Daqing limestone 5 25.6 19.2 9.5 40 4.9 2700
No. 8 Coal 2 4.8 1.6 0.3 28 0.5 1400
Siltstone 6 12.8 8.1 3.8 32 1.0 2400

No. 9 Coal 6 4.8 1.6 0.3 28 0.5 1400
Carbon mudstone 3 11.1 5.4 2.6 29 0.8 2500

Mudstone 6 9.8 5.1 2.7 30 0.5 2500
Medium grained sandstone 14 8.9 6.1 3.6 29 1.8 2500

Benxi limestone 3 12.6 9.1 5.9 36 3.6 2800
Fine-sandstone 6 25.8 13.3 5.2 36 2.0 2400

Bauxite mudstone 12 15.7 6.0 1.7 28 0.5 2500

The fallen gravel in the mining field is a kind of loose medium, but Flac3D belongs
to the continuous medium simulation method. Therefore, we approximate the support-
ing effect of the gravel on the roof to elastic support [32]. The gravel will gradually be
compacted by the overlying strata; therefore, the physical and mechanical parameters are
positively correlated with time. Based on the physical and mechanical parameters of the
rock formation and the actual mining pace, a demarcation line 40 m behind the working
face is advised. The deformation parameters of gravel in the mining field, as determined
using empirical formulas [32], are listed in Table 2.

ρ = 1600 + 800
(

1 − e−1.25t
)

, (6)

E = 15 + 175
(

1 − e−1.25t
)

, (7)

μ = 0.05 + 0.2
(

1 − e−1.25t
)

, (8)

where t is the time after the collapse of the immediate roof of the mining field (a).
In order to ensure that the roof elements would not invade the floor elements after

the excavation, one contact surface with very large physical and mechanical properties
was set on the floor of the coal seam. The stiffness-normal was 100 GPa/m, stiffness-shear
was 100 GPa/m, tensile strength was 10 GPa, internal friction angle was 30◦, cohesion was
10 GPa, and dilation was 6◦.
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Table 2. Physical and mechanical parameters of gravel in the mining field.

Distance from the
Working Face (m)

Bulking
Coefficient

Elastic
Modulus

(MPa)

Poisson
Ratio

Bulk Modulus
(MPa)

Shear
Modulus

(MPa)

Density
(kg/m3)

<40 1.5 26.6 0.06 10.1 12.5 1650
>40 1.3 37.4 0.08 14.8 17.3 1700

NO. 9118 mining field 1.2 189.0 0.25 126.0 75.6 2400

4.2. Results
4.2.1. Initial Stress

The vertical stress cloud of the initial ground stress measured in Pa is shown in Figure 7.
The following clouds and diagrams units are Pa unless otherwise indicated. Before the
mining field was excavated, the initial ground stress reached an equilibrium. From there,
the stress increased consistently with depth, peaking at 7.8 MPa at the bottom of the model.

Figure 7. Initial ground stress.

The vertical stress cloud after the No. 9118 mining field was excavated is depicted in
Figure 8. High compressive stress was produced by the two coal walls on either side of
the No. 9118 mining field, which was partially concentrated in the No. 9119 working face,
causing significant difficulties in the mining of the No. 9119 working face.

 

(a) (b) 

Figure 8. Vertical stress cloud after No. 9118 mining field was excavated: (a) front view of vertical
stress; (b) top view of vertical stress.

4.2.2. Stress Evolution of the Roof

When the periodic weighting step is 10 m, 3D diagrams of the vertical stress at 1 m
above the roof for excavations of 30, 60, 90, and 120 m are shown in Figure 9.
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(a) (b) 

  
(c) (d) 

Figure 9. Three-dimensional diagrams of the vertical stress: (a) excavation of 30 m; (b) excavation of
60 m; (c) excavation of 90 m; (d) excavation of 120 m.

As the No. 9119 working face advanced by 30 m, the peak vertical stress on the roof,
as can be seen in Figure 9a, occurred in front of the No. 9119 working face offset towards
the No. 9118 mining field, reaching 34.0 MPa, with a stress concentration factor of 5.2. Only
a 6 m wide coal pillar was reserved between the two working faces, which was insufficient
to compensate for the lateral abutment stress and caused damage. As a result, there was
a significant amount of stress concentration because the lateral abutment stress from the
No. 9118 mining field was transferred to the inner side of the No. 9119 working face and
superimposed on the front abutment stress.

The front abutment stress reached 36.9 MPa, and the stress concentration factor reached
5.7 when the working face advanced 60 m. At that point, the working face started to expose
the abandoned roadway, as illustrated in Figure 9b. The No. 9118 mined-out area was
compacted once more with the extraction of the No. 9119 working face. The working face
passed half of the abandoned roadway at a distance of 90 m, where the abutment stress
on the roof of the remaining triangular coal pillar reached its peak value of 44.3 MPa, as
shown in Figure 9c. When the working face was entirely through the abandoned roadway,
the peak abutment stress on the roof, as shown in Figure 9d, was 30.5 MPa.

The relationship between the peak vertical stress 1 m above the roof and the mining
position of the working face is shown in Figure 10. The peak stress increased slowly when
the working face was farther from the abandoned roadway. The area of the triangular
coal pillar gradually decreased as the working face continued to advance beyond 60 m,
and the peak stress on the roof began to increase sharply. The maximum stress occurred
at 90 m, where the working face passed through a semi-abandoned roadway, where the
maximum stress reached 44.3 MPa. This was because the abandoned roadway cut off the
coal body behind it and the triangular coal pillar, resulting in the superposition of the front
abutment stress, the lateral abutment stress of the No. 9118 mining field, and the abutment
stress of the abandoned roadway, which caused a large degree of stress concentration.
The triangular coal pillar area decreased as the working face advanced, and as a result,
it could no longer support the roof. Most of the abutment stress began to transfer to the
coal body behind the abandoned roadway, which led to a more uniform distribution of the
abutment stress. As a result, the peak abutment stress began to decrease until the working
face completely passed and returned to the normal level.
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Figure 10. Relationship between the peak stress and the excavation distance.

Side views of the vertical stress cloud of the selected excavation are shown in Figure 11.
Vertical stress appears in the sequence of the saddle type, oblique table type, and solitary
peak type with the excavation of the working face.

  
(a) (b) 

 
(c) 

Figure 11. Side views of vertical stress cloud: (a) coal pillar width of 92 m; (b) coal pillar width of
52 m; (c) coal pillar width of 32 m.

(1) As shown in Figure 11a, when the width of the coal pillar was 92 m in the middle
of the working face and the abandoned roadway, the vertical stress of the coal pillar
exhibited an asymmetric saddle type, with the peak stress (16.3 MPa) on the goaf-side
being larger. The coal pillar midsection still contained the original rock stress zone,
indicating that the front abutment stress was not affected by the abandoned roadway.

(2) As shown in Figure 11b, when the width of the coal pillar was 52 m, the vertical stress
of the coal pillar was an oblique table type, and the front abutment stress increased
significantly, with peak stress of 30.1 MPa. The abutment stresses on both sides
influenced one another.
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(3) As shown in Figure 11c, when the width of the coal pillar was 32 m, the vertical
stress of the coal pillar was an asymmetrical peak type, with peak stress of 33.9 MPa.
Currently, the abutment stress of the central coal pillar affects the abutment stress of
the rear coal wall of the abandoned roadway, which results in a significant increase in
the latter.

4.2.3. Effect of Weighting Steps on the Stability of the Roof and Floor

A common multiple of 60 m excavation length was selected for comparative analysis
using Flac3D to simulate the weighting steps of 10, 20, and 30 m, respectively. Figure 12
depict the vertical stress clouds of the coal pillar at 0.5 m above the floor before the roof
collapses. When the weighting steps are 10, 20, and 30 m, the peak vertical stresses of
the coal pillar are 43.8, 45.5, and 45.9 MPa, respectively, which indicates that reducing
the weighting step can reduce the maximum front abutment stress on the coal pillar.
Consequently, active roof cutting can be used to control the suspended length of the main
roof behind the working face, thereby reducing the front abutment stress.

  
(a) (b) 

(c) 

Figure 12. Top views of vertical stress cloud: (a) weighting step of 10 m; (b) weighting step of 20 m;
(c) weighting step of 30 m.

From the above analysis, the largest front abutment stress occurred in front of the
No. 9119 working face offset toward the No. 9118 mining field; therefore, the side views
of the plastic zone near the No. 9118 mining field at 120 m of excavation were chosen, as
shown in Figure 13. Shear failure primarily occurred in the plastic zone in the stope floor
strata. Shear-n indicates that shear failure is occurring in the elements in the current cycle,
while Shear-p indicates that shear failure has occurred in the elements in the previous cycle.
Therefore, increasing the weighting step would cause the shear failure of the elements
in front of the working face faster. The maximum depth of the plastic zone in the stope
floor strata was 23 m when the weighing step was 10 m. The major portion of the plastic
zone did not change significantly when the weighted step was increased to 20 and 30 m,
but new plastic zones of various sizes appeared from 32 to 36 m below the floor, with the
largest plastic zone occurring at 30 m. With the increase of the weighting step distance,
the floor failure depth increased firstly and then tended to be stable [33]. Therefore, when
the weighting step increased from 20 m to 30 m, the depth of the plastic zone did not
change significantly. Combined with the physical and mechanical parameters of the floor
strata, no plastic zone has arisen in the range of 23 m to 32 m below the floor because of
the Benxi limestone and fine sandstone in this area, which are relatively hard in texture
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and have large shear and tensile strengths. A certain zone of plasticity developed because
of the lithological weakness of the bauxite mudstone that lies beneath the fine sandstone,
which could still be inferred from the fact that as the weighting step increased, the extent of
the plastic zone in the stope floor strata increased, indicating an increase in the depth of
floor failure. However, the floor failure depth would not increase indefinitely and would
eventually become stable.

  
(a) (b) 

 
(c) 

Figure 13. Side views of the plastic zone: (a) weighting step of 10 m; (b) weighting step of 20 m;
(c) weighting step of 30 m.

5. Results

According to theoretical analysis and numerical simulation, the maximum front abut-
ment stress of the coal pillar and roof can be reduced, and the depth of the plastic zone
in the stope floor strata can be reduced by actively reducing the suspended length of the
main roof. The Ordovician limestone aquifer had an impact on the No. 9119 working
face, possibly causing water damage, so the floor strata could be grouted to strengthen the
mechanical properties of the rock. Simultaneously, hydraulic supports were added to the
interior of the abandoned roadway to ensure the safe passage of the No. 9119 working face.

5.1. Application of Hydraulic Fracturing Technology

The No. 9119 working face used hydraulic fracturing technology to actively cut the
roof strata and control the weighting step to be 10 m. Holes were drilled in twin groups
A and B. Group A was drilled from the top of the belt roadway to the interior of the roof
strata of the mining field, with a length of 50 m, an elevation angle of 45◦, and hole spacing
of 10 m. It was used to cut the link between the main roof and the rock above and release
the pressure. Group B was drilled vertically upward in the middle of the top of the belt
roadway with a length of 34 m and a hole spacing of 10 m. The purpose of Group B was
to cut the connection between the No. 9119 and No. 9118 mining fields and to reduce
the impact of the No. 9118 mining field. Group A and group B holes were arranged in a
staggered manner and extended close to the stopping line. Layout diagrams of the holes
are shown in Figure 14.
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(a) 

 
(b) 

Figure 14. Layout of holes: (a) sectional view; (b) top view.

5.2. Floor Grouting Reinforcement

Underground structures are subject to weathering (for example, by water), which can
reduce their mechanical strength and may eventually lead to unstable excavations [34,35],
so the use of floor grouting reinforcement technology can significantly reduce the impact of
groundwater on the strength of the floor strata. To achieve the best reinforcement effect
and to consider the economics of the project, floor strata from 10 m below the floor to the
top of the Ordovician limestone aquifer were used as the target rock strata for grouting.
The key grouting reinforcement areas include the physical prospecting of unusual areas,
typical hydrogeological areas, and areas where the overtopped hole has not been explored.
A total of 360 advancing and grouting holes were constructed in the No. 9119 working face,
with 23,895.5 m drill footage and 246.71 t grout.

5.3. Support for the Abandoned Roadway

The section size of the abandoned roadway at the No. 9119 working face is 4.2 m
wide at the top, 4.5 m wide at the bottom, and 2.8 m high at the middle. DW-28 hydraulic
supports with DJB (S) metal-hinged beams were used to strengthen the abandoned roadway.
The hydraulic supports were spaced 0.8 m along the abandoned roadway, 0.3 m from the
coal wall on both sides, and 1.3 m between each row of pillars, which provided 0.3 MPa for
the abandoned roadway.
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5.4. Verification Using the Field Monitoring

To monitor the displacement of the floor strata, vibrating wire multi-point displace-
ment meters with two measuring stations were used at depths of 10, 15, 20, and 25 m
below the floor. Station No. 1 was buried in the chamber of the track roadway away from
and unaffected by the abandoned roadway, whereas station No. 2 was buried near the
intersection of the track roadway and abandoned roadway, where it was affected by the
abandoned roadway. The locations of the measuring stations and multi-point displacement
meters are shown in Figure 15.

Figure 15. Locations of the measuring stations and multi-point displacement meters.

A peephole was used to inspect the borehole before the multi-point displacement
gauge was buried. The conditions of borehole No. 1 from the peephole are shown in
Figure 16a. A small number of fissures were produced at 5–8 m, which gradually decreased
until they disappeared with increasing depth. The conditions of borehole No. 2 from the
peephole are shown in Figure 16b. A small amount of water inflow is produced at 6–8 m,
where mud occurs owing to the mudstone layer, and vertical fissures are produced at
12–15 m.

  
(a) (b) 

Figure 16. Borehole peephole views: (a) Conditions of borehole No. 1; (b) Conditions of borehole
No. 2.

The relationship between the vertical displacement of each measuring point and
the distance between the working face and station is shown in Figure 17. The vertical
displacement of each measuring point decreased and then increased as the working face
advanced, which was caused by the front abutment stress being transferred to the floor
strata, resulting in compression deformation. As the working face moved forward, the
peak front abutment stress passed through the measuring station, which decreased the
stress concentration factor above the measuring point. The rock formation started to
expand because of the floor strata pressure relief, which resulted in tensile deformation
at the measuring point in the direction of the upper free space. The floor strata of the

122



Energies 2022, 15, 5824

No. 1 measuring station experienced discontinuous displacement changes between 10 and
15 m, whereas the floor strata of the No. 2 measuring station experienced discontinuous
changes in displacement between 15 and 20 m. The damage depths of the floor strata,
which are 15 and 20 m, respectively, are commonly regarded as the upper limit of the
aforementioned interval to ensure the safety of pressure mining. This suggests that the
abandoned roadway increased the stress concentration at the No. 2 measuring station,
which in turn increased the damage depth and raised the possibility of water inrush of
the floor strata. The peak front abutment stress under normal mining conditions was
approximately 25 m in front of the working face, as shown in Figure 17a, where the turning
point of the vertical displacement at the No. 1 measuring station was located. However, as
shown in Figure 17b, the peak front abutment stress was approximately 30 m in front of the
working face under No. 2 measuring station conditions. In the numerical simulation, the
depths of the plastic zone at the two stations were extracted as 13 and 17 m, which is in
error with the measured data by approximately 15% and 13%, respectively.

 
(a) (b) 

Figure 17. Relationship between the vertical displacement of each measuring point and the distance
between the working face and the station: (a) No. 1 measuring station; (b) No. 2 measuring station.

The final monitoring results are in good agreement with the numerical simulation
results, indicating that the application of hydraulic fracturing technology, floor grouting
reinforcement, and support of the abandoned roadway can reduce the maximum front
abutment stress of the mining field, thereby reducing the damage depth of the floor strata.
In this case, the No. 9119 working face passed through the forward abandoned roadway
without any advanced break or weighing over a great extent, and there were no water
inrush accidents.

6. Conclusions

(1) The stress evolution of the working face passing through the abandoned roadway can
be characterised by the types of saddle, oblique table, and solitary peak. The critical
width of the abandoned roadway where the main roof is bound to advanced break
was calculated to be 5.4 m. With the width of the abandoned roadway determined,
the suspended length of the main roof was the key factor in determining whether the
main roof will advance break.

(2) Using elastomeric expressions to approximate fallen gravel, a Flac3D simulation
method was proposed to simulate the stress evolution laws and the effect of different
weighting steps. The error between the depths of the plastic zone obtained using this
simulation method and the field monitoring data was within 15%.

(3) The peak stress on the roof increased slowly when the working face was farther
away from the abandoned roadway and then increased sharply when the working
face began to expose the abandoned roadway. The maximum stress occurred at
the working face through a semi-abandoned roadway, where the maximum stress
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reached 44.3 MPa. Subsequently, the area of the triangular coal pillar decreased, so
the triangular coal pillar could no longer support the roof. The coal wall behind the
abandoned roadway carried most of the front abutment stress, which caused the peak
stress to slope downward.

(4) The use of hydraulic fracturing technology to produce active roof release, with the aid
of floor grouting reinforcement and support for abandoned roadways, was proposed
as a holistic management technique. The damage depths of the floor strata from the
field monitoring were 15 and 20 m, respectively, which showed that the measurements
enabled the No. 9119 working face at Dongpang Mine to safely pass through the
forward abandoned roadway and provided a significant reference for similar projects.
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Abstract: Detecting the formation of explosive methane–air mixtures in a longwall face is still a
challenging task. Even though atmospheric monitoring systems and computational fluid dynamics
modeling are utilized to inspect methane concentrations, they are not sufficient as a warning system
in critical regions, such as near cutting drums, in real-time. The long short-term memory algorithm
has been established to predict and manage explosive gas zones in longwall mining operations before
explosions happen. This paper introduces a novel methodology with an artificial intelligence algo-
rithm, namely, modified long short-term memory, to detect the formation of explosive methane–air
mixtures in the longwall face and identify possible explosive gas accumulations prior to them becom-
ing hazards. The algorithm was trained and tested based on CFD model outputs for six locations
of the shearer for similar locations and operational conditions of the cutting machine. Results show
that the algorithm can predict explosive gas zones in 3D with overall accuracies ranging from 87.9%
to 92.4% for different settings; output predictions took two minutes after measurement data were
fed into the algorithm. It was found that faster and more prominent coverage of accurate real-time
explosive gas accumulation predictions are possible using the proposed algorithm compared to
computational fluid dynamics and atmospheric monitoring systems.

Keywords: artificial intelligence (AI); computational fluid dynamics (CFD); underground coal mines;
methane prediction; real-time; time series prediction; modified long short-term memory

1. Introduction

Despite alternative energy sources, worldwide coal production is still increasing
each year [1]. Longwall mining is the most utilized coal mining method, due to its high
productivity and safer operating conditions [2]. However, in usual mining operations
and conditions, coal mining still faces serious challenges [3]. Despite advancements in
technology and safety management, longwall face explosions from accumulated methane
gas are known to be the most common causes of methane explosions [4]. Existing industry
practices depend on point-type methane sensors in critical regions to prevent explosive
gas accumulations [5]. However, point sensors are not reliable at spotting and warning
about explosion hazards, especially in crucial areas, such as near the cutting drum, tailgate,
and headgate areas of the longwall face [6]. One catastrophic example of a methane
explosion accident was the 2010 Upper Big Branch Mine in West Virginia, U.S. [6]. Although
atmospheric monitoring systems can report real-time methane concentrations, they fall
behind due to their limited number of sensors and locations [7], which lack full coverage
of the whole longwall face. Computational fluid dynamics (CFD) were employed to
simulate ventilation conditions in longwall faces to reproduce airflow aerodynamics and
the formation of hazardous gas mixtures which are not detectable using conventional
monitoring and ventilation inspection practices [5]. Although CFD modeling can accurately
predict explosive gas zones, high computational power and time requirements render its
use for real-time ventilation monitoring purposes impossible [7].
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Karacan (2008) proposed principle component analysis and an artificial neural network-
based approach to predict methane emission rate throughout 63 longwall mines. The study
shows that the volume of daily methane emission from each mine can be accurately
predicted [8]. Dougherty and Karacan (2011) utilized the prediction model in [8] and
developed software which can predict ventilation emissions with elastic properties [9].
Duda and Krzemień (2018) proposed a framework for forecasting methane emissions from
seams to goafs; they predicted the average volume of methane per minute in each year
of mine life [10]. Sidorenko et al. (2021) provided the necessary parameters to predict
methane emissions from seams to goafs [11]. Although these studies discuss prediction,
these predictions are neither real-time nor spatial outputs.

Previous studies demonstrate the successful implementation of Artificial Intelligence
(AI) in various fields with real-time predictions. For example, Chen et al. (2019) proposed
a real-time AI integration for cancer diagnosis by implementing image processing algo-
rithms for body scans [12]. Nyanteh et al. (2013) implemented an AI for real-time fault
detection [13]. To improve weather forecasting for high-impact weather, McGovern et al.
(2017) integrated an AI with expert opinions [14]. Imran et al. (2014) classified real-time
messages in social media using AI to help the public access important disaster response
information [15]. Dong et al. (2021) used the AI model for real-time monitoring and pre-
dicting of slope failures [16]. Rodríguez-Rangel et al. (2022) incorporated big data analytics
for autonomous vehicles’ speed estimation [17]. Wahyono et al. (2022) proposed combining
AI with data mining for real-time forest fire detection [18].

Real-time prediction of methane in a longwall face requires predicting explosive gas
zone formation in time, and its location in 3D (x, y, and z coordinates). Predictions in
time are mainly conducted using time series classification/analysis [19]. Spatiotemporal
AI models and time series classification are relatively new to the field. Moreover, the
vast majority of successful models only take into account one or two spatial dimensions,
such as x and/or y coordinates, and the data of interest [20–28]. For example, whereas
climate change studies that track carbon emissions use latitude, longitude, and carbon
content [29], water quality studies use one-dimensional distance of the intersections and
water content [19]. This study proposes a 3D spatiotemporal prediction model for the
real-time prediction of methane in the coal face.

Current explosive gas accumulation monitoring practices in longwall coal mines rely
on two methods, namely, point sensors and CFD modeling. Point sensors take real-time
measurements along the face and provide methane concentration values at the installed lo-
cations. CFD modeling provides methane prediction for the whole longwall face. However,
due to computational cost, predictions take days or weeks, depending on the resolution
of the study area. In this study, a continuation of our previous work [7] benchmarking
and analyzing the suitability of the dataset and off-the-shelf algorithms, we developed an
AI algorithm and methodology for use as a real-time explosion hazard warning system.
We used six CFD analyses with varying shearer locations to train, test, and validate our
model. This approach lays the foundation for accurate methane predictions in real-time for
underground mines by combining the most potent advantages of point sensors and CFD
models, decreasing the computational cost of CFD modeling, and increasing the coverage
of point sensors.

Previously conducted methane prediction studies mainly focused on total methane
emissions from the seam or the whole mine. To the best of our knowledge, a 3D real-time
methane prediction approach in longwall mining that integrates CFD data with an AI
model has not been developed yet. Previous studies of methane prediction in longwall
coal mines primarily focused on total methane emissions of the whole mine or the whole
face with varying time intervals of years to minutes. Moreover, the predictions in these
studies do not consider critical methane emission zones, such as near the drums or shearer
locations. This paper fills these gaps. The approach presented herein can provide methane
emission data not only in the 3D spatial domain but also in real-time throughout the mining
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face, including, but not limited to, areas near cutting drums, the shearer, the tailgate, and
the headgate.

The remainder of this paper is organized as follows. Section 2 describes materials
and methods used in this study. Section 3 describes empirical results from the AI model.
Section 4 discusses and compares results. Lastly, Section 5 summarizes the paper, makes
concluding remarks, and outlines future work.

2. Materials and Methods

The developed research methodology exploits the advantages of CFD modeling and
point sensors. Figure 1 illustrates how AI was integrated into real-time methane concentra-
tion prediction.

Figure 1. Research methodology.

The first step explains spatial and temporal CFD modeling and longwall face simula-
tion. The second step presents extracted data and how they were processed and presented.
The third step discusses an AI algorithm, referred to as the long short-term memory (LSTM)
model, and how it was modified to meet this study’s requirements; the algorithm was
trained and tested, and parameters were optimized. In the last step, predictions for spatial
and temporal results are discussed.

2.1. Spatial and Temporal CFD Modeling

Ansys Fluent software version 18.2 was utilized to model and simulate a longwall face.
The modeled longwall face was 300 m long with a mining height of 3 m and a depth of
6 m. Two primary pieces of equipment were also modeled: (i) support equipment (shields)
and (ii) cutting equipment (shearers). There were 150 shields; each shield was 2 m long,
fixed in the model. One 10 m long shearer was placed along the longwall face in 6 locations.
Location details are provided in Section 2.2. Lastly, the modeled area was covered with
approximately 31 million hexagonal and octagonal meshes. Mesh sizes ranged from 3 cm
to 30 cm, which increased prediction resolution.

The simulation exemplified a transient CFD model of methane (CH4) gas emission
from the coal face based on a bleeder ventilation system with a tailgate (TG) back return
setup. Each transient model was simulated for 180 s and recorded at 1 s intervals.

2.2. Data Curation

Data were collected after modeling the longwall and simulating methane emissions.
It should be noted that although each mine ventilation condition is unique, previously
conducted studies [30–34] validate that simulated data are consistent with the actual
situation that includes but is not limited to “(i) continuous leakage of fresh air from the face to
the gob, and the higher accumulation of methane as the supplied air travels from the headgate to
tailgate side of the face; (ii) higher leakage around the headgate and tailgate corners of the face due to
the high porosity and permeability around the edge of the gob; (iii) Methane accumulation seems to
follow linear regression based on ventilation surveys done in several longwall operations.” [4].

Each simulation had approximately 31 million cells; data for each cell for each second
of recording included pressure, airflow velocity (Vx, Vy, and Vz), CH4 concentration, cell
volume, and x, y, and z coordinates. Data collection was repeated for each of the shearer’s
six locations, which required 10 days for each location. Details of specific shearer locations
and the cutting direction during data collection are provided in Figure 2.
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Figure 2. Six locations of the shearer and cutting directions during data collection.

Figure 3 represents a snapshot of the 120th second of location 3 as an example. Other
locations and timestamps acted similarly; to avoid redundancy only one example is provided.

Figure 3. Snapshot of the 120th second of shearer location 3.

Raw data from the Fluent software were preprocessed, which included data conver-
sion into CSV files, removing empty fields, adding cutting directions, and fixing the two
significant figures for all fields. There were 2 terabytes (TBs) of end data for each location;
12 TBs of data were input into the AI.

2.3. The Modified LSTM

The literature discusses different methods for the spatiotemporal prediction of a
parameter, namely, the Naïve 2 method, simple exponential smoothing, the Holt method,
the ARIMA method, and the ETS method [35]. The primary disadvantage of using the
Naïve 2, simple exponential smoothing, and HOLT methods is that these algorithms can
only predict one step ahead of time within a confidence interval. In a dynamic environment
such as longwall mining, continuous monitoring is the key to preventing explosive hazards;
hence, one-step-ahead predictions were not sufficient for the aim of this study. Moreover,
it was not feasible to implement these methods for real-time prediction considering the
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required computational power and data size. For example, each location had approximately
32 million cells, which were connected to each other and affected methane concentration.
In contrast, the ARIMA and ETS methods can predict long-term methane concentrations
for a specific cell. However, the longwall’s geometry was 3D, and these statistical methods
are not effective at predicting in a 3D environment. Moreover, unlike AI models, statistical
methods utilize interpolation that cannot learn data’s extreme fluctuations.

AI and machine learning (ML) algorithms have been recently introduced to predict
the time and location of a parameter of interest. Although applications are still limited,
preliminary results of a range of studies (discussed briefly in Section 1) are promising.
Moreover, in-depth analysis and benchmarking of the most promising algorithms for
real-time methane prediction were examined in a previous study [7].

In light of the literature and previous tests, a recurrent neural network (RNN) was
determined to be the best candidate for real-time methane prediction in longwall coal
mines. An RNN contain cycles from previous time steps as network inputs to influence
predictions at the current time step. These timestamps are stored in the RNN’s internal
states, allowing it to exploit a dynamically changing contextual window over the input
sequence history [36–38].

Unfortunately, the range of contextual information that a standard RNN can access is,
in practice, quite limited. The problem is that the influence of a given input on the hidden
layer and, therefore, on the network output, either decays or blows up exponentially as
it cycles around the network’s recurrent connections. This shortcoming is referred to in
the literature as the vanishing gradient problem. Long short-term memory (LSTM) is an
RNN architecture specifically designed to address the vanishing gradient problem [39–41].
LSTMs were introduced in about 1997; their main advantages include that they are (i) al-
gorithms that can store information for a specified time duration, (ii) resistant to noise,
and (iii) trainable parameters [42,43]. In the light of our previous study [7], any future
prediction using AI can be categorized into seven problem types (image, sensor, motion,
spectrographs, electronic devices, electrocardiograms, and simulations). As methane pre-
diction is similar to the sensor-type problem, one of the best performing algorithms, an
LSTM network (a special type of RNN) was adapted for this study.

Figure 4 shows the simplified architecture of the LSTM model, modified from the blog
post by Olah [37]. In the forget gate, the cell takes the previous time step and determines
which information should be kept and which should be omitted. In the input gate, the cell
takes information and keeps only what is relevant for prediction. In the update gate, the
cell takes previous neural network information and updates prediction weights. Lastly, the
output gate determines which parameters and data to output and feed to the next cell.

As LSTMs are viewed as feed-forward neural networks where each cell shares the same
model parameters, they are considered deep architectures or deep neural networks [36].
In this study, the LSTM network was modified, trained, and tested with CFD outputs. A
conventional LSTM network accepts 2D data. LSTM model modifications implemented
in this study include (i) changing the input shape for the 3D space and (ii) adding 3D
operations and vector calculations. The inputs to the modified LSTM model were; x, y, and
z coordinates, the smallest distance to the shearer, airflow velocity, methane concentration,
and the volume of each cell for 180 s, which were recorded at 1 s intervals.
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Figure 4. Simplified LSTM architecture (modified from [37]).

3. Results

Even the best-performing algorithms might fail to predict results without high-quality
data. Therefore, training, validation, and testing of the algorithm are critical for reliable
predictions; if these steps are not performed correctly results might be biased. Table 1
provides a data breakdown, and is followed by an explanation of each topic in respective
subsections. Note that similar shearer locations were selected for training and predicting
methane content. For example, Figure 2 illustrates that shearer locations 1 and 6 had a
similar location in the middle of the longwall face, and locations 3 and 4 had a similar
location on the tailgate side. In addition to slight changes in the exact positions of cutting
equipment, cutting directions were also changed. Datasets for similar locations were
divided 50–50 for training and testing. The first 50% was divided into 80% to 20% for
training and validation; the detailed distribution is provided in Table 1.

Table 1. Training, validation, and testing datasets based on shearer locations.

Training DataSet Validation DataSet Cutting Direction Testing DataSet Cutting Direction

80% of Location 1 20% of Location 1 Headgate to Tailgate Location 6 Tailgate to Headgate

80% of Location 2 20% of Location 2 Headgate to Tailgate Location 5 Tailgate to Headgate

80% of Location 3 20% of Location 3 Headgate to Tailgate Location 4 Tailgate to Headgate

80% of Location 4 20% of Location 4 Tailgate to Headgate Location 3 Headgate to Tailgate

80% of Location 5 20% of Location 5 Tailgate to Headgate Location 2 Headgate to Tailgate

80% of Location 6 20% of Location 6 Tailgate to Headgate Location 1 Headgate to Tailgate
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The common practice of splitting data into train, validation, and test sets depends on
the dataset and might range from 50–50% to 80–20%. With a few data points (n < 10,000),
70–30% splitting is used. However, if the number of recordings is high (n > 1,000,000), the
importance of split ratios decays. Overall, the most important element in splitting a dataset
is having good data representation in the train and test sets. In this study, the number of
recordings was close to 64,300,000; hence, training was conducted using a specific shearer
direction and tested using the opposite direction but the same position [44–48].

The training and validation of each instance took approximately seven days; testing
time was 15 min with high-performance computing using the following specifications:

• CPU: Intel Xeon COU E704830 v3@2.10GHz (4 CPUs/node, 48 cores/node)
• GPU: five Tesla K80
• Memory: 2133 MT/s, Dual Rank, x4 Data Width RDIMM (42.7 GB/Core)
• Storage: 20 TBs

Input data were approximately 5 TBs for each instance, with 2 TBs of output.

3.1. Training

Training data were used to teach patterns and features to the AI model. The same
training data were repeatedly given to the model until a threshold level was reached.
Feeding the same data repeatedly is called an epoch. The simple explanation of an epoch is
one complete pass of the dataset through the designed network. The algorithm updated its
parameters with each epoch while learning the input dataset. Training data were divided
into 80% and 20% for each instance using the stratified K-folds cross-validation method.
This yielded a balanced data division, which preserved the percentage of samples for each
methane content. The divided 80% of data were used to train the model.

3.2. Validation

Validation data were separated from training data, which validated the AI’s per-
formance. Training and validation accuracy helps users evaluate their mode. Figure 5
illustrates a commonly used metric for assessing algorithm performance, validation, and
training accuracy versus an epoch.

Figure 5. Validation and training accuracy.

In the training and validation accuracy graph, the curves’ slopes approach horizontal
after the 12th epoch, which indicates that data did not make a significant learning process
over the algorithm. At approximately the 20th epoch, the learning curve becomes almost
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horizontal. This indicates that no further training was necessary after the 20th epoch,
as the accuracies did not change considerably and ranged from 89.1% to 93.8%. Lastly,
the validation curve below the training curve indicates that the model was fed a good
representation of data, was ready for testing, and able to provide reliable predictions.

3.3. Testing

After training and validation, test data were used to evaluate the AI model’s perfor-
mance predicting methane. The model’s performance was analyzed using the actual and
predicted methane content of the testing data for each training and testing coupled set, as
provided in Table 2.

Table 2. Overall accuracies of tests.

Couple Name Training DataSet Testing DataSet Overall Accuracy

L1L6 Location 1 Location 6 92.4%

L2L5 Location 2 Location 5 89.1%

L3L4 Location 3 Location 4 87.9%

L4L3 Location 4 Location 3 88.3%

L5L2 Location 5 Location 2 91.0%

L6L1 Location 6 Location 1 91.6%

These results show that the modified LSTM algorithm predicted methane concentra-
tion with an accuracy ranging from 87.9% to 92.4%.

4. Discussion

Analysis revealed that the modified LSTM algorithm can possibly combine effective
aspects of CFD modeling and point sensor measurements. AI algorithms can achieve 3D
coverage of CFD modeling and real-time point sensor data measurements. The overall
accuracies of different locations ranged from 87.9% to 92.4%. Although accuracies were rel-
atively high, some locations (such as locations 3 and 4) had less accurate results than others,
possibly because the closer the shearer was to the headgate and tailgate (locations 1 and 6),
the more methane emissions fluctuated. The algorithm was more agile when spotting
fluctuations; therefore, relatively constant methane emissions might be the reason for lower
test accuracies in locations 3 and 4. Although the accuracies showed promising results,
with additional datasets they might increase. Even if a single location has approximately
32 million points, the entire measurement only contains 180 s of data. If these measurements
could be increased, accuracies might also increase. Given the current data storage and
computational power advancements in supercomputers, the required time for training was
45 days. Moreover, an increase in data size will increase the required computational power
and time required for training; however, time requirements will change more exponentially
than linearly. Training times will not affect prediction times; once the algorithm is trained,
the required prediction time will not change drastically.

Whereas explosive gas zone monitoring relies on point sensors, the critical regions of
the longwall face cannot be tracked in real time. Although CFD modeling can overcome
the sensors’ coverage, the required prediction time could be days to weeks, depending on
the resolution of the simulation. This study’s methodology eliminates these shortfalls. The
system proposed herein yields highly accurate real-time predictions with detailed coverage
of the longwall face. Therefore, modified LSTM-based methane prediction might help
early warning systems for miners and engineers reduce safety risks and prevent accidents
such as the Upper Big Branch. Lastly, the system can increase production by reducing
unnecessary stops of the shearer.

However, the AI’s prediction capabilities depend on the simulated CFD model results.
Therefore, predictions can only be as accurate as similar longwall face models. Training
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the AI model using different longwall face models can increase the AI model’s capacity.
If the AI model can be trained with more data, it might be used for all longwall mines in
the world.

5. Conclusions

As was the case with the Upper Big Branch accident, longwall mine methane explo-
sions can be fatal. Current explosive gas zone management practices are carried out either
with point sensors or CFD modeling. Leveraging the power of AI might be crucial for
monitoring explosive methane concentration. The primary objective of this study was
to combine the advantages of current methane monitoring practices and eliminate their
disadvantages. For this purpose, modified LSTM architecture was utilized for real-time
methane prediction.

This study is unique as it provided real-time methane prediction in 3D space. Our
study successfully leveraged a significant (12 TB) amount of CFD data for location and
time prediction of possible explosive methane accumulation. Unnecessary stops, high fan
speed, and other high operating costs can be reduced using the proposed method, which
will help increase the safety and productivity of all longwall coal mines by monitoring the
methane gas along the face.

Although the proposed methodology successfully predicted methane concentration
throughout the longwall face, the results only contained numbers representing location,
time, and methane content. Results consisted of lines of numbers that could not be inter-
preted or used by engineers and/or miners to determine if the explosive gas accumulation
was hazardous.

Future research associated with this study will consist of two parts. First, the algo-
rithm will be trained using other mines’ methane emission models. This will increase
the algorithm’s prediction capabilities and enable its usage and implementation on all
longwalls in the world. Second, the predictions of the AI model will be imported into Unity
for visualization purposes. This will help facilitate the integration of real-time predictions
with augmented and virtual reality environments, which are already implemented in other
industries, such as construction, production, health, and many more. The final product
might ease the judgement burden placed on engineers and workers in times of critical
methane emission. We will convert results into more robust, understandable visualizations
that resemble CFD output; providing a familiar output will help engineers and workers by
decreasing their cognitive load.

We have started the second development phase; a side-by-side comparison of the CFD
model and our visualizations for different time stamps are shown in Figure 6.

Figure 6. Side-by-side comparisons of CFD models and prediction visualizations modid.
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These visualizations will help us conduct a user study with the aim of discovering a
better way to visualize AI outcomes. The user study will also provide insights regarding
the possible integration of these visualizations into a mixed-reality environment.
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10. Duda, A.; Krzemień, A. Forecast of Methane Emission from Closed Underground Coal Mines Exploited by Longwall Mining—A

Case Study of Anna Coal Mine. J. Sustain. Min. 2018, 17, 184–194. [CrossRef]
11. Sidorenko, A.A.; Dmitriev, P.N.; Sirenko, Y.G. Predicting Methane Emissions from Multiple Gas-Bearing Coal Seams to Longwall

Goafs at Russian Mines. ARPN J. Eng. Appl. Sci. 2021, 16, 851–857.
12. Chen, P.-H.C.; Gadepalli, K.; MacDonald, R.; Liu, Y.; Kadowaki, S.; Nagpal, K.; Kohlberger, T.; Dean, J.; Corrado, G.S.; Hipp, J.D.;

et al. An Augmented Reality Microscope with Real-Time Artificial Intelligence Integration for Cancer Diagnosis. Nat. Med. 2019,
25, 1453–1457. [CrossRef]

13. Nyanteh, Y.; Edrington, C.; Srivastava, S.; Cartes, D. Application of Artificial Intelligence to Real-Time Fault Detection in
Permanent-Magnet Synchronous Machines. IEEE Trans. Ind. Appl. 2013, 49, 1205–1214. [CrossRef]

136



Energies 2022, 15, 6486

14. McGovern, A.; Elmore, K.L.; Gagne, D.J.; Haupt, S.E.; Karstens, C.D.; Lagerquist, R.; Smith, T.; Williams, J.K. Using Artificial
Intelligence to Improve Real-Time Decision-Making for High-Impact Weather. Bull. Am. Meteorol. Soc. 2017, 98, 2073–2090.
[CrossRef]

15. Imran, M.; Castillo, C.; Lucas, J.; Meier, P.; Vieweg, S. AIDR: Artificial Intelligence for Disaster Response. In Proceedings of the
23rd International Conference on World Wide Web, Seoul, Korea, 7–11 April 2014; Volume 1, pp. 159–162. [CrossRef]

16. Dong, M.; Wu, H.; Hu, H.; Azzam, R.; Zhang, L.; Zheng, Z.; Gong, X. Deformation Prediction of Unstable Slopes Based on
Real-Time Monitoring and Deepar Model. Sensors 2021, 21, 14. [CrossRef] [PubMed]

17. Rodríguez-Rangel, H.; Morales-Rosales, L.A.; Imperial-Rojo, R.; Roman-Garay, M.A.; Peralta-Peñuñuri, G.E.; Lobato-Báez, M.
Analysis of Statistical and Artificial Intelligence Algorithms for Real-Time Speed Estimation Based on Vehicle Detection with
YOLO. Appl. Sci. 2022, 12, 2907. [CrossRef]

18. Wahyono; Harjoko, A.; Dharmawan, A.; Adhinata, F.D.; Kosala, G.; Jo, K.H. Real-Time Forest Fire Detection Framework Based on
Artificial Intelligence Using Color Probability Model and Motion Feature Analysis. Fire 2022, 5, 23. [CrossRef]

19. Bagnall, A.; Lines, J.; Bostrom, A.; Large, J.; Keogh, E. The Great Time Series Classification Bake off: A Review and Experimental
Evaluation of Recent Algorithmic Advances. Data Min. Knowl. Discov. 2017, 31, 606–660. [CrossRef]

20. Lines, J.; Taylor, S.; Bagnall, A. Time Series Classification with HIVE-COTE: The Hierarchical Vote Collective of Transformation-
Based Ensembles. ACM Trans. Knowl. Discov. Data 2018, 12, 1. [CrossRef]

21. Dempster, A.; Petitjean, F.; Webb, G.I. ROCKET: Exceptionally Fast and Accurate Time Series Classification Using Random
Convolutional Kernels. Data Min. Knowl. Discov. 2020, 34, 1454–1495. [CrossRef]

22. Shifaz, A.; Pelletier, C.; Petitjean, F.; Webb, G.I. TS-CHIEF: A Scalable and Accurate Forest Algorithm for Time Series Classification;
Springer: Berlin, Germany, 2020; Volume 34, ISBN 1061802000.

23. Ismail Fawaz, H.; Lucas, B.; Forestier, G.; Pelletier, C.; Schmidt, D.F.; Weber, J.; Webb, G.I.; Idoumghar, L.; Muller, P.A.; Petitjean, F.
InceptionTime: Finding AlexNet for Time Series Classification. Data Min. Knowl. Discov. 2020, 34, 1936–1962. [CrossRef]

24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit. 2016, 2016, 770–778. [CrossRef]

25. Schäfer, P.; Leser, U. Fast and Accurate Time Series Classification with WEASEL. In Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management, Singapore, 6–10 November 2017; Association for Computing Machinery: New
York, NY, USA, 2017; pp. 637–646.

26. Lucas, B.; Shifaz, A.; Pelletier, C.; O’Neill, L.; Zaidi, N.; Goethals, B.; Petitjean, F.; Webb, G.I. Proximity Forest: An Effective and
Scalable Distance-Based Classifier for Time Series. Data Min. Knowl. Discov. 2019, 33, 607–635. [CrossRef]

27. Deng, H.; Runger, G.; Tuv, E.; Vladimir, M. A Time Series Forest for Classification and Feature Extraction. Inf. Sci. 2013, 239,
142–153. [CrossRef]

28. Li, K.; Principe, J.C. Transfer Learning in Adaptive Filters: The Nearest Instance Centroid-Estimation Kernel Least-Mean-Square
Algorithm. IEEE Trans. Signal Process. 2017, 65, 6520–6535. [CrossRef]

29. Alléon, A.; Jauvion, G.; Quennehen, B.; Lissmyr, D. PlumeNet: Large-Scale Air Quality Forecasting Using a Convolutional LSTM
Network. arXiv 2020, arXiv:2006.09204. Available online: https://arxiv.org/pdf/2006.09204.pdf (accessed on 3 May 2022).

30. Marts, J.A.; Gilmore, R.C.; Brune, J.F.; Bogin, G.E.; Grubb, J.W.; Saki, S. Dynamic Gob Response and Reservoir Properties for
Active Longwall Coal Mines. Min. Eng. 2014, 66, 41–48.

31. Krickovic, S.; Findlay, C. Methane Emission Rate Studies in a Central Pennsylvania Mine. U S Bur Mines, Rep Invest 7591. 1971.
Available online: https://www.cdc.gov/NIOSH/mining/UserFiles/works/pdfs/ri7591.pdf (accessed on 29 August 2022).

32. Peng, S.S.; Chiang, H.S. Air Velocity Distribution Measurements on Four Mechanized Longwall Coal Faces. Int. J. Min. Geol. Eng.
1986, 4, 235–246. [CrossRef]

33. Schatzel, S.J.; Krog, R.B.; Dougherty, H. Methane Emissions and Airflow Patterns on a Longwall Face: Potential Influences from
Longwall Gob Permeability Distributions on a Bleederless Longwall Panel. Trans. Soc. Min. Met. Explor. Inc 2017, 342, 51–61.
[CrossRef]

34. Gangrade, V.; Schatzel, S.J.; Harteis, S.P.; Addis, J.D. Investigating the Impact of Caving on Longwall Mine Ventilation Using
Scaled Physical Modeling. Min Met. Explor. 2019, 36, 729–740. [CrossRef]

35. Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Heathmont, VIC, Australia, 2018; ISBN 0987507117.
36. Sak, H.; Senior, A.; Beaufays, F. Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary

Speech Recognition. arXiv 2014, arXiv:1402.1128. Available online: https://arxiv.org/pdf/1402.1128.pdf (accessed on 3 May
2022).

37. Olah, C. Understanding LSTM Networks. Available online: https://colah.github.io/posts/2015-08-Understanding-LSTMs/#fn1
(accessed on 6 September 2022).

38. Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep Learning for Time Series Classification: A Review.
Data Min. Knowl. Discov. 2019, 33, 917–963. [CrossRef]

39. Graves, A.; Liwicki, M.; Fernández, S.; Bertolami, R.; Bunke, H.; Schmidhuber, J. A Novel Connectionist System for Unconstrained
Handwriting Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 855–868. [CrossRef] [PubMed]

40. Greff, K.; Srivastava, R.K.; Koutnik, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural
Networks Learn. Syst. 2017, 28, 2222–2232. [CrossRef] [PubMed]

137



Energies 2022, 15, 6486

41. Calin, O. Recurrent Neural Networks B-Deep Learning Architectures: A Mathematical Approach; Calin, O., Ed.; Springer International
Publishing: Cham, Switzerland, 2020; pp. 543–559; ISBN 978-3-030-36721-3.

42. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural. Comput. 1997, 9, 1735–1780. [CrossRef]
43. Bengio, Y. Learning Long-Term Dependencies with Gradient Descent Is Difficult. IEEE Trans. Neural Netw. 1994, 5, 157–167.

[CrossRef]
44. Gholamy, A.; Kreinovich, V.; Kosheleva, O. Why 70/30 or 80/20 Relation Between Training and Testing Sets: A Pedagogical

Explanation. Dep. Tech. Rep. 2018, 1, 1–6.
45. Gholami, V.; Torkaman, J.; Dalir, P. Simulation of Precipitation Time Series Using Tree-Rings, Earlywood Vessel Features, and

Artificial Neural Network. Theor. Appl. Climatol. 2019, 137, 1939–1948. [CrossRef]
46. Dubbs, A. Test Set Sizing Via Random Matrix Theory. arXiv 2021, arXiv:2112.05977. Available online: https://arxiv.org/pdf/2112

.05977.pdf (accessed on 29 August 2022).
47. Joseph, V.R. Optimal Ratio for Data Splitting. Stat. Anal. Data Min. 2022, 531–538. [CrossRef]
48. Guyon, I. A Scaling Law for the Validation-Set Training-Set Size Ratio. ATT Bell Lab. 1997, 1, 1–11.

138



Citation: Odeyar, P.; Apel, D.B.; Hall,

R.; Zon, B.; Skrzypkowski, K. A

Review of Reliability and Fault

Analysis Methods for Heavy

Equipment and Their Components

Used in Mining. Energies 2022, 15,

6263. https://doi.org/10.3390/

en15176263

Academic Editor: Ernst Huenges

Received: 16 June 2022

Accepted: 16 August 2022

Published: 28 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Review

A Review of Reliability and Fault Analysis Methods for Heavy
Equipment and Their Components Used in Mining

Prerita Odeyar 1, Derek B. Apel 1,*, Robert Hall 2, Brett Zon 3 and Krzysztof Skrzypkowski 4,*

1 School of Mining and Petroleum Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
2 Department of Mining Engineering and Management (MEM), South Dakota School of Mines,

Rapid City, SD 57701, USA
3 North American Construction Group, 27287-100 Avenue, Acheson, AB T7X 6H8, Canada
4 Faculty of Civil Engineering and Resource Management, AGH University of Science and Technology,

30-059 Kraków, Poland
* Correspondence: dapel@ualberta.ca (D.B.A.); skrzypko@agh.edu.pl (K.S.)

Abstract: To achieve a targeted production level in mining industries, all machine systems and
their subsystems must perform efficiently and be reliable during their lifetime. Implications of
equipment failure have become more critical with the increasing size and intricacy of the machinery.
Appropriate maintenance planning reduces the overall maintenance cost, increases machine life,
and results in optimized life cycle costs. Several techniques have been used in the past to predict
reliability, and there’s always been scope for improvement of the same. Researchers are finding new
methods for better analysis of faults and reliability from traditional statistical methods to applying
artificial intelligence. With the advancement of Industry 4.0, the mining industry is steadily moving
towards the predictive maintenance approach to correct potential faults and increase equipment
reliability. This paper attempts to provide a comprehensive review of different statistical techniques
that have been applied for reliability and fault prediction from both theoretical aspects and industrial
applications. Further, the advantages and limitations of the algorithm are discussed, and the efficiency
of new ML methods are compared to the traditional methods used.

Keywords: reliability; fault diagnosis; predictive maintenance; machine learning; lifetime distributions

1. Introduction

Reliability refers to the probability of a system meeting its desired performance stan-
dards in yielding output for a specific time duration when used under specific conditions [1].
For instance, if a machine is designed to run continuously for 10,000 h with no faults in
between, the machine is said to be 100% reliable for that period. However, if a failure occurs
after 10,000 h of operation, the machine’s reliability after 10,000 h is less than 100% [2].
Component reliability is a function of time and is always measured at a specific operating
time. Reliable operation is interrupted or terminated by failures. A failure is an event that
results in the inability to complete the required duties and meet the requirements. The
theoretical definition of reliability is (Reliability = 1 − Probability of Failure), given by
R(t). Availability and maintenance are related to reliability and are defined as essential
components of it [3].

Understanding heavy equipment’s complexities, efficiency, and failures can help
achieve better production results and reduce unexpected and unneeded costs. Industries
can maintain consistent levels of productivity by conducting regular reliability assess-
ments [4]. Performance measurement is significant because it identifies existing perfor-
mance gaps between existing and desired performance and shows how far the gaps have
been closed [5,6]. A production system consists of many subsystems. In order to make
the system efficient and viable to operate, each subsystem must be optimized concerning
one another. The system’s availability, reliability, and maintainability, as well as its ability
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Energies 2022, 15, 6263

to perform as intended, significantly impacts the equipment’s effectiveness. Since the
mid-1980s, reliability analysis methodologies have steadily gained acceptance as standard
tools for developing and operating automated and complex mining systems [7].

A proper maintenance plan is of paramount importance to increase or maintain the
system’s reliability at a standard level. The role of equipment maintenance has evolved in
the last few decades, from merely being a part of the production to an essential strategic
element in mining operations. Since the early 2000s, maintenance practices have been
recognized as a profit contributor, giving more importance to maintenance practices, and
elevating them to the same level as production [8]. With proper maintenance strategies
many abrupt failures can be prevented, decreasing the downtime and increasing the
system’s reliability. This helps in achieving targeted levels of production in the industry.

Equipment maintenance is so vital that around 35% to 50% of the annual operating
budget can be spent on equipment maintenance and repair alone in the mining industry,
and around 30% in the construction industry [9,10]. The evolution of maintenance in
the mining and construction industry has come a long way in the last decade, aided by
real-time data availability. There are four common maintenance approaches that can be
applied to mine assets: reactive, preventive, condition-based, and prescriptive [11,12].

Often known as unscheduled maintenance, corrective maintenance is only conducted
when equipment fails. This is because it could result in a lot of equipment downtime and a
lot of secondary failures, resulting in a loss of production [13].

Preventive maintenance (PM), is carried out at predetermined intervals and according
to a prescribed criterion; “it is intended to reduce any cost of unplanned maintenance from
unexpected equipment failure” (EN 13306 2001). All preventive management programs
are time driven. The component to be maintained can either be replaced or reconditioned
depending on its condition. PM can be further categorized into condition-based and
predicted maintenance [14].

Condition-based monitoring (CBM) is a form of preventive maintenance that repairs a
system before it fails by looking for signs of fatigue or other failure precursors. CBM creates
an optimum maintenance period by extending the time between preventive maintenance
and reducing the expense of unnecessary excessive maintenance and downtime. CBM is
based on the study of maintenance of gathered data (such as vibration, crack propagation,
oil, pressure, and viscosity) [15].

An overview of the maintenance classifications is shown in Figure 1. It is required that
any maintenance strategy should minimize equipment failure rates, improve equipment
reliability, prolong the equipment’s life, and reduce maintenance costs. Many KPIs are
used to monitor the long-term trends in reliability and maintenance performance. These
KPIs help understand if all the small and large modifications in maintenance practices
and system changes are having the desired effect over time. The mean time between
failure (MTBF) and mean time to failure (MTTF) are two essential KPIs for determining the
system’s reliability and faults. A successful maintenance strategy and reliability policies
lead to resolving issues that lead to equipment failures and show a steady increasing
performance trend that stabilizes at industry benchmark levels [16].

Figure 1. Different maintenance strategies [17].
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Fault detection and reliability analysis of the system have evolved over the years. The
history of the reliability field may be traced back to the early 1930s, when probability con-
cepts were applied to problems associated with electric power generation. The beginning of
the maintainability field may be traced back to 1901. By the 1960s, equipment maintenance
activities started to be regarded as technical and involved optimizing maintenance solutions
and activities [1]. Most literature on reliability and maintenance analysis in the mining
and construction industry is present from 1975 onwards. During the 1975–1985 period,
several literature works can be found on reliability analysis of mining equipment that was
based on theoretical approaches [18–21]. Authors used manually drawn probability density
functions and KS tests to identify the availability of continuous mine systems [22] and
determined the reliability of bucket wheel excavators by doing probability calculations. In
the next few years (1985–1995), graphical methods using total time on test and analytical
methods using KS test and maximum likelihood estimations were used for reliability test-
ing [4,23,24]. Authors used proportional hazard models to investigate the effects of two
different designs and maintenance of power transmission cables [21]. Fault tree analysis,
failure mode, effect and criticality analysis were used in the late 1980s for fault detection
and reliability analysis [25–28]. By the 2000s best fit probability distribution using reliability
software was extensively used in mining to predict reliability and schedule maintenance
using information from reliability plots [29]. Weibull++6 software (from Reliasoft, Tuscon,
AZ, USA) was used to determine best-fit distributions for characterizing the failure pattern
of the two crushing plants and their subsystems. Authors used Statgraphic software to
estimate parameters of probability distributions for the shovel and its subsystems [30].
Most work in reliability is found around estimating best fit distributions for independent
and identically distributed data (I.I.D) and NHPP models for non-I.I. D data [31–33]. The
genetic algorithm was first applied in the reliability analysis of equipment in mining in
2001 [34]. Authors used Pareto analysis and statistical modeling of failure and repair dis-
tribution for reliability analysis of a hydraulic shovel [35]. Machine learning applications
for mine equipment reliability analysis were largely introduced from late 2000’s. Several
articles in the last ten years have used machine learning and deep learning for reliability
and maintenance analysis. Genetic algorithms, discrete event simulations, SVM regression,
KNN models, ANN, and reinforcement learning, have been widely used in the application
of fault predictions and reliability analysis.

2. Methodology

Most of the relevant literature and research work reviewed in this study is regarding
Machine learning applications in equipment fault detection and reliability analysis and
their components, focusing on artificial intelligence and machine learning usage. This paper
aims to provide a comprehensive review of advanced statistical and ML techniques widely
applied for reliability and maintenance analysis by classifying the research according to
the different statistical models and ML algorithms to offer guidelines and a foundation
for further research. In addition, a critical analysis of previous articles was carried out to
identify the advantages and shortcomings of the latest technological systems in the fault
detection and maintenance field to identify areas for the future scope of the study.

To achieve the mentioned, the paper is organized into five sections. In the first section,
there is a brief description of the current field of study. Section 2 presents the methodology
in the literature that is employed to categorize the previous work. Section 3 presents the
application of different traditional reliability methods. Section 4 discusses the application of
ML methods used in failure and reliability predictions. Section 5 discusses the conclusions
drawn based on the review and the potential future scope for the same.

Research databases, including Google scholar, Scopus, IEEE Xplore, ScienceDirect
and SpringerLink were mainly used for this study. Strategic keywords like reliabil-
ity/maintenance/failure analysis/fault detection and mine equipment (component) and
machine learning/statistical/graphical method were used in the searches. Figure 2 shows
the number of documents reviewed and used in each segment.
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Figure 2. Statistics of number of documents reviewed.

3. Review on Application of Different Traditional Methods Used in Reliability and
Fault Analysis

3.1. Graphical Methods

Graphical methods can identify fault time and monitor and schedule preventive
maintenance. The graph plots the number of failures per unit versus the total time on test
per unit. This method assumes the time between failures (TBFs) to be independently and
identically distributed. Therefore, the actual chronological orderings of the TBFs can be
ignored. Thus, using a TTT plot is not useful to evaluate failure data that has structures
or is positive to the serial correlation test. However, a significant aspect of these plots is
that they can be used to analyze incomplete data. The failure rate of the equipment can be
inferred from the shape of the plot. If the plot is concave downwards, the equipment is
deteriorating (increasing failure rate), but if it is concave upwards, the equipment improves
over time [36]. If the plot crosses diagonal multiple times, the equipment has a constant
failure rate [4]. Graphical methods can be used to arrive at maintenance intervals. TTT plots
can be used to monitor health of equipment in terms of constant failure rate/increasing or
decreasing failure rate. The technique of TTT-plotting, originally suggested by Barlow and
Campo, is very simple to use for failure data analysis (Refs. [4,37,38]).

Graphical approaches can also be used to verify the presence of trends in failure and
repair data by plotting the cumulative number of failures against the cumulative time [36].
Before modeling the reliability data, it should also be tested for mutual independence
by testing it for the presence of serial correlation. The serial correlation can be tested
by plotting the ith TBF Xi against (I − 1) th TBF, Xi − 1. If the plotted points exhibit no
pattern, it can be interpreted that the TBFs are free from serial correlation. In case the plot
reveals serial correlation, then the TBFs are plotted at greater lags, such as Xi against Xi − 2,
Xi − 3, Xi − 4 . . . . etc., to search for serial correlation over greater lags [39]. Since the 1990s,
reliability and maintenance engineering has incorporated graphical methods, and recent
studies show that graphical methods are still in use for the initial exploratory investigation.
The input data for the graphical approaches are TTF and TBF data. Graphical methods
are typically used to estimate the reliability of large equipment like excavators, draglines,
and LHDs. From the existing literature work, it can be deduced that graphical methods
are mostly employed in planning maintenance intervals, identifying the machine’s failure
trends (increasing/decreasing failure rate), and testing the goodness of fit of other reliability
estimating methods [40].

Authors used TTT plot to estimate the reliability of LHD machines and identified
components that needed improvement in design [4]. In [23] scaled TTT was used to review
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the goodness of fit of the power-law-process model using both graphical and analytical
procedures. In [41] used TTT plots for i.i.d failure data to plan maintenance intervals for
material handling equipment operating in the mining industry. In [42] authors collected
failure data of hydraulic shovels for a period of 1.5 years, analyzed the machine’s reliability
using distribution plots and studied increasing/decreasing failure rates using a TTT plot.
Authors used failure mode effect analysis (FMEA) and TTT plots to study the reliability of
the cone crusher [40,43].

3.2. Fault Tree Analysis

Fault Tree analysis translates a physical system into a logical diagram, making it one
of the industry’s most popular approaches for reliability and safety calculations. It can also
update a system’s setup to make it less vulnerable and sensitive [44]. Fault trees can also
assess the impact of design changes or proposed corrective actions [45]. The causes of an
event are deduced using a top-down deductive analysis. The components of a fault tree
analysis are “events” and “logic gates”, which connect the events to determine the reason for
the top unwanted event. The process of creating a fault tree is one of trial and error, and no
failure causes should be overlooked [46]. The completed fault tree is assessed considering
the analysis’ goals. There are several stages to the evaluation: listing minimum cut sets,
grading minimum cut sets, calculating probabilities, and so on. When there is quantitative
data on the likelihood of events, FTA is very useful, although qualitative analysis is also
possible [44]. Other risk analysis approaches aren’t as effective at discovering faults as
fault trees. Its visual presentation of the failure causes makes it simple to identify a
single failure that leads to a complete system failure. A fault tree is often normalized
to a given interval, and an event’s probability depends on the relationship between the
event risk function and this interval. The reliability is calculated using a sequence of gates,
considering the probabilities of the outputs of a set of Boolean logic operations. It can also
be used to assess the impact of design changes or proposed corrective actions [45]. Two
major approaches used for determining minimal cut sets for fault trees are Monte Carlo
simulation and deterministic methods. A basic fault tree structure is represented below
(Figure 3). According to the literature, FTA is used in the fault analysis of HEMM. Several
studies have been published in the last five years using SFT and DFT. From the previous
work, it can be noted that FTA is used both with descriptive and numerical data combined
with Boolean algebra to make decisions on optimized maintenance intervals, qualitative
and quantitative fault analysis, and reliability estimations of the equipment [47]. FTA was
helpful in identifying risk priority number (RPN), equipment value, and impact on value,
identifying basic events that cause failures, and building mathematical models by logically
correlating the events.

Figure 3. Basic fault tree representation [48].
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In [49], authors used fault tree analysis to understand the effects of each component or
subsystem of a dragline on its reliability, and to get an insight of an optimized maintenance
schedule. Probability distribution that best defined TTF data of each subsystem of dragline
was identified. The obtained distributions were then combined with a fault tree for defining
the system to identify the influence of individual component reliability on a dragline.
Dragging rope is predicted to have the highest contribution to a number of failures within a
year, but the motors and generators will cause the longest downtime if they fail. Probability
values were also useful in deciding which components need attention at certain time
intervals. In [50], the authors used fault tree analysis for fault identification of CNC turning
center. Boolean algebra was used to evaluate the fault tree (FT) diagram and to derive
the machine’s governing reliability model. Qualitative and quantitative analysis is carried
out to identify critical sub-systems and components of CNC turning center. The results
are the estimation of the reliability of the CNC machine after one year of the warranty
period and identify the number of failures during this period. In [51], the authors used fault
tree analysis to analyze failures associated with the mine cage conveyance while showing
the various branches of events that can lead to failures and their order of criticality for
the various associated components. Failures associated with one or more components
compromised the effectiveness of the mine cage conveyance as a system, and efforts were
geared toward managing the critical components identified in this study by reviewing the
existing maintenance plans and developing more robust strategies. In [52], the authors
developed a methodology to determine the critical machine of the company, based on
impact on production, impact on value, availability standby and equipment value and this
identified machine was further analyzed by using failure mode and effect analysis and fault
tree analysis in detail to determine its risk priority number (RPN). The risk priority number
(RPN) is the product of severity rating, probability of occurrence, and the probability of
detection [53]. A case study used a fault tree for a heavy-duty machine’s hydraulic system,
and the result shows that there are 27 basic events that cause hydraulic failure in the
hydraulic system, where oil pollution is the most critical basic event. As the outcome of
quantitative analysis is entirely dependent on the precision of the numerical data used
in the analysis, if uncertainties are left unresolved, then there is a chance of producing
misleading results. Hence, different methodologies, mainly based on fuzzy numbers, were
proposed to tackle the issue of uncertain failure data in FTA.

Standard fault trees (SFTs) can only assess the reliability of static systems. The dynamic
nature of a system leads to several dynamic failure features such as functional dependent
events and priorities of failure events. Although SFTs are commonly used for dependability
analysis, they are incapable of capturing dynamic data. SFTs have been expanded in several
ways to assist dynamic dependability analysis, such as dynamic fault trees (DFTs), state-
event faults, and stochastic hybrid fault trees. The DFT is one of the most extensively used
dynamic extensions of the SFT, and it captures sequence-dependent behavior, functionally
dependent component behavior, and event priority [54,55]. In [56], the authors proposed
a method to set the dynamic fault tree of a roadheader. The modular method was used
to split the fault tree into dynamic and static states, and a binary decision tree was used
to analyze the static state, and the logical relationship between faults was used to assess
the dynamic module. In [57], the authors constructed a dynamic fault tree using a binary
decision tree and Markov method in a modular approach for an electric haulage shearer.
The study revealed that improper installation of the first shaft bearing, cage off of first
shaft bearing, cutting motor damage and poor quality of lubricating oil were the major
contributors to the faults of the shearer [44].

FTA’s design concept can be used to demonstrate its limitations. It focuses on building
a mathematical model of a complex physical condition by logically correlating events. The
strategy is solely based on the analyst’s judgement if all peripheral, environmental, and
operating parameters are not given [58]. Another important difficulty with a quantitative
FTA is the lack of reliable and meaningful failure data and the probabilities of events.
The cost of development in a first-time application to a system is the most notable. For
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investigating small systems, inductive analysis approaches such as failure-mode-and-effects
analysis are significantly easier and less expensive to deploy [58].

Even though several fault tree extensions have been proposed, they all have a variety
of shortcomings. Even when software tool help is available, many investigations involve a
significant amount of manual work. Over the last two decades, researchers have focused
on ways to automate the synthesis of dependability information from system models,
with the goal of simplifying dependability analysis. As a result, the field of model-based
dependability analysis has emerged (MBDA) [44]. As part of MBDA, many tools and
approaches for automating the development of dependability analysis, such as fault trees,
have been developed. Because the analyses in MBDA are carried out on formal models, they
may be carried out iteratively, which helps to generate more results and new results if the
system design changes. When compared to manual procedures, this process takes less time
and costs less money, and because it is more structured, the chances of introducing errors
in the analysis or producing incomplete results are reduced. Furthermore, by allowing
sections of an existing system model or libraries of previously analyzed components to be
reused, the MBDA methodologies give a higher degree of reusability [44,55].

3.3. Probability Distributions and NHPP Models

The reliability of the system and sub-system can be determined from the failure rate
using probability distribution methods. Both parametric and non-parametric methods are
used in reliability estimations. Trend and correlation tests can be used to check if the data
points are independent and identically distributed. Parametric distributions can be used if
no trend or correlation is observed in the data. Otherwise, non-parametric methods can
be used to analyze data. In non-parametric methods, the failure data are analyzed with-
out assuming any particular distribution. The non-parametric analysis methods include
Kaplan–Meier, simple actuarial and standard actuarial methods. Reliability evaluation by
parametric method considers fitting the failure rate to any statistical distribution, such as
the exponential, normal, Weibull, or lognormal. This will result in a better understand-
ing of failure, and the resulting model can be used for analytical evaluation of reliability
parameters for the whole lifespan of the system.

Parametric probability distributions are used both in stochastic analyses of system
reliability, where the systems are mostly assumed to be fully known, and corresponding
properties of the system are analyzed, and for statistical inference, where process data are
used to estimate the parameters of the distribution, often followed by a specific inference of
interest [59]. Goodness of fit tests like the Chi-square test, Kolmogorov–Smirnov, Anderson–
Darling and Shipiro–Wilk tests are used to analyze how best the distribution fits the
given data. The model that most efficiently describes the data can be selected based on
goodness-of-fit tests for reliability estimations. The Weibull distribution function, among
all distributions, is usually the most used method to evaluate system reliability as the
distribution could be used to show an assortment of life behaviors. In this distribution,
cumulative probability, failure rate and probability density function (PDF) curves are
changed by the influence of either shape parameter, β, scale parameter, η and location
parameter, γ variation. The shape parameter mainly indicates the condition of the system.
If β < 1, it indicates that the rate of failure of a system or component will be decreasing with
respect to time. This condition can be treated as an early-life failure. Weibull distributions
with β nearer to or equivalent to 1 have a constant rate of failure, also known as the useful
life. Similarly, Weibull distributions with β > 1 have an increasing failure rate with respect
to time, denoted as a wear-out failure. A typical ‘bathtub curve’ plot clearly depicts the
three segments of failure zones. Figure 4 shows the bathtub curve representing the failure
rate over time.
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Figure 4. Bathtub curve representing equipment failure rate [60].

Most work in the literature is based on probability distributions in equipment relia-
bility estimations and maintenance analysis. TBF, TTF and TTR data are mainly used in
parametric and non-parametric estimations. Probability distribution and NHPP models
are mainly used in reliability centered maintenance and to identify critical systems and
sub-systems of the equipment. In [61], the authors presented reliability analysis based on
probability density function and failure rate of a shovel-dumper system of an open pit
coal mine using probability distribution functions. The KS test was used to evaluate the
best fit distribution for TBF data of shovels and dumpers. In [62], the authors adopted
a three-parameter Weibull distribution approach to analyze the data sets of load-haul-
dumper (LHD) in underground mines using the ‘Isograph Reliability Workbench 13.0’
software package. The parameters were evaluated using best fit distributions, and Weibull
likelihood plots and the percentage reliability of each individual subsystem of LHD were
estimated. Using the results, the authors identified preventive maintenance time intervals
and enhanced the overall reliability of the LHD. The equipment performance evaluation
was based on availability and utilization. In [63], the authors presented a case study de-
scribing the reliability analysis of crushing plants in a bauxite mine where the crushing
plants were divided into seven subsystems and reliability analysis was done for each
subsystem using failures data. The parameters of some idealized probability distributions
were estimated by using ReliaSoft’s Weibull ++ 6 software, and the best fit distributions
that characterized the failure pattern of the two crushing plants and their subsystems
were identified. Further reliability of both the crushing plants and their subsystems were
estimated at different time missions using the best fit distribution. Other aspects of system
failure behavior were also analyzed briefly for machine improvement. Analysis of the
total downtime, breakdown frequency, reliability, and maintainability characteristics of
different subsystems shows that the reliability of crushing plant 1 and crushing plant 2 after
10 h reduce to about 64% and 35%, respectively. The study showed the importance of
reliability and maintainability analysis for deciding maintenance intervals and for planning
and organizing maintenance. In [64], the authors considered two approaches (a basic
maintenance approach and a reliability-based approach) to analyze maintenance data.
To find the best-fit distribution, different types of statistical distributions were tested by
the Easyfit software. The developed model based on these data showed that the reliabil-
ity of loader No. 1 and No. 2 decreased to a zero value after approximately 477 h and
309 h of operation, respectively, and suggested a review on the maintenance program to
be performed to increase reliability. In [65], the authors presented a reliability analysis
of load-haul-dumpers in an underground coal mine. The distribution parameters were
estimated by both graphical and MLE processes and the goodness-of-fit test was carried
out using the Cramer von mises statistical test. Further, using this analysis, the total cost of
operation was reduced by estimating the reliability-based preventive maintenance time

146



Energies 2022, 15, 6263

intervals. In [66], the authors presented a case study describing reliability analysis and life
cycle cost optimization of a band saw cutting machine. A few components followed the
parametric distribution and certain components followed the non-parametric distribution.
The failure distribution parameters for each component of the machine were estimated
using ReliaSoft’s Weibull++6 software. The result of the analysis indicates critical parts of
the machine and with certain design changes indicated by the authors, there is around 16%
improvement in the overall reliability of the system, and the life cycle costs are reduced
by 22%. In [67], the authors used a renewal process (Poisson distribution) for modelling
the LHD’s mechanical failures. The graphical method tests if the data is independent and
identically distributed (IID). The parameters of various distributions were found by using
Math Wave Easy Fit 5.6 professional software. Chi-square test was applied to select the
best-fit distribution model. Further, the study of the two-parameter log normal distribution
theory and its parameters are presented using log-normal probability theory. The study
reflects that reliability analysis is a powerful tool for determining maintenance intervals.
Maintenance activity every week was suggested for the machine to achieve a reliability
of 75%. In [68], the authors developed a basic methodology for the reliability modelling
and development of a maintenance program for a fleet of four drilling rigs. Failure and
performance data was collected from the Sarcheshmeh copper mine in Iran for two years.
Then, the available data was classified and analyzed and the reliability of all subsystems
and whole rigs were modelled and studied. Easyfit and MS Excel software were used for
data analysis and finding the best-fit distributions and parameters, and the Kolmogorov–
Smirnov (K-S) test was used to select the best distributions. NHPP and renewable processes
were used for the reliability modelling of the subsystems of the drill rigs. The probabilistic
possibility of all fleet states was calculated, and maintenance operations were suggested
for 80% reliability.

In [69], the authors studied the reliability of a drum shearer machine using operation
and maintenance data from an Iranian mine for a period of two years. The tests for trend
and serial correlation showed that the times between successive failures for the cable system
were not independent and identically distributed and the graphical tests revealed that the
cable system of the shearer is a deteriorating system. A goodness-of-fit test showed that
the power law process model is a good fit for this system’s failure data. After parameter
estimation for the power law model, reliability and failure rate plots were obtained. Based
on analysis and results, a period of 125 h was defined as the reliability-based maintenance
interval for the cable system of the shearer. The analysis shows that, using this strategy,
the system’s reliability would improve by at least 50%. In [70], the authors studied the
reliability, availability, and maintainability (RAM) of a 36T dumper machine with failure
and repair data using the KME method and outlined the constraints and reasons for
machine unavailability. The results were verified using maximum likelihood estimation
and piecewise exponential estimation methods. The reliability and maintainability of
an LHD system are disappointing. They suggested maintenance planning and machine
improvement from this analysis. The Kaplan–Meir estimator is used to find the design life
and optimal maintenance period which are useful information in maintenance planning.
In [71], the authors developed a computational tool and programming with VBA in Excel for
reliability and failure analysis of underground rock bolters. The developed approach used
the modelling of stochastic processes, such as the renewal process, the non-homogeneous
Poisson process, and the Bayesian approach. The tool gives the best-associated model, the
parameters estimation, the mean time between failure and the reliability estimate. This
approach is validated with the reliability analysis of inter-failure times from underground
rock bolters subsystems over a two-year period. Results show that Weibull and lognormal
probability distribution fit to the most subsystem inter-failure times. The study revealed
that the bolting head, the rock drill, the screen handler, the electric/electronic system,
the hydraulic system, the drilling feeder and the structure have a high repair frequency.
The hydraulic and electric/electronic subsystems represented the lowest reliability after
50 operation hours. In [23], the authors conducted a preliminary analysis of a fleet of LHD
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machines, found that engine and hydraulic systems are the two most critical systems and
selected hydraulic systems for further study. Maintenance data for two years for these
machines were analyzed. The tests for trends and serial correlation showed that times
between successive failures for the hydraulic systems were in most cases not independent
and identically distributed. Goodness-of-fit tests (Cramer–von Mises test and graphical
methods) showed that the power law process model is a good fit for the hydraulic systems’
failure data. Methods for parameter estimation in the power law process model and
estimation of optimal maintenance intervals for the LHDs are presented, emphasizing the
use of graphical methods for data analysis.

4. Machine Learning Applications in Failure Predictions and Reliability Estimations

Machine Learning (ML) is a subclass of artificial intelligence (AI) that can be defined
as a semi-automated system in which computers create an algorithm by learning from
observed data. Machine learning algorithms create a model based on training data and use
it to make predictions or judgments without having to be explicitly programmed to do so.
In recent years, decision makers and the scientific community have paid close attention
to the use of machine learning in risk and reliability assessment. Currently, quite a good
amount of work is being carried out in mine equipment failure and reliability assessments
and predictive maintenance analysis [72]. A machine learning approach can be used for
predicting failures and also to identify important parameters that predict failures.

From the equipment failure perspective, machine learning can be useful to replace or
repair a component before a fault happens and restore the original condition of the equip-
ment to maintain reliability. The algorithms use previous failure data or the equipment’s
vibration/condition monitoring data to study failures and make predictions. This would
lead to decreased downtime and achieve expected production levels at all times. Machine
learning helps predict future failures to accurately schedule maintenance operations. ML
techniques are designed to derive knowledge out of existing data. The following diagram
(Figure 5) gives a basic understanding of ML application for fault analysis.

Figure 5. Workflow for developing data-driven ML model for fault detection.

Businesses can profit from big data since it aids in guiding systems with a prescriptive
maintenance strategy. To improve the performance of machine learning algorithms, it
is critical to acquire usable data from the dataset [73]. Depending on the availability of
labelled data, ML-based data-driven methods can be further classified as supervised, semi-
supervised or unsupervised approaches. Machine learning algorithms are classified into
taxonomies based on the algorithm’s expected outcome. The following are a list of common
algorithm types:

• Supervised learning: The algorithm creates a function that maps inputs to outputs.
Output variables are known. The classification problem is a common supervised
learning challenge in which the learner must learn (or estimate the behaviors of) a
function that maps a vector into one of many classes by studying multiple input-output
samples of the function.
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• Unsupervised learning: There is no target or outcome variable to predict/estimate in
this method. It is used for clustering populations in different groups and when there
is a lack of sufficiently labelled data [74].

• Semi-supervised learning: Combines both labelled and unlabeled examples to generate
an appropriate function or classifier [75]

• Reinforcement learning: The machine is taught to make a certain decision using this
algorithm. It works like this: the machine is placed in an environment where it would
constantly train itself through trial and error. This system learns from its previous
experiences and seeks to capture as much information as possible to make accurate
decisions [74].

Predictive modelling can be described as the mathematical problem of approximating
a mapping function (f) from input variables (X) to output variables (y). This is called the
problem of function approximation. The algorithms are divided into two types: classifi-
cation and regression based on the output variable. Classification predictive modelling
is the task of approximating a mapping function (f), from input variables (X) to discrete
output variables (y). The output variables are often called labels or categories. The map-
ping function predicts the class or category for a given observation. Regression predictive
modelling is the task of approximating a mapping function (f) from input variables (X) to a
continuous output variable (y). A continuous output variable is a real value, such as an
integer or floating-point value. Classification models use different metrics like accuracy,
precision, recall, F1-score, ROC, confusion metrics, specificity, sensitivity, and AUC to
evaluate model performance. Regression models use mean square error (MSE), root mean
square error (RMSE), mean absolute error (MAE), bias-variance and learning curves to
estimate error and evaluate model performance [76]. Classification models are mostly used
in the literature to predict and classify faults. A few ML algorithms used majorly in the
literature of equipment reliability and fault analysis are discussed in this section.

4.1. Support Vector Machine (SVM)

Support vector machine (SVM) is a supervised machine learning algorithm that can
be used for classification and regression problems. In the SVM algorithm, each data item is
plotted as a point in n-dimensional space where n is the number of features considered,
with each feature being the value of a particular coordinate [77]. Then, the aim is to
perform classification by finding the hyper-plane that differentiates the two classes very
well. SVMs maximize the margin around the separating plane, and the decision function
is fully specified by a subset of training samples called the support vectors [78,79]. The
optimal SVM hyperplane for binary classification is represented in Figure 6.

A separating hyper plane can be used to divide data that is linear. However, the data
is frequently non-linear, and the datasets are closely linked. To account for this, the input
data is non-linearly mapped to a high-dimensional space. After that, the new mapping is
linearly separable. Kernel trick allows SVM’s to form nonlinear boundaries. The kernel
function’s purpose is to allow operations to be conducted in the input space instead of the
possibly high-dimensional feature space. As a result, the two classes can be separated in
the feature space. Different kernel functions exist, such as polynomial, radial basis function
(RBF), and sigmoid function, and the choice of a kernel function is determined by the
application [80]. From the literature review, it can be noted that SVM is mainly used for
forecasting failures, fault diagnosis and pattern recognition. The previous works used TTF,
TBF, audio signals, vibration data, and fault states as input data for SVM algorithms. From
the time horizon, it can be noted SVM was widely popular from 2010 to 2015 in mining.
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Figure 6. Optimal hyperplane for binary classification [81].

In [82], the authors used SVM to detect defects and fault patterns of unexpected
heavy equipment failures. SVM classifier was used to divide data as normal and abnormal
and only normal data was used for learning using restricted Boltzmann machine (RBM)
and then based on patterns, faults in the system were identified. In [83], the authors
used the SVM regression algorithm to forecast TBFs using historical observations of LHD
failures. A Pareto analysis detected the LHD’s engine as the most critical system. TBFs
of 32 failures were obtained. Twenty-five records were used for SVR modelling and the
remaining for testing. Mean absolute percentage error (MAPE) and normalized root mean
square error (NRMSE) values were used to evaluate model performance. A polynomial
kernel function of the third degree resulted in the best predictions (minimum errors). An
absolute percentage error value of less than 2% was achieved, demonstrating excellent
forecasting applicability of SVR. In [84], the authors have explored the application of the
SVM classification approach for pattern recognition and failure forecasting on mining
shovels. The failure behavior of a fleet of ten mining shovels during 1 year of operation
was investigated and the shovels were classified into four clusters using k-means clustering
algorithms, based on their reliability. Future failures were predicted using the support
vector machine (SVM) classification technique. Historical failure (component type) and
time to repair data were used to predict the next failure type for all shovels. Four different
kernel functions, namely linear, polynomial, RBF and sigmoid function were examined in
combination with different values of C parameter, using a grid search attempt. The best C–K
pair that resulted in the maximum number of correct classes for the test dataset was selected
for each shovel from each cluster using a grid search method, and the results were validated
using particle swarm optimization. The SVM technique was shown to be successful with
a prediction accuracy of over 75%. In [85], the authors proposed principal component
analysis (PCA) with the SVM method for fault diagnosis of mine hoists. PCA was used
to extract relevant time domain and frequency domain features and using these, a multi-
class SVM algorithm model corresponding to nine different fault states output was built.
Comparison of various methods showed the PCA-SVM method successfully diagnosed
faults in the mine hoists system. The RBF kernel function system had the best classification
properties and the accuracy of the model turned out to be around 98%. In [86], the authors
developed a SVM based ensemble model for reliability forecasting of a mine dumper. The
hyperparameters of the SVM were selected by applying a genetic algorithm. A case study
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was conducted investigating a dumper operated at a coal mine in India. Time-to-failure
historical data for the LHD were collected, and cumulative time to failure was calculated for
reliability forecasting. The hyperparameters of the SVM models were selected using genetic
algorithm-based learning. Study results demonstrate that the developed model performs
well with high accuracy (determination coefficient R2 = 0.97) in the prediction of LHD
future failure times, and a comparison with other methods demonstrates the superiority
of the proposed ensemble SVM model. In [87], the authors have proposed a classification
method for an automated operating mode to increase the performance of vibration-based
online condition monitoring systems for applications such as gearboxes, motors, and their
constituent components. Several variations of the system have been tested and found to
be successful. A swing machinery system of an electromagnetic excavator is used to see
how this method functions on dynamic signals gathered from an operating machine. The
empty and full swing cycles are the two classification classes with vibration and speed
as input parameters. SVM and other classification models were used to analyze swing
performance. Data were collected over a period of 45 h on an operation. In [88], the
authors developed a method for monitoring and tracking both location and action for
automated construction equipment. The authors have proposed an audio-based method for
tracking and activity analysis of heavy construction equipment. The equipment generates
distinct sound patterns while performing a certain task and these audio signals are filtered
and converted into time–frequency representations. This data is classified into different
activity representations using a multiclass SVM classification algorithm, and the results
demonstrated the potential capacity to correctly recognize various equipment actions with
80% model accuracy.

4.2. The k-Nearest Neighbors KNN

The k-nearest neighbors (KNN) method is a supervised machine learning algorithm
that can be used to address classification and regression problems [89]. KNN is a kind
of instance-based learning (also known as lazy learning), in which the function is only
estimated locally, and all computation is deferred until classification. When there is very
little prior knowledge about the data distribution, the KNN is the most basic and simplest
classification algorithm. The data points are categorized based on how their neighbors are
classified. The algorithm’s idea is that all data points with similar characteristics are in
close proximity. Given a K value, the nearest K neighbors are chosen for any new point, and
the class containing the most points out of the k points is allocated to the new point. The
choice of K, as well as the distance measure used to pick the nearest K points, determine
the performance of a KNN classifier. In the case of KNN, a small training sample size can
significantly impact the selection of the optimal neighborhood size K, and the sensitivity of
K selection can significantly decrease KNN classification performance. In general, KNN is
susceptible to data sparsity, noisy mislabeled points, and outliers from other classes if the K
value chosen is too small or too large [90–92]. From the literature review, it can be inferred
that KNN data is recently gaining popularity in mining. It is mainly used in fault diagnosis
and real time fault monitoring. Faults are monitored and identified both at system and
sub-system levels.

In [93], the authors studied a historical failure dataset of a dragline to conduct pre-
dictive maintenance. The authors used the k-Nearest Neighbors algorithm to predict the
failure mode but there was a chance of overfitting in the methodology. Hence, a combina-
tion of the genetic algorithm and k-Nearest Neighbor algorithm was applied for the failure
dataset. This enhanced the model performance, and the results were better predicted. In
another study, [94], the authors collected vibration signals of main journal-bearings of an
IC engine from condition monitoring methods. The vibration signals were classified under
normal, oil starvation, and extreme wear fault. Thirty features were extracted from the
processing of signals, and KNN and ANN were applied to train the dataset and later for
diagnostic use. Variable K ranging from 1 to 20 with the step size of 1 was used to get
better classification results. The experimental results showed diagnostic methods were
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reliable in separating fault conditions in the bearings. In [95], the authors proposed a new
methodology of weighted k-Nearest Neighbor classifier where a square inverse weighting
technique was used to improve the accuracy of the KNN model for fault diagnosis of rolling
bearing elements. Three bearing conditions were classified: healthy, inner, and outer race
fault. The algorithm indicated that this method enables fault detection in bearings with
high accuracy. In [96], the authors presented a fault diagnosis technique based on acoustic
emission (AE) analysis with the Hilbert–Huang transform (HHT) and data mining tool.
In [97], the authors proposed a real-time online fault diagnosis method for rolling bearings
based on the KNN algorithm. The rolling bearing vibration signal is preprocessed, and
feature parameters are extracted. The data was preprocessed, with 100 raw points as one
sample, for a total of 8496 samples. Different classification models like decision tree C4.5,
CART algorithm and KNN were used to classify fault data. Real-time online extraction of
the characteristic parameters of the vibration signal was used to realize real-time online
faults through the fault diagnosis model. Results show that the fault diagnosis model based
on the KNN algorithm is better than the fault diagnosis model.

4.3. Naïve Bayes Classifier

Naïve Bayes, a supervised machine learning algorithm, assumes an underlying prob-
ability distribution and captures uncertainty about the model logically by calculating
probabilities of occurrences. It is used to solve diagnostic and predictive issues. It calculates
explicit hypothesis probabilities and is robust to noise in the input data [98]. The naïve
Bayes algorithm is a straightforward probability classifier that derives a set of probabilities
by counting the frequency and combinations of values in a data set. When assessing the
value of the class variable, the method applies Bayes’ theorem and assumes that all vari-
ables are independent. In a range of controlled categorization challenges, the algorithm
learns quickly [99].

There are different types of Naïve Bayes classifiers. When characteristic values are
continuous, it is assumed that the values associated with each class are spread according to
the Gaussian distribution, which is the Normal distribution. On multinomial distributed
data, multinomial naïve Bayes is preferred. Bernoulli naïve Bayes is employed when data
is distributed according to multivariate Bernoulli distributions. That is, multiple features
exist, but each one is considered to have a binary value. As a result, binary values are
required for features [100,101]. Naïve Bayes has recently earned a lot of attention because
of its high learning and prediction accuracy, and more importantly, the algorithm works
well for mining data and conditions. In the literature work, naïve Bayes was used in fault
diagnosis and assessing faults’ damage and fault classifications.

In [102], the authors predicted RUL of bearings using the naïve Bayes algorithm.
Firstly, the statistical method is used to extract the features of the vibration signal, and the
root mean square (RMS) is regarded as the main performance degradation index. Second,
the correlation coefficient is used to select the statistical characteristics that have high
correlation with the RMS. Then, in order to avoid the fluctuation of the statistical feature,
the improved Weibull distributions (WD) algorithm is used to fit the fluctuation feature
of bearings at different recession stages, which is used as the input of the naïve Bayes
(NB) training stage. During the testing stage, the true fluctuation feature of the bearings
is used as the input of NB. After the NB testing, five classes are obtained: health states
and four states for bearing degradation. Finally, the exponential smoothing algorithm
is used to smooth the five classes and to predict the RUL of bearings. The experimental
results show that the proposed method is effective for RUL prediction of bearings. In [98],
the authors used Naïve Bayes for bearing fault diagnosis on enhanced independent data.
Data-based fault diagnostics of mechanical components has become a new hotspot. Their
approach was based on processing the data vector (attribute feature and sample dimension)
to reduce the limitations of Naïve Bayes by an independence hypothesis. The statistical
characteristics of the bearings’ original signal were extracted, decision trees were used to
select important features of the signal, and low correlation features were selected. The
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authors used SVM models in the next step to prune redundant vectors, and in the last step
used Naïve Bayes on the processed data to diagnose faults. In [103], the authors studied non-
repairable equipment with multiple and independent failure modes, where only incomplete
information about the failure mode was obtained through condition monitoring. The study
focused on obtaining a probability matrix representing the relationship between actual
health and condition monitoring information of the equipment and Naïve Bayes was used
as a classifier to classify each failure mode based on the degree of damage. An experimental
planetary gearbox system is used to gather condition monitoring data for damage degree
classification considering four failure modes. A forward feature selection is used in this
paper to find the best set of features. The classification accuracy increases to 94.76%. In [104],
the authors applied a Naïve Bayes classifier for diagnosing faults of rolling element bearings
and indicated that the Naïve Bayes classifier presented higher levels of accuracy of 96%
without any feature engineering requirement.

4.4. Decision Tree

Decision tree is a supervised machine learning method for constructing classification
systems based on multiple parameters or generating prediction algorithms for a target
variable. In this method, a population is divided into branch-like segments that form
an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-
parametric and can handle huge, complex datasets without imposing a complex parametric
framework [105]. Decision trees are mainly effective in handling non-linear datasets. Like
stepwise selection in regression analysis, decision tree methods can be used to pick the
most relevant predictor variables from a large number of features in datasets and to assess
the relative importance of these variables on the decision variable. Moreover, decision trees
can also handle missing data very well. It is also easy to handle a variety of input data:
nominal, numeric and textual [106].

However, other target functions of the decision tree can also include, minimizing the
number of nodes or minimizing the average depth to find the most important predictors.
Pruning is the practice of removing redundant nodes from a tree to obtain the best decision
tree possible. A general decision tree structure is represented in Figure 7.

Figure 7. A general decision tree structure [107].
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In [108], the authors in their work proposed an equipment reliability model for pumps,
designed by applying a data extraction algorithm on equipment maintenance records
residing in SAP applications. The author has initially applied unsupervised learning to
perform cluster evaluation. Thereafter, the data from the finalized model was applied to
a supervised learning algorithm where the classifier was trained to predict equipment
breakdown. The classifier was tested on test data sets where it was observed that support
vector machine (SVM) and decision tree (DT) algorithms were able to classify and predict
equipment breakdown with high accuracy and a true positive rate (TPR) of more than
95 percent.

In [109], the authors proposed the fault diagnosis method of an industrial ventilator
(Fan) based on analysis-decision trees. The operating of the fan was followed in five differ-
ent conditions: a healthy condition and then affected by four different faults, those affecting
inner and outer races of rolling bearings, the mass unbalance and mechanical looseness.
Fifteen factors including mean, median, variance indicators (including the greatest three
peaks by amplitude in each condition) that described the vibration signals were extracted
for each spectrum. In each condition, 30 signals were recorded to have 150 indicator vectors,
divided into two sets. Twelve trees were built on the base of numeric attributes, Decision-
Stump, FT, J48, J48graft, LADTree, LMT, NBTree, RandomForest, RandomTree, REPTree,
and SimpleCart. Genetic algorithms optimized the finding of the best choice representative
tree. The RandomForest Tree is preconized for establishing a diagnostic tool for the studied
industrial Fan. In [110], the authors emphasize the problem of finding out good features
that discriminate the different fault conditions of the bearing. The selection of good features
is an important phase in pattern recognition and requires detailed domain knowledge.
Their paper illustrated the use of a Decision Tree that identifies the best features from a
given set of samples for the purpose of classification. It uses Proximal Support Vector
Machine (PSVM), which has the capability to efficiently classify the faults using statistical
features. The criterion used to identify the best feature invokes the concepts of entropy
reduction and information gain that are used in Decision Tree. The vibration signal from a
piezoelectric transducer is captured for the following conditions: good bearing, bearing
with inner race fault, bearing with outer race fault, and inner and outer race fault. The
statistical features are extracted using decision tree and classified successfully using PSVM
and SVM. In [111], the authors used Decision Tree combined with Bayesian network for
fault diagnosis of motor faults. This paper describes the model structure and the basic
ideas of Decision Tree and Bayesian network, combines the advantages of the two, and
solves the uncertainty of diagnosis information effectively.

4.5. Logistic Regression

In binary classification, logistic regression analysis performs exceptionally well, par-
ticularly with categorical variables with [0, 1] classes. Based on the values of predictor
variables, either categorical or numerical, logistic regression models can estimate the like-
lihood of a failure occurrence [112]. In logistic regression, the dependent variable has a
Bernoulli distribution. Thus, for any given linear combination of independent variables,
an unknown probability, P, of the response variable is estimated. To do so, a link function
must be used to link the independent variables to Bernoulli’s distribution, with the natural
log of the odds ratio or the logit acting as the link function. This function converts a linear
combination of explanatory variables to Bernoulli’s probability distribution, which has a
domain of 0 to 1.

Logistic regression is a supervised learning technique often used in failure predictions
and preventive maintenance strategies. Cost data, failure data, sensor data and acoustic
electric signals were the input data used in logistic regression in previous work. The
algorithm was used to predict economic success, RPN, machine state in the next 24 h given
the current state and equipment reliability.

In [113], the authors used logistic regression models based on cost to accurately predict
economic success or failure using the fleet data for 378 single axle dump trucks. In [114],
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the authors proposed a systematic approach for developing a standard equation for the
risk priority number (RPN) measure, using the methodology of interval number-based
logistic regression. The aim is to reduce risks of failure, using FMEA in terms of the risk
priority number (RPN). The logistic regression model helped identify the probability of
risk of failure of high-capacity submersible pumps. Another study aimed to propose a
model for predicting mechanical equipment failure from various sensor data collected in
the manufacturing process. This study constructed a Hadoop-based big data platform
to distribute many datasets for research, and performed logistic regression modelling to
predict the main variables causing the failure from various collected variables. As a result
of the study, the main variables in the manufacturing process that cause equipment failure
were derived from the collected sensor data, and the fitness and performance evaluations
for the prediction model were made using the ROC curve [115]. In [116], the authors
applied logistic regression to predict machine state 24 h in the future, given the current
machine state. A confusion matrix was used to evaluate model performance. In [117],
the authors used logistic regression models and acoustic emissions (AE) to evaluate the
reliability of the cutting tool to determine best maintenance practice. As it is difficult
to monitor cutting forces in practice, a combination of both AE and logistic models are
effective in reliability analysis. Reliability models are constructed using AE signals and
cutting force as parameters. The results show that AE feature extractions and logistic
models work effectively in reliability estimations.

4.6. K-Means Algorithm

K-Means clustering is an unsupervised learning approach that is used in machine
learning to handle clustering problems. It divides the unlabeled data into many clusters.
The K-Means clustering method is easy and accurate, flexible to handle large data, has
a good speed of convergence, and has adaptability to sparse data. K-Means clusters the
data into different groups and provides a simple technique to determine the categories of
groups in an unlabeled dataset without any training. It is a centroid-based approach, where
each cluster has its own centroid. The goal of this algorithm is to minimize the sum of
distances between the data point and their corresponding clusters. The K-means clustering
algorithm finds the best value for K center points or centroids by an iterative process and
assigns each data point to its closest K-center. Those points which are near to the K-center
create a cluster. The distance of the point from the centroid in each step is calculated using
Euclidean method. Hence data points from each cluster are similar in some way and are far
from other clusters. The K value is user defined for the algorithm that is generated. The
Elbow method is the most popular way that helps in selecting the optimal K value. The
method is based on minimizing within cluster sum of square values (WCSS) that defines
total variation in the data [118].

In [119], the authors have tried to implement a clustering method to group maintain-
able equipment based on their need for maintenance according to time to failure, and the
location of these machines. The main aim was to reduce scheduling process and time
and a standard maintenance procedure for the machines in each cell. In [120], the authors
examined the condition-based equipment data using a data analytics approach to develop a
predictive maintenance program. K-means for clustering the failure characteristic, support
vector regression (SVR) model used for predicting equipment failure were the two models
used in their study.

4.7. The Neural Network ANN

The neural network (NN) plays a vital part in the human brain, and ANN is an
unsupervised learning technique created from biology. ANN stands for artificial neural
networks, and biological neurons inspired it. It is a massively parallel computing system
made up of many basic processors connected by a large number of interconnections. ANNs
learn the basic rules from a series of given symbolic circumstances in instances rather than
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following a set of laws specified by human experts. They are organized into three layers
(i.e., input layer, several hidden layers, and an output layer).

Furthermore, the relationships between the network processing units are the source
of the ANNs’ analytical activity. ANNs are the most extensively used machine learning
algorithms. Multilayer perceptrons (MLPs) with backpropagation learning are based on a
supervised technique and have three layers: input, hidden, and output [121,122]. Compared
to other classic machine learning techniques, ANN models have significant advantages in
dealing with random, fuzzy, and nonlinear data. ANNs are best suited for systems with
a complicated, large-scale structure and ambiguous data. They are commonly employed
for a wide range of issues [123,124]. ANNs do, however, also have some drawbacks. As
a hardware-dependent algorithm, ANN requires GPU for processing and to create them
in the first place. ANN requires a large amount of training data to build the appropriate
algorithm. When using the sigmoid activation function, ANN algorithms frequently
encounter vanishing and expanding gradient difficulties and the challenge remains in
finding the loss function. The algorithms of ANN are black boxes in nature, where results
are based on the experience of training data and not a specified program, making it difficult
for modification and explanation to business stakeholders. Despite the shortcomings of
ANN, neural networks are gaining wide popularity in the mining industry and researchers
are mostly moving towards the use of ANN in failure analysis and predictive maintenance.
The sample neural network architecture is shown in Figure 8.

Figure 8. Sample neural network architecture [125].

ANN is widely used in reliability and fault analysis of mining machines. Several
literature works can be found using ANN for analysis. ANN has been used in mining
since the early 2000s. However, the ANN architecture was not as developed as it is today,
and only feed-forward networks were used in the algorithm. Presently, ANN is used
with higher accuracy and better results in predicting equipment failures and reliability.
ANN is used for fault diagnostics of numerous types of rotating machinery that use signal
processing techniques to extract features and further input these to the ANN model to
classify faults [126–129]. In [130] the authors studied electric motor faults with ANN
feedforward networks and self-organizing maps. Data was taken from stator current and
mechanical vibration signals for major motor faults. The study showed the effectiveness
of both algorithms and feedforward networks looked more promising for electric motor
analysis. In [131], the authors used multilayer perceptrons (MLP) in ANN to classify
dragline faults using two years failure data. There were 16 causes in total that lead to
dragline failure. Two different models for analysis of these faults, using seven causes, seven
symptoms and five fault parameters of drag systems have been developed. The prediction
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accuracy of symptoms using the cause was 94.2% and that of fault using symptom was
97.1%. In [124], the authors demonstrated on how neural networks can be used in vibration
monitoring analysis of rolling element bearing and derived how it can be effective in
handling noisy data. In [132], presented a multi-state algorithm for dynamic condition
monitoring of a gear. The algorithm information referred to the gear status and estimated
the mesh stiffness per shaft revolution in case that any abnormality is detected. This
network was fed with statistical parameters obtained from the wavelet coefficients derived
for the most sensitive levels of decomposition to damage; the output resulted in the drop
in the averaged torsional meshing stiffness when a failure appears, which is highly related
to local failure. In [123], the authors proposed a rotor vibration fault diagnosis approach,
that transforms multiple vibration signals into symmetrized dot pattern (SDP) images,
and then identifies the SDP graphical feature characteristic of different vibration states
using a convolutional neural network (CNN). A CNN can reliably and accurately identify
vibration faults by extracting the feature information of SDP images adaptively through
deep learning. The proposed approach was tested experimentally using a rotor vibration
test bed, and the results obtained were compared to those obtained with an equivalent
CNN-based image recognition approach using orbit plot images. The rotor fault diagnosis
precision was improved from 92% to 96.5%.

5. Discussions and Conclusions

Various statistical techniques have been reviewed in this literature review and are
categorized based on the method of application. Based on the literature review, it can
be concluded that reliability and failure analysis play a significant role in tracking and
improving efficiency of machine systems and subsystems and a significant amount of
work is carried out with this regard. However, the effectiveness of statistical learning is
based on the amount and quality of data that can be collected. The most common data
used is historical failure data (TBF/TTF, TTR, failure component) and real-time vibration
data. As the volume of data increases, the complexity increases. With the advancement
in the integration of big data tools, the analysis should progress more efficiently. Often,
incorrect and missing data lead to lower analysis quality and accuracy, and this problem
can be mitigated by leveraging automation techniques to store failure data. At present,
research is more focused towards the analysis of failure data and less attention is given to
the process of automation of data collection and storage. This could be one of the significant
areas of improvement. As per the literature review, reliability and failures can be analyzed
using a wide range of algorithms. To sum up, every algorithm has its own advantages
and limitations and should be chosen based on the stated problem and data availability.
Choosing a sub-optimal or unsuitable algorithm can lead to reduced benefits or even loss
of time and money. The business goals should be clearly specified, and the data driven
framework should be properly established before the start of problem solving and actual
statistical analysis.

Graphical methods, probability distributions, NHPP models, supervised and unsu-
pervised classification models are discussed in the analysis. Based on the literature review,
probability distributions and NHPP models are widely applied techniques in reliability
and maintenance analysis of mine equipment and components. In the present day, arti-
ficial neural networks are gaining more importance and several works of literature are
successfully leveraging ANN. Table 1 gives a summary of the methods reviewed in the
literature, data type used in different literature for the algorithms reviewed, the application
of each algorithm in the existing literature and the distinction of the methods from the
other algorithms reviewed.
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Table 1. Different methods, f reliability analysis and failure predictions, their applications
and distinction.

Method Data Types Applications Method Distinction

Graphical methods • TBF • Plan maintenance intervals
• Know system conditions
• Goodness-of-fit test

Works with both complete
and incomplete data

FTA • Qualitative
• Quantitative

• Assessing risk priority number
• Mathematical modelling
• Root cause analysis

Can work with descriptive
and numerical data

Probability distributions
and NHPP models

• TBF
• TTF
• TTR

• RCM
• Equipment design plan
• Identifying critical components

Data can be easily and
most accurately explained

SVM • TTF
• TBF
• Fault types
• Vibration data

• TBF forecast
• Fault pattern recognition
• Reliability forecast

Can work well with small
datasets

KNN • TTF
• Fault types
• Condition-monitoring

• Failure mode prediction
• Fault diagnosis
• Real-time fault detection

Can work when
sub-classes and
similarities in data
are unknown

Naïve Bayes • Vibration • Fault diagnosis
• Damage degree of faults

Works on probability of
previous instances

Decision Tree • Vibration
• Fault types

• Features discriminating fault
conditions

• Diagnosis of equipment condition
• Uncertainty of fault diagnosis

Information gain and
pruning properties

Logistic Regression • Cost per fault
• TTF
• Sensor
• AE signals
• TBF

• Assess RPN
• Assess economic success
• Assess machine state in next 24 h
• Reliability prediction

Estimate the importance of
each feature in binary
decision models

K-Means • TTF
• Equipment Condition
• TBF

• Classification of faults based
on TTF

• Predictive maintenance strategy

Can work with the output
variable unknown
(unsupervised algorithm)

ANN • Signal processing
• Stator current
• Vibration image

• Fault diagnosis
• Condition monitoring
• Image recognition

Deep learning

Graphical methods are the oldest and most convenient techniques that can be used
in reliability analysis to get an overview of the system condition (if it has a decreasing,
increasing or constant failure rate) and only time between failure (TBF) data is required
for the analysis. However, the process is time consuming, and a deep dive analysis of the
problem is not possible using this technique. More importantly, the plots cannot be used if
the data is not independently and identically distributed (i.i.d.). Graphical methods are
used from the early 1990s to date in mining. As graphical methods are the easiest to use
to determine the system condition, though trivial, the method is still existent and is used
along with complex algorithms for initial data exploration.

Probability distributions and NHPP models work on both i.i.d and non-i.i.d data.
Probability distributions can be applied if data is not correlated and shows no trend
otherwise NHPP models can be used. TBFs or TTF or TTR are the input data for the
analysis. A wide range of software is available in the market to make the analysis easier.
The system’s reliability, subsystems at any instance, the overall reliability, failure rate, and
distribution parameters can be quickly obtained within seconds. Hence, this technique is
widely used in reliability estimations. Maintenance intervals can be scheduled by studying
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probability graphs to maintain certain reliability levels. However, the major limitation of
this method lies in not capturing parameters that influence the failures. As mining is a very
complex activity, the external and internal parameters that influence equipment failure keep
changing constantly from one state to other, and this has a major effect in failure analysis.
As Weibull distribution commonly explains a component behavior, the future scope for
improvement of this method can be the development of machine learning algorithm that
can enhance the Weibull -based curve through the integration of external knowledge.

Fault trees can effectively discover the underlying cause of every failure and trou-
bleshoot the problem from its root. Its visual presentation of failure causes makes it simpler
to identify a single failure that leads to complete system failure and find the probability
of the same. However, FTA’s design concept can be used to demonstrate its limitations. It
focuses on building a mathematical model of a complex physical condition by logically
correlating events. The strategy is solely based on the analyst’s judgement if all peripheral,
environmental, and operating parameters aren’t given. A static fault tree cannot be applied
if the system functions continuously change. Dynamic fault trees can be used in such
conditions and even though several fault tree extensions have been proposed, they all have
a variety of shortcomings. Even when software tool help is available, many investigations
involve a significant amount of manual work.

Machine learning offers a wide range of algorithms that are excellent with failure
analysis and predictions. Machine learning overcomes most of the limitations of the
traditional statistical reliability techniques. Machine learning can work both with i.i.d and
non-i.i.d data and the algorithm can easily capture underlying trends. ML can be faster than
most other methods and can be less expensive if the input data is correctly fed. It considers
external and internal feature parameters which influence failures. There are a variety of
ML algorithms available and can be adopted based on the business problem requirement.
Advantages and shortcomings of most common algorithms are discussed below.

SVM is one of the best classification and regression algorithms for failure analysis. It
can generally categorize failure data very well into different groups with high classification
accuracy. From the literature review, it can be seen that SVM is mainly used for fault pattern
recognitions and predicting future failures. SVM can excellently deal with high dimension
features, doesn’t suffer from overfitting and outliers generally have less influence. However,
SVM is not suitable for large data sets and data that has more noise. SVM was mostly
used in combination with another pre-processing algorithm (genetic algorithms, principal
component analysis) in the reviewed literature. Naïve Bayes and the ANN algorithm are
replacing other classification models due to their high learning and prediction accuracy
in mining.

K-NN is the easiest algorithm to implement and makes no assumptions about the
underlying data. K-NN is used both for failure and real time monitoring data. K-NN
presented high accuracy with failure data in the literature reviewed. However, the accuracy
of data is susceptible to the quality of data. Overfitting is one of the major problems of
K-NN and to eliminate this possibility K-NN was used with other algorithms like the
genetic algorithm. KNN also does not work well with high dimensional data and needs
feature scaling.

The Naïve Bayes algorithm is characterized by the explicit underlying probability
model. Naïve Bayes was mainly applied in the bearing fault predictions that use vibration
data. Naïve Bayes along with a forward feature selection method, provided excellent
accuracy when data had incomplete information about failure mode. It can be used very
well to analyze failure data where the predictors are independent of each other. The
disadvantage of the method is the assumption of independent predictors, which might not
actually be true and has a need of prior probability.

Decision trees need little data preparation and are used for constructing classification
systems based on multiple parameters or generating prediction algorithms for a target
variable. Decision trees in reliability and failure analysis are mainly used to identify
important features influencing target variable. SVM, KNN and Naïve Bayes are used along
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with decision trees to classify faults. The pruning method used in decision tree is one of the
best techniques to accurately select parameters for classification models. Decision trees are
very easy to understand and are able to handle multi-output problems. The major limitation
of a decision tree is the time taken to process the algorithm and can be unstable due to small
variations in data. Decision trees are piecewise constant approximations making it difficult
to predict future faults. Decision trees were previously used in fault diagnosis of mining
equipment. However, with the improvements of decision tree algorithms, new methods
like random forest, or xgboost, have replaced the traditional decision tree algorithm.

Logistic regression performs well with failure classifications. They are mainly used in
binary decision models and to estimate the importance of each feature. Logistic regression
can be easily used for linearly separable data with a low dimensional dataset. Overfitting
is the problem of high dimensional data. K-means models were mainly used to categorize
data into groups, in order to plan a preventive maintenance strategy for each group. K-
Means can also be to separate data into different fault classes and each of these classes can
be an input parameter for a training dataset of SVM or KNN classification. K-Means is very
easy to implement and computationally faster. But it is difficult to predict the value of K
and it can have a strong impact on the final results. Rescaling data may result in completely
different outputs.

ANN mimics the human brain structure to enable the model to approximate a complex
non-linear function with multi-input and multi-output. As seen, ANN has a very high
classification accuracy and a diverse use. It can very easily deal with complex non-linear
functions. ANN is used in both failure and real time monitoring vibration data. As most
other models, ANN is also prone to overfitting problems and there is an unexplained
functioning of networks. There is no physical meaning to the training data of faults. ANN
requires a large amount of training data and with the sigmoid activation function, ANN
algorithms frequently encounter vanishing and expanding gradient problems. With the
amount of quality data increasing in the mining industry, the scope for future applications of
deep learning is massive. Equipment fault detection using image recognition, incorporating
rule-based knowledge to implement logical procedures and formalizing knowledge on
the algorithm of fault detection or equipment reliability can be few areas of exploration
in future.

Overall, machine learning is a powerful tool in reliability and fault analysis. Although
classifiers have presented excellent accuracy, they are required to be trained with complete
data of all faults. Most of the literature reviewed uses single training set data and a single
prediction method to carry out predictions which may not provide the best results. Multiple
methods can be applied for a comprehensive understanding of data. Ensemble models
can be created to predict outcome either by using different training datasets or by using
different training models. Cross validations like K-fold cross validation techniques can
also be employed to improve accuracy of the model and reduce the chance of randomness
and overfitting. With the development of AI techniques and the rise of deep learning,
intelligent diagnosis is going to be the future direction of fault diagnosis development.
On the other hand, in the future diagnostic systems, not only data-driven AI methods,
but also the consideration of failure mechanism and prior knowledge should be utilized
and integrated closely to improve diagnostic performance. Statistical techniques like
graphical methods and probability distributions can be used when there is no information
on failure conditions and to get an overview of system conditions. Machine learning and
deep learning algorithms can be employed where there is enough information for analysis.
Combination of different techniques together might help in better analysis of reliability
and faults. At present, fault diagnostic systems are mostly built as the combination of
individual parts, such as data collection, feature extraction and dimensionality reduction,
fault recognition, with little consideration of the whole diagnostic system. A complete
end-to-end integrated and automated diagnostic system should be paid more attention.
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Abstract: This paper describes a system for the automatic determination of rock-breaking target
poses for impact hammers used in underground mines. The rock-breaking target pose is defined
as the position and angle at which the impact hammer must strike a rock in order to break it.
The automatic determination of this pose is essential for the autonomous operation of an impact
hammer. The proposed system takes as input sensor data composed of point clouds and images,
and automatically determines a rock-breaking target pose. The system consists of a rock segmentation
subsystem that receives the sensor data and identifies and individualizes the rocks/boulders present
above the grizzly, and a rock-breaking target pose generation and evaluation subsystem that receives the
rock information produced by the rock segmentation subsystem, and generates a list of rock-breaking
target pose candidates, it evaluates them, and it selects the best candidate as the rock-breaking target
pose. The system is evaluated using real data. The reported experiments show the system’s capability
to generate appropriate target poses.

Keywords: impact hammers; industrial robotics; autonomous mining; underground mining

1. Introduction

Mining operations are progressively moving towards using autonomous and/or tele-
operated equipment, because this improves their safety, productivity and reliability. This
is especially important in underground mining, where workers are exposed to risks such
as rock falls, mud rushes and continued exposure to dust [1]. All these hazards have
been steadily increasing as underground mining operations go deeper, geo-mechanical
conditions become more extreme and the time to enter and leave the mines becomes
longer [2]. Consequently, great effort has been invested in improving the automation level
of underground mining machines, especially those that operate in high-risk areas [1], such
as load–haul–dump (LHD) machines, also known as scoop trams; and impact hammers,
also known as rock breakers, rock-breaking manipulators, rock-breaking hammers or
pedestal-mounted breaker booms [3].

Impact hammers are used to break rocks that are too large to pass through the steel
grates, called grizzlies, placed on top of ore passes, which are vertical tunnels connecting
different production levels. Thus, the material loaded and transported by the LHDs
is dumped onto the grizzlies and fragmented, when needed, by impact hammers (see
Figure 1).

In modern underground mines, impact hammers are usually tele-operated from a
control room located in a safe place, often several kilometers away from the operation
area. The tele-operation of the hammers is a complex task which requires skilled operators,
not only because they must control these hammers effectively, but because they must
do so by relying on visual information provided by cameras: there is latency produced
by encoding, transmitting and decoding this information; there is often poor visibility
of the environment (mainly because of the presence of dust and poor illumination); and
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the visualization interfaces that are commonly available to the operators fail to properly
characterize the 3D nature of the environment.

Figure 1. Interaction between an LHD dumping material onto the grizzly, and a hydraulic impact
hammer. When the LHD is approaching the grizzly, the impact hammer moves to a safe position.

In order to improve this situation, assistive tele-operation systems for impact hammers
(e.g., [3]) and autonomous control systems for impact hammers (e.g., [4]), are under devel-
opment. A common problem to be solved in both kinds of applications is the automatic
determination of the position where the hammer must impact the rock, and the angle of
such an impact. In other words, it is essential to be able to automatically determine the
so-called rock-breaking target pose, either for the autonomous operation of the hammer, or to
provide this information to the operator. To the best of our knowledge, this problem has
not been addressed properly in most of the literature [3,5–8]. In [4] a simple rock-breaking
target pose methodology is proposed, but it does not take into account the orientation of the
end-effector with respect to the rock surface or the shape of the rock, obtaining sub-optimal
results in the proof-of-concept test when attempting to break the rocks.

Thus, the main goal of this paper is to describe a system for the automatic determina-
tion of rock-breaking target poses for impact hammers. The system takes as input sensor
data composed of images and point clouds, and automatically determines a rock-breaking
target pose. The system is composed of a rock segmentation subsystem that receives the sensor
data and identifies and individualizes the rocks/boulders present above the grizzly, and a
rock-breaking target pose generation and evaluation subsystem that receives the rock information
produced by the rock segmentation subsystem, and generates a list of rock-breaking target
pose candidates. It evaluates them and it selects the best candidate. The system is evaluated
using real data.

To the best of our knowledge, autonomous impact hammers are not commercially
openly available, so this work improves the state of the art in this topic by providing the
following main contributions:

• The design of algorithms for generating rock-breaking target poses and assessing
them, which are based on the way this task is performed by human operators in
mining sites. This information was obtained from good practice manuals and from
interviews with operators.

• A rock segmentation procedure that is the result of merging the segmentation obtained
by processing the point-cloud data and the detection of rocks obtained by image
processing techniques.

• The adaptation of image processing techniques used for image segmentation (e.g., flood-
ing or watershed) to segment point-cloud data.

• Incorporating to the end-effector’s target pose a criterion of a range of contact angles
in which the hammer and the rock minimize the slippage due to impact.

This paper is organized as follows: In Section 2, the proposed system for determining
the rock-breaking target pose is described. In Section 3, the results obtained when evaluat-
ing the system using both simulated and real data, are presented. In Section 4, we analyze
the obtained results. In Section 5 the conclusions derived from this work are drawn. Finally,
in Section 6 a patent derived from this work is mentioned.
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2. Proposed System for Determining the Rock-Breaking Target Pose for
Impact Hammers

2.1. General System Description

The proposed system implements a method that, based on sensor data composed
of point clouds and images, automatically determines a rock-breaking target pose for an
impact hammer, so that it can fragment oversized rocks within a pile of material. This
system consists of two subsystems: a subsystem that performs rock segmentation, and a
subsystem that generates and evaluates rock-breaking target poses. The rock segmentation
subsystem receives sensor data (point clouds and images) and identifies and individual-
izes the rocks present above the grizzly. The rock-breaking target pose generation and
evaluation subsystem receives sensor data and the rock’s identification produced by the
rock segmentation subsystem, and generates a list of rock-breaking target pose candidates,
which are then evaluated to finally deliver the best candidate. Both subsystems may
operate permanently and continuously, i.e., they are suited for constantly analyzing the
environment, and determining the next rock-breaking target pose for the hammer.

Both subsystems are composed of several components, each of them performing
different tasks. The overall system may be depicted by the diagram displayed in Figure 2.
In this section each of these modules and their interactions are going to be described
in detail.

Figure 2. Block diagram of rock segmentation subsystem.

2.2. Rock Segmentation Subsystem

As mentioned above, the rock segmentation subsystem receives sensor data (point
clouds and images), and through a series of logical and mathematical operations identifies
and individualizes the rocks/boulders above the grizzly. This subsystem consists of the
following modules: Sensing and Data Acquisition; Point Cloud Generation; Rock Segmentation
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using Point Clouds; Rock Detection using Images; and Rock Segmentation based on Fused Data
(see Figure 2).

2.2.1. Sensing and Data Acquisition

To determine the rock-breaking target poses, it is necessary to generate a representation
in which each rock in a given rock pile is properly individualized. This individualization,
referred to as instance segmentation, should provide a three-dimensional representation
of the rocks, which would allow the hammer to strike them. To achieve this goal, 3D
points and images are captured by sensors, allowing the generation of a 3D model of
the workspace, as well as a characterization of the colors and textures present in the
environment. Although the system may work with different range sensors and cameras,
the current implementation uses two 3D LIDAR sensors (laser scanners), and two visible
spectrum cameras.

The sensors must be properly positioned to capture a large percentage of the grizzly
and the material above it. The data from these sensors are processed by an industrial com-
puter, which performs the various operations required to implement the rock segmentation
and rock-breaking target pose determination subsystems.

2.2.2. Point Cloud Generation

The raw captured point cloud contains points corresponding to the material on the
ore pass, the impact hammer and the mine infrastructure. For this reason, the first stage of
the segmentation process consists of eliminating the captured points associated to the mine
infrastructure and the impact hammer, so a point cloud containing only data of the material
above the ore pass’s grizzly is obtained. To achieve this, a bounding box representing the
working volume is defined, which allows eliminating all the points outside of it. Then,
the points belonging to the impact hammer are eliminated using a model that represents
its simplified geometry given its current configuration. This model is obtained using
geometric primitives which, along with the measurements of the arm encoders, represent,
approximately, the physical space that the impact hammer is currently using.

Then, the points that belong to the mine infrastructure (such as the floor, the grizzly,
railings, and other adjacent structures) are eliminated using a previously constructed
environment model. This model corresponds to a voxel representation of the empty grizzly
and its surroundings (although, already limited by the workspace bounding box used to
filter points). The environment model is generated prior to system operation and ensuring
that the grill is free of material. This generation process starts by removing points that are
outside the working volume, then the remaining points are integrated and merged into a
single point cloud. Next, outlier points are removed using a predefined cluster filtering
process [9]. Finally, this point cloud is stored for use in the operation. Using this model, it
is possible to classify the points that correspond to the mine infrastructure as those points
located within the voxels of the constructed model.

The points that belong to the constructed environment model are then separated from
the rest of the point cloud. The remaining points are combined to represent in a unique and
simplified way the information provided by the LIDARs. To achieve this, the measurements
obtained from the LIDARs are temporally integrated using a time window of 1 s. This not
only makes the obtained point cloud of the environment denser, but also allows filtering
spurious measurements.

Finally, the resolution of the data is reduced to allow faster processing. To accomplish
this, the data are subsampled using voxels, where the spatial locations of all the points
contained within a given voxel, p1, p2, ..., pk, are represented by a single centroid point,
cP. These centroids are defined by Equation (1), that is, their coordinates are the average
coordinates of the points contained inside their corresponding voxel.

cP =
1
k

k

∑
i=1

pi (1)
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The result of applying all the steps described in this section is a point cloud containing
a representation of the material above the grizzly.

2.2.3. Rock Segmentation Using Point Clouds

In order to segment each rock in the point cloud, a version of the watershed method
adapted to point clouds defining a surface is applied (see details in [10]). This new version
of the method allows applying the concept of “descent” and initial labeling on a point
cloud, and performing a surface analysis without having to convert this point cloud to a
polygon mesh, which is the way these types of methods are often applied (e.g., [11,12]).
In general, using surface processing with polygonal meshes is convenient when an object
is well defined, and it is required to generate a 3D visualization of it. Since in this case
the information obtained from the surface is more relevant than the visualization itself, it
is more convenient to use the point cloud directly, which is what the proposed method
does. Furthermore, by not requiring a polygon mesh and directly processing a point cloud,
this method avoids the construction of additional data structures, which could increase its
processing cost.

In the proposed method, an initial labeling is performed by first identifying the convex
surface points that are most similar to rocks. These points are called seeds. To obtain these
seeds, it is first necessary to obtain the normal vector associated to each point. To obtain
these normal vectors, a plane at the location of each point is estimated using the least
squares algorithm.

Then, the so-called “height value” of each point is calculated, which determines what
the initial labels will be, and how these labels will be propagated. The “height value”
is determined by a height function. In traditional watershed segmentation algorithms,
the Z-axis value or the surface curvature is usually used to segment point clouds. In our
case, the height function is defined using the deviation between the normal component
of the plane at the location of a given point, and a desired orientation. We are interested
in finding the points whose planes have a normal component

(
nx, ny, nz

)ᵀ that is aligned
with the Z-axis direction. Given the aforementioned, the height function H(p) is defined
by Equation (2), that is, as the dot product between the normal of the plane (associated to a
point), and the unit vector�r = (0, 0, 1)ᵀ.

H(p) =�r · (nx, ny, nz
)ᵀ (2)

With this function, a higher height value is assigned to points that belong to flattened
geometric “peaks” in the point cloud. If the Z-axis were used directly, as in more commonly
used height functions, the height values would be higher for metric peaks. This is not con-
venient when segmenting rocks, as they often come in different sizes, and consequentially,
may possess widely different maximum heights when positioned above the grizzly.

With the above, a binary labeling of the points is performed by using the function
defined by Equation (3), where Ht is a predefined threshold value.

L(p) =

{
1 if H(p) > Ht,
0 otherwise.

(3)

Afterwards, the morphological operations of dilation and erosion are applied on the
binary labels assigned to the point cloud, “connecting” the labels of points that are close to
each other, according to a predefined proximity radius. These morphological operations
effectively remove small connected components of labeled points, whilst combining con-
nected components that are close to one another. Finally, the resulting labels are clustered
into new labels according to the proximity of their corresponding points, and these groups
are individualized by re-labeling the points that conform them. These new labels are
codified using natural numbers starting from 2 and up until Nl , depending on the number
of groups.
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When the flooding or watershed descent stage is carried out, a propagation of the labels
from the seeds to points of lower height value is performed, which allows delimiting the
points of contact between different rocks. Within this stage, a series of adaptations are made
to apply a standard flooding 3D methodology [11] to our context in a meaningful manner.

First, a different height function is utilized for the descent stage. This new function
will be referred to as Hdescent(p). This switch between height functions is based on the fact
that the requirements for both stages (labeling, and descent) are different. In the initial
labeling, the height function is designed to detect rocks using a single cut threshold, so it is
convenient to generate seeds associated to geometric peaks, prioritizing their overall shape,
and ignoring their metric height. On the other hand, for the descent stage, the objective is
to propagate points (starting from the detected seeds) in a way such as to correctly limit
the separations between different rocks. In this sense, using the same labeling criterion
for this task would not be convenient, as it is not possible to reliably model a surface
as a single plane at these intersections. If we consider the Z-axis values of the points
in these intersections, however, their minimum value approximates reasonably well the
boundary between different rocks. Therefore, Hdescent(p) is defined by Equation (4) as in
standard watershed algorithms, that is, it assigns height values according to the points’
Z-axis coordinate.

Hdescent(p) = pz (4)

Although this criterion does not generalize well in cases where a rock rests above
another, in our application context this is not a problem: we are only concerned with
segmenting rocks that are at the upper level of the material in the grizzly, since these are
the rocks that take precedence at the time of the fragmentation.

In the flooding process, a hierarchical ranking of the height values is performed,
assigning a certain height level, N(p), to each point. Afterwards, a propagation of labels by
the proximity of the points and their height level is carried out.

The height level of a point, N(p), is assigned according to Equation (5), where
ΔHdescent is a predefined resolution parameter. ΔHdescent is actually the same resolution
parameter that is utilized in the voxelization process performed over the LIDAR data,
as described in Section 2.2.2.

N(p) =
⌈

Hdescent(p)
ΔHdescent

⌉
(5)

After N(p) is computed, the points are analyzed from highest to lowest hierarchy. If a
point already has a label, the label is propagated to neighbor points in the next (inferior)
level of hierarchy. On the contrary, if a point has no associated label, then it takes the label
of the nearest labeled point. When doing this, the distance used in the neighbor search
process is greater than the one used in the descending stage. This allows propagating the
label to the nearest local maximum (or catchment basins of the surface) that are incorrectly
generated by noisy Z values of the points. Label propagation by level allows labels to
propagate uniformly through all points within the same hierarchy, thus producing the
flooding effect of watershed for a point cloud.

Finally, the system labels the points that were not processed by associating them to the
label of the nearest point to them. As a result, a segmented point cloud is obtained in which
each point has a label that corresponds to a given rock instance. Figure 3 illustrates the
result of applying the described process on a point cloud obtained from a scene where
several rocks are present.
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(a) (b)

(c) (d)

Figure 3. Example of rock segmentation using watershed on a point cloud. (a) Raw point cloud.
(b) Result after initial labeling. (c) Intermediate result of the flooding process, where the initial labels
are propagated from a higher level, up to an intermediate level. (d) Final result of flooding process,
where all label are propagated until the lower level.

2.2.4. Rock Detection Using Images

Rocks are detected using a convolutional neural network called RockyCenterNet [13].
RockyCenterNet is based on CenterNet [14], which is a one-stage object detector in which
center points are estimated, and then the other properties of a detection, such as bounding
boxes’ widths and heights, are regressed. Unlike CenterNet and most object detectors,
RockyCenterNet uses ellipses to enclose a rock’s bounds, enabling a better description of
the shape of the rocks than a classical approach based on bounding boxes. According to
the evaluation reported in [13], RockyCenterNet is a suitable choice for detecting rocks in
mining applications when real-time operation and a good approximation of a rock’s shape
are needed.

2.2.5. Rock Segmentation Based on Fused Data

By using RockyCenterNet, rocks detected in the images are represented by ellipses,
which in turn are represented by a coordinate and a set of parameters in the image space: a
central position (xI , yI)

ᵀ, and a major axis aI , a minor axis bI , and an orientation θI . Each
ellipse is projected onto the point cloud containing the rocks already segmented, generating
a new coordinate and set of parameters in the point cloud’s space, according to the camera
reference system: a centroid (xP, yP, zP)

ᵀ, a major axis aP, a minor axis bP, and an orientation
θP. The centroids lie on the rock surface, and are calculated by intersecting a ray generated
by the pinhole camera model of the cameras with the point cloud. The points (xr, yr, zr)

ᵀ

that conform this ray are defined by Equation (6), where
(

fx, fy, cx, cy
)ᵀ are parameters of

the intrinsic matrix of the camera model [15]. The intersection is obtained using an octree
voxel representation of the cloud spacing [16], and then recursively searching for the voxel
closest to the ray. ⎛

⎝xr
yr
zr

⎞
⎠ = zr

⎛
⎝(xI − cx)/ fx(

yI − cy
)
/ fy

1

⎞
⎠ (6)
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Once the centroids (xP, yP, zP)
ᵀ have been calculated, the other parameters of the

ellipse in the point cloud space are computed according to Equations (7)–(9), with fa and fb
defined by Equations (10) and (11), respectively.

aP = aI · zP/ fa (7)

bP = bI · zP/ fb (8)

θP = θI (9)

fa =
√

f 2
x cos2(θI) + f 2

y sin2(θI) (10)

fb =
√

f 2
x sin2(θI) + f 2

y cos2(θI) (11)

Each properly segmented rock should contain a single centroid. Consequently, seg-
mented rocks containing more than one centroid should be subdivided into smaller rocks.
To subdivide a rock, the ellipse closest to each of the points on the rock is found, and as-
signed to that point.

This process goes as follows: For all segmented rocks, and each ellipse on its surface,
the normal of the rock in the ellipse’s centroid point is calculated, and then the depth of
the centroid is corrected so that it is placed near the estimated center of the rock. Next,
the Mahalanobis distance d(pj, c) between the point pj =

(
xj, yj, zj

)ᵀ of the cloud and the
corrected centroid c = (xP, yP, zP)

ᵀ of the ellipse is calculated according to Equation (12).
The covariance matrix C is defined by Equation (13) where the ellipse parameters defined
in Equations (7) and (8) are used as its first two diagonal components, and their product as
its third diagonal component.

d(pj, c) =
√(

pj − c
)ᵀC−1

(
pj − c

)
(12)

C =

⎛
⎝a2

P 0 0
0 b2

P 0
0 0 aPbP

⎞
⎠ (13)

After the Mahalanobis distance for all ellipses and points is calculated, each point on
the rock is associated with the ellipse that has the smallest distance to it. Finally, all the
points associated to the same ellipse are clustered together. The result of the previous step
is a set of clusters, each of them associated with a given ellipse.

Some of these point clusters may have a wrong ellipse assignment, as until this
point no spacial information regarding their location is utilized. To detect these wrong
assignments, it is verified that there are no different clusters associated with the same
ellipse by performing the following additional checks:

• If an ellipse has only one associated cluster, that cluster is considered as correctly assigned.
• If an ellipse has multiple associated clusters, only the largest cluster is considered as

correctly assigned, while the others are merged to the largest.
• The remaining clusters (which have associated ellipses but were not considered as

correctly assigned) are disintegrated by reassigning their points to the nearest correctly
assigned clusters.

The result of applying the point cloud correction using the ellipses is exemplified
in Figure 4.
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(a) (b)

Figure 4. Example of correction in point cloud rock segmentation using image-based detections.
(a) Segmented point cloud, and center projection of the ellipses detected in images. (b) Segmentation
of the point cloud corrected from the information provided by the centers of the ellipses.

2.3. Subsystem for Generation and Evaluation of Rock Breaking Target Poses

This subsystem generates a set of feasible and hierarchized rock-breaking target poses.
The resulting poses from this process should be such that a fracture would likely occur if the
hammer’s end effector aligns to them when impacting on rocks. Furthermore, the order in
which these poses would be assigned as targets for the impact hammer should minimize the
time that leaving the grizzly without material would take. To accomplish its objectives, this
subsystem follows a set of flexible rules and criteria to select and prioritize the rock breaking
target poses. These rules are based on good practice manuals and mine operators’ feedback.

To generate a finite set of poses, the material’s surface is divided into equidistant
sub-regions on an XY plane parallel to the grizzly. The system then processes each of
these sub-region to validate if it would be feasible to position the impact hammer’s end
effector on this region, considering both the material’s surface geometry and the hammer’s
kinematic constraints. Afterwards, for each reachable region, a rock breaking target pose is
generated. Finally, an evaluation and ranking of the generated poses is performed.

The following processing stages summarize the overall subsystem functioning:

• Generation of sub-regions.
• Validation of sub-regions.
• Generation and Hierarchization of rock breaking target poses.

The interaction between each stage is illustrated in Figure 5. In the following, each of
these stages is described in detail.

Figure 5. Block diagram of the target pose generation and evaluation subsystem.
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2.3.1. Generation of Sub-Regions

As a first step, the segmented point cloud is processed to define a set of sub-regions.
To generate these sub-regions, the points in the segmented point cloud are grouped accord-
ing to their position in a plane parallel to the grizzly. This plane is divided in cells using a
virtual grid. For each cell, the points that are at the upper level of the voxel representation
of the segmented point cloud are grouped together. Figure 6 illustrates the virtual grid
above the grizzly, whilst Figure 7 shows a representation of the projection of the segmented
point cloud onto the XY plane’s grid cells.

Figure 6. Grouping of points on the grizzly according to a parallel XY plane (the red, green and
blue arrows represent the X, Y and Z axis, respectively). In light blue, a representation of the virtual
grid utilized to perform the grouping of points. In white, the sub-regions found to be non-empty
are displayed.

Figure 7. Representation of the rocks’ projection on the XY plane (the red and green arrows represent
the X and Y axis, respectively). The magenta grid cells are non-empty (below them there is at least a
single point). The white grid cells are empty (below them there are no points).

To make a proper analysis of the breaking success related to each sub-region, it is
necessary that these regions ensure that the tip of the chisel makes contact only with the
points within the sub-region. In general, the chisel of an impact hammer that would be
typically used in mining facilities is a steel cylinder with a diameter between 8 cm and
12 cm, ending in a rounded tip. Considering the most extreme case in which the wear on
the tip is maximum, the tip of the hammer would cover the area of a circle with a radius
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of 6 cm. For this reason, each sub-region is represented as a square of size 12 cm × 12 cm.
This design decision ensures that, from a three-dimensional perspective, the contact area
between the hammer’s end effector and a rock is always less than the area covered by a
given sub-region.

The generation of the sub-regions is obtained using the following method:

• To evaluate whether or not a rock would pass through the grizzly, a rough estimation
of its enveloping volume is made. This allows identifying the rocks that, due to their
large dimensions, would not be able to easily pass through the grizzly (i.e., the rocks
that the system would target during the crushing process). To estimate the rock’s
enveloping volume, a 3D bounding box is constructed for each rock, using their
respective point cloud. A graphic example of these bounding boxes is illustrated
in Figure 8.

• The rocks that would likely pass through the grizzly (because of their low volume) are
managed differently by the system, and are not considered during the rock breaking
target poses’ search. For instance, there might be rocks that possess a size and shape
such that, although they could pass directly through the grizzly, are stuck. These cases
are often dealt with by operators by redistributing the material on the grizzly.
Another possible scenario that is managed differently is when rocks that, due to lack
of visibility, are wrongly classified as “small”. This case could happen, for instance,
due to occlusions between rocks. These rocks are not considered for the breaking
rock target pose generation, since, if they are small, they will likely fall through the
grizzly after a material redistribution (performed by the hammer or due to more
material being put on the grizzly) and if they are just occluded, it is likely that also
because of redistributions of the material they will eventually become completely
visible, and thus subject to being a target for the impact hammer.

• All the rocks that would not pass through the grizzly (because of their estimated
volume) are considered for the breaking rock target pose search. In these cases,
the rocks’ corresponding points are grouped considering their position projected in
the virtual XY grid cells (described previously). Thus, each of these groups of points
is a sub-region associated with a particular rock. An example of these groupings is
illustrated in Figure 9.

• Finally, the generated sub-regions that posses a low number of points, or whose points
belong to different rocks, are discarded.

Figure 8. Segmented cloud input and bounding box representation of each rock model.

177



Energies 2022, 15, 6380

Figure 9. Example of the sub-regions generated by processing a segmented point cloud with three
distinct rocks. The coloured groups of voxels on the surface of the point cloud represent each of the
generated sub-regions.

2.3.2. Validation of Sub-Regions

Each generated sub-region is analyzed to determine whether or not it would be
possible to find a rock breaking target pose within it, according to a set of rules. A sub-
region would be discarded if at least one of these rule is not fulfilled. It is convenient to
evaluate each rule considering its complexity to minimize the usage of system resources
(that is, simpler rules should be evaluated before more complex rules).

For the proposed system design, three rules are considered:

• Rule 1: A vertical orientation of the impact hammer’s end effector has to be maintained.
• Rule 2: The hammers’ end effector should try to break the rocks by hitting them on

low curvature regions.
• Rule 3: If a rock is very large, the attempts to break it should start by trying to hit it at

its “edges”.

The first rule seeks to ensure that the rock breaking is always done in a vertical
orientation (that is, parallel to the Z axis). This is relevant because, when this rule is
fulfilled, the impact force goes in the opposite direction of the force with which the rocks
are supported on the grizzly. This allows the rock to be held firmly when pressure is
applied to it. To evaluate this rule mathematically, the normal component of the surface
within the sub-region,�n, is compared to the desired vertical component (that is, with the
unit vector�r = (0, 0, 1)ᵀ) to obtain the angular error ε between the computed normal vector
and�r. If this angular difference is greater than a predefined tolerance, the rule is considered
to be not satisfied. The angular error ε, in radians, is defined according to Equation (14).

ε = arccos(�n ·�r) (14)

In Figure 10 examples of applying “Rule 1” using different tolerances is illustrated.
The second rule seeks to ensure that the impact hammer does not slip when positioned

on a rock. To accomplish this, the curvatures ρ of the surfaces conformed by the points
within each sub-region are calculated. If a given curvature exceeds a predefined threshold,
this rule is considered to be not satisfied.
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(a) (b) (c)

Figure 10. Results obtained by applying Rule 1 using different angular tolerances. (a) Tolerance 45°.
(b) Tolerance 35° (used by the system). (c) Tolerance 20°.

The curvature of a given point may be computed along with the normals utilized to
evaluate the first rule. To obtain these curvatures, the eigenvalues of the covariance matrix
of the neighbor points (relative to the point for which�n and/or ρ is being computed) are
utilized, thus characterizing the curvature according to Equation (15).

ρ =
λ0

λ0 + λ1 + λ2
, λ0 < λ1 < λ2 (15)

In Figure 11 an example of applying “Rule 2” using different curvature thresholds
is illustrated.

(a) (b) (c)

Figure 11. Results obtained after applying Rule 2 using different curvature thresholds. (a) Curvature
tolerance = 0.02. (b) Curvature tolerance = 0.01 (used by the system). (c) Curvature tolerance = 0.007.

Finally, the third rule seeks to ensure two conditions that would allow a large rock
to be fractured properly. Considering that the effort required to break a large rock by
percuting on its geometric center would likely be greater than the effort required to break
it by percuting near its edges, the operator manual we used as reference suggests that
“large” rocks should be split from their edges to their center. To comply with this guideline,
the system selects sub-regions that are not too far from the rocks’ borders. On the other
hand, trying to break rocks by percuting too near to their borders would probably be
inefficient, as the largest resulting rocks would have a size similar to their related original
rock, thus requiring several rock breaking attempts to significantly reduce their size.

Considering both scenarios, the system tries to select sub-regions that are in a certain
distance range from the rocks’ borders. To handle this, the position of each sub-region in
relation to the edge of a rock is evaluated. If the distance of the sub-region to the borders is
outside a range of 30 cm to 60 cm, then the region is discarded.

To calculate the distance of a sub-region to the rock’s borders, the distance between
the center of the sub-regions and the point associated to its nearest rock edge is measured.
This measurement is performed by projecting both the sub-regions and the rock’s edges to
a XY plane.
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To find the rocks’ borders, the 2D concave hull algorithm is utilized in the aforemen-
tioned XY. This allows finding each rocks’ “enveloping points”. Figure 12 shows the effect
of applying this method on a 2D point cloud.

(a) Segmented cloud (top-down view) (b) Concave Hull of rocks

Figure 12. Example of the concave hull algorithm applied to a 2D projection of a segmented cloud.
(a) Segmented cloud, where each rock instance is represented with a different color. (b) Concave
envelope area generated by the algorithm.

There are cases when the rocks present narrow regions that should to be considered
as possible rock breaking points because it would be easier to achieve a rock fracture if
percuting on them. The “Rule 3”, however, may consider that all the points contained in
these narrow regions are too near to the rocks’ borders. For this reason, the system also
detects all the narrow regions of as given rock, and uses a lower threshold tolerance on
them. This way, sub-regions that would belong to these narrow areas are not discarded.

To find the narrow regions, the system calculates the border-to-border distance on
the second eigenvector coordinate system of the rock’s cloud distribution. This way,
a region is classified as “narrow” if its border-to-border distance is below a certain threshold.
An example of this procedure is illustrated in Figure 13.

Figure 13. “Narrow” regions detection. The borders of the rock is represented in red. The v1
and v2 axes correspond to the coordinate system created with eigenvectors. T corresponds to the
distance threshold used for the narrow detection process. The green arrows illustrate border-to-border
distances that would be considered as valid for finding narrow regions, whereas the blue arrows are
border-to-border distances that surpass the threshold defined by T. The green rectangle represents
the narrow area detected in this case.
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With all of the above, Figure 14 shows an example of applying Rule 3 and all its
considerations.

(a) Tolerance = 0.15 m (b) Tolerance = 0.30 m (used by the system).

Figure 14. Results of Rule 3 with different thresholds.

2.3.3. Generation and Hierarchization of Rock Breaking Target Poses

A rock breaking pose from each sub-region is generated and then hierarchized. To gen-
erate a pose, the sub-region’s center, projected in the XY plane, is assigned as the pose’s
position. The pose’s orientation is always predefined as vertical, i.e., with an orientation
parallel to (0, 0,−1)ᵀ.

To prioritize the obtained target poses, different criteria are combined. This criteria,
however, may vary according to the operation state of the rock crushing process (e.g., the
system might start by attempting to break the largest rock, but if this rock leaves residues
after being fractured, then the following target might be an accessible rock residue instead
of another rock). It is also possible to modify the system’s behavior considering a user’s
priorities (e.g., it may be preferred by the user to clear a given quadrant of the grizzly if
that quadrant is, for instance, utilized to discharge more material).

Currently, three hierarchization criteria are integrated into the system, and they are se-
quentially executed. These criteria are based on operation manuals and feedback provided
by experienced operators, and are the following:

• Criterion 1: Picking the most accessible pose (that is, the pose that can be reached in
the shortest possible time).

• Criterion 2: Attempting to break the largest rock.
• Criterion 3: Attempting to clear a specific grizzly’s quadrant.

The purpose of Criterion 1 is to reduce the time that would take the impact hammer to
reach the target pose starting from its current pose. To obtain an estimation of this time, it is
necessary to know the current configuration of the impact hammer, and to have an inverse
kinematics model of it. This allows generating trajectory plans for the hammer (from its
pose to a target pose), and consequentially, getting an estimate of the time that it would
take the hammer to follow such trajectories.

The result of applying this criterion is a list of ordered target poses according to the time
it would take the impact hammer to reach them. The ordering goes from shortest to longest
time. Different results obtained after applying Criterion 1 are illustrated in Figure 15.
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(a) (b)

Figure 15. Results of applying Criterion 1 with different hammer states. Arrows represents the
generated breaking pose. White point is the end effector pose (in the chisel tip). Circled arrow is the
first preferred pose. Numbers are the ranking of each breaking pose. (a) Accessibility criterion with
arm state with effector near to pink rock. (b) Accessibility criterion with effector near to green rock.

Criterion 2 is related to starting the breaking rocks’ process addressing the most critical
case, since the rock with the largest dimension is the one that produces the greatest spatial
obstruction on the grizzly. This criterion is in charge of finding the rock with the largest
volume, and keeping track of the target poses associated with that rock, ignoring the
rest. Naturally, it is convenient to use this criterion in combination with Criterion 1 for
ranking the breaking poses associated with the preferred, largest, rock. An example of this
combination is illustrated in Figure 16.

Figure 16. Result of applying Criterion 1 and Criterion 2. In this case, the pink rock corresponds to
the largest rock and numbered arrows represents the generated breaking poses.

Besides prioritizing a specific quadrant to target rocks, Criterion 3 may establish a
termination condition for the operation, as in some cases it is not desired to completely
clear the grizzly, but rather to only clear a region to allow the unloading of more material.
This is because the process of clearing the grizzly prevents LHDs from unloading material
in the ore pass, which in turn, may slow the whole operation, therefore diminishing the
production throughput of the mine.
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In the rock breaking operation, the grizzly is usually divided into four quadrants
within the XY plane. Operating on a given quadrant allows limiting the use of the hammer
to that specific quadrant, which is also convenient when trying to reduce the use of the
impact hammer whilst ensuring that the grizzly is never completely full. To implement
this criterion, all the poses that correspond to a rock outside of the selected quadrant are
discarded. An example of using this criterion is illustrated in Figure 17.

Figure 17. Result of applying Criterion 1 and Criterion 3. The blue, green, and red cylinders,
correspond to the grill axes (Z, Y and X, respectively). The red and green axes representation, in this
case, also determine the quadrant’s separation. The white dashed line delimits the preferred quadrant.
The green rock corresponds to the rock that is positioned within the preferred quadrant. The gray
voxels correspond to the grizzly model. Numbered arrows represents the generated breaking poses.

3. Experiments

3.1. Experimental Configuration

The proposed system was implemented and continuously tested in simulations during
development, using Gazebo [17] and ROS [18]. Furthermore, using ROS allowed us to
seamlessly integrate the resulting software to real-world environments for validation.

To evaluate the system, experiments in the real world were conducted. We constructed
a scaled experimental setup conformed by a hydraulic mini-excavator (a Bobcat E10 which
we modified), a scaled steel grizzly, and four sensors: two Livox MID-40 LiDARs, and two
Arecont AV 5225P MIR cameras. This setup is displayed in Figure 18.

Although several scenarios simulating real mining sites’ conditions were built for
Gazebo, to adjust the system’s parameters for this setting, and to model the mini-excavator
itself, we replicated the real world’s experimental configuration in the simulator, as shown
in Figure 19.
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Figure 18. Experimental setup used for real-world testing. The Bobcat E10 hydraulic mini-excavator
is marked with a green frame, the grizzly is marked with a magenta frame, and the sensors (LIDARs
and cameras) are marked with cyan frames.

Figure 19. Simulation of the Bobcat E10 mini-excavator and a simplification of its working environ-
ment. The red and orange boxes correspond to the simulated cameras and LIDARs.
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To evaluate the performance of the developed system (and its different modules), rocks
that would not pass through the grizzly are positioned in several configurations, and both
the segmentation of rocks and the generation of target rock-breaking poses are assessed.
Although the system may use cameras to detect rocks using visual information, and in
this manner, improve the performed instance segmentation, we do not use this part of the
system for the real world experiments. In the constructed scenario, the visual cameras
are only used to evaluate the system’s performance and rate the generated rock-breaking
target poses.

The hydraulic mini-excavator and the scaled steel grizzly have, approximately, a
1:2 scale with respect to a typical impact hammer used in mining sites. Furthermore,
the grizzly has 16 cells for which small sized material could pass. Let us assign a pair
of indices to each of these cells, counting rows and columns from 1 to 4, as illustrated in
Figure 20.

(1, 1)

(4, 4)

(1, 4)

(4, 1)

x

y

Bobcat E10
Figure 20. Reference for the scaled steel grizzly cells.

Given the aforementioned, the experiments described in Table 1 were conducted.
To quantitatively measure the system’s performance, the following metrics are considered:

• For the rocks’ segmentation: Precision and recall, measured as if we were detecting
rocks. The metrics typically used for segmentation tasks using images (such as the
intersection over union) are not utilized, as manually labeling ground truths for the
point clouds processed by the system would be highly prone to error.

• For the rocks’ instance segmentation: The number of correctly and incorrectly individ-
ualized rocks is measured.

• For the generation of rock-breaking target poses: An average score over the generated
poses (limiting the generated poses to a maximum of 10), and an average score
over only the highest priority pose are considered. The scores are 1 (bad), 2 (could
be improved), and 3 (good), and the evaluation is performed by humans who are
knowledgeable about good practices for rock-breaking mining operations. We will
refer to the average score over all the generated rock-breaking poses as “Overall Rock-
breaking Pose score” (ORP score) and to the average score for the highest priority pose
as “Best Rock-breaking Pose score” (BRP score).
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Table 1. Experimental configurations used to conduct the evaluation of the developed system, in the
real world.

Experimental Configuration Description

1 rock (i, j) A single rock is sequentially positioned above the grizzly in a single cell (i, j),
for (i, j) ∈ {(1, 1), (1, 4), (4, 1), (4, 4), (2, 2), (2, 3), (3, 2), (3, 3)}.

4 rocks

corners Four rocks that do not overlap are positioned in the corners of the grizzly,
that is, in (1, 1), (1, 4), (4, 1), and (4, 4).

center Four rocks that do not overlap are positioned around the center of the grizzly,
that is, in (2, 2), (2, 3), (3, 2) and (3, 3).

center + overlap Four rocks are again positioned around the center of the grizzly, but this time
they overlap.

5 rocks upper/bottom row The rocks are sequentially positioned in the upper row, lower row, leftmost
leftmost/rightmost column column, and rightmost column of the grizzly. They overlap.

5 to 6 rocks + clutter
upper/bottom row The same four settings as in the “5 rocks” case are considered (that is, overlap-

ping rocks are sequentially positioned in the upper row, lower row, leftmost

leftmost/rightmost column column, and right most column of the grizzly), however, this time small
rocks cluttering the environment are present.

8 rocks
center + corners Eight rocks are positioned in both the corners and the center of the grizzly,

without overlap.

center + overlap Eight rocks are positioned around the center of the grizzly, overlapping
each other.

8 to 9 rocks + clutter
center + corners The same two configurations for eight rocks are considered, that is, rocks

positioned in the corners and center of the grizzly, without overlapping, and

center + overlap then near the center of the grizzly, overlapping each other, however, this time
small rocks are added to the environment.

3.2. Evaluation Results

According to the configurations described in Table 1, we positioned rocks in the grizzly
of the scaled real environment. For each configuration, the proposed system was run and
we captured its output, that is, the point cloud containing the rocks’ segmentation (and
instance segmentation), and the set of generated target breaking-rock poses. The obtained
data were labeled and scored to generate the results presented in Table 2. A summary of
the scores provided by experts, regarding the generated target poses’ quality, is presented
in Table 3. Finally, some examples of the performed experiments are shown in Figure 21.

(a) 1 rock (3,3) (b) 5 rocks, bottom row

Figure 21. Examples of two of the performed experiments. (a) A single rock near the center of the
grizzly, and (b), rocks occupying the cells of the bottom row of the grizzly.
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Table 2. Performance metrics for the experiments conducted in the real world. ORP score: Overall
Rock-breaking Pose score. BRP score: Best Rock-breaking Pose score.

Experimental Configuration
Segmentation Instance Segmentation Rock-Breaking Pose Evaluation

Precision Recall Correct Incorrect ORP Score BRP Score

1 rock

(1,1) 1.0 1.0 1 0 3.00 3.00
(1,4) 1.0 1.0 1 0 1.67 1.67
(4,1) 1.0 1.0 1 0 3.00 3.00
(4,4) 1.0 1.0 1 0 3.00 2.67
(2,2) 1.0 1.0 1 0 3.00 3.00
(2,3) 1.0 1.0 1 0 3.00 2.67
(3,2) 1.0 1.0 1 0 3.00 3.00
(3,3) 1.0 1.0 1 0 3.00 3.00

4 rocks

corners 1.0 1.0 4 0 2.67 3.00
center 1.0 1.0 4 0 2.67 3.00
center + overlap 1 1.0 1.0 0 4 2.33 2.33
center + overlap 2 1.0 1.0 1 3 2.67 2.67

5 rocks

upper row 1.0 1.0 0 5 3.00 3.00
bottom row 1.0 1.0 1 4 1.67 1.00
leftmost column 1.0 1.0 3 2 2.33 2.33
rightmost column 1.0 1.0 3 2 2.00 2.33

5 to 6 rocks + clutter

upper row 1.0 1.0 1 4 2.33 2.00
bottom row 1.0 1.0 1 4 2.33 3.00
leftmost column 1.0 1.0 1 5 2.67 3.00
rightmost column 1.0 1.0 0 6 2.33 2.67

8 rocks

center + corners 1 1.0 1.0 8 0 2.67 3.00
center + corners 2 1.0 1.0 8 0 2.67 2.33
center + corners 3 1.0 1.0 8 0 2.67 3.00
center + overlap 1 1.0 1.0 3 5 2.33 3.00
center + overlap 2 1.0 1.0 2 6 2.33 3.00
center + overlap 3 1.0 1.0 2 6 3.00 3.00

8 to 9 rocks + clutter

center + corners 1 1.0 1.0 5 4 3.00 3.00
center + corners 2 1.0 1.0 4 5 2.33 3.00
center + corners 3 1.0 1.0 2 7 3.00 3.00
center + overlap 1 1.0 1.0 1 7 3.00 3.00
center + overlap 2 1.0 1.0 1 7 2.33 3.00
center + overlap 3 1.0 1.0 2 7 2.67 3.00

Table 3. Summary of the performance metrics for the target poses’ quality. ORP score: Overall
Rock-breaking Pose score. BRP score: Best Rock-breaking Pose score.

Experimental Configuration
Rock-Breaking Pose Evaluation

ORP Score BRP Score

1 rock 8 trials 2.83 2.75
4 rocks 4 trials 2.59 2.75
5 rocks 4 trials 2.25 2.17
5 to 6 rocks + clutter 4 trials 2.42 2.67
8 rocks 6 trials 2.61 2.89
8 to 9 rocks + clutter 6 trials 2.72 3.0

4. Discussion

The obtained results, presented in Table 2, provide information that allows character-
izing the system’s overall performance, as well as its strengths and weaknesses. As the
proposed system performs several operations (each of them with a given output), we will
divide the analysis based on its segmentation, instance segmentation, and rock-breaking
pose generation performance.
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4.1. Segmentation

The data presented in Table 2 show that the system’s segmentation performance is
approximately perfect. This result is expected, as the segmentation process is fundamen-
tally a background subtraction method, where the points corresponding to the rocks are
separated from those that belong to an environment model that is constructed when no
material above the grizzly is present.

Following this approach results in an almost perfect segmentation, where the main
challenge corresponds to the creation of the environment model, the parameterization of
the workspace to filter unwanted LIDAR measurements, the correct construction of the
simplified geometric model of the impact hammer, and the calibration of the sensors.

Taking into account that the environment model and the workspace are relatively easy
to construct, the main weakness of the segmentation subsystem is that it depends on the
grizzly not moving relative to the LIDARs, and the impact hammer’s encoders providing
correct measurements, that is, it mainly relies on proper sensor calibration.

4.2. Instance Segmentation

The data show that the instance segmentation performance for all the experiments
when no overlapping between rocks occurs is correct (that is, experimental configurations
“1 rock”, “4 rocks corners and center”, and “8 rocks center + corners”). This result show-
cases that the instance segmentation subsystem easily differentiates rocks when they are
represented by disconnected clusters of points.

When there are overlapping rocks (be these the rocks that should be targeted by
the impact hammer, or small sized boulders that have not passed through the grizzly),
the instance segmentation subsystem fails to achieve a good performance. This behavior
may be explained due to the difficulty of differentiating rock instances by only relying on
the information provided by the rocks’ segmented point cloud.

However, it is important to remark that the main objective of the developed system
is not to accurately represent each rock, but to characterize them with enough accuracy
to select the best possible rock-breaking pose (which is, conceptually, one of the tasks the
operators of impact hammers currently perform).

In addition, even though a correct instance segmentation is difficult to achieve when
overlapping occurs, since the rock’s segmentation is approximately perfect (refer to
Section 4.1), no information regarding where the rocks are located is lost for the target
rock-breaking poses generation step.

4.3. Rock-Breaking Pose Generation

The obtained results show that, in most cases, the rock-breaking target poses generated
by the system are appropriate, both when rating all of them (ORP score) and when only
rating the highest priority pose (BRP score). It is important to remember that the goal of
the proposed system is to determine a rock-breaking target pose for the hammer. This is
achieved in most cases.

Furthermore, by inspecting the results presented in Table 2, it is noted that the BRP
score is, in general, higher than the ORP score. As the criteria to prioritize a target rock-
breaking pose over other poses are related to factors such as the impact hammer’s end
effector pose, or a quadrant, the variation on the rocks’ overall shape (product of a bad
instance segmentation), or the presence of multiple rocks (resulting in a scenario where it
would be difficult to determine which rock should be fragmented first), it is not going to
necessarily negatively alter the quality of the generated highest priority pose, as its priority
largely depends on factors based on geometric measures and overall rock segmentation,
and not on a proper rock individualization.

We recognize, however, that there might be situations where the quality of the target
rock-breaking poses would be affected by a bad instance segmentation. This could happen,
for instance, when small boulders artificially make a potential target rock appear larger
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than what it really is. This might result in target poses being generated near the edge of the
rock that needs to be fragmented, or worse yet, on top of the small boulders.

The BRP being in general rated higher than the ORP is also a positive metric for
the developed system, since it is the highest rated pose the only pose that the impact
hammer would attempt to break. After this attempt, the system would be run again to
obtain an updated characterization of the environment and select the best possible target
rock-breaking pose, attempt to break the associated rock, and repeat the cycle.

5. Conclusions

In this paper we presented a system for generating and selecting rock-breaking target
poses for impact hammers. The system and its components were described, and a real-
world performance evaluation was conducted to assess its capabilities. It was found that
the proposed system can generate rock-breaking target poses for the rock-breaking task
performed by impact hammers in mining operations in a reliable way, complying with
standard rules of operation and different criteria to prioritize poses.

6. Patents

This research has a PCT patent application on WIPO under the title “METHOD AND
SYSTEM FOR DETERMINING AND SELECTING ROCK BREAKING TARGET POSES FOR
A ROCK BREAKER” (application number: PCT/IB2021/059373) [10].
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Abstract: The yielding arch support is transported and installed in the face with the use of auxiliary
machines. These activities in underground mining cause many problems, which have as yet not
been solved. Currently, transport and assembly are carried out manually, using the roadheader and
suspended rail, or various types of mounting platforms. The analysis of the structure of the existing
solutions resulted in the development of an original structure that met the requirements of Polish
mines. Developed jointly by FAMA Sp. z o.o. and the AGH University of Science and Technology in
Krakow, Poland, the mining modular transport and assembly unit (MZT-M) will enable the transport
and assembly of support arches in the mining face. Additionally, it can also be used to reload works,
which is related to the work ergonomics in underground coal mining, which is the main energy
resource in Poland. The most important problem to be solved in the case of this manipulator, due
to the limited space in the excavation, is how to ensure its stability during various phases of its
operation. Therefore, analyses were carried out to find a solution, which resulted in determining
specific conditions and design requirements related to the operation of this manipulator.

Keywords: coal mining; transport and assembly manipulator; stability; safety; work ergonomics

1. Introduction

In hard coal mines, one of the key processes is tunnelling. During tunnelling and later
during the exploitation of such an excavation, it is deformed due to the pressure of the rock
mass [1,2]. The floor may be deformed [3,4], but the more serious danger is caused by the
roof deformation [5–7]. Hence, various types of support for tunnels are used [8–11], but the
most commonly used in hard coal mines are yielding arch support frames [12–14].

The use of yielding arch support frames in galleries of underground mines involves
installing their elements in the face using a roadheader [15,16]. For this purpose, apart
from the aforementioned roadheader, a suspended monorail [17] and moving equipment
are used. It is easy to notice that this process, i.e., the transport of support arches and other
elements of the support, the lining, as well as the assembly itself, is performed manually.
Delivering the support elements to the face is particularly cumbersome and requires a lot
of physical effort. Hence, an idea arose to use a device enabling the transfer of elements of
the support frame from the place of their storage to the face, in front of the roadheader, and
to deliver them to the place of assembly [18–20].

The current solutions do not enable one to perform the above-mentioned functions due
to the dimensions of the excavation. This is clearly visible in the attached photo (Figure 1),
where the manipulator is attached to the platform. Examples of such solutions are GTA [21]
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and Deilmann–Haniel Mining Systems GmbH [22] platforms. However, in this situation, it
is not possible for the platform to ride over the roadheader (Figure 2).

Figure 1. Roadway Support Machine AMG 5000 produced by GTA [21].

Figure 2. View of the mining face of a gallery drilled with a roadheader.

A conceptual diagram of the manipulator, consisting of a boom mounted on one
runway beam with a stabilizing foot and a hydraulic power unit, and consisting separately
of a haulage drive (haulage unit) moving along the suspended monorail track, is shown in
Figure 3a [19,20].
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Figure 3. Diagram of the MZT-M in a gallery system with the arch in the transport position: (a) side
view, (b) top view: 1—boom, 2—beam, 3—support slide, 4—hydraulic power unit, 5—CHM-15
tractor, 6—control panel [19,20].

A characteristic feature of this solution is the asymmetrical mounting of the suspended
monorail in the gallery and the need to stabilize (balance) the modular transport and
assembly unit (MZT-M) during the transport of support elements, whereas the manipulator
can only be operated when the stabilizing foot is unfolded.

Bearing in mind the above, the following assumptions were formulated:

• the manipulator with a boom and its drive mounted on one monorail with a useful
weight of up to 440 kg or without it in the transport position (boom raised, folded,
twisted) can be moved without the possibility of maneuvering at the same time only
when the stabilizing foot is folded;

• the maneuvering of the boom itself, with or without a load, is possible only after stop-
page, with the use of a stabilizing foot stretched against the yielding support arches.

Therefore, the manipulator balancing process was performed for a transport position
with a permissible boom rotation with an angle αGw ≤ 30◦ (Figures 3b and 4). The model
of the boom with its individual elements marked is shown in Figure 5.
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Figure 4. Diagram of the MZT-M in the transport position: 1—boom, 2—beam, 3—support slide,
4—hydraulic power unit, 5—CHM-15 tractor, 6—control panel.

Figure 5. Boom model: Pp—vertical joint, R1—first arm, R2—second arm, R3—third arm with a
handle, S1R1—first arm cylinder, S2R12—second arm cylinder, S3R2—third arm cylinder.

The article’s main objective is to present the process of analytically determining the
stability of the manipulator during various phases of its operation and to determine the
counterweight mass for the boom in the transport position. A solution was searched for,
resulting in specific conditions and design requirements related to the operation of this
manipulator being obtained and specified.

2. Analytical Model of the Manipulator and Methodology for Determining
Its Stability

As mentioned before, the aim of this article was to determine the counterweight for
the boom in the transport position. Therefore, the boom model shown in Figure 5 was
adapted, with the boom elements being marked in Figures 6 and 7.
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Figure 6. Diagram of the boom with marked dimensions.

Figure 7. Analytical model of the boom for determining stability.
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Based on the analytical model (Figure 7), the structure and kinematics of the R1 arm
were considered (Figures 5 and 8). Bearing in mind the diagram (Figure 8), the dependencies
that allowed one to describe the quantities that were important for the assessment of the
arm’s stability as a function of the construction parameters were determined.

αR1 = αR11 + αR12 (1)

αR11 = arctg
(

aR1S12

lR1S

)
(2)

αR12 = arccos

⎡
⎢⎢⎣
[
(aS1 − aR1)

2 + a2
R1S11 +

(
lR1S · cos α−1

R11

)2
]
− l2

S1

2 · lR1S · cos α−1
R11 ·

√
(aS1 − aR1)

2 + a2
R1S11

⎤
⎥⎥⎦− arctg

(
aR1S11

aS1 − aR1

)
(3)

αS1 = 90
◦
+ arctg

(
aS1 − aR1

aR1S11

)
− arccos

⎡
⎣ a2

R1S11 + (aS1 − aR1)
2 − l2

R1S · cos α−1
R11 + l2

S1

2 · lS1 ·
√
(aS1 − aR1)

2 + a2
R1S11

⎤
⎦ (4)

HR1 = aSO + aR1S11 + lR1· sin αR1 (5)

lWZ1 = 0.5·d + aR1 + lR1· cos αR1 (6)

Figure 8. Computational diagram of the R1 arm.

The same was done for the R2 arm, whose computational diagram is presented in
Figure 9.

αR21 = arctg
[

aR2S22

lR2 − (lR2S + lR23)

]
(7)

αR10 = arctg
[

aR1S21

lR1 − (lR1S + lR12)

]
(8)
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A =
lR2 − (lR2S + lR23)

cos αR21
(9)

B =
lR1 − (lR1S + lR12)

cos αR10
(10)

αR1R2 = arccos

(
A2 + B2 − l2

S2
2 · A · B

)
(11)

αR2 = 180
◦ − (αR21 + αR10 + αR1 + αR1R2) (12)

αS2 = αR10 + αR1 − αR1S1 (13)

αR1S1 = arccos

(
B2 + l2

S2 − A2

2 · lS2 ·B

)
(14)

HR2 = HR1 − lR2· sin αR2 (15)

lWZ2 = lR2· cos αR2 (16)

lS1 = lS1min + ΔSS1 (17)

lS2 = lS2min + ΔSS2 (18)

lS3 = lS3min + ΔSS3 (19)

lWZ = lWZ1 + lWZ2 (20)

Figure 9. Computational diagram of the R2 arm.

The computational diagram of the R2 arm and more specifically its end, consisting of
a gripping part that is moved by the S3 actuator, is presented in Figure 10.

αR22 = arctg
(

aR2S31

lR2S

)
(21)

αR2S31 = arccos

⎡
⎢⎣ l2

S3 +
(

lR2S · cos α−1
R22

)2 − a2
R2S32

2 · lS3· lR2S · cos α−1
R22

⎤
⎥⎦ (22)

αS3 = αR2 − αR22 + αR2S31 (23)

αR2S32 = arccos

⎡
⎢⎣
(

lR2S · cos α−1
R22

)2
+ a2

R2S32 − l2
S3

2 · lR2S · cos α−1
R22 · αR2S32

⎤
⎥⎦ (24)
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αR2SC = arccos

(
a2

R2S32 + l2
R3 − laR3

2 · aR2S32 · lR3

)
(25)

αlR3 = αR2SC − [90 − αR2S32 + (αR2 − αR22)] (26)

lR3X = lR3· sin αlR3 (27)

lR3Y = lR3· cos αlR3 (28)

Figure 10. Computational diagram of the R2 arm with an actuator.

Based on the above dependencies, it is possible to determine the location of the center
of mass (xs, ys) for the boom system. The boom diagram is shown in Figure 11, whereas
Figures 12 and 13 show the diagrams that provided a basis for determining the missing
parameters related to the installation of the S1, S2 and S3 actuators (lR12, lR23).

GW = GS1 + GR1 + GS2 + GR2 + GS3 + GM + GU (29)

where:
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Figure 11. Diagram of the boom for determining the resultant of the center of mass xs and ys.

Figure 12. Diagram of the S1 and S2 actuators’ mounting.
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Figure 13. Diagram of the mounting of the S2 and S3 actuators.

GW—resultant mass (weight), kg
GS1—mass (weight) of the first actuator, kg
GR1—mass (weight) of the first arm, kg
GS2—mass (weight) of the second actuator, kg
GR2—mass (weight) of the second arm, kg
GS3—mass (weight) of the third actuator, kg
GM—mass (weight) of the gripping part, kg
GU—useful mass (weight) (support arch), kg.

lGS1 = 0.5·d + aS1 + xGS1· cos αS1 + lp (30)

lGR1 = 0.5·d + aR1 + xGR1· cos αR1 + lp (31)

lGS2 = 0.5·d + aS1 + xGS2· cos αS2 + lp + xS1S2 + lS1· cos αS1 (32)

lGR2 = xGR2· cos αR2 + lp + lWZ1 (33)

αR12P = arctg
(

aR1S21 − aR1S12

lR12

)
(34)

αR121 = αR12P − αR1 (35)

ΔlR12 = lR12· cos α−1
R12 (36)

xS1S2 = ΔlR12· cos αR121 (37)

yS1S2 = ΔlR12· sin αR121 (38)

αR23 = arctg
(

aR2S22 − aR2S31

lR23

)
(39)

αR232 = αR2 − αR23 (40)

ΔlR23 = lR23· cos α−1
R23 (41)

xS2S3 = ΔlR23· cos αR232 (42)

yS2S3 = ΔlR23· sin αR232 (43)

lGS3 = 0.5·d + aS1 + lp + lS1· cos αS1 + xS1S2 + lS2· cos αS2 + xS2S3 + xGS3· cos αS3 (44)

xs =
GS1· lGS1 + GR1· lGR1 + GS2· lGS2 + GR2· lGR2 + GS3· lGS3 + ( GM + GU)· (lWZ + lR3X)

GS1 + GR1 + GS2 + GR2 + GS3 + GM + GU
(45)

hGS1 = aS0 + xGS1· sin αS1 (46)
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hGR1 = aS0 + aR1S11 + xGR1· sin αR1 (47)

hGS2 = aS0 + lS1· sin αS1 + yS1S2 + xGS2· sin αS2 (48)

hGR2 = HR1 − xGR2· sin αR2 (49)

hGS3 = aS0 + lS1· sin αS1 + yS1S2 + lS2· sin αS2 + yS2S3 − xGS3· sin αS3 (50)

hGMU = HR2 − lR3Y (51)

ys =
GS1· hGS1 + GR1· hGR1 + GS2· hGS2 + GR2· hGR2 + GS3· hGS3 + ( GM + GU) · hGMU

GS1 + GR1 + GS2 + GR2 + GS3 + GM + GU
(52)

The location of the center of the entire boom (xs, ys) and its resultant mass Gw allows
one to determine the counterbalance weight Gst (stabilizing foot) for the variant of the
manipulator’s ride with the support arches. In such a case, it is required for the stabilizing
foot not to be in contact with the already installed arch or arches of the support (Figure 14).

GW · xSt = GSt· lGStt (53)

lGStt = lGSt· cos αGSt + lt (54)

where:
GSt—mass (weight) of the stabilizing foot, kg
lGst—length of the arm of the stabilizing foot, m
For the transport position, the value of αGW cannot be greater than 30◦, and then:

xSt = xS· sin αGW (55)

Figure 14. Diagram of the manipulator in the transport position.
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Therefore, taking into account the dependencies of Equations (53)–(55), we obtain the
following Equation (56), where:

GSt =
GW · xSt

lGStt
= GW · xS · sin αGW

lGSt · cosαGSt + lt
(56)

It is equally important to determine the load on the trolleys of the transport beam
(points A and B), a simplified diagram of which is shown in Figure 15. Then, the beam is
loaded with an additional mass (weight) with the Gz hydraulic power unit and Gn drive.

l1 + l2 + l3 + l4 = 1
∑ Piz = 0 → RAZ = 0

∑ Piy = 0 → −Gz − Gn − Gst + RBY − Gw + RAY = 0

RAY = Gz + Gn + Gst + Gw − RBy (57)

∑MiA = 0 → - (Gz + Gn) · l1 - Gst · (l1+ l2) + RBY · (l1 + l2 + l3) - Gw · (l1 + l2 + l3 + l4)

RBy = [(Gz + Gn) · l1 + Gst · (l1+ l2) + Gw · (l1 + l2 + l3 + l4)] · (l1 + l2 + l3) −1 (58)

Figure 15. Simplified diagram of the transport beam loading.
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3. Calculation Results and Their Analysis

The previously described manipulator model, especially the one dedicated to the
transport and assembly of the arch support, was used to develop a preliminary design and,
next, a basic design and technical documentation used to create a real object (Figure 16). At
the same time, as previously mentioned, data (design parameters) was obtained on the basis
of the technical documentation so as to determine the manipulator’s stability, especially in
the transport position (no contact of the stabilizing foot with the excavation sidewall or
with the support elements). It is then important to determine the counterbalance weight,
so that the manipulator can move along the excavation axis without the stabilizing foot
coming into contact with the sidewall, in the case of movement without or with a load
(useful weight of up to 400 kg). Of course, before the MZM-T was used in a tunnel, the
results of the counterweight calculations were verified on a test stand, using specialized
software (Figure 17).

Figure 16. The MZM-T on the test stand.

The construction and mass parameters of the manipulator obtained on the basis
of the technical documentation made it possible to carry out a simulation that enabled
the determination of its movement trajectory and stability [19]. It was assumed that the
manipulator would be suspended 4 m from the floor (aso), on the left side of the excavation
(Figure 16). For such a system, the movement trajectory of the manipulator tip was
determined for the minimum and maximum extensions of the actuators (Figures 18 and 19).
It turned out that the manipulator movement capabilities determined analytically were
consistent with the research carried out on the test stand, which allowed the support arches
(usable weight of up to 440 kg) to be effectively moved to the face, i.e., in front of the
roadheader. This eliminated the previous process, where the elements of support arches
were provided manually. At the same time, the stability of the boom-counterweight system
was determined analytically for the arch transport phase, so that the stabilizing foot did not
come into contact with the support. This case was considered in the system of the support,
stabilizing the foot (lGST, αGST) and boom, with a maximum rotation of up to 15◦ and a load
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of up to 5 kN. As before, there was no contact between the stabilizing foot and the support,
i.e., the model was consistent with the real object (test stand).

Figure 17. Application page of the program for determining the manipulator’s stability.

Figure 18. Movement trajectory of the manipulator tip’s movement for the minimal extension of
the actuators.
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Figure 19. Movement trajectory of the manipulator tip’s movement for the maximum extension of
the actuators.

4. Conclusions

The aim of developing this manipulator model for supporting assembly works in
mining excavations was to describe its basic functions (kinematics, stability) in an analytical
way. The model and the calculation results were finally verified in an excavation of a hard
coal mine, where the movement capabilities of the manipulator were tested (Figure 20).
Given that the design, documentation and working assumptions have been fulfilled, the
manipulator can be recommended for practical use in underground workings, and the
model and software can be used for design purposes.
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Figure 20. View of the MZT-M installed in an underground excavation.
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Abstract: The existing empirical formulas concerning draining systems are complex in their ex-
pression: there are difficulties in locating the intersection point among different flow patterns and
parameters vary depending on the water level, resulting in a large amount of data to be processed and
low calculation efficiency. To solve these problems, a “simplification-fitting” method was proposed
herein to calculate the discharge capacity of a window-type draining well, and optimal and reason-
able locations were selected as discrete points of water level to deduce the increasing progressive
relationship of free flow discharge capacity among discrete points according to the window size
and longitudinal layout of window-type draining wells. Additionally, the algorithm simplified the
discharge formulas of half-pressure flow and pressure flow and defined the convergence criteria for
water level-discharge capacity to further simplify the expression of pressure flow. The comparison
and contrast between the simplified calculation method and empirical formula method show that the
method herein is of high precision. It is able to resolve the shortcomings of the traditional theoretical
formula method in solving the discharge capacity curve of a window-type draining well and simplify
the algorithm integration.

Keywords: simplification fitting; discharge capacity; window type; draining well; empirical formula

1. Introduction

A tailing pond stands as a critical facility affiliated with mines. Its safe operation
is vital to the daily production of mining companies and the safety of the downstream
area. The flood-discharging system of the tailing pond serves as an essential approach
to discharge catchment water on the slope surface and to supply mining company with
production water [1,2].

An insufficient discharge capacity in this system will increase the risk of flood overflow
atop the tailing pond and simultaneously cause the water level in the tailing pond to
be higher than its safety control value, thus driving the saturation line to exceed the
safety threshold, increasing the seepage, deformation and damage risks and even directly
inducing the dam break [3,4].

It is a critical measure to guarantee the safe operation of tailing ponds by specifying the
permissible water level in tailing pond reservoir through flood routing calculation before
the flood season [5]. Li [6] highlighted that the drainage system has the characteristics
of multiple inlets and complex flow patterns, and that the calculation of the discharge
capacity of a flood-discharging system is a crucial step in flood routing [6]. Its calculation
accuracy directly influences the precision of the calculation results of the flood routing

Energies 2022, 15, 4194. https://doi.org/10.3390/en15124194 https://www.mdpi.com/journal/energies209



Energies 2022, 15, 4194

program. Therefore, scholars conducted many analyses and discussions to research the
variation pattern and the specific quantity of discharge capacity of the flood-discharging
system in a tailing pond. Li [7] and Tan [8] summarized the problems existing in the
hydraulic calculation of discharge system in a tailing pond, and suggested that free flow is
recommended to estimate the discharge system, especially the combined patterns discharge
system. As the primary method of studying the hydraulic characteristics of the flood-
discharging system, the hydraulic model test was taken as the basic method for researching
the changing process of discharge capacity in complex flood-discharging systems. Liu [9]
carried out a hydraulic experimental model to research the flow characteristics of the curved
section of the spillway tunnel, and found that the flow pattern and its change tendency was
the basic influence factor for the designing of the tunnel. Wang [10] studied the influence of
shaft depth on the discharge capacity through a typical tailing dam heightening project, and
established the fitting function relation between discharge and shaft depth. Han [11] and
Du [12] carried out an experimental model based on the principle of similarity to simulate
the process of the water level rising in a tailing pond and to obtain the complex ternary
water flow movement laws, they found that the angle of the turning can be adjusted to
reduce the backwater height. Djillali [13] proposed a new design for the shaft spillway,
replacing the circular section with a polygonal configuration of 12 sections, thus making
the hydraulic structure more reliable. Fraga [14] proposed a model under unsteady part-
full and pressure flow conditions. Zakwan [15] established the relationship between the
coefficient and flow of side weir. Ebtehaj [16] recommended a multi-objective method
for the prediction of the side weir discharge coefficients. Sen [17] used a stabilized finite-
element method to discrete the conservation equations of incompressible fluid flow in two
dimensions. Dennis [18] suggested the small to moderate values of the Reynolds number
for higher accuracy. These research results were subject to theoretical generalization and
analysis, and applied to practical projects.

In complicated and unconventional flood-discharging systems, numerical simulation
methods can be adopted as a simple, cheap, and reliable means of analyzing the hydraulic
variation characteristics. Mo [19], Zhao [20] and Bao [21] carried out the numerical simula-
tion analysis of different discharge systems; in these simulations, the flow pattern, velocity
distribution, water surface profile and other hydraulic characteristics were analyzed, and
the simulation results showed that the use of numerical simulation is of high accuracy.
The numerical simulation software adopted includes Flow-3D, 3D VOF model, Fluent, etc.
Three-dimensional hydraulic simulation is usually adopted to modify the parameters of
theoretical formulas, especially when the design of a discharge system is unconventional
and thus theoretical formulas cannot accurately calculate the discharge capacity. For ex-
ample, Wang [22] adopted Flow-3D to simulate the downstream of the sluices; Ling [23]
built a 3D water quality model coupled VOF method and the k-ε turbulence model; Yi [24]
chose Flow-3D to simulate the water characteristic of window type, frame type and chute
type water-discharge system, respectively. Yu [25] simulated the flow in a siphon-shaped
overflow tower under both steady and unsteady flow conditions using CFD. However,
calculation results may deviate from actual projects because some basic assumptions were
adopted in numerical simulation or the selected parameters are unreliable. In this situation,
a method combining numerical simulation with the model test can be adopted [26] to
invert calculating parameters for a numerical simulation with model test results. Then,
simulation results more consistent with reality can be obtained. Meanwhile, repeated
numerical simulations can be exploited to predict the discharge results under multiple
operating conditions. The analysis combining the empirical calculation formula of dis-
charge capacity with monitoring results also serves as a key research method. Based on the
real-time monitoring results of water level and discharge capacity, the parameters of the
empirical calculation formula can be modified, and a more accurate prediction formula can
be obtained [27]. In addition to the aforementioned methods, the empirical formula and
the numerical simulation results of computational fluid dynamics have been compared to
achieve mutual verification and calibration. For example, Wu [28] compared the calcula-
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tion results of the empirical formula and computational fluid dynamics flow simulation
(CFD), and found that the discharge capacity of half-pressure flow calculated by CFD
method is higher but more reasonable than that of the empirical formula method. Ning [29]
found that LUSGS preconditioning is slightly better than the ILU preconditioning. Liu [30]
and Dang [31] stated that chute plate type, chute slope, water head and flow patterns on
flow capacity should be adequately considered in the design stage. These achievements
lay a theoretical basis for the optimal design of the flood-discharging system of tailing
ponds [32–35].

In recent years, as the information construction rapidly progresses and develops,
it has become a development trend to establish the flood routing algorithm system for
tailing ponds based on the dynamic monitoring data of rainfall and water level so as
to realize a real-time analysis and calculation on flood routing for tailing ponds. This
trend has put forward new requirements on the accuracy and efficiency of hydraulic
calculation concerning flood-discharging systems [36–38]. On this basis, the “window-type
draining well plus tunnel/draining pipe” draining system was chosen herein to research
the algorithm for discharge capacity.

Theoretical Calculation Formulas

According to the References for Tailing Pond Design [39], the working conditions
of a “window-type draining well plus tunnel/draining pipe” flood-discharging system
vary in function of the size of the discharge water head, which can be divided into free
flow, half-pressure flow and pressure flow. Their specific calculation methods are listed in
Table 1:

Table 1. Theoretical calculation formulas of “window-type draining well plus tunnel/draining pipe”
flood-discharging system.

Working Conditions Calculation Formulas

Free Flow
(a) When the water level is between two layers of windows.

(b) When the water level is in the window position.

Qa = Q2 = 2.7ncωc ∑
√

Hi
Qb = Q1 + Q2

For square orifice, Q1 = 1.8ncεbc H0
1.5

For round orifice, Q1 ≈ nc AD2.5
c

(1)

Half-Pressure Flow
Q = ϕFs

√
2gH

ϕ = 1√
1+λj

l
d f 2

1 +ζ1 f 2
2 +ζ2+2ζ3 f 2

1

(2)

Pressure Flow
Q = μFs

√
2gHz

μ = 1√
1+∑ λg

L
D f 2

3 +∑ ζ f 2
3 +ζ1 f 2

4 +ζ2 f 2
9 +2ζ3 f 2

5

(3)

Notes: Descriptions of symbols in the table.

Hi—Discharging water head calculated at the working window fully submerged on the ith
floor, m;
H0—Discharging water head at the working window not submerged on the ith floor, m;
H—Water head calculated, the difference between the water level in the pond and the
elevation of the inlet section center of the draining pipe, m;
Hz—Water head calculated, the difference between the water level in the pond and the
elevation of downstream outlet section center of the draining pipe, or the height differ-
ence between the water level in the pond and the level of tail water when there is water
downstream, m:
ωc—The area of one draining window, m2;
ωs—Flow shrinkage area at the wellhead, m2, ωs = εbωj;
ω—The total window area within the water depth range, m2;
ωj—Cross-section area of draining well shaft, m2;
ω1—Total window area of draining well, m2;
ω2—External surface area of draining well shaft, m2;
Fs—Water flow shrinkage area at draining pipe inlet, m2, Fs = εbFe;
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Fe—Sectional area of draining pipe inlet, m2;
Fx—Sectional area of downstream outlet of draining pipe, m2;
Fg—Sectional area of calculating pipe segment of draining pipe, m2;
ζ—Local head loss coefficient of draining pipeline, including angle, bifurcation, section
change, etc., which can be obtained by referring to relevant tables;
ζ0—Coefficient, related to the shape of gate pier head;

ζ1—Local head loss coefficient of draining window, ζ1 =
(

1.707 ω1
ω2

)2
;

ζ2—Local head loss coefficient of draining pipe inlet, rectangular entrance ζ2 = 0.5, fillet
angular or oblique angular entrance ζ2 = 0.2~0.25, flare opening entrance ζ2 = 0.1~0.2;
ζ3—Local head loss coefficient of water diversion in a draining well;
ε—Lateral contraction coefficient, ε = 1 − 0.25ζ0 Hh

bc
;

εb—Sectional sudden contraction coefficient;
d—Inner diameter of draining well, m, but if the well shape is not circular, d = 4Rj;
D—Inner diameter of calculating pipe segment, m, but if the pipe is not circular, D = 4Rg;
L—The calculated length of the pipe segment of draining pipe (when there is no change in
the cross section, the length is the full length of pipeline), m;
A—Coefficient, obtained with reference to relevant tables and based on H0

Dc
;

Rg—Hydraulic radius of calculating pipe segment of draining pipe, m;
Rj—Hydraulic radius of shaft section of drainage well, m;
Dc—Draining well diameter, m;
bc—Width of one draining window, m;
nc—Number of draining windows on the same cross-section;
λj—Frictional head loss coefficient of draining well, λ = 8g

C2 ;

λg—Frictional head loss coefficient of draining window, λ = 8g
C2 ;

C—Chezy coefficient, with reference to relevant documents and according to n and R;
n—Pipe wall roughness coefficient;

f1 =
Fs

ωj
; f2 =

Fs

ω
; f3 =

Fx

Fg
; f4 =

Fx

ω
; f5 =

Fx

ωj
; f9 =

Fx

Fe

There will be the following problems when these formulas are adopted to calculate
the discharge capacity:

(1) In the free discharge stage, as the water level increases, there will be three combined
flow regimes—the weir flow, the orifice flow, and the weir flow + orifice flow. These
correspond to the water levels within the elevation range of the first window, between
two layers of windows, and within the elevation ranges of windows other than the first
window. Therefore, the relationship between the water level and window position
should be judged whenever necessary in the calculation. The discharge capacity
under three flow regimes can be obtained by choosing and combining reasonable
formulas, thus resulting in a complicated calculation process.

(2) There are many parameters, iterations among parameters and applications in this
method, and the water level is also closely involved. Furthermore, fluctuations in
water level result in constant changes in calculation parameters.

(3) The empirical formula method has to locate the intersection point among the free
flow curve, the half-pressure flow curve, and the pressure flow curve, and choose the
discharge capacity calculation formula according to the relative position relationship
between the actual water level and the intersection point. This requirement will bring
about logical difficulties in algorithm integration.

In order to overcome the shortcomings of the existing theoretical calculation method, a
simplified calculation method needs to be proposed to enhance the significance of discharge
capacity calculation efficiency of the “window-type draining well plus tunnel/draining
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pipe” flood-discharging system, thus realizing algorithm simplification and program-based
treatment, and delivering a higher calculation accuracy.

The literature review showed a very small number of studies similar to the simplification-
fitting method. Discharge capacity calculation is critical to flood routing calculation, which
is an important measurement to guarantee the safety of the tailing pond. However, the
theoretical formulas recommended in books are enormously complex in expression, and
are thus those algorithm cannot be implemented to flood the routing calculation program.
Therefore, this article presents for the first time research on a simplification method of
calculation equations for a discharge system in tailing pond. The proposed method deter-
mines discrete water level points according to the shape, size, and spacing of windows.
The simplified formulas for free flow, half-pressure flow, and pressure flow were obtained
through a specific discrete method. The discrete values calculated by the simplified formula
were adopted to fit those data, and to obtain the discharge capacity value on a random
water level. A series of comparative analyses was carried out during the free flow stage,
half-pressure flow stage, and pressure flow stage, respectively, the purpose of which was
to verify the accuracy of the simplified algorithm proposed in this study. The obtained
analysis results indicate that the proposed simplification method made it possible for
discharge algorithm computer integration with the flood routing program in a low-cost,
high-efficient and steady way.

2. Physical Model

In the window-type draining system in a tailing pond shown in Figure 1 [39], there
are six draining windows on each floor of the well; the window size is 0.5 × 0.5 m; the
clear vertical distance between windows is 0.2 m; the inner diameter of draining well is
5.0 m; the draining well wall is as thick as 0.2 m; the elevation of cover plate is 400.0 m;
the pedestal elevation is 398.7 m; the draining tunnel has the shape of a horseshoe, whose
bottom is as wide as 1.52 m; and the height of the straight wall is 0.76 m. The curve of the
relationship between the discharge capacity of this draining system and the water level in
the tailing reservoir was calculated.

Figure 1. A window-type draining system in a tailing pond.

3. Method

A unique discrete point selection method was proposed based on a systematical
summary of the empirical calculation formula of a window-type draining well to simplify
the formula in the free discharge stage. Simultaneously, calculation parameters in half-
pressure flow and pressure flow stages were simplified according to the characteristics of
draining wells in tailing ponds to simplify calculation expressions. The flow chart of the
simplified algorithm for the discharge capacity of window-type draining wells is shown in
Figure 2.
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Figure 2. Flow chart of the simplified algorithm for discharge capacity of window-type draining wells.

The specific “simplification-fitting” calculation processes are shown as follows:

1. Step 1. The coordinates of discrete points for the simplified algorithm were obtained
according to the dimension parameters of the window-type draining well input,
including the window number on the same longitudinal section nz, the window
height hc (or inner diameter Dc), the inlet elevation zj, etc.

Positions of discrete points were located at the center point of each window. The
first point takes the bottom level of the first window (namely, inlet elevation zj). The
coordinates of each discrete point value are shown in Figure 3. The same discrete law
was adopted for calculating the water level beyond the well height. According to the
aforementioned method, the formula of discrete point coordinates regarding water level
should be expressed as follows:

zi =

⎧⎨
⎩

zj, i = 0
zj + 0.5hc(or Dc), i = 1

zj + 0.5hc + (nz − 1) · (hc(or Dc) + hk), i ≥ 2
(4)

where zi represents the coordinate value corresponding to the ith discrete water level point,
m; zj represents the inlet elevation, m; hc represents the window height, m; Dc represents
the window diameter, m; nz represents the window number on the vertical section; hk
represents the window spacing, m.
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Figure 3. Water level discrete method.

2. Step 2. The free flow curve was calculated by the simplified algorithm according
to the dimension parameters of a window-type draining well, such as the window
number on the same cross-section nc, the window width bc (or window diameter Dc),
and the draining well thickness δ. The simplified algorithm was shown as follows:

When the window takes the shape of a square orifice, the simplified algorithm is
shown as follows:

Q1i =

⎧⎪⎨
⎪⎩

0, i = 0
1.8ncεbc(0.5 × hc)

1.5, i = 1
Q1(i−1) + 2.7ncωc

√
(i − 1)(hc + hk), i ≥ 2

(5)

where Q1i represents the discharge capacity of free flow corresponding to the i-1st discrete
water level point, m3/s; nc represents the window number on the same cross-section;
bc represents the window width, m; ε represents the lateral contraction coefficient; ωc
represents the area of one draining window, m2.

When the window takes the shape of a round orifice, the simplified algorithm is
as follows:

Q1i =

⎧⎨
⎩

0, i = 0
nc AD2.5

c , i = 1
Q1(i−1) + 2.7ncωc

√
(i − 1)(Dc + hk), i ≥ 2

(6)

According to the discrete water level method, flow regimes at all discrete points will be
simplified into two components, namely weir flow and orifice flow. The discharge capacity
of weir flow is constant, while the discharge capacity of the orifice flow regularly presents
a progressive increase with the water head. According to the aforementioned formula, the
difference in discharge capacity between point i − 1 and point i should be:

ΔQ1i = 2.7ncωc

√
(i − 1)(hc(orDc) + hk), i ≥ 2 (7)

The above formula will express the flow difference between the adjacent points. As the
position of discrete water level points increases, the flow difference between the adjacent
points will increase according to the aforementioned law. Therefore, only the discharge
capacity at the second point (i = 1) needs to be calculated, namely the discharge capacity
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under the state of weir flow, and the discharge capacity at the rest of the points can be
superimposed automatically according to Equation (7).

Simultaneously, as for the lateral contraction coefficient ε = 1 − 0.2ζ0Hh/bc, the
coefficient ζ0 was taken as 0.8 in the flood routing system of tailing ponds according to
relevant specifications since sidewalls on both sides of the window are rectangular and
have no structure with irregular shape. Therefore, ε = 1 − 0.16Hh/bc.

Meanwhile, as for coefficient A in Equation (6), since the water level chosen for the
simplified algorithm is the center point of the window, H0/Dc = 1/2; according to the
relevant table, A = 0.45.

The point set was converted into a smooth curve and fitted into a function relation
between the water level and discharge capacity in the free flow stage.

3. Step 3. According to the design characteristics of the flood-discharging system of
tailing ponds, the parameters in empirical Formula (2) were simplified to determine
the simplified calculation formula for half-pressure flow and the discharging curve
under half-pressure flow according to the simplified algorithm. The simplification
process of parameters is shown as follows:

1© Simplification Process for Submerged Window Area

The water level step size for half-pressure flow was the same for free flow. The
submerged window area ωi at different positions can be calculated as follows.

The calculation method for the submerged window area of the square window is
as follows:

ωi =

{
0, i = 0

[0.5 + (i − 1)]ncbchc, i ≥ 1
(8)

The calculation method for the submerged window area of the circular window is
as follows:

ωi =

{
0, i = 0[

π
8 +(n z −1) · π

4
]
ncD2

c , i ≥ 1
(9)

According to Equations (8) and (9), the submerged window area can be directly
obtained at the specified water level step size.

2© Simplification process for parameters f2 and f4. Parameters f2 and f4 can be deter-
mined when ωi is determined.

3© Simplification process for parameter f3. The downstream outlet section of the draining
pipe in a tailing pond is generally consistent with the designed shape of calculating a
pipe segment of draining pipe, so the parameter is f3 = 1 in the simplified algorithm.

4© Simplification process for parameter ζ2 and ζ3. Since the draining pipe inlet is gener-
ally perpendicular to the draining well in a tailing pond, in the simplified algorithm
for discharge capacity, the local head loss coefficient ζ2 of the draining pipe inlet
is =0.5 and the local loss coefficient ζ3 of water diversion is =1.1.

5© Simplification process for parameter λj. Since the height of the draining well in tailing
ponds is limited, and the well surface is smooth due to long-term exposure to water,
the frictional head loss coefficient λj of the draining well in the simplified algorithm
is 0.

6© Simplification process for parameter εb. There is no contraction section at the inlet
section of draining pipe in tailing ponds, so the sectional contraction coefficient εb
is 1.0.

Based on the simplified results of six parameters above, the discharge capacity calcula-
tion formula under half-pressure flow can be simplified as follows:

Q2i =
1√

1.5 + 3.2( Fe
ωj
)

2
+ ζ1(

Fe
ωi
)

2
Fe

√
2g(zi − zjc) (10)

216



Energies 2022, 15, 4194

where Q2i represents the discharge capacity of the half-pressure flow corresponding to
the ith discrete water level point; Fe represents the sectional area of draining pipe inlet; ωj
represents the sectional area of draining well j shaft; ωi represents the submerged window
area corresponding to the ith discrete water level point; zjc represents the center elevation of
the entrance section of water conveyance structure; g represents gravitational acceleration.

The number and the type of parameters for the simplified calculation formula of
discharge capacity under half-pressure flow were significantly reduced, facilitating the
algorithm compilation.

The discharge capacity results under half-pressure flow at discrete points on different
water levels were obtained according to Equation (10), and the results were then con-
verted into the curve representing the functional relationship between the water level and
discharge capacity.

4. Step 4. According to the design characteristics of the flood-discharging system of
tailing ponds, the parameters in empirical Formula (3) were simplified to work out
the simplified calculation formula for pressure flow and the discharging curve under
pressure flow according to the simplified algorithm.

Simplification process for parameter ζ. The local head loss coefficient ζ on the draining
pipeline is 0 as the draining pipe is generally short, and there are few corners, bifurcations
and section changes in tail ponds. The rest of the parameters adopted the simplified results
such as those in Step 3.

Q3i =
1√

1.5 + ∑ λg
L
D + ζ1(

Fe
ωi
)

2
+ 2.2( Fe

ωj
)

2
Fx

√
2g(zi − zcc) (11)

where Q3i represents the pressure flow discharge capacity corresponding to the ith discrete
water level point, m3/s; λg represents the frictional head loss coefficient of the draining pipe;
L represents the length of the calculating pipe segment of the draining pipe, m; D represents
the inner diameter of calculating the pipe segment of draining pipe, m; Fx represents the
sectional area of the downstream outlet of the draining pipe, m2; zcc represents the center
elevation of the draining pipe outlet section, m; ζ1 represents the local head loss coefficient
of the draining window.

The number and the type of parameters for the simplified calculation formula of
the pressure flow discharge capacity were significantly reduced, which facilitated the
algorithm compilation.

The calculation results of the pressure flow were re-fitted to the functional relationship
between water level and discharge capacity.

5. Step 5. The curve of the final discharge capacity within the well height was calcu-
lated and fitted to a function. The method to determine the final discharge curve is
as follows:

At each discrete water level point, the minimum value of discharge capacity results of
the free discharge, half-pressure flow and pressure flow calculated in steps 2, 3 and 4, re-
spectively, were taken as the final discharge capacity and the calculated results were stored.

Qi = min{Q1i, Q2i, Q3i}, i = 0, 1, 2 · · · · · · nz (12)

6. Step 6. Judgment of discharge curve convergence beyond well height.

According to the fitted curve through Step 5, the water head increased at the set
step size to determine the discharge capacity. |Qk+1 − Qk| < ε, ε serves as a convergence
criterion. The discharge capacity will no longer change upon the rising of the water level.
The discharge capacity beyond the convergence water level point will be a constant value.
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4. Results and Discussion

The simplified algorithms were adopted to calculate the process of the water head-
discharge capacity of the physical model displayed in Figure 1, and the results were fitted,
as shown in Figure 4.

(a) (b)

(c)

Figure 4. Fitted value of results calculated through simplified algorithm for discharge capacity:
(a) free flow; (b) half-pressure flow; and (c) pressure flow.

Based on those fitted results, the water level elevation was gradually increased in
a water level step size of 0.1 m. Then, the resulting curve on the water level-discharge
capacity process and the calculation error compared with the accurate algorithm method in
the free discharge stage were shown in Figures 5 and 6.

Figure 5. Figure on discharge capacity results from both simplified and accurate algorithms in the
free discharge stage.
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Figure 6. Figure on the errors of simplified and accurate algorithms in the free flow stage.

The calculation error of Figure 6 represents the difference between the results of an
accurate algorithm method and the results of the simplified method, which was calculated
according to Equation (13):

Er =
|Q′ − Q|

Q
· 100% (13)

where Q represents the discharge capacity calculated by the accurate algorithm listed in
Equations (1)–(3) for free flow, half-pressure flow and pressure flow, respectively, m3/s; Q′
represents the discharge capacity calculated by the simplified method listed in Equation (5)
(or Equation (6)), Equations (10) and (11) for free flow, half-pressure flow and pressure flow,
respectively, m3/s.

The statistical data on calculation errors between the simplified and accurate algo-
rithms are displayed in Table 2. According to the calculation results, the average error in
the simplified algorithm is +4.19% as compared with the accurate algorithm. Errors in
the early discharge stage are significant, with a maximum error of +15.8%. However, the
discharge capacity is generally small in the early stage. The resulting difference inflow has
little influence on the holistic process of flood routing. In the later period, as the water level
rises, the calculation accuracy gradually improves and has relatively high overall accuracy.

Table 2. Statistical table on errors in both simplified and accurate algorithms in the free discharge stage.

Water Level
(m)

Discharge Capacity from
the Accurate Algorithm

(m3/s)

Discharge Capacity from
Simplification-Fitting Algorithm (m3/s)

Error
(%)

Average Error
(%)

400.5 1.60 1.86 15.80
401.5 7.70 8.31 8.01
402.5 16.04 16.41 2.31
403.5 26.34 26.16 0.69 4.19
404.5 37.94 37.54 1.06
405.5 51.30 50.57 1.42
406.5 65.30 65.24 0.08

Based on the fitted results, the water level is gradually increased in a water level step
size of 0.1 m. The discharge capacity on each water level was calculated based on fitted
results and compared with those calculated by the accurate algorithm. The resulting curve
on the water level-discharge capacity process is shown in Figure 7, and the calculation
errors compared with the accurate algorithm method calculated by Equation (12) in the
half-pressure flow stage are shown in Figure 8.
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Figure 7. Figure on discharge capacity results from both simplified and accurate algorithms in the
half-pressure flow stage.

Figure 8. Figure on errors of simplified and accurate algorithms in the half-pressure flow stage.

The statistical data on the calculation errors between the “simplification-fitting” al-
gorithm and the accurate algorithm are displayed in Table 3. According to the calculation
results above, the average error in the “simplification-fitting” algorithm is +1.87%, as com-
pared with the accurate algorithm. The error is large in the early stage of half-pressure
flow. However, in light of the entire discharge process, the early stage belongs to the free
discharge so the results from the simplified algorithm of half-pressure flow in the early
stage will not be adopted; therefore, errors arising from this stage can be ignored.

Table 3. Statistical table on errors between the simplified and accurate algorithms in the half-pressure
flow stage.

Water Level
(m)

Discharge Capacity from
the Accurate Algorithm

(m3/s)

Discharge Capacity from
Simplification-Fitting Algorithm (m3/s)

Error
(%)

Average Error
(%)

400.5 4.04 4.19 3.52
401.5 6.79 7.00 3.20
402.5 8.52 8.57 0.57
403.5 9.75 9.63 1.22 1.87
404.5 10.83 10.61 2.07
405.5 11.78 11.63 1.34
406.5 12.66 12.50 1.21
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Based on those fitted results, the water level elevation is gradually increased in a water
level step size of 0.1 m. The discharge capacity on each water level was calculated based
on fitted results and compared with those calculated by the accurate algorithm. Then,
the resulting curve on the water level-discharge capacity process is shown in Figure 9,
and the calculation errors compared with the accurate algorithm method calculated by
Equation (12) in the pressure flow stage are shown in Figure 10.

Figure 9. Figure on discharge capacity results from both simplified and accurate algorithms in the
pressure flow stage.

Figure 10. Figure on errors of simplified and accurate algorithms in the pressure flow stage.

The statistical data on calculation errors between the “simplification-fitting” algorithm
and the accurate algorithm are displayed in Table 4. According to the calculation results,
the average error in the simplified algorithm is +1.23%, as compared with the accurate
algorithm. The error is large in the early stage. However, in light of the entire discharge
process, the early stage belongs to the free discharge; therefore, the results from the simpli-
fied algorithm of pressure flow in the early stage will not be adopted; thus, errors arising
from this stage can be ignored.
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Table 4. Statistical table on errors between the simplified and accurate algorithms in the pressure
flow stage.

Water Level
(m)

Discharge Capacity from
the Accurate Algorithm

(m3/s)

Discharge Capacity from
Simplification-Fitting Algorithm (m3/s)

Error
(%)

Average Error
(%)

400.5 7.44 7.22 2.91
401.5 8.53 8.66 1.59
402.5 9.14 9.23 0.97
403.5 9.64 9.56 0.86 1.23
404.5 10.10 9.98 1.21
405.5 10.54 10.56 0.17
406.5 10.96 11.06 0.89

In terms of the determination of the curve on the final discharge capacity within the
well height, Qi = min{Q1i, Q2i, Q3i}, i = 0, 1, 2 · · · · · · nz, the results on the final discharge
capacity within well height in this example are displayed in Table 5.

Table 5. Table on results of final discharge capacity within well height.

Water Level (m) Discharge Capacity (m3/s)

400.5 1.86
401.5 7.00
402.5 8.57
403.5 9.56
404.5 9.98
405.5 10.56
406.5 11.06

According to the determined convergence criterion |Qk+1 − Qk| < ε, ε is the conver-
gence criterion. The convergence criterion should match the distance between the discrete
water level points. In this example, ε = 0.50. Therefore, the discharge capacity converged
when the water level reached 406.5 m. Thus, in terms of water level above 406.5 m, a
constant discharge capacity of 11.06 m3/s should be the maximum discharge capacity value
of this flood-discharging system.

5. Conclusions

This paper derived a “simplification-fitting” calculation method for window-type
draining wells of a tailing pond. Several conclusions can be drawn:

• The “simplification-fitting” algorithm, together with the mathematical fitting method
introduced, facilitated the expression of calculation formula for discharge capacity;

• The mathematical relationship existing in the discharge capacity between windows
was deduced, thus the discharge capacity at the rest of the discrete points can be
directly deduced once the discharge capacity at the first discrete point is known, and
the calculation step of orifice flow can be omitted;

• Due to the unique discrete method concerning the water level, the parameters related
to the water level in empirical calculation formulas under half-pressure flow and
pressure flow were simplified;

• The final discharge capacity curve adopted the minimum value among the free flow,
half-pressure flow and pressure flow on each water level step and thus avoided the dif-
ficulty in calculating the intersection point among the three discharge capacity curves;

• The average error in the “simplification-fitting” algorithm compared with the accurate
algorithm for free flow, half-pressure and pressure flow stage is +4.91%, +1.87%,
+1.23%, respectively.
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The presented study refers to the simplification of a calculation method in a flood
discharge system for a tailing pond. According to the empirical formulas, discharge capacity
and water level are bonded by a complicated non-linear relationship, During the process
of developing a flood routing system, if the discharge capacity under three flow regimes
is calculated in strict accordance with the theoretical calculation formula, not only is it
challenging to locate the intersection points of three discharge curves, but also formulas
will grow complicated and parameters must be constantly changed, which will result in
difficulties in terms of computer programming. The simplified method proposed in this
study can meet the accuracy and efficiency requirements of automatic discharge capacity
calculation by the flood-discharging system.
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Abstract: Explosives are commonly used in the mining industry to extract minerals from hard
rock deposits. Therefore, an efficient explosive should ensure that the appropriate blast outcome
is achieved, taking into account the desired rock-breaking parameters and the costs of drilling and
blasting works. Depending on the type of deposit and follow-up processes, a proper blast result
may be characterized by fragmentation, muckpile shape, overbreaks, etc. Industry has struggled to
respond to the demand for bulk emulsion explosives with improved energetic parameters, having
so far been unable to do so safely, effectively, and cost-efficiently. Methods of improving blasting
parameters mainly rely on introducing a variety of additives to the emulsion explosive formulation
during production, which creates additional hazards at that stage. Alternative, safe methods of
achieving an improved energetic performance of emulsion explosives are, therefore, highly desirable.
This paper is focused on one such proposed method as a continuation of previous research works and
the performance of a novel bulk emulsion formulation under real mining conditions during the firing
of mine faces is described. The tests included density measurements over time, measurements of
impact and friction sensitivity, measurements of the detonation velocity in blastholes, determination
of brisance via Hess test, and analysis of rock fragmentation. Results were compared with those
obtained with a commercially available bulk emulsion explosive, highlighting that the performance
improvement achieved by the proposed emulsion modification method is not limited to artificial test
conditions, but translates well into actual application conditions.

Keywords: underground mining; blasting; explosives; detonation velocity

1. Introduction

The growing demand for metals and minerals translates into the need for econom-
ically sound, effective, time- and material-efficient methods of mining. However, there
are still some technical constraints associated with underground mining. Over the last
few decades, the development of mining explosives has led to a continuous improve-
ment in their energetic parameters while maintaining the highest effectiveness and safety
of blasting operations. Emulsion explosives, frequently referred to as “the latest gener-
ation explosives”, are a prime example of this trend, even though they were invented
more than 50 years ago [1]. According to the data provided by the Federation of Explosives
Manufacturers, the share of bulk emulsion explosives in the total usage of emulsions in
Europe is more than 85%, with this share expected to increase even further in the coming
years. This is mainly because no alternative methods of solid rock extraction have so far
proven to be effective enough [2,3].
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The mining industry is facing various challenges, such as the need for increased pro-
duction, reducing the time of the entire technological cycle, lowering deposit exploitation
costs and ensuring personnel safety, including the issue of the stability of underground
openings [4,5]. One such challenge, related to drilling and blasting operations, is the
general effectiveness of blasting, mainly in terms of explosive performance. The effect of
blasting is directly influenced by the working capacity of explosives—which, in a much
wider sense, may be defined as the quality of explosives. It should, however, be noted that,
apart from a number of manufacturing parameters which influence the working capac-
ity [6,7], the results of blasting are affected by many different technological parameters.
They are only observed in real mining conditions and cannot be evaluated under laboratory
conditions [8,9]. The most important factors from the adopted technology point of view are
the diameter of the blastholes, method of initiation or time between charging of explosives,
and firing.

According to recent studies [10], the detonation velocity increases with an increase
in blasthole diameter. Velocity of detonation (VOD) is used as a basic parameter in the
determination of the detonation pressure, which in turn represents the energy of the
explosive [11,12]. The problem of the blasthole diameter is especially significant when
high rock pressures are observed. This may lead to a reduction in blasthole diameters,
while causing a reduction in the charge diameter, but may also cause some problems
with charging (when using bulk emulsions). The initiation method in turn is important
for the effectiveness of the production. When initiating with the detonator only, the dis-
tance between the detonator position and the stable detonation velocity value is much
greater than when using proper boosters. However, according to previous research studies,
this does not affect the final detonation velocity value of bulk emulsions [13] but may
affect the VOD of ANFO explosives [14]. From a safety point of view, the time between
charging the blastholes and firing seems to be the most important factor. This problem
should be considered from two perspectives. The first is associated with the density
changes in time, which means that detonation velocity decreases with reductions in density.
Such an explosive becomes less energetic over time [15,16]. The second problem is con-
nected with the sleep time of bulk emulsions [17]. The sleep time is the time after which
the bulk emulsion loses its detonation capacity. As shown during field investigations, the
sleep time may even reach 6 months after the charging [18], meaning that each undetonated
explosive should be treated with extreme caution.

Other important factors that may only be observed in underground mines are the
temperature of rock mass and ambient temperature. With the increase in depth, the primary
rock mass temperature increases. Under such conditions, lower thermodynamic parameters
of bulk emulsions may be expected and their efficiency, expressed as velocity of detonation,
may be much lower [19,20]. A very important issue in the field of blasting effectiveness
is also detailed identification of the interaction between the explosive and the rock mass,
i.e., propagation of blast-induced fractures around the blasthole [21,22]. This should be
treated as the first step in the selection of relevant explosives for given geologic and mining
conditions. Therefore, it may be concluded that the determination of relationships between
the above parameters and their efficiency is critical in formulating reliable and credible
computational models describing the detonation process [23].

A recent study was conducted to develop and evaluate, under laboratory conditions,
a novel sensitizing agent formulation for bulk emulsion explosives with improved energetic
parameters [24]. The purpose of the study was to improve the effectiveness of blasting by
replacing the commonly used sensitizer by novel formulations. The results proved that
energetic parameters of new formulas were actually better in every aspect in relation to
the standard explosive, used commercially. The greatest advantage is that the sensitization
process is much faster and much more stable. Moreover, it was confirmed that new
formulations are capable of detonation after 5 min and the final density remains stable
after 30 min.
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Since the mixing of components using mixing–charging units in mines is not as precise
as manual mixing in laboratory conditions [25], the authors have made an attempt to verify
selected detonation parameters under real mining conditions. For this purpose, one of
the developed formulas was verified during regular faces firing and compared with the
standard bulk emulsion. Finally, the effectiveness evaluation of such an emulsion was
conducted. The tests included: density measurements over time, measurements of the
detonation velocity in blastholes, determination of brisance via Hess test, and analysis of
blasted rock fragmentation. In this paper, results of in situ trials using the underground
mixing–charging units are presented, which should be treated as the continuation of work
under development of a novel formulation of bulk emulsion explosive with improved
energetic parameters.

2. Materials and Methods

Evaluation of the blasting effect has been conducted under real mining conditions in
a deep mine in Poland and consisted of two rounds of trials, in each of which explosives
in four faces were fired. Each trial included the firing of two faces charged with BK-2 and
two with the commercially available E8L explosive for reference. The time interval between
the two rounds of trials was two weeks.

2.1. Trial Site

A trial panel was located in a deep underground copper mine in Poland, in which
the room-and-pillar mining method with roof deflection and pillar softening is practiced.
The average depth of excavations is approximately 800 m below the surface. The orebody
thickness does not exceed 1.8 m and is almost flat. It is formed from sandstone (2.8 m) and
a thin shale stratum located near the roof (Figure 1).

 

Figure 1. Scheme of the mining face cross-section, depicting the geologic structure and dimensions of
the typical face over the considered panel.

Drifts are excavated using the drilling and blasting method. The shape of excavations
is in the form of an inverted trapezoid, with the average base of 5 m and an average width
of 7 m in the roof stratum. The height is approximately 3 m. Faces are fired using bulk
emulsion explosives charged by standardized mixing–charging units installed on blasting
utility vehicles. Explosives are initiated by non-electric detonators and explosive boosters.
No stemming is used in blastholes.

The same drilling and blasting pattern with the V-cut was used on each trial and
each face (same distribution of blastholes, same mass of explosives, same delays, etc.), as
presented in Figure 2. The blastholes had a length of 3 m, except those charged with 2.5 kg
of explosives (central ones), which were slightly shorter, and a diameter of 48 mm; thus,
3 m was also the expected advance per blast. The total number of blastholes was 41 per face,
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total mass of explosives per face was 138.5 kg, and the total firing time was 5000 ms. The
calculated powder factor was 2.40 kg/m3.

Figure 2. Drilling and blasting pattern used during underground trials: cross-section of the face (upper),
topside view of the drilled blastholes (lower).

2.2. Formulations of Explosives and Mixing–Charging Unit

All tests, except the impact and friction sensitivity tests, were performed on the same
batch of emulsion matrix (supplied by Nitroerg, Bieruń, Poland) for the underground bulk
emulsion formula. The matrix contains ammonium nitrate, calcium nitrate, water, oil, emulsi-
fier, and auxiliary components. The E8L emulsion was sensitized with a standard sensitizing
agent—an aqueous solution of sodium nitrite. For the modified BK-2 formulation, a more
comprehensive sensitizing agent formulation was utilized, as per the authors’ earlier work [24],
characterized by a lower water concentration (Table 1).

Table 1. Tested sensitizing agent formulations.

Component
Concentration (wt.%)

E8L BK-2

Ammonium nitrate – 47
Water 95.45 41

Sodium perchlorate – 8
Sodium nitrate 4.5 3.3

ph modifier and dye 0.05 0.7

The mixing–charging unit was installed on a blasting utility vehicle. It mainly con-
sists of the matrix and sensitizer tanks and pumps for the transfer of these components
(Figure 3). The production unit is controlled by a computer for accurate dosing of ingre-
dients. The mixing takes place in the middle of the loading hose, using a static mixer
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(Figure 4). Former constructions were based on a single mixer, while new ones already have
a double static mixer.

 

Figure 3. Simplified scheme of the mixing–charging units for bulk emulsions. Arrows indicate flow
direction of the components.

  

Figure 4. Photographs of the single (left) and double (right) static mixers.

The flow of components in the loading hose is laminar, thus, the mixing takes place
using a cross-stream static mixer. However, due to large differences in the viscosity of
components, the fast flow, and relatively short mixing time limited by the length of the static
mixer, complete mixing is not possible, compared with manual mixing under laboratory
conditions. Thus, in order to investigate the significance of this aspect for the first and
second rounds of trials, a single mixer and a double mixer were employed, respectively.

2.3. Auxiliary Materials and Software

The probes used for the determination of detonation velocity were manufactured by
MREL (Kingston, ON, Canada). They were VOD ProbeCables green with a unit resistance of
10.80 Ω/m. Dedicated software, DAS—Data Acquisition Suite, was used for data analysis
from the VOD recorder.

Fragmentation analysis was carried out using WipFrag software, version 3.2.11.1,
developed by WipWare (North Bay, ON, Canada). Photos of the muckpile after firing were
taken using an Olympus Tough TG-6 camera (resolution 12 megapixels, lens aperture f/2.0)
dedicated for extreme environments.

Statistical analyses were conducted using Statistica 13 software developed by StatSoft
(Kraków, Poland).
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2.4. Preparation of Explosive Samples and Charging of Blastholes

The explosive components were blended mechanically via standardized mixing–
charging units used for charging blastholes in the mine hosting the study. In the case
of the BK-2 formulation, the dosing settings of the sensitizer have been reduced by 3.5%
due to much greater reaction activity.

Blastholes were loaded following a standard procedure, using the charging hose with
3.5 kg of bulk emulsion, except the cut holes, into which 2.5 kg were loaded. Due to the
bottom initiation, the VOD in blastholes could be measured. The average length of the
explosive column was 130–140 cm.

During the blastholes charging, the samples for the density measurements and brisance
determination were loaded from the mixing–charging unit to the piping bag and then were
carefully elaborated into the relevant plastic cups. For this purpose, a precise mobile digital
balance was used.

The samples for the impact and friction sensitivity tests in turn were produced by the
manual mixing of components, due to the relatively small mass of the sample required for
such tests—the sample volume was insufficient for the use of a mechanical stirrer. After
mixing, 10 mg samples were accurately weighed. The tests were conducted after the density
had stabilized.

2.5. Measurements of the Density over Time

Plastic cups with a set volume of 500 cm3 were used for the determination of density
changes over time. They were weighed and filled with the mixture of the matrix and sensi-
tizer directly from the mixing–charging unit. Due to the chemical reaction (sensitization),
the mixture increased in volume, thus, the excess was removed from the top edge of the
cup to maintain the set volume of the samples, followed by weighing of the cup. Each
sample was weighed using an electronic balance, first at 5 min intervals for 60 min and
then once each after 180 min and 1440 min. The density was determined based on the ratio
of the net sample mass to the cup volume.

2.6. Determination of the Detonation Velocity

Detonation velocity values were obtained using the electrical method, via the continu-
ous resistance wire technique. In this method, a precise measuring probe of known linear
resistance is placed axially in the explosive column. When the detonation front progresses,
the probe is destroyed, and the resistance of the entire circuit drops in proportion to the
length reduction of the probe. Thus, a decrease in probe voltage vs. time is recorded by
a dedicated measuring device.

In this research, a DataTrap II Data/VOD recorder manufactured by MREL (Kingston,
ON, Canada) was used. This device allows independent measurements of detonation
velocity to be taken using eight channels, allowing the simultaneous measurement of VOD
in eight blastholes. The maximum recording rate in this system is 10 MHz per channel. The
uncertainty of the measurements declared by the manufacturer is ±2%.

During underground trials, six-meter sections of the VOD ProbeCables were attached
by electrical tape to the booster with a detonator and placed at the end of the loading
hose. Blastholes were then charged according to the standard procedure, i.e., the loading
hose was inserted to the bottom of the blasthole and the desired mass of the explosive
was loaded. After that, the VOD probes from each tested face were connected to the
communication (coaxial) cable and plugged to the recorder, which was located between
the fired faces (Figure 5). The VOD probes were put into two cut holes in each of the four
tested faces, which were fired with the first delay (same).
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Figure 5. Scheme of the VOD measurements in blastholes with construction of the explosive charge.

The data analysis was performed with Data Acquisition Suite software, which con-
verts the recorded data into a graph as a function of distance versus time. The software
automatically calculates and displays the VOD of an explosive at any selected location in
the graph.

2.7. Determination of Rock Fragmentation

Determination of the rock fragmentation was based on the image analysis method,
which is one of the most common methods utilized to measure rock fragment size distribu-
tion in mines. It was carried out using a 2D photogrammetry method based on analysis
of digital images of the muckpile using WipFrag software. The software applies an algo-
rithm to detect edges, which are used to render a polygon around the particles, in order
to determine the size–distribution [26,27]. To avoid issues caused by the spatial distribu-
tion of rock fragments in the muckpiles, each one was imaged multiple times during the
hauling process (Table 2).

Table 2. Summary of images used for fragmentation analysis.

Trial Round Face No. Explosive Type Number of Images

#1 (single mixer)

1
E8L

11
2 12
3

BK-2
10

4 12

#2 (double mixer)

1
E8L

15
2 14
3

BK-2
16

4 14

The photogrammetry method includes the following steps: (1) acquisition of multiple
images representing each muckpile—pictures should be taken during hauling to depict
different cross-sections of the muckpile, (2) image processing and analysis using a dedicated
application—fragmentation analysis, and (3) determination of the size–distribution curve.

Since underground conditions are very difficult (no natural light, dust, humidity),
one of the challenges is to ensure good quality of the photographs and reliable input data
for analysis. Hence, pictures were taken by a camera with a low aperture and an additional
light source in the form of a high-power LED flashlight. It should, however, be noted
that this fragmentation assessment method has certain limitations caused by the image
resolution and delineation algorithm. Therefore, photos were delineated automatically and
corrected manually by adding or removing particle boundaries. At this stage, some fine
areas were also indicated if needed. The images were scaled using an object with known
dimensions; in this case, a bright foam ball, as presented in Figure 6.
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Figure 6. Sample photo of muckpile cross-section with a scaling ball (left) and part of the delineation
process (right).

Any systems using photogrammetry methods can be characterized by a limiting size
called fines cut-off (FCO), which means that below this value, the delineation is not reliable.
Consequently, for fines regions (below FCO), an error between the real size of particles and
those determined by analysis reaches the maximum value. Calculations of size–distribution
below FCO can be performed using calibrated distribution models, such as Rosin-Rammler
or Swebrec [28]. It should be noted that the calibration of distribution models requires the
provision of sieving analysis data, which is very problematic or even impossible in normal
underground operations. Thus, the model parameters were calculated statistically with the
input of raw data obtained from image analysis. Statistical analysis was conducted using
Statistica software. Calculation of model parameters was performed using the non-linear
estimation method (user regression, least squares method). As the estimation function,
the Swebrec equation was applied, which seems to be much better suited for blasting
fragmentation and determination of fines regions [29,30].

The Swebrec model can be expressed by the following equation:

f (x) =
1

1 + [ln(xmax/x)/ln(xmax/x50)]
b (1)

where: f (x)—cumulative percent passing [%], xmax—size of the largest particle [mm],
x—particle size [mm], x50—particle size at 50% passing [mm], b—curve undulation.

The size of the largest particle was estimated in WipFrag software. Other parameters,
such as x50 and b, were calculated in Statistica. In addition, it must be noted that, even in
calibrated models, the error level below FCO can be significant (maximum value reaches
25–30% of FCO). Nevertheless, even non-calibrated models can provide valuable informa-
tion on the fines distribution.

The rock fragmentation analysis consisted of firing explosives in 8 faces divided into
2 trials differing in mixer type, i.e., 4 faces per trial (2 charged with E8L and 2 with BK-2).
Hence, all images in each trial concerned with a given type of explosive were analyzed
together as one database. This was the basis for the determination of histograms and
fragmentation curves.

2.8. Determination of Brisance via the Hess Method

Cylindrical lead rods of 99.97% purity were used for the determination of brisance,
from which the cylinders with a diameter of 40 ± 0.2 mm and height of 60 ± 0.15 mm
were made. The face surfaces were machined to 10 grade. They were placed vertically
on the floor of excavation. Then, on the top of this cylinder, a cylindrical 1.7035 steel disc
with a diameter of 41 ± 0.2 mm and height of 10 ± 0.2 mm was placed. Surfaces of steel
discs were machined to 2.5 grade and hardened to 150–200 HB. A 50 g explosive sample
loaded into a 3D printed plastic (PET-G) testing cup with an inner diameter of 40 mm and
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height of 65 mm was placed on this plate and initiated, according to the scheme in Figure 7.
As a result of firing, the lead cylinder was axially compressed. The change in the cylinder
height was used as a measure of brisance. Samples were initiated using a standard 0.65 g
PETN detonator. Since no reference material was tested underground due to the relatively
high temperature, the results were compared with each other.

 

Figure 7. Scheme (left) and view of the sample (right) for determining brisance via the Hess method.

2.9. Determination of Impact and Friction Sensitivity

Determination of the sensitivity of explosives to mechanical stimuli covered the impact
and friction sensitivity tests. As accepted, due to dynamic stimuli, stress and strain may
appear in the explosive, which results in local heating. Those areas of local heating are
the most likely causes of the explosive’s initiation [31]. Both tests were conducted under
laboratory conditions prior to large-scale underground trials.

The principle of the impact sensitivity test is that the sample of the tested explosive
is subjected to the action of a drop weight. As a result, the mass of the drop weight and
the drop height at which the initiation may occur is determined. For the impact sensitivity
determination, the Kast fall hammer was used (Figure 8). In this test, a 40 mm3 sample of
the explosive was placed using a spatula into the open piston device, which is comprised
of two steel rollers and a hollow cylinder. Then, the second roller was carefully placed
onto the piston to not damage the structure of chemical sensitization and pushed up to the
sample. The drop weight was then positioned at the desired height using a locking device.
In this test, drop weights with a mass of 5 kg and 10 kg were used. The height varied from
20 cm to 50 cm, which represents the impact energy from 10 J to 50 J (5 J interval from 10 J
to 40 J and also 50 J). Six trials were conducted for each energy and each type of explosive,
which gives 2 × 48 samples. The results of the test are reported as initiation (sound, light
effect, smoke) or non-initiation, in accordance with the EN 13631-4:2002 standard [32].

For the friction sensitivity determination in turn, the Peters friction apparatus was used
(Figure 9), in which friction is created electromechanically between the porcelain cylinder
and the plate with the explosive sample. In this test, similar to the impact sensitivity test,
a 10 mm3 sample of explosive was placed on a flat porcelain plate attached to the sliding
carriage of the device. The porcelain cylinder clamped on the carriage was then lowered
using the weight mounted on the loading arm. The movement of the plate with the sample
was provided by a motor (stroke length 10 mm). In this test, six trials were conducted for
each loading, representing the normal force starting from 360 N (load of 10.8 kg lowered
at a distance of 360 mm). If detonation was observed at least once in six trials, the next
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six samples were tested using smaller loading at intervals specified in the EN 13631-3:2004
standard [33]. As before, the tests were conducted for each type of explosive.

 

Figure 8. Scheme of the Kast fall hammer test.

 

Figure 9. Peters friction apparatus.

3. Results

3.1. Impact and Friction Sensitivity

The tests of impact and friction sensitivity were carried out under laboratory conditions
to verify the sensitivity level of explosives to mechanical stimuli, before underground trials
could be conducted. A criterion was set that the proposed explosive formulation cannot be
more sensitive to impact and friction than the commercial E8L explosive.

Among 48 samples tested in the energy from 10 J to 50 J, no sample showed ini-
tiation (no sound, no light effect, no smoke) by impact. The same applies to the E8L
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and BK-2 formulations, which means that the impact sensitivity value of both explosives
exceeded 50 J.

No detonation was observed during the friction sensitivity tests of the two explosive
formulations either. None of the 12 tested samples were initiated under the loading of
10.8 kg lowered at a distance of 360 mm, indicating that the friction sensitivity value of
both the E8L and BK-2 explosives exceeded 360 N.

3.2. Density

The explosive samples were sensitized chemically and, due to the reaction of am-
monium nitrate and sodium nitrite, a gradual decrease in sample density over time was
observed. This directly affects the detonation parameters and is the key issue for mine
operators to maintain high effectiveness of mining. Thus, such emulsions are desired,
achieving the final density and stabilizing within a relatively short and practically justi-
fied time. This time depends on the type of mine and adopted technology. The density
measurements were conducted for each trial and each type of explosive was tested based
on three samples. The results are presented in Figure 10 as the average values from
three samples and deviation between the maximal and minimal.

Figure 10. Graphs of changes in the density of explosives in time: E8L (top) and BK-2 (bottom).

The analysis results indicate that the blending of components using a double static
mixer (#2) is much more precise than blending with a single mixer (#1). This is shown by
different density values of specific samples in trial #1. In turn, the differences between
densities measured in trial #2 are much closer to each other. Smaller dispersion is also
observed. This indicates that thorough blending is critical for maintaining higher detonation
parameters, since the sensitizer is more evenly distributed throughout the entire mass of
the matrix—greater reaction surface, and thus, greater gas volume and lower density. Thus,
a double static mixer is highly recommended for further blasting operations.
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The novel BK-2 formulation initially showed a much more rapid density decrease
than the E8L formulation. However, the density of the BK-2 formulation stabilized after
approximately 30 min, unlike E8L, whose density continued decreasing noticeably, even
after 180 min. In fact, all the densities measured in trial #2 reached a similar final density
value; nevertheless, the decrease observed between 30 min and 180 min for BK-2 was
approximately 0.06 g/cm3, and as much as 0.21 g/cm3 for E8L.

3.3. Brisance

Detonation performance is fundamental in the evaluation of high explosive power
and describes the energetic capacity of explosives, and therefore, their power, strength, or
energy. The results are presented without units using other parameters, such as degree of
compression of the metal cylinder in the case of the brisance test. The results of Hess lead
block compression tests for the E8L and BK-2 formulations are presented in Figure 11.

Figure 11. Comparison of brisance (left) and compression factors (right) determined for the tested
explosives using the Hess method.

The in situ trials have proven that the brisance of the BK-2 formulation is higher than
that of the standard E8L explosive. This may be mainly observed for the BK-2 samples in
trial #2, in which a double mixer was used. The average compression factors for a single
mixer in trial #1 for both explosives are similar and remained within the uncertainty of
measurement. However, high dispersion between samples for BK-2 in trial #1 may be
observed, indicating some mixing problems and that the explosive was not homogeneous.
In the case of the double mixer, a 12% increase in the compression factor was observed for
BK-2 in relation to E8L.

3.4. Detonation Velocity

In principle, the results of detonation velocity measurements of confined explosives
(in blastholes) are higher than those detonated in the open air. This is mainly because the
force and pressure produced by detonation is intensified on a much smaller area. However,
as stated before, the VOD is affected by many parameters, especially when measuring in
situ. The VOD measurements were conducted during each trial and each type of explosive
was tested (four tests per explosive per trial). The time between charging the blastholes
and faces firing was approximately 150 min. The results are presented in Table 3.
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Table 3. Summary of the results of detonation velocity measurements.

Trial no. Test No.
Velocity of Detonation [m/s]

E8L BK-2

#1 (single mixer)

1 3710 3760
2 3850 3735
3 3880 3890
4 3720 3895

#2 (double mixer)

1 4030 4000
2 4060 3990
3 4000 4060
4 3990 4070

As proven during laboratory tests, the lower water content in the new formulation
causes an increase in the velocity of detonation. However, such a conclusion has not been
confirmed by underground tests. The average VOD of E8L measured in trial #1, in which
a single static mixer was used, reached 3790 m/s, while the average VOD of BK-2 was
3820 m/s. The difference in the average values was 30 m/s only. However, having in mind
that the uncertainty of the measurements in the system used is ±2%, it may be assumed
that the achieved VOD is similar for both explosive formulations.

Similar conclusions may be drawn from trial #2, in which a double mixer was applied.
The average value of VOD in the case of E8L was 4020 m/s and 4030 m/s for BK-2. This
means that the detonation velocity of BK-2 was not improved during the large-scale field
tests in comparison with the results obtained during laboratory testing.

When analyzing the average VOD from both trials, an almost 6% increase was ob-
served in trial #2, in which the double static mixer was used. The average detonation
velocity (based on eight blastholes) increased from 3805 m/s in trial #1 to 4025 m/s in trial
#2. This proved that precise blending is crucial to maintain higher detonation parameters
of AN-based bulk emulsions.

3.5. Rock Fragmentation

Taking of the muckpile pictures started after approximately 90 min following the
completion of blasting. This was required for ventilation and removing of post-blast fumes.
A loader with a bucket capacity of 4 m3 was used to haul the excavated rocks. The total
volume of the ore from a single face was approximately 55 m3. The pictures were taken
immediately after each bucket was collected. While hauling, 104 pictures in total were
taken, including 45 in trial #1 and 59 in trial #2.

The analysis of the data collected during trial #1 included 23 pictures for E8L and
22 for BK-2 (sum from two faces). In the case of trial #2, the analysis of the size–distribution
curves was based on 29 and 30 images, respectively, for the E8L and BK-2 explosives. The
calculated fragmentation curves for both trials are shown in Table 4.

Based on Table 4, one may conclude that there is a slight difference in fragmentation
between faces blasted with E8L and BK-2. The size–distribution of the outcome from E8L
in trial #1 shows that more “fines” were produced in comparison with BK-2, which is a
little coarser. Nevertheless, the differences do not exceed 10%. The difference in fines
fraction (<3.16 mm) is approximately 5% and the content of particles bigger than 465 mm
reaches 4.9% for BK-2 and 9.7% for E8L. In trial #2 in turn, there is hardly any difference in
fragmentation between faces blasted using E8L and BK-2. In the range of 3.16 mm up to
1000 mm, the difference does not exceed 2% (the content of fines was approximately 35.00%
for E8L and 34.05% for BK-2). Similar results were observed for coarse fractions (>465 mm),
in which the content was 3.14% for E8L and 2.34% for BK-2.
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For reliable determination of the fines content in both cases, the Swebrec model was
applied and model data parameters were estimated using WipFrag software. Determination
of parameters was based on data above FCO, which was set for 10.0 mm. Below this
value, the fragmentation curve is almost flat up to 3.16 mm, which is a limit value for the
applied system (lower particles cannot be recognized by the algorithm). This indicates that
resolution of the system in this area was poor and the error increased rapidly. All estimated
parameters for both trials are presented in Table 5. The confidence level was 95%.

As mentioned before, the Swebrec function is much more reliable for the description
of the fines region in terms of blasting. Since very good fitting of the model to the data
(above FCO) was observed, cumulative fragmentation curves for both trials and both types
of tested explosives using the Swebrec function were compared, as shown in Figure 12.

Table 4. Cumulative fragment size–distribution curves (blue) and histograms (red) for considered cases.
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Table 4. Cont.
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Table 5. Estimated model parameters of the distribution model for both trials.

Explosive
Type

Parameter Value
Standard

Error

Confidence Limit

Lower Upper

Trial #1 (single mixer)

E8L
xmax 684 mm n/a n/a n/a
x50 69.50 mm 3.03 mm 62.75 mm 76.25 mm
b 2.50 0.13 2.21 2.82

BK-2
xmax 866 mm n/a n/a n/a
x50 100.14 mm 4.30 mm 90.57 mm 109.72 mm
b 2.48 0.13 2.20 2.77

Trial #2 (double mixer)

E8L
xmax 1080 mm n/a n/a n/a
x50 35.09 mm 1.56 mm 31.66 mm 38.52 mm
b 2.61 0.11 2.37 2.86

BK-2
xmax 608 mm n/a n/a n/a
x50 35.86 mm 1.85 mm 31.73 mm 39.99 mm
b 2.08 0.11 1.83 2.32
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Figure 12. Comparison of Swebrec models for both trials.

From Figure 10, one may conclude that the maximum differences between the given
fractions in trial #1 slightly exceed 11%. The maximum difference is 11.1% and can be observed
in the range of particle size between 50 mm and 200 mm. In the fines region in turn, the
differences are negligible. Finally, it can be concluded that, from a practical point of view, the
changes in the fragmentation distribution obtained in trial #1 using two types of explosive are
insignificant and do not have a major impact on the blast outcome in relation to fragmentation.
Similar conclusions may be drawn from the results of trial #2, in which a double static mixer
was used. The plotted curves showed that there was hardly any difference between both cases.
It can, therefore, be concluded that the type of explosive and the mixing method did not affect
the fragmentation of blasted rocks. However, it should be emphasized that there is a visible
difference between the fragmentation achieved in trial #1 and trial #2, indicating a significant
influence of the mixing method. Much better fragmentation was achieved for both explosives
in trial #2, in which a double mixer was used.

4. Discussion

The results of the research showed that parameters of the novel bulk emulsion ex-
plosive with improved energetic parameters obtained during underground trials are not,
in principle, consistent with results obtained in the first phase of investigations under
laboratory conditions. Differences in the energetic performance of the two explosive for-
mulations are relatively minor. Most of the tested parameters are similar for each type of
explosive and each type of component mixing (single or double static mixer). The novel
BK-2 formulation exhibits a similar sensitivity level to mechanical stimuli (impact and
friction) as the standard E8L explosive.

The sensitization of BK-2 is much faster and much more stable than that of E8L. In
underground conditions, where temperature usually ranges from 25 ◦C to 35 ◦C, it is capa-
ble of detonation after 5 min. Moreover, the final density is obtained after approximately
30 min. In comparison, the standard E8L explosive in such conditions is capable of deto-
nation after at least 30 min. It usually achieves the final density after more than 12 h. In
addition, the time between the loading of blastholes and firing varies depending on the
location of the blasting site, which is limited by the ventilation constraints.
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It should, however, be noted that sensitization cannot be too rapid, because an exces-
sively fast reaction will cause certain difficulties from a practical point of view, such as
an increase in pressures and other problems related to the mixing–charging unit. However,
the were no significant problems with the loading unit for the BK-2 formulation and all
the pressures and flows were normal. On the other hand, it is much better and safer, while
charging, to operate with emulsion that is not capable of detonation. Thus, this time should
not be too short. It should definitely be reduced in relation to the standard E8L, but within
reason. More important, however, is the stability of the BK-2 formulation, which became
stable after about 30 min.

In terms of the brisance determination via the Hess method, the BK-2 and E8L for-
mulations achieved comparable values when using a single mixer. In the case of a double
mixer (trial #2), an approximately 12% increase in the compression factor was observed for
the BK-2 formulation in relation to E8L. In comparison, the difference in brisance obtained
under laboratory conditions for BK-2 was almost 32% higher than the brisance of E8L.
This shows how precise mixing influences the working capacity of novel formulations
of explosives. It should also be noted that the brisance results cannot be referenced to
results of high explosive samples due to safety constraints. Moreover, the impact of high
temperatures of lead cylinders on results has not been defined so far. Thus, the results were
compared with each other.

The measurements of detonation velocity did not prove the results obtained during
laboratory tests., i.e., that lower water content in the new formulation will cause an increase
in the detonation velocity. In conditions where the emulsion components were blended
manually, the VOD of BK-2 was, on average, almost 19% higher than that obtained for E8L.
The in situ tests have confirmed that the differences in the average values remained within
the uncertainty of the measuring system in both trials, which means that the detonation
velocity of novel formulations was not improved during the large-scale field tests.

In the case of blast fragmentation analysis, it may be stated that the differences in the
fragment size–distribution in both trials are insignificant. The shape of plotted curves from
each trial and for each type of explosive are similar. Thus, it may be concluded that for
given mining and geologic conditions, the type of explosive and the method of component
mixing did not affect the fragmentation of blasted rocks.

There is, however, one issue to which special attention should be paid. This is the
method of component mixing using a static mixer. In this research, single (trial #1) and
double (trial #2) static mixers were implemented and verified. The mixture of the matrix and
sensitizer is much more homogeneous when using a double mixer than when using a single
one. In fact, the mixture is not homogeneous, but far better blended using a double mixer,
which was confirmed by different density values of specific samples in trial #1. Meanwhile,
the differences between densities measured in trial #2 are much closer to each other. This
proves that precise blending is critical for maintaining higher detonation parameters and
a double static mixer is recommended for both the E8L and BK-2 formulations. In the
case of BK-2, a much greater effect of precise mixing on the spread of density values
may be observed. Thus, one can expect that the refinement of the mixing system for
a novel formulation will result in a significant improvement in energetic parameters, which
has been proven during laboratory tests where the mixing was very precise and almost
perfect. In contrast to E8L, the BK-2 formulation is based on a hybrid sensitization, i.e., that
apart from the gassing reaction, the reaction of precipitating fine ammonium perchlorate
crystals in the matrix occurs in parallel, which can only be achieved with very precise
mixing of components.

The same conclusion can be drawn from the brisance tests, in which the highest com-
pression factor was obtained for BK-2 when a double mixer was used. From a detonation
velocity point of view, an approximately 5–6% increase in average values was observed
in tests with a double static mixer. The average VOD measured for E8L increased from
3790 m/s to 4020 m/s and from 3820 m/s to 4030 m/s for BK-2. This proves that slightly
higher detonation velocities may be achieved when a double static mixer is used. Finally,
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this finding also applies to the results of fragmentation, which was improved by more than
20% in some fragment size ranges, when the double mixer was used.

5. Conclusions

A comparison of the results of experiments conducted in actual use conditions and
those conducted in laboratory conditions, discussed in our previous work [24], shows that
the emulsion explosive densities obtained under laboratory conditions cannot be obtained
using commonly used mixing–charging units, due to the method of component mixing.
Despite the inadequate mixing of BK-2, its performance is comparable to that of E8L.

Consequently, developing a mixing–charging system that would allow a sufficient degree
of mixing to be achieved and, therefore, allow peak performance of BK-2, is an important
aspect of future work on modifying emulsion explosive formulations. Taking into account
the prospective results of laboratory tests and the observations from the presented work,
achieving the above goal necessitates further tests, so as to refine and redevelop the mixing
method for the BK-2 formulation.

On the other hand, despite the use of a single mixer and inaccurate mixing, no misfires
were observed for BK-2, and the produced explosive has similar physical parameters to those
of the standard E8L emulsion explosive formulation. This indicates that the BK-2 formulation
exhibits a high degree of tolerance to technical issues or errors taking place during the charging
of the blastholes, potentially alleviating occurrences which would otherwise compromise the
viability of a less error-tolerant emulsion explosive formulation. It should also be highlighted
that the faces were loaded using a mixing–charging unit that was designed specifically for
the standard E8L emulsion explosive formulation. Nevertheless, the results achieved for
the novel BK-2 formulation are very promising. From a mining point of view, the greatest
advantage of this formulation is its rapid stabilization of the density over time.

In summary, a significant improvement in the sensitization rate, a shorter time required
to reach the final emulsion explosive density, and an increased stability of the sensitized
bulk emulsion have all been achieved. This is especially important when firing several
faces loaded at different times. Although the rate, at which the final parameters of the
bulk emulsion explosive are achieved can in principle be further shortened, further work
needs to take into account that the sensitization process cannot be too rapid, because
an excessively fast reaction will cause certain practical and technical difficulties, such as
increased pressure in the blastholes, as well as possibly introducing inhomogeneity defects
in the sensitized emulsion explosives.
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Abstract: The research described in this article was carried out on samples of sandstone obtained
from the underground excavations of four hard coal mines that operate in the region of Poland with
the highest energy resources, i.e., Upper Silesia. The majority of underground tunnel excavations are
mainly drilled using roadheaders, the organs of which are equipped with conical picks. The selection
of pick type is usually based on rock compressive strength. However, sandstones often cause more
problems during cutting compared to other waste rocks because of their variety. This article’s primary
purpose is to emphasize the importance of researching various properties of waste rock in addition
to uniaxial compression strength, which is crucial in the selection of both the appropriate cutting
method and appropriate cutting tools. Accordingly, relations between mineralogical, petrographic,
physical and mechanical properties were examined in this study, with special attention paid to the
abrasive properties that comprise rock abrasivity. Sandstones from the regions of Upper Silesia
are characterized by a heterogeneity of mineralogical and petrographic features that strongly affect
the physical and mechanical properties of these rocks, especially their abrasive properties. The
determined correlations can aid understanding of the behavior of rocks during their mechanical
cutting and facilitate the selection of appropriate cutting tools.

Keywords: underground mining; rock properties; cutting; conical picks; abrasive wear

1. Introduction

Although global coal production is declining, it is still a vast industrial sector in many
countries. In 2016, 7.4 billion tons of coal were extracted worldwide, 6.7 billion tons of
which was steam coal and 700 million tons of which was coking coal. China is currently the
largest coal producer globally; second is the USA, and India is third. Among the European
Union countries, which are producers of hard coal, Poland is at the forefront and extracted
63.4 million tons of coal in 2018. In the same year, Polish hard coal mines employed over
80,000 employees [1].

However, to exploit the coal resources mentioned above, accessing excavations should
be made. About 200–300 km of workings of this type are performed annually in Poland [1].
Many aspects are considered when preparing work related to drilling excavations, including
the properties of the rocks in which the excavation will be drilled. Unfortunately, mines
mainly pay attention to the value of the uniaxial compressive strength of rocks. The mining
method, cutting machine and cutting tools are often selected on this basis, and this can
cause severe consequences that lead to negative impacts on the volume of extraction via
the increased drilling time [2,3].

Although uniaxial compressive strength is a significant parameter, mechanical pa-
rameters alone do not provide all the information needed to assess the actual behavior of
a material during cutting [4]. Such an assessment can be rationally conducted by under-
standing mineralogical, petrographic, physical, and mechanical rock properties, as well

Energies 2022, 15, 2692. https://doi.org/10.3390/en15072692 https://www.mdpi.com/journal/energies245



Energies 2022, 15, 2692

as their correlations [5]. This article’s primary purpose is to emphasize the importance of
conducting research regarding the determination of the properties of waste rock to explain
the different states of the behavior of these rocks during cutting. Particular attention was
paid during research to the relationship between mineralogical, petrographic, and abra-
sive properties because, apart from the strength properties, rock abrasivity has the most
significant impact on the wear of cutting tools (Figure 1) and rock workability.

 
Figure 1. Examples of conical picks’ wear.

There are two frequently confused terms associated with abrasive rock properties:
abrasiveness and abrasivity. Abrasiveness is defined as the ability of rocks to reduce their
volume and mass under the action of abrasive forces [6]. It can also be defined as the effect
of a tool on a rock, i.e., how easily the rock wears away. It is determined using Boehme
Shield, Amsler Shield, Los Angeles drum, or Micro-Deval drum [7,8]. However, these
methods are more often used to determine the abrasion resistance of aggregates [8].

Rock abrasivity is more interesting in the case of the cutting tool selection. Abrasivity
is defined as the effect of a rock on a tool, i.e., the amount of the tool’s abrasive wear [9]. It
can be determined using the Cerchar method [10,11] or the proprietary method developed
at the AGH University of Science and Technology [3,12].

In this research, tests were carried out for Carboniferous sandstones (characterized by
mineralogical and petrographic features) and selected physical and mechanical properties.
Sandstones have higher uniaxial compressive strength than other waste rocks and are very
abrasive [13,14]. Additionally, mineral composition, especially the quantitative share of
quartz in the crumb material, and the type of binder-building mineral have significant
impacts on the determination of these properties in sandstones.

2. Research Material

The tests were carried out for seven different sandstones taken from the underground
mining excavations of four hard coal mines located in the following cities: Katowice,
Jaworzno, Bieruń, and Libiąż, all located within the Upper Silesian Coal Basin (Southern
Poland) (Figure 2).

The Upper Silesian Coal Basin is a triangular basin filled with Upper Carboniferous
formations. Its area is about 6100 km2, 1600 km2 of which lies on the Czech side, forming
the Ostrava–Karviná Basin. The Upper Silesian Coal Basin is an orogenic basin formed
in the foothills of the Moravian–Silesian fold zone of variscite, with paralic and limnic
formations. The coal-bearing zone occurs at various depths: down to 2400 m deep in the
eastern part and down to 4600 min the western part. With drilling, it can reach even deeper
to 6000 m. A significant position of the rocks accompanying coal seams next to claystone
and silt is occupied by sandstone [15,16].
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Figure 2. Schematic map of the location of the Upper Silesian Coal Basin with marked sampling sites.

3. Research Methodology

After collecting sandstones from mining excavations, appropriate laboratory samples
were prepared and tests were carried out following the established plan and research
methodology. Thanks to the research, mineralogical and petrographic analyses were
performed and physical and mechanical properties were assessed.

3.1. Petrographic and Mineralogical Analyses

Microscopic observations were carried out with transmitted light in thin sections
(Figure 3a) using the OPTA-TECH LAB-40 HAL polarizing diagnostic microscope from the
OPTA-TECH company equipped with an image analyzer (Figure 3b).

The quantitative analysis of the components was performed using the point method
using a polarizing microscope equipped with an eyepiece with a cross of spider threads
and an integration table. A planimetric analysis of the entire surface of the preparations
was performed, with about 500 counts from each sample in 0.2 mm increments.

3.2. Analysis of Physical Properties

In terms of physical properties, the effective porosity, bulk density, and water absorp-
tion of the tested sandstones were determined. Effective porosity, also known as active or
discovered porosity, is the content of pores that connect with the outer surface of the rock
(i.e., open pores), allowing the liquid to move through the medium. Effective porosity is
determined by saturating samples of known volume with a liquid of known bulk density.
Five cylindrical samples with a diameter and height equal to 50 ± 0.5 mm were prepared
for each type of sandstone (Figure 4). Effective porosity was determined using a hydrostatic
balance using the following formulas based on Archimedes’ law [5]:

Vw =
Ww − Wd

γw

[
cm3
]

(1)

Vs =
Ww − Wh

γw

[
cm3
]

(2)

where Wd is the mass of the dry sample measured in the air, Ww is the mass of the saturated
sample measured in the air, Wh is the mass of the saturated sample measured on the
hydrostatic balance, γw is the density of the liquid at ambient temperature, Vs is the volume
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of the sample, and Vw is the volume of water in the pores [5]. Therefore, the effective
porosity Pw can be calculated as [17]:

Pw =
Vw

Vs
·100 [%] (3)

 
Figure 3. Petrographic and mineralogical analyses: (a) OPTA-TECH LAB-40 HAL polarizing diag-
nostic microscope; (b) thin sections.

Figure 4. Examples of rock samples for physical and mechanical property tests.

After calculating the mass of the above-mentioned rock samples and their dimensions,
it was also possible to determine the bulk density γs as the ratio of the mass of the dry
sample to its volume:

γs =
Wd
Vs

[ g
cm3

]
(4)

The Ns water absorption of the tested sandstones, i.e., their ability to absorb water,
was determined as the third physical property. To that end, five cylindrical samples with a
diameter and height equal to 50 ± 0.5 mm were also prepared for each type of sandstone.
After determining their dry weight (Wd), each sample was dipped in distilled water and
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weighed regularly until saturation was stabilized. The water absorption coefficient in
weight percentage was determined as the ratio of the mass of water absorbed to the mass
of the sample in the dry state, and it was calculated as [5]:

Ns =
Ww − Wd

Wd
·100 [%] (5)

3.3. Analysis of Mechanical Properties

The considered mechanical properties of the tested sandstones were their uniaxial
compression strength and tensile strength, which were determined using the Brazilian
method, and abrasivity, which was determined using the proprietary rock abrasivity
assessment method that has been described in several publications [3,12,18].

To determine the value of uniaxial compressive strength (UCS) for each tested sand-
stone, five cylindrical samples with a diameter and height equal to 50 ± 0.5 mm were
prepared in accordance with the EN 1926:2007 standard. Laboratory tests were carried out
using a testing machine in accordance with the PN-G-04303:1997 standard. The load was
perpendicularly applied to the bedding planes at a constant stress rate of 1 ± 0.5 MPa/s.
The uniaxial compressive strength (Rc) of each sample was expressed as the ratio of the
failure load (F) and its cross-sectional area (A) before the test:

Rc =
F
A
[MPa] (6)

The Brazilian method (BTS—Brazilian Tensile Strength Test) was used to determine
tensile strength by compressing the cylinder on the side surface with two linear balancing
loads. Loading the cylindrical sample perpendicular to the sample axis causes crack-
ing along the surface passing through the cylinder axis and is mainly caused by tensile
forces [19]. In this case, five cylindrical samples with a diameter of 50 ± 0.5 mm but a
sample thickness of 25 ± 0.5 mm were also prepared for each tested sandstone, as the
thickness to diameter ratio had to have been 0.5–0.6. The load was applied with a constant
stress rate of 0.1 ± 0.05 MPa/s. The uniaxial tensile strength was determined as:

Rt =
2F

πdh
[MPa] (7)

where Rt is uniaxial tensile strength, F is the maximum force at which the sample is
destroyed, d is the diameter of the sample, and h is the thickness of the sample [20].

The third mechanical property that was determined for the tested sandstones was
abrasivity. It was determined with a method comprising the assessment of the mass
abrasive wear of a standard steel sampler that was in contact with a rock sample with a
constant clamping force of 300 N and was moving in a uniform motion along a circle at a
speed of 50 rpm for 8 min (Figure 5). The parameter characterizing rock abrasivity is the
abrasivity index (Wz), which is defined as the ratio of the weight loss of the steel pin to the
weight loss of the sample and is calculated as:

Wz =
Mpa

Mpi
(8)

where Wz is the abrasivity index, Mpi is the mass loss of the rock sample, and Mpa is the
mass loss of the steel pin [3,12,18].
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Figure 5. View of selected sandstone samples during the abrasivity test.

4. Results

The tests were carried out following the previously established and above-described
methodology. Petrographic properties were determined for seven types of sandstone and
the values of selected parameters, enabling the determination of physical and
mechanical properties.

4.1. Mineralogical and Petrographic Characteristics of Sandstones

The analysis of the mineralogical and petrographic features of sandstones was carried
out based on macroscopic observations, microscopic observations in transmitted light, and
planimetric analysis. Macroscopic observations showed that the analyzed sandstones had
similar features (Figure 6).

 

Figure 6. Examples of tested Carboniferous sandstones.

The sandstones were light to dark grey. Their structure was psammitic and fine-
grained, and the degree of sorting of crumb material was high. The texture of the sandstones
was usually dense and disorderly. A directional texture could be seen in some sandstones
and was caused by fine laminates of a carbonaceous matter. Next to them, carbonaceous
matter was observed in crumbs of irregular shapes and a scattered form throughout the
rock volume as a pigment.
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Macroscopically, in the mineral composition of sandstones, transparent or grey grains
of quartz could be seen and were characterized by a glassy luster, pink feldspar grains with
a matte luster, and single grains of mica: biotite with black color and transparent muscovite
with a visible pearly luster. When in contact with moisture, the mortar could be smelled,
which indicated the presence of clay minerals in the binder.

A detailed analysis of the mineral composition of sandstones was conducted during
microscopic observations in thin sections. The mineral composition of the crumb material
included quartz, muscovite, biotite, plagioclase and heavy minerals. The binder was repre-
sented by microcrystalline quartz, clay minerals, and carbonate minerals. An admixture of
a carbonaceous matter was found in each tested sandstone.

Quartz grains were characterized by varying sizes from 0.1 to 1 mm and varying
degrees of coating. Next to individuals with rounded edges, sharp-edged grains could be
seen. Previous research indicates that sharp-edged quartz grains arise due to crushing larger
individuals exhibiting network defects whose weak structure promotes the disintegration
into smaller fragments [21,22]. With one polar, the surface of quartz grains was often
scratched and covered with a network of irregular cracks, and the presence of slight
inclusions could also be noted. The occurrence of inclusions in quartz is a fairly common
phenomenon; quartz originating from plutonic rocks most often contains liquid and gas
inclusions, while quartz of volcanic rocks is rich in glass inclusions. With crossed polars,
optical anomalies caused by dynamic deformations of the quartz network structure could be
observed. The effect of this was a wavy quenching of light. As a result of this phenomenon,
the surface of individual grains was fragmentarily, not evenly, quenched, which was visible
as locally quenched spots within the grain (Figure 7). This is usually the effect of quartz
deformation due to dynamic deformations caused by, e.g., tectonic movements.

 

Figure 7. Wavy quenching of light on quartz grains (Qz), surrounded by clay binder: crossed
polars—100× magnification.

The micas were primarily represented by well-preserved muscovite grains that create
idiomorphic and elongated forms, often bent on contact with other minerals. At one polar,
muscovite was colorless with clearly visible unidirectional cleavage (Figure 8).

In addition to muscovite, biotite was found in smaller amounts in the tested sandstone.
The biotite grains were strongly weathered, often with jagged edges, and rarely well
preserved, and idiomorphic crystals could be observed. At one polar, biotite had a reddish
to dark brown color and strong pleochroism. One-way cleavage was visible on the surface
of the grains (Figure 9). The cleavage cracks were usually filled with biotite-weathering
products, often emitting iron oxides. For some specimens, it was observed that iron oxides
could also focus on the periphery of the grains, forming black borders around them. This
phenomenon is called “opacite fringes”.

251



Energies 2022, 15, 2692

 

Figure 8. Muscovite (Ms) and quartz grains (Qz): (a) one polar and (b) crossed polars—100× magnification.

 

Figure 9. Biotite (Bt) and quartz (Qz) surrounded by clay binder and microcrystalline quartz
(Qz*): (a) one polar; (b) crossed polars—100× magnification.

Feldspars formed table-like grains that were strongly weathered. Often, the edges
of the grains were ragged and their surface was scratched. There were also signs of
sericitization, i.e., the formation of sericite (a small-grain variety of light mica) due to
the transformation of feldspar grains. Fine sericite plates usually formed in feldspars
according to their cleavage planes. For feldspars, the phenomenon of peritite formation
(on the micropertite scale) was also characteristic and is associated with the heterogeneous
chemical composition of individual feldspar grains (Figure 10). The feldspars formed a
series of mixed crystals with sodium and potassium and calcium cations. Because sodium
and potassium are not diadochic elements, they cannot freely substitute in the structure
of minerals. However, due to the significant network tolerance of feldspar structures,
sodium–potassium feldspar crystallizing at high temperatures can produce a continuous
series of homogeneous mixed crystals. As a result of lowering the temperature, these
crystals become unstable and are mixed into more potassium feldspar with sodium and
sodium feldspar with potassium [23]. During microscopic observations, fine lamellas
were observed to be arranged parallel to each other within single feldspars. The way they
generally develop depends on the conditions of temperature decrease during feldspar
crystallization; the slower this process is, the thicker the structures of veins generally are.
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Figure 10. Micropertites on feldspar grains (Fsp), surrounded by quartz (Qz), muscovite (Ms), and
carbonate binder (Cb): crossed polars—100× magnification.

In the group of feldspars, plagioclases could be distinguished. They formed fine grains
with grey interference colors and polysynthetic twinning (Figure 11).

 

Figure 11. Grains of plagioclase (Pl) and quartz (Qz) surrounded by clay binder: crossed polars—
100× magnification.

Heavy minerals were mainly represented by zirconium grains (Figure 12). Zirconium
was found in the form of well-coated, oval, colorless grains with characteristic black
pleochroic borders. Pleochroic borders or fields testified to the occurrence in the network
structure of zirconium of substitutions of radioactive elements, mainly thorium and less
often uranium. For crossed polars, the fourth order’s interference colors were characteristic
of zirconium.

 

Figure 12. Zirconium (Zrn): crossed polars—100× magnification.
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In the K2 sample, tourmaline grains were observed, forming characteristic elongated
forms with rounded tops and not showing cleavage (Figure 13).

 

Figure 13. Tourmaline (Tur): crossed polars, 100× magnification.

The sandstone binder represented a pore or primary type; its share ranged from 26% to
52.3%. It is a cement-type mixed binder in which the mineral composition was dominated
by microcrystalline quartz, carbonate minerals, and clay minerals. No matrix type binder
was found; in single samples only, these were small amounts associated with the presence
of fine quartz grains.

The microcrystalline quartz created aggregates. Individual crystals were colorless,
non-pleochroic with zero or slightly positive relief, and without cleavage (Figure 9).

Clay minerals formed microcrystalline aggregates with dark grey interference colors,
often mixed with other binder components, e.g., carbonates (Figure 14).

 

Figure 14. Quartz grains (Qz) surrounded by clay binder: crossed polars—100× magnification.

Carbonates, like clay minerals, could occur in the form of microcrystalline aggregates or
single, larger grains characterized by rhombohedral cleavage and variable relief (Figure 7).

Carbonaceous matter in the sandstones occurred in various forms. The elongated
forms comprising laminates were macroscopically visible. Moreover, the presence of a
dispersed carbonaceous matter in the form of a pigment, giving the sandstones a dark grey
color, could be found. During microscopic observations, a carbonaceous substance was
observed in the form of small crumbs (Figure 15).
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Figure 15. Crumbs of carbonaceous matter: one polar—100× magnification.

Planimetric analysis (Tables 1 and 2) showed varied contents of framework grain
content in the tested sandstones. For the B1, L1, and J1sandstones, the framework grains’
contentswere75, 74, and 73%, respectively. The second group consisted of K1 and K3
sandstones, where the framework grains’ contents were 70.9 and 69.7% respectively, and
the third group consisted J2 and K2 sandstones, where the framework grains’ contents
were the lowest at 58.5 and 47.7%, respectively.

Table 1. Planimetric analysis of sandstones.

Mineral

Content of Minerals [%]

No of Sample

K1 K2 K3 J1 J2 B1 L1

Fr
am

ew
or

k
gr

ai
ns

Quartz 61.5 45.7 61.3 60.0 46.4 56.3 56.6

Feldspars 2.0 1.0 4.5 3.5 3.4 2.1 5.2

Muscovite 6.7 - 2.6 4.4 3.0 4.2 4.1

Biotite - - 1.3 5.1 5.7 9.4 8.1

Lithic fragments - - - - - 3.0 -

Heavy minerals 0.7 1.0 - - - - -

C
em

en
t

Microcrystalline quartz 5.2 2.9 7.7 15.3 6.9 9.3 8.1

Clay minerals 14.2 3.8 11.6 6.5 6.6 6.3 15.6

Carbonates 6.7 45.6 9.7 2.2 28.0 4.2 2.3

Iron compounds - - 1.3 3.0 - - -

Carbonaceous matter 3.00 - - - - 5.2 -

Σ 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 2. Participation of framework grains and cement in sandstones.

Component

Content [%]

No of Sample

K1 K2 K3 J1 J2 B1 L1

Framework grains 70.9 47.7 69.7 73 58.5 75 74

Cement 29.1 52.3 30.3 27 41.5 25 26

Σ 100.0 100.0 100.0 100.0 100.0 100.0 100.0

The dominant component in the crumb material was quartz (the K1 sandstone had the
highest percentage of 61.5%, while the K2 sandstone had the lowest percentage of 45.7%);
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next were minerals from the group of feldspars (1.0–5.2%) and mica: muscovite (3.0–6.7%)
and biotite (5.1–9.4%). Heavy minerals during observations in thin sections were found in
only two sandstone samples, and their quantitative share was about 1%. The presence of
rock crumbs (3%) was determined in a single sample.

According to the content of framework grains, the B1sandstone (25%) had the lowest
percentage of binder, while the K2 sandstone had the highest (52.3%). Microcrystalline
quartz, clay minerals, and carbonates were found in all sandstone samples in the binder.
Their content varied within relatively wide limits: 2.9–15.3% for microcrystalline quartz,
3.8–15.6% for clay minerals, and 2.2–45.6% for carbonates. One sample was found to have
a ferruginous binder (3%). In all sandstones, the binder was of a mixed type. However, the
dominant component could be indicated. The binders of the K1, K3, and L1 sandstones
were clay minerals—14.2, 11.6, and 15.6%, respectively. The second group comprised the J1
and B1sandstones, where the binder was full of microcrystalline quartz (J1: 15.3%; B1: 9.3%),
while carbonates dominated the K2 and J2 binder sandstones. For the K2 sandstone binder,
the content of carbonates was found as high as 45.6%.

Carbonaceous matter was observed in various forms among the sandstone compo-
nents. Its content ranged from 3.0 to 5.2%.

The results of planimetric analysis enabled the classification of sandstones (Figures 16 and 17).
For this purpose, two triangular classifications were used: according to Folk and according
to Dott–Pettijohn geological classification [24,25].

Figure 16. Classification of tested sandstones according toFolk triangle [24,25].

According to the Folk classification, the tested sandstones were classified as sub-
litharenite, while according to the Dott–Pettijohn classification, they were classified as
subarcoses. Only the K1 sample, according to both classifications, was included in the
quartz arenite group.

4.2. Characteristics of Physical and Mechanical Properties of Sandstones

The results obtained from the determination of the bulk density, effective porosity,
and water absorption coefficient of seven types of sandstone are presented in Table 3.
The table summarizes the average values of five replicates for the determination of a
given parameter.
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Figure 17. Classification of tested sandstones according to the Dott–Pettijohn triangle [24,25].

Table 3. Bulk density, effective porosity, and water absorption coefficient of the tested sandstones.

Property
No of Sample

K1 K2 K3 J1 J2 B1 L1

γs [g/cm3] 2.34 ± 0.01 2.69 ± 0.04 2.31 ± 0.01 2.25 ± 0.00 2.62 ± 0.03 2.28 ± 0.01 2.28 ± 0.01

Pw [%] 5.5 ± 0.6 1.5 ± 0.1 4.8 ± 0.5 6.8 ± 0.7 2.3 ± 0.2 10.1 ± 1.0 8.2 ± 0.9

Ns [%] 2.12 ± 0.48 0.58 ± 0.05 1.85 ± 0.20 2.62 ± 0.61 0.88 ± 0.07 3.88 ± 0.90 3.16 ± 0.72

It can be seen that the highest effective porosity was found in the B1 and L1 sandstones
at over 8%. This porosity was almost twice as high as for other sandstones. On the other
hand, the most negligible effective porosity was in the K2 sandstone at only 1.5%. As
can be seen, the porosity of individual sandstones directly affected their water absorption
(Figure 18). The highest values of the water absorption coefficient were found in sandstones
with the highest porosity, i.e., B1 and L1. Their water absorption coefficient was over 3%.
The lowest values of the water absorption coefficient belonged to the K2 and J2 sandstones,
and their coefficients were below 1%. While analyzing the bulk density of the tested
sandstones, it could be seen that it was inversely proportional to both the effective porosity
(Figure 19) and the water absorption coefficient. The highest bulk density was characteristic
of the K2 and J2 sandstones at over 2.6 g/cm3, while the lowest density was found in theJ1,
B1, and L1 sandstones and at below 2.3 g/cm3.

Table 4 presents the results obtained from the determination of uniaxial compressive
and tensile strength, as well as the values of abrasivity indexes. As mentioned above, the
tests were performed in five replicates for each sandstone, and the average values are
summarized in the table. Due to uniaxial compressive strength values, the vast majority of
the tested sandstones belonged to the rocks with a low uniaxial compressive strength [19],
with values in the range of 20–30 MPa. Only the J2 sandstone had an average compressive
strength of over 60 MPa. Comparing uniaxial compressive strength (UCS) with tensile
strength (BTS), a linear relationship could be seen between these properties (Figure 20). The
J2 sandstone with the highest uniaxial compressive strength also had the highest uniaxial
tensile strength of over 6 MPa. The uniaxial tensile strength of other sandstones was in
the range of 2.8–3.6 MPa. Analyzing the values of the abrasivity indexes (Wz) showed
that the most abrasive sandstone wasK1, whose index was almost 4, which identifies it as
a rock with a high abrasivity. The J1 sandstone was classified as medium abrasive. The
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most abrasive sandstones are K3, L1, J2 and B1. Only the K2 sandstone had a very low
abrasivity index. Sandstones were classified based on the classification included in Mucha’s
publication [3]. In addition, it could be seen that there was no clear relationship between
uniaxial rock compressive strength and abrasive properties (Figure 21).

 
Figure 18. Relationship between effective porosity and water absorption coefficient.

 
Figure 19. Relationship between porosity and bulk density.

Table 4. Uniaxial compression strength, tensile strength, and abrasivity index of the tested sandstones.

Property
No of Sample

K1 K2 K3 J1 J2 B1 L1

UCS [MPa] 29.4 ± 2.7 24.7 ± 2.5 19.4 ± 1.6 22.4 ± 2.2 64.6 ± 5.8 30.1 ± 2.8 20.8 ± 2.0

BTS [MPa] 3.32 ± 0.04 3.18 ± 0.03 2.81 ± 0.02 3.11 ± 0.03 6.10 ± 0.7 3.58 ± 0.04 2.92 ± 0.02

Wz [-] 3.9 ± 0.3 0.2 ± 0.0 1.7 ± 0.2 2.4 ± 0.2 1.5 ± 0.1 1.2 ± 0.1 1.6 ± 0.1
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Figure 20. Relationship between USC and BTS.

Figure 21. Graph illustrating the lack of relationship between USC and abrasivity index Wz.

4.3. Influence of Petrographic Properties on Abrasive Properties of Tested Sandstones

The influence of the quartz percentage (Figure 22) and the binder (Figure 23) on the
abrasivity of the tested rocks was also analyzed. In this case, it was only possible to compare
the average values of the Wz index with the results of the petrographic analysis on the
charts because analyses were performed once for each sandstone. However, in the case of
the tested sandstones, it could be seen that the more quartz and minor binder (sample K1),
the more abrasive the sandstone was. A similar dependence was also noticed by West [26].

However, in the case of the tested sandstones, the results did not clearly show this.
For the K1, K3 and J1 sandstones, the quartz percentage was about 60% and the cement
percentage was about 30%, but the sandstones significantly differed in their abrasive
properties (the value of the Wz index). Hence, it can be assumed that another crucial
factor influences the abrasivity index’s value. This factor could be the size of the quartz
grains, as indicated by the research results of Kotwica [2], Käsling and Thuro [13], and
Yarali et al. [27].
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Figure 22. Relationship between quartz content and abrasivity index Wz of tested sandstones.

Figure 23. Relationship between cement content and abrasivity index Wz of tested sandstones.

5. Discussion

Carboniferous sandstones’ physical and mechanical properties partially depend on
the mineral composition, including the qualitative differentiation of components and their
mutual quantitative relations, rock structures (with particular emphasis on the size of the
mineral of the framework grains), and the degree of weathering of the rocks.

In the case of the tested Carboniferous sandstones, these relationships were particularly
visible when analyzing the results of determinations of mechanical properties, i.e., strength
and abrasivity tests. The mineral composition of the rocks played a crucial role in both
cases. However, the uniaxial compressive strength test results did not show too much
differentiation. The range of uniaxial compressive strength results was 19.4–30.1 MPa,
which designates the tested sandstones as rocks of low strength (Polish standard specifies
the range of 15–60 MPa for rocks of poor strength for uniaxial compressive strength). Only
in the J2 sample did the value of this parameter slightly exceed the limit of 60 MPa, which
designates it as a rock with a medium uniaxial compressive strength. Similarly, a small
range of results was obtained regarding tensile strength (Table 4). However, as already
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mentioned, the higher the sandstone’s compressive strength, the higher its tensile strength,
which was confirmed by Nazir [28], Karaman [19] and Ribeiro [29].

An extensive range of results was obtained while determining the rock abrasivity.
Due to the abrasivity index values, the tested sandstones could be divided into four
groups: insignificant abrasivity (sample K2), low abrasivity (samples K3, J2, B1, and L1),
medium abrasivity (sample J1), and high abrasivity (sample K1). Abrasivity is a property
that, in the case of polymineral rocks, is the resultant of the hardness of individual minerals,
especially those that form the grain skeleton of the rock. The mineral of crucial importance
for sandstones is quartz—a weatherproof mineral with a hardness of 7 on the Mohs scale.
Its content in the tested sandstones was on average 55.4%, which is typical of Carboniferous
sandstones from the Upper Silesian Coal Basin—Łukaszewski’s reports [30] showed that
sandstones from the Katowice region contain about 60% quartz.

In the case of the tested rocks, the largest group comprised sandstones with low
abrasivity—samples B1, J2, L1, and K3. The abrasivity index ranged from 1.2 to 1.7, with
a quartz content from 46.4 to 61.3% and a relatively high proportion of silica binder, the
primary component of which was finely crystalline microcrystalline quartz (6.9–9.3%).
The J1sandstone was a rock with a medium abrasivity. The abrasivity index for this rock
was 2.4—which was slightly higher than the abrasivity index for the K3, J2, B1, and L1
sandstones—due to the high content of quartz (60.0%) and an equally high proportion of
silica binder (15.3%). Extreme abrasivity index values were obtained for two samples: 3.9
for the K1 sample and 0.2 for the K2 sample, which means that the first one was ahigh
abrasivity sandstone and the second one was an insignificant abrasivity sandstone.

The highest abrasivity of the K1 sandstone was directly related to it having the highest
quartz content (61.5%) of the tested sandstones. The K1 sandstone was characterized by
a high content of crumb material (70.9%) and a low binder content (29.1%). In addition,
the good abrasive properties of the K1 sandstone also influenced various grain structures,
especially the abundant quartz grains that were larger than 1 mm, estimated based on
observations in thin sections. However, issues related to the sandstone grain size and
thus the determination of exact quartz grain sizes requires additional analyses, which the
authors will carry out in the next stage of tests.

On the other hand, it was noted that the K2 sandstone had the lowest content of
crumb material (47.7%), with a binder share of 52.3%. These values also directly led that K2
sandstone has the highest density value and lowest porosity (1.5%) and water absorption
(0.58%) values of the tested samples.

The tested sandstones were also diverse in terms of their physical properties. Their
density remained at the level of about 2.3 g/cm3. Only the K2 and J2 sandstones were
characterized by higher densities of 2.69 and 2.62 g/cm3, respectively. They were much
more diverse in porosity, ranging from 1.5% to 10.1%. In the case of the tested sandstones,
the variable porosity was also associated with different water absorption values, which
ranged from 0.58% to 3.88%. It can be seen that the quantity of binder had the most
significant impact on porosity and water absorption, which was confirmed by the results of
theB1 sandstone, which was characterized by the highest porosity value, water absorption
value, and (thus) the smallest amount of binder with the highest content of crumb material.
A similar relationship was noticed by Karman and Kesimal [31] when examining 22 types
of rocks from the Black Sea region.

The results presented in this paper are directly connected to the rock workability
of the tested sandstones. The K1, K3, and J1 sandstones were characterized by a high
quartz content of 60%, a small amount of binder (28%), and a high abrasivity index Wz
of 1.7–3.9. As a result, the K1, K3, and J1 sandstones were classified as middlingly hard
to cut rocks. On the other hand, the J2sandstone—despite a lower quartz content (46.4%)
and therefore higher amount of binder (41.5%) and abrasivity index value Wz = 1.5 but
high compressive strength (64.6 MPa)—could also be classified as a middlingly hard to
cut rock. The B1 and L1 sandstones, which had a quartz content of 56%, a binder amount
of about 25%, a compressive strength value of 20–30 Mpa, and an abrasivity index value
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of Wz 1.2–1.6, could be classified as easy to cut rocks. Finally, the K2 sandstone, which
was characterized by the lowest quartz content (45.7%), the highest binder content (52.3%),
and the lowest abrasivity index Wz (only 0.2), could be classified as a very easy to cut
rock. The rock workability classification was based on the efficiency and quantity of wear
tools in excavations from which samples were taken. Detailed results were published
by Mucha [3,12].

The above analysis was aimed to indicate how to improve cutting efficiency in mines
from which the tested samples were taken, the properties of mined rocks have an especially
significant influence on selecting appropriate cutting tools. The higher the compressive
strength and abrasivity index value, the faster the tool is worn [3,27,32]. Thus, a tool of
better quality with special protection should be selected, e.g., in the form of a particular
hard-faced layer or sintered carbide rings [2,33]. If a cutting tool has better durability,
the adequate working time of the mining machine becomes longer [4,34] and the energy
demand decreases [35].

6. Conclusions

Based on the conducted petrographic tests and the determinations of selected physical
and mechanical properties, it was found that:

• According to the Folk classification, the sandstones were classified as sublitharen-
ite, and according to the Dott–Pettijohn classification, sandstones were classified as
subarcoses. The exception was sample K1, in which both classifications represented
quartz arenite.

• Along with the decrease in the size of minerals and the increase in the amount of
binder, the strength properties of sandstones increased.

• The determination of physical properties showed that the sandstones were diverse in
porosity. The variable porosity was also associated with different water absorption values.

• Various engineering properties were found to characterize the sandstones. The de-
termination of uniaxial compressive strength showed that most sandstones from the
regions of Upper Silesia were characterized as rocks of low strength. Only the J2
sandstone was classified as a rock with medium strength.

• The abrasive properties of the sandstones were affected by their different grain struc-
tures. The sandstones were found to contain a relatively significant content of quartz
of varying grains size from 0.1 to 1 mm, and they were also characterized by a high
content of crumb material and a low binder content.

• The insignificant abrasivity of one of the sandstone samples was directly related to
its fine-grained rock structure. It was also found that this type of sandstone was
characterized by a lower share of crumb material concerning the binder content, which
directly impacted its low porosity and water absorption.

• The rock workability was found to depend on the quartz percentage (more quartz
grains lead to more difficulty in cutting), strength properties, and rock abrasivity (the
higher the compressive strength and the value of the abrasivity index Wz, the more
difficult it is to cut a rock).

• The rock properties were found to significantly influence the selection of the cutting
tool because these properties are the main causes of tool wear during mining. For
harder rocks, better quality tools should be selected, with special focus on the proper
protection of their working parts (e.g., wear-resistant coatings and hard facing).
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Faculty of Energy and Fuels, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland;
kczerw@agh.edu.pl (K.C.); krzyzano@agh.edu.pl (A.K.); baranp@agh.edu.pl (P.B.)
* Correspondence: zarebska@agh.edu.pl; Tel.: +48-12-617-21-41

Abstract: The surface properties of coal, interactions with gaseous and vapour media, and knowledge
of the pore structure are important in terms of preparation, use, and utilisation of coal. This publica-
tion combines new unpublished data with analyses included in earlier publications by the research
team to expand and systematise information on the sorption of water vapour, methanol vapour, and
the saturated and unsaturated hydrocarbons hexane, 1-hexene, heptane, 1-heptene, octane on coals
of different ranks. The study showed that the affinity of coal for water and methanol is related to
the content of oxygen in the coal rather than the rank of the coal. Water sorption is a multilayer
phenomenon, while methanol sorption is a monolayer phenomenon. The water monolayer is greater
than that of methanol for low-rank coal, but for the higher-rank coals it is the opposite. The sorption
capacity of the applied hydrocarbons depends on the presence or absence of a double bond and the
size of the molecule. It increases in the order: n-octane < n-heptane/n-hexane < 1-heptene < 1-hexene.
The effect of a double bond is dominant over the influence of the length and shape of the molecule.

Keywords: coal; adsorption; water vapour; methanol vapour; saturated hydrocarbons;
unsaturated hydrocarbons

1. Introduction

Coal surface properties, pore structure, and closely correlated sorption properties,
are important issues to address in coal preparation, application, and use processes, in
particular coal bed methane (CBM) recovery and CO2 geosequestration. Coal is a porous
material characterised by the presence of voids (pores) in the bulk of the material, which
vary in size and shape and are interconnected in a complex irregular network. In this
space, diffusion processes and sorption processes of liquid and gaseous media take place.
The study of interfacial phenomena in systems based on heterogeneous sorbents is often
directed toward the understanding of the mechanism of retention of molecules of a given
medium in the porous structure of the sorbent. The reasons lie in the theoretical and practical
aspects from the point of view of the natural environment of the sorbent, the original
conditions of its occurrence, and the conditions under which the sorbent is used. The coal
substance has the ability to sorb low molecular weight substances such as water vapour [1–7],
methanol vapour [8–11], and hydrocarbons [12–17]. The process can occur on its surface
by physical bonding (physical adsorption) or by formation of covalent chemical bonds
(chemical adsorption, chemisorption) or by volumetric absorption that affects its structure
(absorption). In the case of physical adsorption, different mechanisms may be involved.
There can be intermolecular interactions of van der Waals forces, nonspecific dispersion
forces, or forces of a specific nature, including dipole interactions or hydrogen bonds.

Adsorption magnitude and course depend on the nature of the adsorbate, the nature
of the adsorbent, and the conditions under which adsorption takes place. Factors that
are related to the structure of the adsorbent are (1) the amount and type of surface area
potentially accessible to the sorbate and (2) the texture and structure of the pores. The
nature and accessibility of the surface area is of particular importance in sorbent-sorbate
systems based on specific interactions related to the presence of specific sorption sites.
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This factor is also particularly significant in the case of multilayer sorption and in the
mechanism of volumetric filling of micropores. The interpretation of isotherms of sorption
of small molecule size substances allows one to obtain information about the size and
properties of the internal surface of sorbents. Texture and structure parameters such as
specific surface area and pore volume with a range of diameters and their distribution, as
well as information on which atomic groups are present on the surface of the pores, are of
key importance for the practical application of commercial sorbents, and to understand,
interpret, and predict the behaviour of natural sorbents in situ. The mechanism of sorption
in the case of polar substances vapours involves the binding of sorbate molecules to the
polar sorption sites of the sorbent. In the case of bituminous coals, these are oxygen reactive
groups, mostly hydroxyl OH, including hydroxyl and phenol groups, carbonyl groups C=O,
less often carboxyl groups COOH [18]. The approximate proportion of oxygen contained in
reactive groups compared to total oxygen varies between 30–50% on the entire coalification
scale up to a Cdaf content of approximately 89% [19]. Therefore, coal can be considered a
system with a double feature: hydrophilic and hydrophobic [20].

In planning the study presented in this paper, the authors were motivated by the
recognition of a literature gap regarding studies on the sorption of small-molecule sorbates
on coal, including polar compounds, but especially apolar hydrocarbon molecules. This
paper aims to gather suitable analytical data and provide an analysis of the relationship
between sorption capacity and the physicochemical structure of coal.

1.1. Sorption of Water and Methane

By analysing the relevant literature, it can be concluded that coals as adsorbents
show good sorption properties with respect to polar compounds, methanol, and water.
Differences in the interaction of these compounds with the porous structure of coal have
already been observed in measurements of the real density of coals [21]. In relation to
helium density, the results obtained with water are higher for low-rank and medium-rank
coals (71–89% C) and lower for high-rank coals. This is due to the progressive loss of
oxygen content in the coal and the associated gradual change in the character of the coal
surface from hydrophilic to hydrophobic. As noted by Liu et al. [22], water vapour has been
used to characterize the pore structure of porous material due to its lower kinetic diameter
(0.28 nm) when compared to N2 (0.38 nm) and CO2 (0.33 nm). However, surface functional
groups may provide extra sorption sites for water molecules that act as secondary sites for
further adsorption, forming clusters. The density values obtained with methanol are generally
higher than the helium density, irrespective of the coal rank. This regularity is explained by the
compression of methanol in small pores as a result of significant specific interactions with the
coal surface. Czuchajowski and colleagues [19] studied the sorption of methanol and water
vapours on vitrinites of 18 bituminous coals in the range of Cdaf 69.31–94.30%. The authors
postulated chelate bond formation as the sorption mechanism, and proposed that for coals
up to 81% Cdaf, some of the reactive groups are inaccessible to polar sorbates because of the
presence of internal hydrogen bonds between them. Korta et al. [23] analysed the effect of
the petrographic composition of coal lithotypes of different rank on the sorption properties
towards methanol and water vapour at 20 ◦C. The sorption capacity of vitrains was found
to be slightly higher than that of their durain counterparts, but this effect decreases with an
increase in the degree of coalification. Allardice and Evans [18] carried out desorption and
resorption of water vapour from lignite (66.6% C) at several temperatures (30–60 ◦C). Type
II sigmoidal curves were obtained (according to the IUPAC classification). The authors
correlated this fact with three effects: capillary condensation, responsible for the upper
part of the isotherm; multilayer sorption, which determines the linear middle part of the
curve; and monolayer sorption, which is reflected in a shape of sorption isotherm at low
sorbate pressures. The studies conducted by Bhattacharyya [1] aimed to measure the rate
of heat release from eight coals (80.7–94.2% Cdmmf) during the sorption of water vapour
under isothermal (30 ◦C) conditions with different relative humidity. It was observed that
the rate of heat release increases with a deficiency in the equilibrium moisture content of
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the coal and depends on its hygroscopicity and not directly on its degree of coalification.
Lasoń and Żyła [20] carried out measurements of multiple sorption of water and methanol
vapours on five Polish bituminous coals of varying ranks (Cdaf 73.52–94.30%) to observe the
phenomenon of swelling of the coal accompanying adsorption. The obtained water vapour
isotherms were assigned to type II for the lower-rank coals, and type III for the higher-rank
coals. The work of Spitzer’s team [10] presents the results of a study of the sorption of
methanol vapour on 20 coals differing in their rank (64–91% Cdaf) at 20, 40 and 70 ◦C. The
obtained data were described using the Dubinin-Kagener-Radushkewich (DKR) equation
and the BET equation in the range of relative pressure from 0.05 to 0.35. Comparable values
of the parameters corresponding to the monolayer capacity were obtained in terms of both
models. Ceglarska-Stefańska et al. [2] have studied the course of the sorption of water
vapour under low pressure isothermal-isobaric conditions, at 25 ◦C, on two bituminous
coals and concentrates of liptinite and vitrinite macerals. It was confirmed that because of
the low degree of ordering of the liptinite structure, the low aromaticity, and the significant
content of aliphatic compounds these macerals have a higher water vapour sorption
capacity than base coals and vitrinite. Takanohashi et al. [11] reported the results of studies
of the effect of coal extraction on the sorption of methanol vapour in coal at 30 ◦C. Coals
with low extraction efficiency sorbed similar amounts of methanol as their post-extraction
residues, but the sorption on the residue from the high extraction-efficiency coal increased
significantly compared to that of the base coal, suggesting that the extraction resulted in
a more microporous system. Krzyżanowski and Żyła [9] presented the results of studies
on sorption of water vapour, methanol, and benzene on three coals of different rank. The
authors found that the sorption of water vapour on bituminous coals depends not only on
the polar character of the coal surface but also on its capillary structure. On the other hand,
the sorption of vapours of organic compounds occurs in both polar and in apolar sites as a
result of dispersion forces. Charričre and Behra [3] carried out isothermal studies of water
vapour adsorption and desorption on bituminous coal and lignite 298 K. Water sorption
isotherms corresponding to type II were obtained and were described with a modified
BET model to estimate water adsorption on primary and secondary adsorption sites. The
authors assumed that the sorption of water vapour in coals with increasing relative pressure
can be divided into four stages: (I) adsorption on primary sites, i.e., on oxygen-containing
functional groups; (II) adsorption on secondary sites, via hydrogen bonding between water
molecules; (III) formation of water clusters; and (IV) filling of micropores by water clusters
and capillary condensation in narrow pores. The amount of water adsorbed at the primary
sites was estimated to be 50% and 35% of the total sorption for bituminous coal and lignite,
respectively. Švábová and co-workers [7] conducted a study of water vapour adsorption
on three coals at temperatures: 25, 35, and 45 ◦C to observe the role of primary and
secondary adsorption sites on the adsorption process. It was observed that at low relative
pressures, adsorption at primary adsorption sites dominates, while adsorption at secondary
sites becomes more important with increasing pressure. The percentage of adsorption at
secondary sites depends on the concentration of the oxygen-containing functional groups.
Baran et al. [8] presented the results of methanol sorption on three coals of different rank
and elemental and petrographic composition. A positive relationship was found between
the amount of adsorbed methanol and the oxygen content of the coal. The authors assumed
that methyl alcohol molecules can be adsorbed at both the polar and a polar adsorption sites
because of the dual nature of the molecule: the –OH group is polar and the methyl group
–CH3 is apolar. Orzechowska-Zięba et al. [24] investigated the sorption of water vapour on
five coals of varying rank. The sorption and desorption isotherms obtained at 303 K were
classified as type II characteristic for sorbents containing micro- and mesopores. As part of
their study, Chen and co-workers [4] measured the water vapor adsorption/desorption
isotherms and the corresponding kinetics at preset relative humidity (P/P0) steps on five
coals of different rank (R0 0.65–3.18%). Samples of low-rank coal and high-rank anthracite
exhibit higher sorption capacity, pronounced hysteresis features, and a sharp step-down of
the desorption isotherms at a P/P0 of approximately 0.5. On the contrary, the desorption
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curves of the other three samples follow a path approximately parallel to the adsorption
curves. In their review, Liu and co-workers [5] focused on the relationship between the
occurrence ofH2O and the metamorphism of the coal, the presence of functional groups
containing oxygen, the influence of mineral matter and other internal factors. The authors
postulate that the H2O adsorption process can be well described by the modified Brunauer–
Emmet–Teller (BET) model with the assumption of double adsorption sites.

1.2. Sorption of Hydrocarbons

Coal is an adsorbent with a dual-surface nature, which is also of particular importance
for the sorption of apolar sorbates. This area of research is based primarily on practical
aspects, since apolar compounds are the main constituents of a mine gas. In addition to
methane, nitrogen, and carbon dioxide, the lower hydrocarbons (C1–C5) and medium
hydrocarbons (C6–C9) present in the gas mixture are also of great importance as their
content in some sections of coal-bearing formations may exceed even 10% [25] and are
sorbed on coals to varying degrees [26,27]. However, the literature on this subject is not
extensive. Dudzińska [26] investigated the sorption capacities of bituminous coals toward
gases present in the mine atmosphere. It was found that the volume of gas sorption on
bituminous coal decreases in the following order: CO2~C2H2 > C2H4 > C3H6 > C2H6 >
C3H8 > CO > H2. Relatively high sorption of unsaturated hydrocarbons was attributed
to the interaction of double- and triple-bond electrons with the energy centres of the coal
surface. It has been found that lower-rank coals with higher porosity are characterised
by the highest sorption capacity. According to Dudzińska [26], it can be assumed that
when in contact with the surface of the coal, a pair of binding electrons in the molecules
of unsaturated hydrocarbons is shifted and a dipole structure is formed and they can
electrostatically interact with polar adsorption sites with donor or acceptor properties.
Dudzińska et al. [13] conduct research in the field of assessing the self-heating rate of coal
by studying sorption/desorption of gases released into the mine atmosphere as a result
of coal oxidation including unsaturated hydrocarbons: ethylene, propylene, acetylene.
The volume of sorbed gases is closely related to the rank of coal and its porous structure
and the volume of adsorbed acetylene is approximately 2–3 times larger than the volume
of adsorbed ethylene or propylene [15]. Acetylene molecules are smaller than those of
ethylene and propylene and due to the triple bond between the carbon atoms, have a higher
electron availability of weak π bonds than ethylene and propylene. Wojtacha–Rychter
and Smoliński [16,17] studied the effects of transporting a multicomponent gas mixture
through a sorption column filled with granular coal and inert material and the sorption of
multicomponent gas mixtures of ethane, ethylene, propane, and propylene during flow
through coal masses of different degrees of coalification. The gases migrated through the
coal bed at different rates. The presence of a double bond was found to be responsible
for the strongest selectivity of propylene on coal. However, the selectivity of ethylene on
coal was the lowest, which was contrary to expectations. The authors emphasised that the
complex mechanisms of adsorption on coal for multicomponent gas mixtures have not been
fully elucidated, leaving this issue open for further research. Zhao and co-workers [28]
conducted adsorption and desorption measurements of carbon dioxide, methane, ethane,
propane, n-butane, and iso-butane on two different shales and kerogen at temperatures of
35, 50, and 65 ◦C, in a wide pressure range. At 2 bar, the highest adsorption was observed
for n-butane, followed by isobutane, propane, carbon dioxide, ethane, and methane. Longer
molecules were found to provide a stronger interaction with the sorbent surface and higher
adsorption. Krzyżanowski and Zarębska [29] carried out measurements of n-heptane
and 1-heptene vapour sorption in bituminous coals and concluded that the sorption of
vapours of apolar substances is mainly surface-bound and significantly depends on the
porosity of coals and that the presence of a double bond influences the sorbent-sorbate
type interactions and the sorption capacity. These results were confirmed by Baran and
co-workers [12] who performed sorption studies of hexane, 1-hexene, heptane, 1-heptene,
octane, and benzene vapours on low-rank bituminous coal.
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The study of the course of sorption of vapours and gases with different physico-
chemical properties is a source of information on the porous structure of coals and the
mechanism of adsorption of sorbates. The paper is a continuation of research carried out in
the Adsorption and Environmental Engineering Group, Faculty of Energy and Fuels, AGH
University of Science and Technology. The publication combines information presented in
previous works of the team [8,9,12,29] with new, unpublished data to summarize, expand
and systemise information on the sorption of water vapour, methanol vapour, and satu-
rated and unsaturated hydrocarbons: hexane, 1-hexene, heptane, 1-heptene, and octane, on
bituminous coal.

2. Materials and Methods

The research was carried out on three selected Polish coals, provided by three operating
coal mines of the Upper Silesian Coal Basin, that differ in the degree of coalification.
The samples weighing several kilograms were acquired in accordance with the Polish
standard PN-G-04502:2014-1, crushed in a jaw crusher, ground, sieved on Fritsch sieves
to the fractions 0.500–0.700 mm, 0.125–0.250 mm, and 0.063–0.075 mm, and stored in
nitrogen atmosphere.

Coal analysis was carried out at the Department of Solid Fuel Quality Assessment of
the Central Mining Institute in Katowice (Poland) and at the Faculty of Energy and Fuels of
the AGH University of Science and Technology in Kraków (Poland), using the requirements
and procedures specified in Polish standards (Table 1). Micropore surface area and volume
determined on the basis of carbon dioxide sorption at 298 K using Dubinin–Raduszkiewicz
model (D-R) were presented in Table 1. The tests were performed using the Micromeritics
ASAP 2010 apparatus.

Table 1. Specification of coal samples C1, C2, C3: proximate and ultimate analysis, petrographic
analysis, vitrinite reflectance, densities, and porosity.

Coal C1 C2 C3

Proximate analysis
Wa [%] 1.75 1.85 11.11
Aa [%] 3.01 14.18 14.45

Vdaf [%] 27.12 29.88 35.63
Ultimate analysis

Cdaf [%] 84.24 70.82 57.83
Hdaf [%] 4.58 3.35 3.37
Ndaf [%] 1.52 1.28 0.87
Sdaf [%] 0.39 3.50 1.10
Odaf [%] 4.58 6.29 11.30

Petrographic analysis and vitrinite reflectance
vitrinite [%] 73 60 67
liptinite [%] 7 9 5

inertinite [%] 20 31 28
mineral matter [%] 1 14 11

R0 [%] 0.92 0.78 0.51
Structural properties

dreal [g/cm3] 1.26 1.27 1.37
dbulk [g/cm3] 1.22 1.23 1.16
porosity [%] 3.20 3.40 15.90

Vmicro [cm3/kg] 0.070 0.063 0.229
Smicro [m2/g] 115.8 103.2 419.6

W: moisture content, A: ash content, V: volatile matter content, C, H, N, O, S: content of element C, H, N, O,
S, respectively, a: analytical basis, daf: dry–ash–free basis, R0: vitrinite reflectance, dreal: real density (helium
density), dbulk: apparent/bulk density (mercury density), Vmicro: D-R micropore volume, Smicro: D-R micropore
surface area.

FTIR spectra of the samples C1, C2, and C3 are presented in Figure 1. The FTIR results
provided information on the structure of our 3 coals in terms of carbon and hydrogen
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groups and oxygen groups, enabling the assessment of differences in the structure and
character of sample surfaces. Spectra are characterized by:

• a broad hydroxyl stretching region, with peak at 3425 cm−1 for C1 and C2 and shifted
peak at 3390 for C3,

• a clearly visible aliphatic stretching region, with two peaks for asymmetric bonds at
2920 cm−1 and symmetric bonds at 2855 cm−1; the latter is most pronounced for C1
and least pronounced for C2,

• a prominently displayed aromatic carbon region with a peak at 1600 cm−1, most
pronounced for C1,

• an aliphatic bending region with peak at 1435 cm−1 for C1 and C2 and peak at
1430 cm−1 for C3,

• peaks at 1032 cm−1 assigned to the stretching vibration of minerals, such as Si-O-Si or
Si-O-C, most pronounced for C3 and almost indistinct for C1,

• noticeable three aromatic out-of-plane peaks within 900–650 cm−1 region,
• peaks at 535 and 460 cm−1 region assigned to the Si-O bending vibration of feldspar

and quartz minerals, most pronounced for C3 and indistinct for C1.

 
Figure 1. FTIR spectra of coals C1, C2 and C3.

Scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM/EDS) anal-
ysis was carried out with the aid of JEOL JSM-7500F, coupled with an AZtecLiveLite Xplore
30 (Oxford Instruments) system. The secondary electron detector provided SEI images, and
the back-scattered electron detector provided BSE (COMPO) micrographs. SEM images
were recorded for the samples coated with 30 nm Cr. SEM (Scanning Electron Microscopy)
makes use of secondary electron signal imaging to observe the surface morphology of the
sample, to infer material components and to reveal the microstructure on the micro- and
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nanometre scale. The SEM photographs in Figure 2 present the topography of the coal’s
surface and its phase diversity for fraction below 0.075 mm.

 

Figure 2. The surface morphological characteristics of the SEM pore-fracture system in (a,b) coal C1,
(c,d) coal C2, (e,f) coal C3. Magnification = 800 (left), magnification = 5000 (right).

The choice of sorbates was dictated by both cognitive and practical aspects. Water
vapour and liquid water occur naturally in coal seams. The amount of water vapour and its
form of bonding with the coal is determined by hydrogeological conditions and the depth
of deposit. The sorption of water vapour on coal depends on the polar character of the coal
surface and its capillary structure, which enables the formation of multilayer clusters. The
sorption of methanol has a more universal character because of the specific structure of
the molecule, containing a polar and an apolar section. Medium hydrocarbons (C6–C9),
saturated and unsaturated, can be present in the mine atmosphere; thus, the results of the
studies can be used to determine the predisposition of selected coals for their storage. The
selected sorbates differ in structure (saturated and unsaturated hydrocarbons), size and
shape of the molecules (molar mass; angular, spatial, linear structure of the molecule) and
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physical properties (equilibrium vapour pressure), they are also present as components of
gas mixtures, including coal seam gas (Table 2).

Table 2. Characteristic of sorbates.

Sorbate TC [◦C] pC [MPa] M [g/mol] dkin [nm] p0 [Pa] μ [D]

water 373.99 22.06 18.02 0.265 4240 1.85
methanol 240.00 78.50 32.04 0.380 21,065 1.70
n-hexane 234.64 3.04 86.18 0.430 24,598 0.00
1-hexene 230.83 3.21 84.16 0.430 30,507 0.44

n-heptane 266.87 2.74 100.20 0.430 7786 0.00
1-heptene 264.08 2.92 98.19 0.430 9533 0.44
n-octane 295.75 2.49 114.23 0.430 2240 0.00

TC: critical temperature, pC: critical pressure, M: molecular weight, dkin: kinetic diameter, p0: vapour pressure
at 303 K, μ: dipole moment.

The sorption isotherms were determined using a volumetric technique with so-called
liquid microburettes, at a temperature of 303 K. This technique allows the determination of
isotherms of adsorption and desorption of vapours of polar substances, such as water or
alcohols, and nonpolar compounds, for example, benzene, carbon tetrachloride, hydrocar-
bons, ether, and amines, in the entire range of relative pressures, i.e., from absolute vacuum
to equilibrium vapour pressure. The measuring instrument is made almost entirely of glass
and is placed inside an air thermostat to maintain a constant temperature with an accuracy
of 0.1 ◦C. The apparatus consists of several independent basic units. A schematic of a single
measuring unit is shown in Figure 3.

 
Figure 3. Schematic of sorption apparatus (C: measuring capillary, CN: narrower part of capillary tube,
B: glass bubble, WT: cotton tampon damp in water, A: sample ampoule, MM: mercury manometer and
valve, MV: mercury valve, MD: helium dosing unit with mercury valve, FV: float valve, V1–V8: valves
and glass taps).
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Measuring capillary C is filled with liquid by immersing the open narrower part of
measuring capillary CN in adsorbate, creating negative pressure by MV valve, and sucking
the liquid into bubble B (half of the volume). After closing the MV valve, the end of the CN
capillary is sealed. Then, with the MV and MM valves open and valve V4 open, the liquid
is degassed to remove its vapours and dissolved gases and to obtain a uniform column of
liquid in capillaries C and CN. When this stage is complete, the MM and V4 valves are
closed. Below the meniscus of the liquid, on the measuring capillary C, a cotton swab
pre-soaked in water WT is placed in order to locally lower the temperature in order to
counteract the predistillation and condensation of the adsorbate outside the measuring
capillary C. The next step is to plot the curve of the dependence of the lowering of the
meniscus level of the liquid in the measuring capillary C on the vapour pressure of the
sorbate in the adsorption space, to determine the correction for the dead space of the system.
The glass sample ampoule A containing the adsorbent is connected to the system with
a gas burner. The sorption space and sample are then degassed to remove the free gas
and previously sorbed compounds from the pore system and the surface of the coal. In
the case of coal, the heating of samples is not practiced to remove the vapours and gases
contained in the pores of the sorbent. Instead, the so-called helium bath is used. After the
initial degassing of the sample, a portion of helium (pressure of several kPa) is introduced
into the system for 1–2 h, after which the degassing is continued (10-3 Pa). Helium atoms,
which are not adsorbed themselves, provide the necessary kinetic energy to the molecules
of sorbed gases and vapours, forcing them off the sorbent surface [30].

Sorption experiments were carried out for 0.125–0.25 mm grain samples of coal weigh-
ing approximately 1 g. Prior to the main test, the samples were outgassed (10−7 Pa) and
flushed under helium atmosphere at least 3 times in total, and next kept under vacuum
at the room temperature to a stable residual pressure. The actual measurement begins by
reading the baseline liquid level in capillary C using a cathetometer with an accuracy of
0.02 mm. Opening the MV valve results in the distillation of a certain amount of liquid into
the adsorption space. The amount of adsorbed vapour is calculated from the difference in
the level of the meniscus of the liquid in the measuring capillary C, taking into account the
dead volume of the apparatus and the volume of the sample. The equilibrium pressure
of sorption is checked on the MM manometer using a cathetometer, with the MV valve
closed. The MM gauge acts as a pressure gauge and a valve between the sorption part of the
system and the section for degassing and aeration of the system. During the measurements,
the optimum equilibrium waiting time of 24 h was selected, after which no change in
equilibrium pressure was detected.

The multilayer adsorption model of the Brunauer, Emmett, and Teller equation
(BET) [31] was used to describe the experimental data. It assumes that if a sorbate molecule
encounters an occupied adsorption site on the surface of an adsorbent, it does not leave it
immediately, but it forms an adsorption complex. With increasing vapour pressure, the
number of available unoccupied adsorption sites decreases, as well as the number of sites
occupied by one molecule, because complexes are formed which are dual-molecular and
with more molecules. The interpretation of the obtained curves is based on the linear form
of the BET equation:

p
p0

a ·
(

1 − p
po

) =
1

am · C
+

C − 1
am · C

· p
p0

, (1)

where: p—equilibrium vapour pressure of the sorbate [Pa], p0—saturated vapour pres-
sure of the sorbate at the measurement temperature [Pa], a—sorption capacity of the
adsorbed vapour at equilibrium pressure p [mmol/g], am—adsorption capacity of the
monolayer [mmol/g], C—equation constant, depending on the heat of adsorption and
measurement temperature.
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3. Results

3.1. Sorption Isotherms

The course of sorption isotherms is presented as a dependence of the sorption capacity
of the sorbate (mmol/g) and the relative pressure of the sorbate (p/p0). The sorption
isotherms of water and methanol for the studied systems are presented in Figure 4. The
isotherms of hydrocarbon sorption on samples C1, C2, and C3 are illustrated in Figure 5.

3.2. BET Parameters

The BET adsorption model was used to describe the experimental adsorption data.
Classically, the BET method is used to describe the low temperature (77 K) sorption of
nitrogen and to determine the specific surface area of the adsorbents from the am values.
Korta et al. [23] postulated that the monolayer capacity (am) determined for the coal-water
sorption system corresponds to the number of polar active groups that make up the water
sorption sites and not to the compact sorbate monolayer capacity. In our present study, the
characteristic parameters of the BET equation, the monolayer capacity (am), were calculated.
However, we followed the view presented by Allardice and Evans [18] that the determined
parameters represent the capacity of a single first adsorbent layer. For the purposes of
this theoretical analysis, the data were not differentiated in terms of similarity to type II
isotherms and calculations were carried out for each isotherm obtained. It was assumed
that the agreement of the experimental data with the linear equation of BET is in the range
of relative pressures from 0.05 to 0.4.

The monolayer capacity values (aBET) were presented graphically in relation to the
maximum sorption capacity values (amax) in Figure 6. The values of the maximum sorption
capacities (amax) of the sorbents with respect to each sorbate were correlated with the
molar mass of the sorbates and the kinetic diameter of the sorbate molecules (Figure 7)
in order to evaluate the presence or absence of dependence of these parameters on the
determined quantities.

 
Figure 4. Sorption isotherms of water vapour (Ci w) and methanol vapour (Ci m) on coals C1, C2, C3.
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Figure 5. Sorption isotherms of n-hexane, 1-hexene, n-heptane, 1-heptene, and n-octane on coals: C1,
C2 and C3.
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Figure 6. Maximum values of sorption (Ci max) and BET monolayer adsorbed quantities (Ci BET) of
water vapour, methanol vapour, n-hexane, 1-hexene, n-heptane, 1-heptene, and n-octane on coals C1,
C2, C3.

Figure 7. Maximum values of sorption amax of water vapour, methanol vapour, n-hexane, 1-hexene,
n-heptane, 1-heptene, and n-octane on coals C1, C2, C3: (a) in relation to molar mass of sorbates and
(b) in relation to kinetic diameter of sorbates.

4. Discussion

The shape of the water sorption isotherms is sigmoidal and corresponds to type II
according to the IUPAC classification (Figure 4), characteristic for sorbents containing micro-
and mesopores. It indicates the initial monolayer adsorption followed by multilayer filling.
The formation of a sorption monolayer corresponds to the initial part of the isotherm. The
slope of the isotherm is steeper along this section, the greater the accumulation of polar
sorption sites, which are identified with oxygen groups. The phase of filling subsequent
adsorption layers corresponds to the transition of isotherms into a linear line. Previously
adsorbed water molecules become sorption sites for the next sorbate molecules. This is a
cluster-type phenomenon. At higher relative pressures, the isotherms tend to shift in the
vertical direction. The cause may be the appearance of sorption in the network of the coal
matrix, followed by swelling of the coal or condensation of sorbate vapours on the surface
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of the pores [9]. For higher-rank coals, the filling of the monolayer takes place at a lower
relative pressure than for lower-rank coals and the part of the isotherm that is close to the
linear line is sloped at a smaller angle to the relative pressure axis. The Type II isotherm
corresponds to processes with higher adsorption energy of the first layer compared to the
subsequent layers, in contrast to type III, which corresponds to a process with opposite
characteristics [20].

The shape of methanol sorption isotherms corresponds to type I according to the
IUPAC classification, characteristic for microporous adsorbents (Figure 4). In the initial part
of the isotherm, corresponding to the monolayer filling process, adsorption is limited by
the number of adsorption sites. In the case of methanol, this number is potentially higher
than in the case of water. Methanol molecules can be adsorbed not only by polar sites but
also by non-specific apolar sites. Methanol sorption is less dependent on the nature of the
coal surface than water sorption. The possibility of the formation of another layer after the
formation of the first layer is limited by both the capillary structure of the sample and the
interactions strength between the sorbate molecules.

The open pore structure of coal promotes the clustering and association of strongly
interacting water molecules with dipole-dipole and hydrogen-bonding interactions. In
the case of methanol, these interactions also occur, but are much weaker, and even with
favourable coal texture the sorption increases slightly with increasing relative pressure. In
general, the texture of higher-rank coals does not favour the formation of multiple layers
of adsorbed methanol. This is reflected in the course of the relevant curves (Figure 4).
The isotherm of water sorption on the C2 coal lies above that determined for the C1 coal,
while the isotherms of methanol sorption on these coals are in their initial part above the
mentioned curves and have a very close course. The sorption of methanol vapour is higher
than that of water vapour on a significant part of the relative pressure scale. This trend
persists longer for the lower-rank coals. The curves crossfor C3 coal at a value of p/p0 of
approximately 0.35, for C2 coal at a value of p/p0 of approximately 0.72, and for C1 coal
at a value of p/p0 of approximately 0.87. When saturation vapour pressure was reached,
maximum sorption capacities were obtained, which are higher for coal-water systems than
for coal-methanol systems (Figures 4 and 6). The sorption capacity of the investigated coals
toward water and methanol depends to some extent on their degree of coalification. As the
photographs in Figure 1 show, the organic matter morphology of the samples is similar.
The presence of mineral matter in the C2 and C3 coals is responsible for the differences in
the images. Hence, it is inferred that the differences in sorption amounts in the systems
in question are strongly related to the chemical nature of the coal surface and not directly
to its nanostructure. However, this regularity has different magnitude. The differences in
sorption capacity between low-rank C3 coal and C2 and C1 coals are greater than between
C2 and C1. The parameter that corresponds much better to the sorption properties of coal
relative to those of low-molecular-weight polar sorbents is the content of element O in
the coal. In the case of water, the dominant factors determining the sorption capacity of
coal are (1) the capillary structure of the coal sorbent, enabling diffusion of the medium
in the pores and creating conditions for multilayer sorption and condensation of sorbate
vapours on the pore walls, and (2) the accessibility of polar adsorption sites, associated
with functional groups, mainly oxygen groups. In the case of methanol, the capillary
structure of the coal sorbent and the accessibility of the adsorption sites also play a key role.
However, two aspects should be kept in mind. First, methanol molecules consist of a polar
hydroxyl group and an apolar methyl group, therefore, they can be bonded to the coal
surface by specific interactions with polar sites and nonspecific (dispersive) interactions
with the apolar surface of the coal matrix. A methanol molecule can screen for more than
one sorption site. Second, methanol molecules are larger than water molecules. Their
kinetic diameters are 0.38 nm and 0.265 nm, respectively (Figure 7b).

The water sorption results obtained in our study were compared with the sorption
capacity values obtained by Švábováet al. [7] and by Chen at al. [4] (Table 3). Coal marked
Vitrinite sorbed about 43 mg of water/g of coal [7]. This is just slightly higher than
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the 39.7 mg/g obtained for C1 coal. This leads to the conclusion that for coals with a
similar degree of coalification expressed by vitrinite reflectance of about 0.9%, the maceral
composition does not affect the magnitude of water sorption. The coal marked as Huminite
sorbed about 170 mg of water/g of coal [7]. This is considerably higher than the 127.6 mg/g
obtained for C3 coal. This is in accordance with the conclusions presented above regarding
the relationship of the magnitude of water sorption with the capillary structure of the coal
sorbent and the availability of polar adsorption sites, the amount of which decreases with
increasing coal rank. The coal marked YZG2 sorbed approximately 82 mg of water/g of coal
and the coal marked LH7 sorbed approximately 21 mg of water/g of coal [4]. These values
are consistent with the findings from this publication Analogously, the methanol sorption
results presented in this paper were compared with the sorption absorption values obtained
by Takanohashi et al. [11] (Table 3). Coal marked as Upper Freeport sorbed approximately
1.2 mmol of methanol/g of coal [11]. This is a little lower than the 1.715 mmol/g obtained
for C1 coal. In contrast, the Beulah–Zap marked coal sorbed approximately 6.5 mmol
of methanol/g of coal [11]. This is significantly higher than the 1.97 mmol/g obtained
for C2 coal. This is in accordance with the deductions presented above concerning the
relationship of the magnitude of methanol sorption with the availability of polar adsorption
sites. The ratio of sorption capacity of these low-rank coals is 3.3, while the ratio of the
amount of elemental O content in these coals is 3.45. This indicates that there may be a
near-linear relationship between oxygen content and sorption capacity toward methanol
for coals with a similar degree of coalification.

Table 3. Comparison of selected relevant self-reported and literature data.

Coal R0 [%] Cdaf [%] Odaf [%] TV [%]
aw

[mg/g]
am

[mmol/g]
aw,prim

[%]

C1 0.92 84.24 4.6 73 39.7 1.715 -
C2 0.78 70.82 6.29 60 44.0 1.97 31
C3 0.51 - - 67 127.6 - -

Vitrinite [7] 0.88 - - 93 43 - -
Huminite [7] 0.37 - - n.a. 170 - -

YZG2 [4] 0.65 - n.a. - 82 - -
LH7 [4] 1.16 - n.a. - 21 - -

Upper Freeport [11] n.a. 86.2 4.6 - - 1.2 -
Beulah-Zap [11] n.a. 71.6 21.7 - - 6.5 -

Albert [3] 0.75 - 10.7 - - - 50
R0: vitrinite reflectance, C, O: content of element C, respectively, daf: dry–ash–free basis, T: vitrinite content,
aw: water sorption capacity, am: methanol sorption capacity, aw,prim: water sorption share on primary sorption
sites calculated as: aBET·100%/amax, n.a.: data not available, -: data not available or irrelevant for purpose
of comparison.

The shape of the isotherms of sorption of unsaturated hydrocarbons is close to sig-
moidal (Figure 5). When they were assigned type II according to the IUPAC classification,
they were supported by the elevation of the curve toward the vertical in the final part of the
isotherm. In the case of saturated hydrocarbon sorption, this feature of the curve decreases
with increasing length of the aliphatic chain and decreasing degree of coalification, which
is well illustrated by isotherms for the sorption of n-octane and n-heptane (Figure 5). The
shape of these isotherms is closer to type I according to the IUPAC classification (Figure 5).
The sorption of vapours of nonpolar substances mainly involves a surface process and
depends primarily on the porosity of the bituminous coal, in particular on the presence
and distribution of micro- and mesopores. Coal appears as a molecular sieve in this system.
Therefore, the sorption absorptivity of the C3 coal is definitely several times higher than
that of the C2 and C1 coals. Therefore, the ratios of the sorption capacities of individual
sorbates on the same coal are the smallest for the C3 coal (Figure 5).

The molecular dimensions of unsaturated hydrocarbons and their saturated counter-
parts are similar (Table 2 and Figure 7). The presence of a double bond in the hydrocarbon
molecule affects the sorption mechanism, changes the course of the isotherm with respect
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to the saturated counterpart, and leads to higher sorption values. This results from the in-
teraction of the double bond (πelectrons) with the polar groups present on the surface of the
coals [29]. This effect is more evident in the case of the C1 and C2 coals. The association of
unsaturated hydrocarbon molecules on the surface of micropores is likely to occur because
adsorbate-adsorbate interactions play a more significant role than adsorbate-adsorbent
processes. It should also be noted that in the sorption of unsaturated hydrocarbons, the
presence of π-electrons in the aromatic structures of coal is also important. Higher-rank
coals have a higher degree of aromatic condensation resulting, on the one hand, in the
presence of adsorption sites in the form of a delocalised sextet of π-electrons and, on the
other hand, in a lower porosity, which reduces the possibility of interaction of the coal
substance with the sorbate molecules. These interactions lead to higher sorption capacities
of alkenes relative to alkanes of a chain/molecule length similar to that of these alkanes.
Hence, the sorption capacity of the C1 coal toward these sorbates is higher than that of the
lower-rank C2 coal (Figures 5 and 6). The sorption capacity of the hydrocarbon sorbates
used increases in order: n-octane < n-heptane/n-hexane < 1-heptene < 1-hexene. This
pattern is influenced by two factors: the presence or absence of a double bond and the
size/length of the molecule. In relation to the maximum sorption values of 1-hexene and
1-heptene obtained for coal C3, 6 and 5 times lower sorption capacities were obtained for
coal C2 and C1, respectively (Figure 6). The alkane sorption ratios obtained for coal C3
and coals C2 and C1 are 8 to 12 and 6 to 9, respectively (Figure 6). However, n-hexane and
n-heptane sorb on coals C2 and C1 with close capacities and n-octane with lower capacity.
For coal C3, the curves for these three homologues differ most clearly (Figure 5). Coal with
a lower degree of coalification more clearly differentiates the course of sorption isotherms
of alkanes. The higher sorption capacity of alkenes in comparison to that of their saturated
counterparts indicates that the effect of double bonding is dominant over the influence of
molecule length and shape. The pattern is more evident for higher-rank coals (Figure 5).
Moreover, the curves obtained for 1-heptene are above those corresponding to the sorption
of n-hexane, which further confirms which feature of the molecule has a greater influence
on the sorption capacity.

When considering the relationship between the obtained values of the monolayer
capacity aBET and the maximum sorption capacity amax, the criteria of the type of sorbate
should first be taken into account, and then the influence of the type of sorbent should be
analysed. This is supported, among other reasons, by the fact that for the higher-rank coals
C1 and C2, the aBET values differ only by water sorption, while for the rest of the sorbates,
their aBET values are almost the same (Figure 6).

For the sorption of water vapours, aBET represents about 31% of the amax values for
C2 and C3 coals and about 23% for the highest rank C1. For methanol, higher values of
aBET relative to amax were recorded. A clear dependence on the degree of coalification can
also be seen, as the aBET contributions to amax are 36%, 45%, and 48% for the C3, C2, and
C1 coals, respectively. Comparison of the aBET for these sorbates reveals that the aBET of
methanol for the C1 and C2 coals is higher than that of water and for the C3 coal the ratio is
reversed. In other words, the sorption of water on the higher rank C1 and C2 coals is higher
than that of methanol but the water monolayer capacity is lower than that of methanol.
This is most likely due to the overlapping of two phenomena. First, both sorbates undergo
multilayer adsorption, but in the case of water molecules the process is more efficient
because of strong dipole-dipole interactions and hydrogen bonds. The second aspect is the
affinity of methanol for both polar and nonpolar sorption sites. The effect of decreasing
the amount of the former with increasing degree of coalification is reflected in a larger
difference between the aBET of water and the aBET of methanol for the C1 coal than for
the C2 coal (Figure 6). On the other hand, on low-rank C3 coal, the sorption of water and
methanol takes place mainly at numerous polar sorption sites. Because of the shape and
larger size of the methanol molecules, they are less efficient at using the available sites
effectively, hence the lower aBET value for this sorbate.
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The self-reported monolayer capacities obtained aBET and the maximum sorption
capacity amax of water were compared with the values obtained by the authors Charrire
and Behra [3] (Table 3). For the coal marked Albert in their work, the amount of water
adsorbed on the primary sorption sites was 50% [3]. For our C2 coal, the ratio of aBET and
amax is 31%. The ratio of the fraction of sorption at the primary sorption sites to the fraction
of total multilayer sorption of the compared coals is 1.6, while the ratio of the amount of
element O content in these coals is 1.7. These values indicate the possibility of a linear
relationship between the oxygen content and the monolayer capacity in water sorption
for coals with similar degrees of coalification. This is in agreement with the arguments
and conclusions presented earlier in the paper. In the case of hydrocarbon sorption, aBET
provides between 28% and 38% of the amax values for C1 and C2 coals. Slightly higher
proportions are shown for systems with C2 coal. For the lowest rank C3 coal, the ratios
are between 49% and 54%. No clear dependence on hydrocarbon type was observed in
this regard. The aBET values for the C1 and C2 coals overlap as in the case of methanol
sorption (Figure 6).

5. Conclusions

On the basis of the analysis of the literature on the subject and on the studies carried
out and the obtained results, it was concluded that the nature of the adsorbate determines
the course and magnitude of adsorption due to the kinetics of the process and in terms of
specific interaction with the sorbent surface.

• The shape of water sorption isotherms corresponds to type II according to the IUPAC
classification, while the shape of methanol sorption isotherms corresponds to type I
according to the IUPAC classification. The sorption in the coal-water system follows a
course characteristic for sorbents containing micro- and mesopores with the formation
of a monolayer and then a multilayer structure. Sorption in the coal-methanol system
follows a course characteristic for microporous adsorbents, including formation of the
monomolecular adsorbent layer.

• The difference in the maximum sorption value between low-rank coal C3 coal and
higher rank coals C2 and C1 is greater than between C2 coal and C1 coal. The
parameter that corresponds better to the sorption properties of coal toward water and
methanol is the content of element O in the coal.

• The sorption of methanol vapour is higher than that of water vapour in the initial part
of the relative pressure scale. This tendency remains longer for lower-rank coals. The
maximum sorption capacity is higher for coal-water systems than for coal-methanol
systems. The open-pore structure of coal is responsible for this diversity. It enables the
formation of association of water molecules with dipole-dipole and hydrogen bonding
interactions. In the case of methanol, these interactions are weaker.

• The factors that determine the sorption capacity of coal toward water are (1) the cap-
illary structure of the sorbent, in terms of diffusion in pores and conditions for the
occurrence of multilayer sorption and condensation of sorbate vapours, and (2) the
availability of polar adsorption sites, associated with oxygen functional groups. In the
case of methanol, the second aspect also includes the availability of an apolar coal sur-
face, since methanol molecules can bond to specific polar sites and nonspecific apolar
sites. In addition, one methanol molecule can screen for more than one sorption site.

• The shape of the sorption isotherms of unsaturated hydrocarbons is close to type
II according to the IUPAC classification. In the case of saturated hydrocarbons, the
shapes of the sorption isotherms change from type II to type I as the length of the
aliphatic chain in the molecule increases and the degree of coal coalification decreases.
The sorption of vapours of nonpolar substances on coal has a surface character. The
pores present in coal act as a molecular sieve in this system.

• The sorption capacity of the applied hydrocarbon sorbates depends on (1) the presence or
absence of a double bond and (2) the size of the molecule. The sorption capacity of these
sorbates increases in the order: n-octane < n-heptane/n-hexane < 1-heptene < 1-hexene.
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• The effect of differentiating the sorption amounts of the studied sorbates increases
with the degree of coal coalification. Coal with a higher degree of coalification shows
greater differentiation of the course of isotherms of alkane sorption, due to higher
microporosity, and greater sorption of alkane and their unsaturated counterparts, due
to the presence of π-electrons in aromatic structures of coal. It is significant that the
double bond effect is dominant over the influence of the length and shape of the
hydrocarbon molecule.

• Based on the analysis of the data description with the BET sorption isotherm equation,
it was found that the water monolayer capacity is higher than that of methanol in
low-rank C3 coal. The sorption of water and methanol takes place mainly at numerous
polar sorption sites. Smaller water molecules are more efficient at using the available
adsorption sites.

• Analysis of data using the BET sorption isotherm showed that the water monolayer
sorption capacity is lower than that of methanol on the higher-rank coals C1 and C2,
although the maximum sorption capacity of water is higher than that of methanol.
The affinity of methanol for both polar and nonpolar sorption sites results in a higher
monolayer capacity. Multilayer sorption based on strong dipole-dipole interactions
and hydrogen bonds between water molecules results in a higher sorption capacity.
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Abstract: Hydrogen adsorption measurements were taken by the weighting method using the
Sartorius low-pressure microbalance. Experiments were conducted at two temperatures: 77.5 and
300 K; the adsorbent used was active carbon obtained from wood and modified with potassium
hydroxide. The porous structure of the carbon prior to and after modification was evaluated based
on the nitrogen adsorption and desorption data. Thus, the densimetric characteristic of active carbon
was modified; porous structures were developed in the range of micro-, meso- and macropores and
the volume of hydrogen adsorbed at 77.5 K showed an almost four-fold increase. Modified active
carbons are found to be suitable for applications in hydrogen storage systems.

Keywords: hydrogen; adsorption; storage; active carbon

1. Introduction

Hydrogen has become one of the most important energy sources in the 21st century.
In a long term, it may actually replace oil and petroleum. It is an ideal fuel because of
its easy availability and for environmental reasons. The product of hydrogen burning is
water vapour, which does not add to air pollution. Currently, hydrogen is mainly used
in industrial applications, but it can also be used as a source of energy for the lighting
and heating of buildings, for electricity generation and as an engine fuel. Fuel cells that
utilise the reaction between hydrogen and oxygen are used to produce electricity; their first
application was aerospace technology [1,2].

No matter the actual application, of particular importance is the hydrogen storage
method. The simplest strategy involves the storage of compressed H2. The main drawback,
however, is the low density of H2 in this phase. Storage of liquid H2 does not have this
disadvantage, although the hydrogen tank temperature needs to be maintained below
the critical point for hydrogen (33.145 K). In the context of supplying power to the fuel
cells, a most interesting option involves metal hydride storage using the reversed sorption,
although a heavyweight hydrogen tank is required, and that still remains a major disad-
vantage. The density of stored hydrogen can be increased through the physical process
of gas adsorption in porous adsorbents. The method relying on the adsorption processes
seems promising, because hydrogen can be recovered from the adsorbent’s surface at
the room temperature without necessitating the use of the heating system to trigger gas
desorption. There are studies exploring potential applications of such adsorbents as carbon
nanotubes [3], graphene [4], carbon nanofibers [5], and active carbon [6–9]. Despite exten-
sive research efforts made so far to obtain high-porosity carbon adsorbents with enhanced
storage capacity, their practical applications for hydrogen storage are still limited.

In the gravimetric method the quantity of adsorbed gas is obtained directly from the
increase in the adsorbent’s weight, and measurements are taken using high-precision and
high-sensitivity microbalances [10,11]. Jagiełło et al. investigated [12] gas adsorption under
0–6 MPa and at 119–319 K using a weight-type apparatus in which measurable weight
was 4 μg. Cazorla-Amoros et al. [13] used the DMT Sartorius 4406 high-pressure sorption
microbalance to investigate carbon dioxide adsorption on active carbon and obtained
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adsorption isotherms at a pressure of up to 4 bars. The repeatability of measurement results
was reported to be 1%. The same type of weight apparatus [14] was used in studies on
adsorption of N2, Ar and CH4 with microporous adsorbents at a temperature of 258–418 K
and under pressure of 0.1–20 MPa. The article [15] summarises the contents of previous
research studies on hydrogen storage in porous materials, provides a thorough review of
current work of its authors and outlines the directions for further research efforts.

This paper summarises the results of research work aimed at developing the porous
structure of active carbons. With regards to storage projects, the adsorbent ought to contain
micropores in the size range of approximately 1 nm. For that reason carbon was activated
with KOH, which is a most effective method used to prompt the development of porous
structure in carbon sorbents [16,17].

2. Materials and Methods

Testing was done on active carbon made from pinewood (Picazine) modified with
potassium hydroxide (PicazineK) [18]. Picazine carbon was dried and then mixed with
ground KOH in the ratio 1:3 (m/m). The treatment was carried out in a muffle furnace at
a temperature of 1023 K in the atmosphere of neutral gas (N2). The mixture was rapidly
heated up to 973 K, and then the temperature was raised to 1023 K at a rate of 10 K/min.
Once this temperature was reached, the mixture was maintained at this temperature for
30 min and then cooled to ambient temperature. During the entire treatment process, the
neutral gas (N2) was flowing inside the furnace at a rate of 30 L/min. When the reaction
mixture reached the ambient temperature, the potassium hydroxide present in the mixture
was neutralized with 5% HCl solution. Thus, modified carbon produced a solution which
remained green-colored during the initial period of rinsing. After each subsequent rinsing
of the potassium base, the suspension was decanted and diluted with distilled water and its
pH value was measured. This treatment was repeated several times, until the pH readout
of the filtrate became 6.5. When the specified pH level was achieved, the active carbon
was separated from the solution by filtration under reduced pressure of 10–15 mmHg, and
the filter cake was rinsed with distilled water and dried at 393 K. The modified product
was obtained with a yield of 60.5% (m/m). The KOH modified active carbon sample was
denoted as Picazine K.

Active carbon is originally produced by chemical activation using orthophosphoric
acid by Societe PICA, France [19]. Adsorption tests were also performed on 5.0 pure
hydrogen supplied by Linde Gaz.

Bulk density of carbon was determined using the type PT-E Powder Characteristics
Tester apparatus, its apparent density measurements were taken with the EDA GeoPyc
1360 system, and real density (helium density) was obtained using the Accu-Pyc 1330 pyc-
nometer. Density measurement and calculation data are summarized in Table 1.

Table 1. Properties of the activated carbons used.

Properties Picazine Picazine K

Bulk density (n), g/cm3 0.204 0.120
Apparent density (p), g/cm3 0.450 0.325

Real density ((r), g/cm3 1.777 2.669
Total porosity (εc), cm3/cm3 0.885 0.631

Volume of pores (V), cm3/cm3 1.660 2.702

The characteristics of the porous structure were determined basing on the low-
temperature adsorption and desorption isotherms for nitrogen (77 K). High-precision
sorption measurements were taken with the ASAP 2020 apparatus over a wide range of
relative pressures, from approx. 10−7 down to 0.99. Prior to the measurements, carbon
samples were vacuum heated at 423 K for 16 h. The obtained measurement data were used
to determine key parameters of the porous structure of active carbon (Pic) and of carbon
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modified with potassium hydroxide (PicK). The following porous structure parameters
were calculated for the samples:

• Specific surface area according to Brunauer—Emmet—Teller (BET) methodology.
• Total pore volume for relative pressure p/p0 = 0.99;
• Microporous structure parameters (pores with diameter up to 2 nm) according to

Dubinin—Radushkevich, Dubinin—Astakhov and t-plot methods;
• Mesoporous structure parameters (pores with diameters of 2–50 nm)—volume and area

distributions of mesopores according to Barrett-Joyner-Halenda (BJH) methodology;

The analysis was performed according to the recommendations of standards:

• ISO 9277:2010(E), Determination of the specific surface area of solids by gas adsorption—
BET method;

• ISO 15901-2:2006(E), Pore size distribution and porosity of solid materials by mercury
porosimetry and gas adsorption—Part 2: Analysis of mesopores and macropores by
gas adsorption;

• ISO 15901-3:2007(E), Pore size distribution and porosity of solid materials by mercury
porosimetry and gas adsorption—Part 3: Analysis of micropores by gas adsorption;

• NIST 2006, Porosity and Specific Surface Area Measurements for Solid Materials.

Measurement and calculation data are summarized in Table 2.

Table 2. Structural parameters of active carbons.

Parameter Picazine Picazine K

Specific surface area calculated using the BET method, SBET , m2/g 1462 2939

Total volume of pores for p/p0 = 0.99, V0.99
total , cm3/g 1.024 1.488

Parameters of texture of micropores by Dubinin and Radushkevich (DR)

Surface of micropores, SDR
mikro, m2/g 1392 2817

Volume of micropores, VDR
mikro, cm3/g 0.494 1.001

Adsorption energy in micropores, EDR
mikro, kJ/mol 16.22 17.77

Parameters of texture of micropores by Dubinin and Astakhov (DA)

Surface of micropores, SDA
mikro, m2/g 1127 2229

Volume of micropores, VDA
mikro , cm3/g 0.500 0.938

Adsorption energy in micropores, EDA
mikro, kJ/mol 16.11 18.49

Mean diameter of pores, dr, nm 1.78 1.68

Dominant diameter of pores, dd, nm 1.60 1.54

Figures 1 and 2 presented the results of the DFT analysis.
A diagram of the apparatus used in hydrogen adsorption and desorption experiments

is shown in Figure 3.
Adsorption and desorption isotherms were obtained using the low-pressure microbal-

ance Sartorius [20,21]. A sample with a mass of approximately 0.1 g was used for the
tests. The accuracy of the microbalance in the tested measurement range was 10 μg. The
microbalance was placed in the air thermostat where the constant temperature of 300 K was
maintained. The sample to be tested was placed on one pan and the counterweight was
filled with a non-sorptive material. To remove adsorbed gases and vapors from the sample’s
surface, the system (with open valves V1 and V3) was degassed for 8 h using a vacuum
pump to reach the static vacuum of 10−2 Pa, and to maintain a constant weight. Afterwards,
the glass arms of the microbalance were immersed in vessels filled with liquid nitrogen.
Subsequent points of the isotherm were determined using the pressure progression method
by dosing gas to the system through valves V1 and V2. The adsorption equilibrium was
obtained after about 15 min. Pressure control in the system was effected using a pressure
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transducer P operating in the range of 0–1 bars. The desorption isotherm was obtained
by gradually reducing the pressure in the system using the vacuum pump, via valves V1
and V3. The waiting time to determine the desorption equilibrium was approx. 30 min.
Measurements of adsorption and desorption isotherms were carried out at 77.5 K and 300 K
for both carbon samples. The results are summarized in Figures 4–7.

  
(a) (b) 

Figure 1. The dependence of the pore surface on the pore diameter determined by the DFT method
for the (a) Picazine and (b) Picazine K samples.

  
(a) (b) 

Figure 2. The dependence of the pore volume on the pore diameter determined by the DFT method
for the (a) Picazine and (b) Picazine K samples.
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Figure 3. Apparatus used for measurements of hydrogen adsorption-desorption (V1-V4-valves,
P-pressure transducer).

 

Figure 4. Adsorption/desorption isotherms of hydrogen onto Picazine at 77 K.

Figure 5. Adsorption/desorption isotherms of hydrogen on Picazine K at 77 K.
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Figure 6. Adsorption/desorption isotherms of hydrogen on Picazine at 300 K.

 

Figure 7. Adsorption/desorption isotherms of hydrogen on Picazine K at 300 K.

3. Results and Discussion

Based on the DFT analysis (Figures 1 and 2), it can be seen that the Picazine sample
(before modification) was characterized by a dominant share of micropores, with a certain
range of mesopores. Chemical activation of KOH changes the pore structure in the adsor-
bent. The presence of pores in the meso range disappears, while the share of micropores
and submicropores increases significantly. This correlates with the pore volume values
shown in Tables 2 and 3. In Table 2, the given volume values were calculated based on real
and apparent densities. Table 3 shows the results of the analysis of adsorption isotherms
which were fitted by the DR and DA equations. Both equations are applicable to describe
adsorption isotherms on microporous materials. The calculated pore volume values pre-
sented in the manuscript are different, but this is due to the way they are calculated and
the limitations of the models. Analyzing the results of the DFT analysis, we see that the
range of pores includes both the range of micropores (in dominant quantity) and the range
of narrower mesopores. Therefore, the values of constants calculated from the DR and DA
equations may be subject to some uncertainty. Regardless, we see that there have been
changes in these values after activation of the carbon material. In all cases, an increase is
observed, a phenomenon which is also observed on hydrogen adsorption isotherms.
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The analysis of measured hydrogen adsorption/desorption isotherms obtained at
the temperature of liquid nitrogen reveals that the hydrogen adsorption capacity of the
PicazineK carbon was nearly three times higher than that of the unmodified sample.

In both cases a hysteresis loop was registered. The potential occurrence of the capil-
lary condensation phenomenon could be excluded due to the low critical temperature of
hydrogen. The reported loop can be attributable to certain kinetic restrictions during the
process of desorption.

The presence of a hysteresis loop has been previously registered in tests on other
adsorbents. In the case of zeolites [22,23], it is reasonable to assume the occurrence of sealed
micropores from which hydrogen cannot be removed. As regards nanotubes, the occurrence
of a well- pronounced hysteresis loop in the H2 adsorption/desorption isotherms measured
at 77.5 K is consistent with a high energy barrier for desorption of H2 molecules due to the
presence of nanotubes with submicroporous inside-tube characteristics [24]. In the case
of porous metal organic frameworks, it has been established that desorption restrictions
are stronger at lower temperatures [25], and that they are also a function of the micropore
radius [26]. Consequently, when pores are very narrow, they require higher temperature
for desorption.

In the case of the investigated active carbons, the registered effects were similar to
MOFs in relation to the nature of the microporous material. Calculations of the dominant
pore diameters revealed a significant proportion of sub-micropores (Table 2). Recalling
the McEnaney equation [27] for micropore size calculations, it was established that for the
adsorption energy E0 = 16.22, the micropore size becomes 0.40 nm, whilst for E0 = 17.77, the
size equals 0.36 nm in the slit pore model. An adsorbent having a high proportion of pores
in this size will be a most promising material to be used in hydrogen storage systems [28,29].
Accordingly, the presence of hydrogen in the carbon structure was found to be molecular
in nature. Similar values of sorption capacity at 77.5 K (excess hydrogen uptake) were
obtained by Geng et al. [30]. Adsorption/desorption isotherms obtained at the ambient
temperature are shown in Figures 6 and 7. In the case of the unmodified Picazine carbon,
the adsorption capacity was found to be low (comparable to the measurement error). The
modified PicazineK carbon had an adsorption capacity of 0.1 wt% (which corresponds to
12 cm3 STP/g) (Figure 7). At room temperature, low- pressure sorption and desorption
processes were found to be reversible, and in the context of practical applications this
adsorbent does not seem appropriate for hydrogen storage. However, when comparing
the results obtained for similar carbon adsorbents, including KOH activated ones, it is
reasonable to suppose that in the elevated pressure range the properties of investigated
samples might be more favorable in the context of potential applications. In their work,
Minoda et al. [31] studied hydrogen sorption on active carbons, with rice hulls or PAN
(Poly-acrylonitrile) as precursors. The specific surface and pore density of the samples
thus obtained were similar to those of the carbon samples investigated in this study. One
has to bear in mind, however, that experiments were conducted at elevated pressures. For
the sample having the surface area 1600 m2/g under the pressure 10 MPa the hydrogen
uptake was 0.5%. Similarly, the hydrogen storage capacity of the sample SBET 3000 m2/g
was found to be 0.7%.

According to the results of Panel et al. [32] and their literature analysis, the density
of the adsorption monolayer is less than that of liquid hydrogen. This is directly due
to the surface area of the hydrogen molecule that settles on the adsorbent, and it is also
closely related to the distances between hydrogen molecules in the adsorption layer. This
corresponds to Chahine’s Rule which states that, in general, for every 500 m2/g of surface
area there is 1 wt% of hydrogen adsorption. Note, however, that the rule indicates the
potential value of stored hydrogen relative to the specific surface area. The results obtained,
show that KOH activation allowed the storage of about 2.5% of H2 already at a pressure
of 1 bar. This already relatively high adsorption value is related to the high proportion of
micropores. Theoretical calculations [33,34] as well as experimental results [35] show that
significant adsorption occurs in pores below 1.3 nm. These reports confirm a significant
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increase in hydrogen adsorption on the PicazineK sample, resulting from an increase in the
division of micropores formed by activation with KOH (Figure 1b).

Table 3. Hydrogen storage in various conditions using activated carbons.

Type of Adsorbent SBET (m2/g) H2 Uptake (wt. %) Storage Conditions Additional Information Ref.

AC from coffee beans
2070 0.6 120 bar, 298 K

40 bar, 77 K KOH activated [36]2070 0.4

AC from anthracite

1149 3.2

40 bar, 77 K KOH/NaOH activated [37]

2029 4.9
2849 6.0
3220 5.7
1308 2.9
2451 5.8
3073 5.7

AC from pine 1055 1.61
1 bar, 77 K CO2 activated [38]1409 1.93

AC from low rank coal 640 0.29 40 bar, 77 K KOH activated [39]

AC from oil palm shell 3503 6.7
2.86

40 bar, 77 K
1 bar; 77 K KOH activated [40]

Carbon monolith from lignite 973 1.28 60 bar, 293 K CO2 activated [41]

AC from stone of cherry laurel 1624 2.9 1 bar, 77 K KOH activated [42]

Investigations carried out using active carbon (Table 3) have shown that adsorption in
activated carbon can be more efficient than compressed gas, but only at low temperatures.
Chemical modification of adsorbents using KOH is known, although its impact varies [43].
In work by Lendzion-Bieluń et al., [44] the influence of chemical activation on WG-12
activated carbon was analyzed. This AC is obtained as a result of steam activation of hard
coal with low ash content. As a result of the activation process with KOH, the surface area
has remained virtually unchanged. It was different in the case of activated carbon obtained
from the KOH activation of finger citron residue [45]. The use of KOH caused a very large
development of the surface to acquire an adsorbent value similar to that obtained in this
work (PicazineK). It seems, therefore, that a carbon precursor plays an important role in
the chemical activation process using KOH. In the case of a compact structure that occurs
in the case of low-ash hard coal, only the chemical surface area will change, and the nature
of the texture will remain unchanged.

4. Conclusions

Adsorption experiments have demonstrated a substantial increase in adsorptive capac-
ity of active carbon produced from pinewood on an industrial scale and then subjected to
chemical activation with potassium hydroxide. It appears that the hydrogen adsorption ca-
pacity of the thus obtained active carbon is significantly higher than that of the unmodified
sample at a temperature of 77.5 K. Key parameters of the porous structure of active carbon
measured before and after the modification correlate well with the hydrogen adsorption
rate determined by the gravimetric method.

In the context of those findings, the main consideration is whether the active carbon is a
suitable material for practical applications, such as storage of gaseous fuels and distribution
of gases which do not readily condense.
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Abstract: The date assumed as the beginning of the pandemic in Poland is 4 March 2020, the date of
the first confirmed case of the virus. This article presents the actions undertaken by the management
of underground hard coal mining plants concerning the risk of epidemic related to SARS-CoV-2.
This work shows a set of implemented recommendations, guidelines and decisions, which were
established after the appearance of the first wave of cases in Poland. What is more, it discusses
measures aiming at reducing the risk of spreading the coronavirus among the mineworkers. The
suggestions for different variants of the decision-making process concerning the pandemic and which
have an enormous impact on the operating expenses of the company are also made. The paper
presents the results of the study on actions taken in individual mining companies and good work
practices recommended to be applied.

Keywords: COVID-19; pandemic; mining company; epidemic emergency; prevention; good practices

1. Introduction

In March 2020, an epidemic emergency appeared in Poland due to the spread of the
coronavirus SARS-CoV-2, causing acute respiratory disease COVID-19, which in some
cases, may even lead to the death of the infected person. It was acknowledged that the
virus is very easily transmitted from one person to another. The virus is mainly transmitted
by the droplets created, when a person infected coughs, sneezes or speaks. These droplets
are too heavy to float in the air, so they fall quickly on surfaces. Then, a person may
become infected after touching the contaminated surface, followed by touching their eyes,
nose or mouth. The risk of a severe course of the coronavirus disease appeared to be
serious and led to making high-level decisions concerning the announcement of the state of
epidemic emergency in the Republic of Poland, commencing 14 March 2020, and the state
of epidemic commencing 20 March 2020 [1–3]. On that basis, a number of radical actions
were implemented in the field of isolation and distancing of people. The isolation involved
mainly the large scale, temporary suspension of their activities, especially closures of many
businesses, offices, schools and retail outlets. Whenever possible, the so-called remote
working system was implemented. This created a dilemma—what decisions should be
made and what will be the consequences for mines? These decisions were left to be made by
the mining companies and mine managements. These had to be made having insufficient
information concerning a threat of this kind, which actually “only just” emerged. Therefore,
what decisions need to be made (as soon as possible) with regard to the functioning of
mines, without having any reliable knowledge about the sources of the spread of the threat
itself and methods of preventing it? Further, knowledge of the risks involved is essential
at each mining company management level. Although it would be more favourable to
implement decisions that would involve “no risk”, the basis of the security concept involves
“acceptable risk”. If it is adopted in relation to a mining company, it is necessary to anticipate
and predict the possibility of occurrence for a risk. This term should be understood as a risk
included between the desired upper and lower levels of safety, taking into account a set of
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necessary criteria. In the analysed case, the criteria should concern epidemic emergency
in relation to the employees. It should be clearly emphasised that a lack of knowledge
on the virus concerns not only the mining industry. The COVID-19 pandemic spread
worldwide and has had economic, environmental and social impacts [4–8]. All countries
where the virus causing the previously unknown disease appeared have undertaken basic
actions, primarily aimed at limiting the possibility of its spread by forcing social distancing.
This has often involved the introduction of a lockdown of all social activities (“stay at
home”—closure of educational, commercial and cultural facilities) and economic activities
(forced production stops of many industrial plants). However, due to the specific nature
of mining production, such recommendations could not completely be implemented in
mining companies—neither the vast majority of mine workers can “stay at home”, nor, due
to the deformation of underground excavations, can the mine’s operation be stopped for
a long time. In such a situation, their managers had to make quick decisions concerning
both reducing the spread of infections and preventing adverse effects on the operation of
individual mines and plants. This study consists of an overview of the various solutions
used in various mining companies to counteract the emerging epidemic emergency.

2. Research Material

The SARS-CoV-2 virus (severe acute respiratory syndrome coronavirus 2) is a coron-
avirus of animal origin, causing acute respiratory infectious disease in humans that can
even lead to death, called COVID-19 (Coronavirus Disease 19) [9]. According to the World
Health Organization, SARS-CoV-2 is mainly spread via respiratory droplets [10]. Infection
can occur through direct or close contact with the virus carrier or indirectly through contact
with an object or surface contaminated with the pathogen. When speaking, coughing
or sneezing, the carrier of the virus (a person with COVID-19 disease or asymptomatic
infection) produces respiratory secretions or saliva that carry the pathogen. Such molecules
contain the virus and, through another person’s mouth, nose or eyes, leads to a viral
infection [11–13]. According to the literature, coronaviruses can survive from 2 h to 9 days
on the surfaces of various materials, such as plastic, metal or glass. A synthesis of the
results of the studies included in the papers [14,15], containing detailed data on the sur-
vival of different types of coronaviruses depending on the type of surface, in relation to
human coronaviruses being an equivalent to SARS-CoV-2 virus in the study, is presented
in the publication [16] (Table 1). Based, among other things, on the analyses carried out by
Carraturo and co-workers, the following coronavirus life span is assumed for each type of
surface: aluminum 2–8 h, metal 5 days, wood 4 days, paper and glass 5 days, and plastic
2–5 days. Another team of researchers assessed the amount of virus retaining its infectious
properties for different surface types. The experiment to determine the duration of virus
persistence in the air spray was carried out for three hours from the moment of spraying.
During the whole time it was conducted, the following environmental conditions were
maintained: temperature 21–23 ◦C and air humidity ≥ 40%.

Table 1. Survival of the two main SARS-CoV-2 virus surrogates (HCoV 229E and SARS-CoV) on
different types of inanimate surfaces.

Surface
Type

Strain Temperature Life Span

Aluminium hCoV 229E and OC43 21 ◦C 2–8 h

Metal SARS-CoV P9 room 5 d

Wood SARS-CoV P9 room 4 d
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Table 1. Cont.

Surface
Type

Strain Temperature Life Span

Paper SARS-CoV GVU6109 and P9 room 3 h–5 d

Glass SARS-CoV P9 room 2–5 d

Plastic SARS-CoV FFM1, HKU39849
and P9 20–25 ◦C 2–5 d

PVC hCoV 229E 21 ◦C 5 d

Silicone hCoV 229E 21 ◦C 5 d

Latex hCoV 229E and OC43 21 ◦C ≤8 h

Disposable apron SARS-CoV GVU6109 room 1 h–2 d

Ceramics hCoV 229E 21 ◦C 5 d

Teflon hCoV 229E 21 ◦C 5 d
Source: [16].

The amount of the virus in the sample was expressed as TCID50. On the basis of
the conducted tests, it was found that the SARS-CoV-2 coronavirus had the shortest life
span on the copper (4 h) and cardboard (24 h) surfaces, while the longest was on plastic
and stainless-steel surfaces (up to 72 h). As mentioned, the concentration of viruses in the
aerosol was measured within three hours. A decrease in the concentration of infectious
virus particles in the air was found—the virus half-life span of the analysed strains reached
a similar value and was approximately 1.1–1.2 h. It was noted, however, that at the end
of the experiment, the value of TCID50 remained above the set detection threshold. The
half-life span of SARS-CoV-2 on particular types of surfaces was: 6.8 h for plastic, 5.6 h for
stainless steel, 3.8 h for cardboard and about 1 h for copper [17]. The results of the study on
the influence of temperature on coronavirus activity were presented, among others, in the
paper [18]. Its authors evaluated, in laboratory tests, the stability of SARS-CoV-2 on steel
plates incubated at: room temperature and 4 ◦C and 30 ◦C, at constant ambient humidity
of 30–40%. The research proved that while there was a significant decrease in the viral
load within 1 h after spraying at room temperature, its value remained stable within the
next 4–8 h of incubation. A minimum decrease in values was recorded for 30 ◦C and for
samples incubated at 4 ◦C, a large discrepancy in results was observed in individual series
of measurements. After eight hours of incubation, a stable, slow decrease of the viral load
was observed in all analysed temperatures during the following days of the experiment.
However, the authors pointed out that it was possible to recover (reactivate) the amount
of infectious SARS-CoV-2 even after 180 h incubation on a metal surface. The humidity
of the environment in relation to coronavirus molecules was considered in the study in
two ways—in terms of the influence of environmental humidity on its life span and the
influence on the size of respiratory droplets being the direct carrier of the pathogen. The
paper [19,20] presents the results of the research, which show that:

• Very high humidity (99.5%) induces a hygroscopic increase in liquid droplets, while
humidity of 40% causes water to evaporate, reducing droplet size,

• Ambient humidity has a significant impact on the size of medium-sized respiratory
droplets (50–100 μm)—high humidity is conducive to slowing down the evaporation of
the droplets, so that the droplets will settle on the substrate more quickly and evaporate
more quickly in dry air, which will cause them to stay longer in the air spray.

The mining production process consists primarily of a selection of the applicable
technology for mining the deposit while maintaining occupational safety. Concerning the
management of a mining company and its individual mines, particularly vital are decisions
involving [21]:

� Ensuring high standards of occupational safety,
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� Implementation of modern technical and technological solutions for deposit mining,
� Ensuring the required quality of commercial coal produced,
� Protection of the mining area where the effects of the carried-out mining and the

natural environment may be visible.

Additionally, from an economic point of view, the mining production process should be
efficient, or at least not generate financial losses. Such requirements for mining production
are shown in Figure 1.

N E W 
T E C H N O L O G Y

 
Figure 1. Features of standard for carrying out mining production process. Source: own study based
on [21].

In underground mining, the basis for decisions, especially those related to industrial
safety and natural hazards, are the laws, regulations, guidelines and various rules and
procedures developed. In many cases, those are established based on past experience and
are often supported by scientific research. These regulations are, or at least should be, well
known to individual decision-makers. This allows for proper management of a mine and a
mining company—proper, i.e., in a way that ensures the highest possible level of safety
and avoids unjustified risks concerning mining production.

Hazards present in underground mining have been either technological or natural.
The method of conducting works in the conditions of their occurrence and the scope of
necessary anti-hazard measures have been developed over many years, based on opera-
tional experience and scientific research conducted on a large scale. On the other hand,
in the case of an epidemic emergency caused by the virus, we are dealing with a wide
range of ignorance concerning the decision-making process in relation to the operation of a
mining plant.

As opposed to other hazards, in the case of an epidemic emergency caused by the
SARS-CoV-2 virus, there are no specific procedures that could be strictly followed in the
operation of a mining company. For example, the Website of the Republic of Poland
provides only five general guidelines [22]:ł

1. Regularly wash your hands with soap and water.
2. Cover your mouth and nose with your bent elbow or tissue when you cough.
3. Avoid touching your eyes, nose and mouth.
4. Stay at least 2 m from other people.
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5. Stay home.

This means that the primary means of protection against becoming infected is to
keep a distance from other people or even to avoid any contact at all. Implementation of
such rules is absolutely not feasible in mines where the limited space of shaft hoist cages,
underground means of transport and excavations and where a large number of people
work, make it impossible to maintain two-meter space between people.

Various measures have been taken by various mining companies to counteract the
epidemic emergency related to SARS-CoV-2 coronavirus. Today we can say that they
brought good results—after the initial perturbations resulting from a large number of
infections among employees, the situation has been managed and stabilised. With the
continuous enforcement of the newly developed and implemented procedures, mining
companies now operate without the major turmoil that might have been brought by the
spreading pandemic. As they have fulfilled their role, they can be described as “good
practices used to counteract the epidemic emergency”. The research problem undertaken
is an attempt to develop a set of such practices, which could be recommended for use in
conditions of epidemic emergency.

3. Research Methodology

In order to conduct research on the activities undertaken in mining companies and
their effects, it was decided to use a qualitative research method, a case study. As the name
itself indicates, the primary purpose of this method is to illustrate and analyse the “selected
case” in detail. The reasons for its use are most often atypical character of the case and a
desire to learn about the analysed phenomenon in detail. As American scientist Wilbur
Schramm, the pioneer of social communication research, stated: “The essence of a case study
( . . . ) is to explain the decisions: why it was made, how it was made and what was the effect” [23].
It indicates that in the case study, the main focus is on the decisions made. This is the
preferred method in situations where [24]:

� The main questions are “how?” or “why?”,
� The researcher has little influence on behavioural factors,
� The study concerns a contemporary phenomenon.

With regard to the issues related to actions to combat the epidemic emergency caused
by the previously unknown coronavirus, all the above conditions are undoubtedly met.

In order to obtain information on how to counteract the epidemic emergency, nine
mining companies (seven from the hard coal mining industry and two from the metal ore
mining industry) were sent a question about all undertakings—organisational, operational,
informational—related to the preventive actions (ad. 1).

As mentioned, in mining companies, actions concerning combating the threats occur-
ring so far are undertaken based on the applicable legal regulations. On the other hand,
the study assumed (re. 2) that due to the lack of regulations imposing a specific course of
action, independent solutions were introduced in each company.

The assumed unit of enquiry (re. 3), i.e., a specific case, was each separate company
and solutions implemented in it.

Surveyed companies sent back various answers consisting of descriptions, drawings,
diagrams and tables concerning the scope of undertaken actions. Some solutions were used
in all of the companies, others in individual cases. For the sake of comparability, all of the
solutions were summed up together, regardless of frequency of their implementation. The
only condition for inclusion in the list was usefulness in combating the threat (re. 4).

The list of solutions used in various mining companies was analysed in terms of the
frequency of their implementation and the results (effects) obtained. Next, on this basis, a
set of so-called good practices, recommended to use in the area concerned, was developed
(re. 5).

At the first stage of the case study, an assumption (theory) was made, which should be
proved by the result of the study (a negative result was also considered). The assumption
was as follows:
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So far, no methods of combating the epidemic threat in underground mines caused by
an unknown virus have been formulated clearly. However, if various actions were taken in
different mining plans and were successful in all such plants, it is possible to prepare a list
of standardised recommendations to be used in practice in the future.

Figure 2 shows the procedure and assumptions adopted in the conducted study.

SET GOOD PRACTICES

986 754321

Figure 2. Object and expected result of the case study. Source: author’s own elaboration based on the
research carried out in mining companies.

4. Result

The first step consisted of asking managers of the nine mining companies to draw up a
brief description of all action taken to combat the epidemic threat that had been spreading
since March and to assess the effects of their implementation. From descriptions received,
33 various, specific projects were isolated and tabulated. Assuming that in some cases,
the descriptions focused only on the vital counteractions concerning a given company, the
compiled summary table was sent to all companies, asking them to analyse the list and
mark all the actions that were taken in individual companies. In addition, acknowledging
that some of them may not have been included in the submitted descriptions, companies
were asked to add others, not included in the table in order to include all the implemented
projects. As a result, the total number of actions amounted to 40; they are presented
in Table 2. Before analysing the list, one should note that the descriptions showed that
in all companies, the first actions were taken even before the official announcement of
epidemic threat (14 March). Most frequently, those actions included the obligation to
use any available protective masks, introducing an option to (or obligation to) measure
the temperature of all people entering the premises and making urgent purchases of
disinfectants and protective masks and gloves (in order to speed up their acquisition,
purchase procedures were significantly simplified in all companies). This clearly shows
that there is an awareness of the need to counteract a widespread and unknown threat as
soon as possible. Seventeen of all forty actions were introduced in all mining companies.
The majority of the actions concerned the possibility of maintaining social distance by:
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� Limiting all company-wide meetings to a minimum, including business-related meet-
ings with customers/applicants, while maintaining special care when dealing with
co-workers,

� Implementing changes to the schedule and working hours of underground workers
in order to divide them into smaller groups, which led to smaller concentrations of
people in places where they had gathered in larger groups, with such places being
mainly pitbottoms, pitheads, means of vertical and horizontal transport, baths,

� Introducing remote work for workstations that can be operated remotely.

Table 2. List of actions taken in mining companies to combat the epidemic threat.

No. Actions Taken
LW

Bogdanka
SA

PGG SA
Węglokoks

Kraj
Sp. z o.o.

TAURON
Wydobycie

SA

JSW
SA

SRK
SA

ZG
Bolesław

SA

KGHM
Polska

Miedź SA

PG
Silesia

1.
Before 14 March—making a decision
to wear dust masks available in the

mine obligatorily.
� � � � � � � � �

2.

Before 14 March—introducing the
possibility of measuring the body

temperature of people entering the
workplace.

� � � � � �

3.

Establishing a crisis management
team—ongoing monitoring of the
situation, developing appropriate

recommendations and guidelines if
necessary.

� � � � � � � � �

4.

Specifying the so-called critical areas
in which workers may contract the

virus the fastest due to large
concentrations of people.

� � � � � � � � �

5.
Introducing mandatory quarantine

for people who may have had
contact with the virus.

� � � � � � � � �

6.

Obliging workers to provide
information when they, their

household members, or people with
whom they have close contact return

from abroad where there were
COVID-19 cases.

� � � � � � � � �

7.
Suspending all business trips and

trips/events organised by the Social
Department.

� � � � � � � �

8.
Suspending the distribution of
tickets for sporting and cultural

events by the Social Department.
� � � � � � � �

9.

Limiting all company-wide meetings
to a minimum, including

business-related meetings with
customers/applicants.

� � � � � � � � �

10.

Recommending that special care
must be taken during contact with
colleagues, limiting direct contact

(e.g., handshakes), and paying
special attention to hand hygiene.

� � � � � � � � �

11.
Organising information and training
sessions with a representative of the
sanitary and epidemiological station.

� � � �

12.

Taking continuous actions related to
providing information about the

threat with the use of all available
means—OHS training boards, radio
system, the Internet, posters, leaflets.

� � � � � � � � �

13.
Providing workers with cotton

masks for compulsory use when
moving around passageways.

� � � � � � � � �
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Table 2. Cont.

No. Actions Taken
LW

Bogdanka
SA

PGG SA
Węglokoks

Kraj
Sp. z o.o.

TAURON
Wydobycie

SA

JSW
SA

SRK
SA

ZG
Bolesław

SA

KGHM
Polska

Miedź SA

PG
Silesia

14.
Modifying the terms and conditions

of cooperation with external
companies.

� � � � � � � � �

15.

Implementing simplified procedures
for purchasing dust masks, surgical

masks, protective gloves, and
disinfectants.

� � � � � � � � �

16.

Measuring the temperature of all
people entering the workplace and in

means of public transport for
workers with the use of remote

thermometers and thermal cameras.

� � � � � � � �

17.

Implementing changes to the
working hours of underground

workers in order to divide them into
smaller groups.

� � � � � � � � �

18.

Thinning groups of workers in lamp
rooms, pitbottoms, and pitheads, in

work division areas etc. by
implementing one-way traffic,

changing work schedules, specifying
areas to wait in queues—keeping a

safe distance.

� � � � � � � � �

19.
Thinning groups of workers in cages

of mining lifts by reducing the
number of transported workers.

� � � � � � � �

20.

Installing additional protections in
the form of a system of special

partitions and provisional tunnels as
well as making it mandatory to wear

a mask while being transported.

� � � � � �

21.

Making it mandatory to wear and
use (cotton, surgical, dust) masks in
the workplace and recommending

that they are worn when commuting
to and from the workplace as

specified in general regulations.

� � � � � � � � �

22.

Disinfecting equipment, devices, and
workstations on a regular
basis—unlimited access to

disinfectants for every worker;
disinfecting shaft cages and

underground cars after every use by
people; disinfecting handrails,
handles etc. on a regular basis.

� � � � � � � � �

23. Installing additional underground
hand washing stations. � �

24.

Implementing a ban on taking snuff,
eating seeds etc., which generate an

additional risk of spreading the virus
by droplet transmission.

� � � � � �

25.

Shutting down touch-controlled
equipment/devices if not necessary
for mine operation (kiosks, vending

machines).

� � � � �

26. Reorganising the canteen—only
takeaway meals. � — � � — �

27.
Introducing remote work for

workstations that can be operated
remotely.

� � � � � � � � �

28.

Providing special rooms for people
who have shown symptoms during
work and waiting for the decision of

the State Sanitary Inspection on a
further course of action.

� � � � � � � � �

29. Conducting screening tests among
workers. � � � � �

30. Launching a 24/7 psychological
support service for employees. � � � � �
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Table 2. Cont.

No. Actions Taken
LW

Bogdanka
SA

PGG SA
Węglokoks

Kraj
Sp. z o.o.

TAURON
Wydobycie

SA

JSW
SA

SRK
SA

ZG
Bolesław

SA

KGHM
Polska

Miedź SA

PG
Silesia

31. Suspending or limiting heading
works. � � � — �

32. Suspending or limiting excavation. � � � — �

33. Installing decontamination
chambers. � �

34. Revising the occupational hazard
evaluation at workstations � �

35. Suspending the bonus for no
absences due to sickness. � — — — — — — � —

36. Preparing and implementing
Business Continuity Plans (BCPs). �

37. Implementing periodic OHS training
in the form of e-learning. �

38.

Suspending the obligation to
conduct periodic check-ups of

workers as specified in Article 12a of
the Act of 31 March 2020.

�

39.

Introducing quarantine for incoming
mail. Reorganising its reception so
that direct contact between a mail

department employee and external
persons is limited.

�

40.

Implementing the possibility of
conducting fast tests (at the cost of

the company) for workers who may
have had contact with people who

contracted the virus.

�

Source: author’s own elaboration based on the research carried out in mining companies.

Other actions were related to:

� Taking continuous action related to providing information about the threat with the
use of all available means,

� Measuring the temperature of all people entering the workplace and in means of
public transport for workers,

� Making it mandatory to wear and use protective masks in the workplace,
� Disinfecting rooms, equipment, devices and workstations on a regular basis, including

the provision of wide access to disinfectants for workers.

In addition, special rooms for people suspected of contracting the virus and showing
symptoms at work were established in all mining companies. Another common action
was establishing crisis management teams (for the entire company and individual mines)
that coordinated the implementation of anti-threat procedures and monitored the effects
of their implementation. Other actions, listed in Table 2, were taken depending on the
epidemic situation in a company. This particularly concerns conducting screening tests
among workers and temporarily suspending or limiting work.

Figure 3 shows a diagram of classifying actions into groups concerning particular
action areas based on the research carried out in mining companies.

301



Energies 2022, 15, 5500

EPIDEMIC
EMERGENCY

 

Figure 3. Actions taken to combat the epidemic threat in mines. Source: author’s own elaboration
based on the research carried out in mining companies.

5. Discussion

In all descriptions of actions prepared before, it was emphasised that the implemented
anti-threat procedures had a positive effect and, despite initial considerable disruptions
in the operation of individual mines, they helped to control crisis situations. In many
cases, actions were taken “by intuition” in a manner that would, to the largest extent
possible, satisfy the recommendations of epidemiological services for the society as a
whole and manufacturing companies operating in sectors other than the mining industry.
Their effectiveness makes it possible to formulate a thesis that in the absence of means
that would combat the ongoing pandemic effectively, the six groups of various actions
shown in Figure 3 may be considered a list of good practices used to fight the epidemic
threat affecting the operation of companies. However, it is also important for the new
procedures to be reflected in documents prepared in mines and plants belonging to the
mining company. In particular, this applies to the “Safety Document” prepared according
to the template included in the appendix to the Regulation of the Minister of Energy of 23
November 2016 [25]. This document should mainly include descriptions of:

� Threats in a mining plant, how to identify and monitor them, and how to protect
against them,

� How to evaluate and document risks in workplaces and workstations,
� How to inform workers of risks and prevent threats,
� Provision of workplaces with collective protection measures and of employees with

personal protective equipment as well as safety signs in use.

All of these points should include appropriate provisions on the epidemic threat and
the established countermeasures. In addition, if the implemented procedures are in any
way related to the applicable regulations or workstation instructions, these documents
should also be modified accordingly.

There is one more observation based on the analysis of actions taken to combat the
threat. Compared to other companies, the situation at LW Bogdanka SA is particularly
interesting because it did not have a single case of COVID-19 for a long time. It seems that
this is due to two main reasons. The first reason is the location of the mine—the Lubelskie
Voivodeship—which has a considerably smaller population (approx. 2.1 million) compared
to the Śląskie Voivodeship (approx. 4.5 million). In addition, the number of infections
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in this voivodeship was considerably lower, less than 4200, while, at the end of the first
decade of October, this number was almost 25,200 in the Śląskie Voivodeship. This is an
advantage of some sort, fully utilised by the management of the mining company because
the other reason is that actions were taken the earliest in this mine, while their scope was
the most extensive and detailed.

6. Conclusions

According to numerous studies conducted all over the world on the fight against the
threats posed by SARS-CoV-2, there is no chance of its natural extinction. Until an effective
vaccine is developed, there will be no other way to slow down the spread of the pandemic
than to limit contact between individuals. Therefore, the management of mining companies
must adopt such an assumption when making decisions related to their operation.

First of all, it is necessary to take all measures to reduce the number of people in
underground excavations. One of them includes a change to the organisation of work,
which is commonly introduced and mainly involves an increase in the number of shifts
combined with varying work starting hours. Still, in-depth technical and economical
analyses may also be conducted in every mine concerning the possibility of:

1. Limiting the number of people working at the face of a mine,
2. Limiting the number of faces in terms of works related to driving both headings

and excavations,
3. Shutting down certain excavations and basic facilities (e.g., shafts and foreshafts).

The principles and technologies for carrying out certain works often, among others,
provide for employing the minimum number of people necessary for their safe operation.
Therefore, the procedure aiming at a reduction in the number of people working at faces of
a mine cannot involve reducing this number below the required minimum. However, in
many cases, it is possible to apply modern technical solutions that allow for the number of
workers to be reduced significantly. They include, for example:

� The use of electro-hydraulic controllers for sections of powered roof supports carried
out by only one operator located at the main gate,

� The use of full visualisation and automation for controlling conveyors that transport
the output,

� The use of a container system for transporting materials—containers loaded on the
surface can be transported directly to the face of a mine without the need of reloading
them on main transport roads.

It is also very important to wear personal protective equipment, such as gloves and
masks, and to disinfect rooms with such equipment, workstations and tools on a regular basis.

If there are other ways to prevent the epidemic threat in a given mining company
and/or its mines, it is, of course, always necessary to use them. However, it is important
for all activities to be taken in a coordinated manner, which should ensure their increased
effectiveness.
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21. Dubiński, J.; Turek, M.; Prusek, S. Key tasks of science in improving effectiveness of hard coal production in Poland. Arch. Min.

Sci. 2017, 62, 3. [CrossRef]
22. Available online: https://www.gov.pl/web/coronawirus (accessed on 20 January 2021).
23. Schramm, W. Notes on Case Studies of Instructional Media Projects; Working Paper for the Stanford University; Californian Institute

for Communication: Campbell, CA, USA, 1971.
24. Yin, R.K. A Case Study in Scientific Research. Design and Methods; Publishing House of the Jagiellonian University: Krakow,

Poland, 2015.
25. Regulation of the Minister of Energy of 23 November 2016 on Detailed Requirements for Operation of Underground Mining

Plants (Dz.U./Journal of Laws/, of 2017, Item 1118). Available online: https://gov.pl/web (accessed on 15 May 2020).

304



Citation: Kowalska, N.; Brodawka,
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Abstract: The transformation of the European energy sector is becoming a priority for the European
Union. This is indicated, for instance, in the European Union strategy known as the European Green
Deal. According to the Green Deal, the area of ‘research and innovation’ is one which can counteract
climate change. Universities can play a significant role in this by adopting a pedagogical approach
aimed at mobilizing the spirit of innovation and entrepreneurship in young professionals. In addition
to modifying curricula related to mining, energy, and environmental engineering, i.e., activities in
recognized, traditional schemes, one prospective tool may be the involvement of students and PhD
candidates in European initiatives such as the InnoEnergy PhD School (which is funded by the Euro-
pean Institute of Innovation and Technology). This paper aims to discuss the InnoEnergy PhD School
programme as a possible instrument for mitigating the negative effects of energy transformation. The
article analyzes the programme using a case study method, including surveys and open interviews.
The paper draws attention to and highlights the role of human resources in the field of education
and the stimulation of innovation, as well as the need to strengthen the business component in the
education of PhD candidates.

Keywords: energy transformation; Green Deal; InnoEnergy; innovative education initiatives; Euro-
pean Institute of Innovation and Technology (EIT)

1. Introduction

The coal sector operates in 12 EU countries and 41 European regions (as of 2021) [1].
The European Commission, United Nations, and Climate Alliance, as well as others, have
indicated the need to reorient carbon-intensive sociotechnical systems. In the 2030 Climate
Target Plan [2], the European Commission proposed intensification of activities aimed at
reducing greenhouse gases by at least 55% by 2030 compared to 1990 levels. This change
in goals significantly differs from the previously adopted target of at least 40%. The new
resolutions meet UN Sustainable Development Goal 13 and the European Green Deal
(including the Fit for 55 package), and are in line with the Paris Agreement of 2015. The
Paris Agreement emphasizes the need to limit global temperature increase to 1.5 ◦C [3].
Other EU legislation and strategies dealing with climate issues include:

• United Nations Framework Convention on Climate Change (UNFCCC) (2020) [1].
• EU Emissions Trading System (ETS) [4].
• Effort Sharing Regulation [5].
• European Climate Law [6].

EU member states are obliged to develop long-term national strategies aimed at
implementing EU objectives and the provisions of the Paris Agreement at the national
level. Strategies must be focused on the reduction of greenhouse gas emissions caused
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by natural systems (including forest fires) and anthropogenic activities (including energy
production) [7].

At the same time, attention must be paid to the COVID-19 crisis and the focus of
policymakers on protecting lives. The global pandemic, which began in March 2020,
is acting as a catalyst for long- and short-term changes and requires the empirical and
theoretical attention of researchers [8]. The literature articulates the difficulties that need to
be addressed. Post-pandemic challenges include job losses, declining revenues in certain
sectors, and economic recessions, as well as sharing economy (SE) activities and other
issues [9,10]. Financial losses associated with the COVID-19 crisis have been estimated
at approximately 2.96 trillion US dollars in lost economic output [11], and Europe is
experiencing a high level of inflation (6.2%, February 2022) [12]. Moreover, the crisis caused
by the pandemic has been compounded by the Russian invasion of Ukraine. It is not clear
what impact this geopolitical conflict will have on the pace of energy transition [13]. On
the one hand, this event may cause a change in the energy policies of many countries and
turn them more toward energy security than the goals of transitioning to green energy.
However, it may require European policymakers to decide to support green technologies
that will facilitate the decarbonization process and fit with the energy policy goals of
the European Union [14]. It might reasonably combine the two approaches; an example
is Germany, which in response to the current situation in the political arena has taken
measures to accelerate the deadline for achieving full renewable energy from 2050 to
2035 [15]. However, this has not prevented them from deciding to renew the start-up of
closed coal-fired power plants, which they explain by the need to secure gas reserves for
winter by switching off gas-fired power plants and switching on coal-fired ones [16].

In general, divergence has been observed among member states in dealing with climate
change [17]. Responses have included support schemes for renewable energies in addition
to a lack of public acceptance and a fossil fuel lock-in, as well as inadequate National Energy
and Climate Plans with collective targets in EU and UNFCCC policies [18]. The energy
transition in Europe’s mining regions poses many complications for the years between 2030
and 2050, and key among these is the reduction of greenhouse gas emissions [1]. In Europe,
Estonia, Latvia, Lithuania, Belgium, Malta, Luxembourg, and Cyprus are carbon-free [19].
The countries that will face the biggest problems related to energy transformation are
Poland, Bulgaria, the Czech Republic, and Romania [20,21]. Table 1 presents information
on the direction and problems of the green transformation of the energy sector in selected
countries. Decarbonizing national carbon-based economies is an ambitious and difficult
undertaking and requires attention to local issues in developing economies to ensure global
growth and common goals. The Joint Research Centre (JRC), in its study of opportunities
and challenges in EU coal regions [22], stated that about 238,000 jobs may be lost as a
result of the energy transition, and the operating horizons for coal-fired power plants in
the EU indicate that two thirds are expected to have shut down by 2030. Moreover, indirect
activities in the value chain of the coal industry, including power generation, equipment
supply, research and development services, and others, provide thousands of additional
jobs. The European Commission’s platform for the European coal regions outlines that coal-
fired power plants in the European Union and the United Kingdom account for 150 GW of
total capacity, including 207 power plants and 53,000 direct job positions. There are 150 coal
mines across 11 countries in Europe [20]. A particular difficulty is the so-called NUTS-2
region (one of the three levels according to the subdivisions of countries established by
Eurostat), where 85% of the jobs related to hard or brown coal are concentrated [23]. Poland
is in a unique situation; of the 53,000 jobs in the mining sector, as many as 13,000 of them
involve workers from Poland [1].
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Table 1. Selected information on the energy sector in different countries and the challenges involved
(source: own elaboration, based on [19,24–27]).

Country
Main Source

of Energy

Share of Coal in
Electricity

Generation
Share of RES

Declared Year
to Move Away

from Coal

Selected Problems of the
Energy Sector and Energy

Transformation

Czech Republic Coal/Atomic 40% 2038
Nuclear power plant

infrastructure to
replace coal.

Poland Hard coal 72% 17%

Pace of expansion and
modernization of generation

units is still insufficient;
organizational structure of

energy companies.

Romania Coal and gas 17% 24% 2032 Infrastructure for
RES sources.

Slovakia Atomic 7% 17.48% 2023 Infrastructure for
RES sources.

Spain Oil and gas 2% 38% 2030
Infrastructure for renewable

energy sources at 74% by
2030 and 100% in 2050;

Germany Wind 24% 46.4% 2038

Synchronization of
renewable sources with the
grid transmission capacity

power engineering;
energy storage.

A McKinsey company study emphasized that Poland must intensify its decarboniza-
tion processes fourfold compared to the pace of the previous 30 years in order to achieve the
goals of the EU and the Paris Agreement [28]. In 2021, a contract was signed to transform
the coal mining sector [29]. This document outlines systemic solutions aimed at protecting
the employees of mining plants while maintaining national energy security. The agreement
includes, among other things, provisions for financing mechanisms for the hard coal sector
and a guarantee of employment for workers and others. Moreover, the necessity is empha-
sized of additional investment outlay in the subsequent years projected at the level of EUR
10–13 billion per year, or alternatively 1–2% of GDP, for areas related to the decarbonization
of the Polish economy. The challenges of decarbonization cover all sectors of the economy.
This paper focuses on the mining industry, including the hard coal sector.

One of the ways to mitigate the forthcoming energy transition is to use a pedagog-
ical approach aimed at mobilizing the innovative and entrepreneurial spirit of students,
including PhD candidates. The literature emphasizes the rationale of directing young
professionals to build innovative solutions in the field of energy [30–32]. One resource
that will embody an assertive and equitable shift during the energy transformation may
be represented by educational programmes such as the InnoEnergy PhD School (which
has EIT funding) [33]. The InnoEnergy PhD School survey was completed in 2021 and
the results form the content of this paper. The purpose is to discuss the InnoEnergy PhD
School programme as a tool for mitigating the energy transition. The authors of this paper
hypothesize that an appropriate pedagogical approach and suitable human resource train-
ing outside the traditional model can contribute to tangible benefits in the context of the
economic transformations that European countries must face in the coming decades.

This article provides a basis for future analysis in the context of sustainable energy
transition at the educational level. At the same time, it should be emphasized that the
article also analyzes and considers the negative aspects of the energy transformation.
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2. Materials and Methods

Qualitative methods were used in the presented paper. The case study method was
adopted, incorporating surveys and open interviews (IDI—in-depth interview). These are
typically used in social and environmental research focused on practice, including, among
other sectors, education [34], health care, nursing, sociology, anthropology, psychology,
management, and information systems [35]. The scope of the investigation undertaken
in this study means that the use of this method allowed in-depth analysis of the selected
project, policy, and programme, including its application in a real-life system [36].

Reference was made to a case study of a retrospective nature. Ethnographic research
was carried out in the form of individual interviews. The challenges posed by the European
Union in the context of the transition were characterized. As part of the paper, the issues
of higher education in the coal mining industry in the context of transformation (the
desk study method) were analysed. The InnoEnergy PhD School educational programme
is discussed in terms of the results of the unit centred around the InnoEnergy Central
European Office. The effects of implementing new business ideas in the socio-economic
environment are presented. These are the results of the participation of young researchers
in the InnoEnergy PhD School process, and offer a potential future opportunity to mitigate
the energy transition to result in a transparent and fair transition. This paper’s structure
consists of several stages; the first identifies general challenges affecting the energy sector.
General problems and strategic challenges related to the European energy transition are
indicated. Furthermore, attention was paid to PhD students’ education programmes
oriented toward the energy sector. The research subject was defined as the EU InnoEnergy
PhD School programme. Research methods and research tools were defined, and are
described. Discussion addresses Poland’s challenges in the context of energy transformation
and the participation of Polish doctoral students in the InnoEnergy PhD School programme.
The results of the research are presented. The results are discussed and conclusions drawn.
Directions for further research are signposted. The stages of the research process are
presented in Figure 1.

Figure 1. Stages of the research process (source: own elaboration).
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3. The Role of Higher Education in the Energy Transition

Particularly important in this context is the aspect of innovation and commercialization
in the education of doctoral students. An interesting and valuable perspective is presented
in the research by Dooley et al. [37]. The results of the authors’ research indicated that
doctoral students wanted to increase their business and entrepreneurial skills and were
convinced that educational modules could benefit them. At the same time, it is worth
paying attention to studies by Pruett et al. [38] who put forward the thesis that the greatest
predictor of the will to develop entrepreneurship depends on personal preferences and the
subject’s own conviction about their entrepreneurial abilities. The European University
Association [39], in their paper on fostering creativity and innovation in doctoral education,
cites the position that the best mechanism is to bring together doctoral students from
various disciplines and encourage their dialogue. Examples of such platforms are summer
schools, and specialized institutional and inter-institutional centres [39]. Examples of such
centres include ESADE Business School, Grenoble Ecole de Management, etc.

The European Commission is placing increasing emphasis on addressing the topic of
developing innovative knowledge and skills in mining activity. New mining projects related
to critical raw materials are particularly important [40]. This is evidenced, for example,
through the themes of Future Trends Innovation and Skills for Raw Materials during
flagship industry events such as Raw Materials Week or the Raw Materials Summit. These
events gather a wide range of European stakeholders to discuss policies and initiatives in
the field of raw materials (EU Raw Materials Week 2021). Numerous educational projects
are oriented around the social licence to operate (SLO), which is one of the major challenges
facing the mining industry on the threshold of transition [41]. Examples of such projects
include RM@School [42], AMIC [43], BetterGeoEdu [44], RawDTrip [45], TrainESEE [46],
and others. In addition, the relevance of the creation of master projects in the context of the
implementation of the development strategies of the European Union, and its initiatives
related to the Green Deal and the energy transition, is emphasized by the RaVeN (Raw
Materials Value Chain) project team [47].

According to the goals of the National Development Strategy, the conditions for the
formation of attitudes through lifelong learning approaches will be improved over the
next decade [48]. The McKinsey company, in the study ‘Carbon-neutral Poland 2050’ [28],
point out that incentives are needed for universities to promote fields of education that are
critical for low-carbon industry. This action fits into the concept of carbon-neutral education
(CNE), in which a higher education institution (HEI) operates a dual strategy. First, the HEI
aims to implement low-carbon practices in its activities, and second, to orient curricula and
pedagogical approaches in order to teach students knowledge and skills relating to carbon-
neutral practices [49]. The determinant of successful decarbonization is the modelling of
change that results from the interaction of science with industry, government, and society.
This approach helps to develop strategies that transcend traditional disciplinary boundaries
to include political and social realities [50,51].

In addition to the dualistic CNE strategy outlined above, the concept of education
for sustainable development (ESD) has become very popular [52,53], as coordinated by
UNESCO [54]. Apart from promoting a more radical learning-centred social transformation
in relation to sustainability in the education system, involving changes in the underlying
epistemology of its culture, thinking, and practice, the need for discussion around areas
such as climate change in the teaching and learning process in higher education has also
been asserted [55]. Many studies have highlighted the importance of innovation in building
a sustainable future [56]. The JRC has contributed in this area by researching the impact of
the introduction and development of ICT (Information and Communications Technology)
as a catalyst for teaching and learning innovation [57]. Many projects such as OpenEdu [58],
DigCompEdu [59], and DigCompOrg [60] have shown advantages and disadvantages of
the innovative use of digital technologies in education, for all parties involved, with a focus
on higher education [61]. In addition, the JRC has helped to highlight the importance of
raising digital competence throughout teaching and learning processes [62]. A combination

309



Energies 2022, 15, 6633

of institutional support and technological self-efficacy ensures the development of good
educational practices. This approach translates into achieving a sustainable education
system by linking ESD to the innovation stream [63]. An example of an initiative that fits
into this concept is the Intercollegiate Climate Academy (MAK), which is implemented in
cooperation with the AGH University of Science and Technology (AGH UST) in Krakow,
the Warsaw School of Economics, and the University of Wroclaw (Poland). This is a
consortium of postgraduate programmes designed to impart interdisciplinary knowledge
in combination with the industry’s professionalism [64].

4. Poland’s Energy Challenge

Hard coal mining in Poland has been decreasing over the last 20 years [65]. In 2020,
hard coal extraction amounted to 54.4 million Mg (Mg = 1 tonne; 1000 kg), which was more
than 7 million Mg lower than in 2019. At the same time, it should be noted that Poland
remains the production leader in the EU. On the international global scale, it ranks in the
top 10 for global extraction, at 0.8%. Among Poland’s 21 operational coal mines, 20 are
located in the Upper Silesian Coal Basin. The other, Bogdanka S.A. Lubelski Wegiel, is
located in the Lublin Coal Basin (Figure 2) in the east of the country [66].

Figure 2. Coal regions in Poland (own elaboration, based on: https://euracoal.eu/, accessed on 2
September 2022).

A downward trend in output has also been observed for lignite. Until 2020, the raw
material was extracted in five mines: Bełchatow, Turow, Adamow, Konin, and Sieniawa.
The Adamow mine is currently being decommissioned. Poland, with a lignite output of
approximately 47.3 million tons (data from 2020 [67]), ranks second in Europe.

The transmission system operator in Poland—the Polish Power Grid (PSE)—indicates
that the structure of electricity generation (by power plant group according to fuel type)
did not change drastically in 2018–2020 [68]. In 2020, coal-fired power plants continued to
dominate generation (just over 70%), followed by renewable energy sources (RES), and an
increasing share of wind power plants. Natural gas recorded the next highest growth rate
over the three years in question (see Figure 3).
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Figure 3. Electricity generation by power plants in Poland according to fuel type, 2018–2020 (source:
own elaboration, based on: PSE data).

The origins of the changes in the structure of electricity production in Poland can
be traced in this example in line with the strategy presented in the ‘Energy Policy of
Poland until 2040’, which was adopted by the government in September 2020 (hereinafter
EPP2040) [69]. The EPP2040 implementation indicators include reducing the share of coal
used in electricity generation to 56% and increasing the share of RES to 23%. In addition
to the numerical direction of changes in the Polish energy sector, the document presents a
scenario framework for the future energy transition, based on three pillars:

1. Just transition. It establishes the ‘transition of coal regions, reducing energy poverty
and developing new branches of industry related to RES and nuclear power’.

2. Zero-emission energy system. This will be based on ‘offshore wind energy, nuclear
energy as well as local and civic power generation’.

3. Good air quality. This initiative by every citizen ‘is one of the most noticeable signs
of moving away from fossil fuels’. Clean air is guaranteed by ‘investing in the district
heating sector transition (system and individual), electrification of transport and promotion
of passive and zero-emission houses using local energy sources’.

In the era of climate change, all these activities are aimed at ensuring Poland’s energy
self-sufficiency by using, among other things, domestic economic and raw material po-
tential, as well as technological and personnel capacity [70]. Signposts for the direction of
changes taking place in Poland include, among others, European Union regulations, which
place great emphasis on sustainable economic development. According to the document
‘Europe 2020—A strategy for smart, sustainable and inclusive growth’, the priorities in
this area are ‘developing an economy based on knowledge and innovation’, as well as
‘promoting a more resource efficient, greener and more competitive economy’ and ‘fostering
a high-employment economy delivering social and territorial cohesion’ [71].

The education system, including technical and vocational schools as well as universi-
ties, is one of the elements of the Polish economy in which such shifts can be seen already
to have had and will continue to have a visible impact. Linking science with industry,
increasing the importance of innovation in the creation of new products and services, and
increasing the environmental self-awareness of young people are the main points of change
in higher education [72]. This article, in keeping with its premise, focuses on activities
undertaken by universities in these areas. Expanding the didactic offer by reorganizing
the old and creating new majors or specialties, such as ‘Renewable Energy and Energy
Management’ or ‘Revitalization of Degraded Areas’ [73], are changes that can be observed
at AGH UST, one of the three universities in Poland that provide education in mining [74].
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This approach can meet the future challenges of the Polish mining sector. The preparation
of doctoral dissertations may be carried out in different forms in Poland, e.g., as part of a
doctoral school, through doctoral studies, or as an employee of a particular organization
(the so-called ‘implementation doctorate’). Dissertations on topics closely related to coun-
teracting climate change may also be a part of the package of necessary, discussed changes.
According to the points made in the work ‘Research in EE and ESD in Portuguese Public
Universities’ [75], the production of doctoral theses is an important indicator of scientific
and academic development within a discipline. The initiatives mentioned above are not the
only ones being undertaken by Polish universities in order to meet the requirements posed
by energy transformation. In addition to research conducted within universities [76], col-
laboration between universities and research institutions is another example of initiatives
contributing to sustainable development goals, and adds value to society and the economy.

Several articles that are the results of cooperation between representatives of AGH UST
(scientific staff and students) and the Central Mining Institute (GIG) include work on mod-
ern mining or its alternatives [77–82]. Participation in those educational projects co-financed
by European institutions is an integral part of building a self-aware, innovation-oriented,
business-connected, multicultural scientific community. An example of an educational
initiative that addresses the challenges of energy transition and new business models in the
energy sector is the InnoEnergy PhD School programme.

5. EIT InnoEnergy—Brief

Being a leader in cleaner energy production in the European Union is inextricably
connected to the European Union’s innovation efforts. According to the European Green
Deal strategy, by 2050 Europe will become the first climate-neutral continent, largely due
to research and innovation. Though modernization of the economy as well as society, the
EU aims to help ‘accelerate and navigate necessary changes’, ‘implement, demonstrate
and remove risks’, and ‘engage citizens in social innovation’ [83]. The Active Innovation
paradigm [84] indicates that entrepreneurship and intrapreneurship, and thus use of the
values of all those authorized to take action in the innovation process, have become a
business imperative. The evolution of education—from traditional to environmentally
oriented, encompassing social inclusion—means that ‘future engineers’ should be equipped
with values and experiences that meet real societal challenges [85]. The European Institute
of Innovation and Technology (EIT) has stated that the EU is facing an ‘innovation crisis’.
This is evidenced by the fact that Europe’s share in global GDP decreased from 30% in 2006
to 22% in 2016 [86]. The response of the European Parliament and Council to global issues
ranging from climate change to sustainable food production, etc., included the establish-
ment of the EIT Innovation Community in 2008. It functions as an independent institute
and brings together Europe’s leading business, education, and research organizations.
Together, they aim towards innovation solutions for Europe. The EIT consists of eight
Innovation Communities (Table 2), including EIT InnoEnergy (marked in green).

Table 2. EIT Innovation Communities structure (source: own elaboration, based on: www.eit.europa.
eu, accessed on 2 September 2022).

EIT Innovation Communities

EIT Climate-KIC

EIT Digital

EIT Food

EIT Health

EIT InnoEnergy

EIT Manufacturing

EIT Raw Materials

EIT Urban Mobility
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InnoEnergy’s mission is: ‘Accelerating sustainable energy innovations’, connecting
all actors from the knowledge triangle: industry, research, and education [87]. InnoEnergy
invests in new technologies ranging from renewable energy sources to energy storage. The
results of InnoEnergy’s activities so far are presented in Table 3.

Table 3. EIT InnoEnergy results (source: own elaboration, based on: www.eit.europa.eu (accessed on
2 September 2022).

Investments 560 mln euro

Products 480

Sales amounting 5.3 mld euro

Alumni 1100

Community 500 key players 18 countries

EIT InnoEnergy strengthens the links between young researchers across Europe. One
tool is the InnoEnergy PhD School programme, which is dedicated to PhD candidates. The
main goal and motto of the InnoEnergy PhD School is to ‘enable doctoral candidates to
complement their research with essential entrepreneurial, innovation, business and per-
sonal skills’. The programme’s emphasis on soft skills education, including teamworking
and cross-cultural collaboration, should also be noted. The InnoEnergy PhD School is
estimated to have over 260 alumni who understand the energy industry and have the skills
and knowledge to deliver the industry’s needs [88].

Due to the specific nature of the research, the PhD candidates work in eight critical
thematic fields; clean coal and gas technologies, energy storage, energy efficiency, energy
from chemical fuels, renewable energies, smart and efficient buildings and cities, smart
electric grids, and nuclear instrumentation. The model of education consists of conducting
research in the parent institution, where a doctoral thesis is prepared. The InnoEnergy
PhD School provides complementary courses and training that should be carried out in
entities cooperating with InnoEnergy. These are the flagship European universities and
research centres.

The PhD candidates are required to participate in at least three courses from the group
of core courses, and at least one from the pool of elective courses. A supplement to the
education programme in addition to the courses is a fellowship in a foreign unit. Non-
academic locations are recommended. This approach offers the opportunity to expand the
student’s experience and to strengthen cooperation within the so-called knowledge triangle
(universities–business–research centres). The ‘Innovation Doctorate’ project proves the
value of tightening cooperation within the knowledge triangle. PhD candidates working
on innovative solutions as part of a doctoral dissertation, in cooperation with an industrial
partner, can apply for funding for further studies and substantive support from the EIT.
In addition, participants have the chance to transform their research into innovation by
preparing an Innovation Project proposal. This is a research and development project that
aims to develop a new technology or service that has the potential to become a commercial
product, thus contributing to the energy transition.

Finally, the InnoEnergy PhD School is complemented by tutoring, mentoring, and
coaching activities throughout the programme’s life cycle. Figure 4 presents the InnoEnergy
PhD School education model. This approach offers access to supplementation of basic
research with key skills, including in the fields of management and innovation. Finally,
networking is also an important topic. A three-day conference is organized annually in
which all PhD candidates from the InnoEnergy PhD School participate. This provides
opportunities to build potential cooperation, establish contacts (including within the busi-
ness environment), and draw inspiration from each other [89]. Cooperation between PhD
candidates and the mobility host is significant (AGH UST-SGPR.tech; AGH UST-Cepsis).
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Figure 4. EIT InnoEnergy PhD education structure (source: own elaboration).

6. Results and Discussion

6.1. Polish Participants of the Programme

In 2018, 24 Polish PhD candidates participated in the InnoEnergy PhD School pro-
gramme, 66.7% of whom were men. Throughout the life cycle of the programme, men
dominated among the participants (see Figure 5). In 2018, eight doctoral students applied to
the programme, of whom five were qualified. They were the last recruited PhD candidates
to the programme from Poland. That year, one of the participants defended his PhD thesis
and received an EIT certificate. An analogous interpretation of the data presented can be
undertaken for future years based on Figure 6, which details the number of participants
from 2018–2021.
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Figure 5. Gender of the participants.

In terms of research areas, the participants developed their scientific interests in the
following topics:

• Clean coalfields (seven PhD candidates).
• Renewables (four PhD candidates).
• Smart grids (two PhD candidates).
• Energy efficiency (eight PhD candidates).
• Energy storage (two PhD candidates).
• Chemical fuels (one PhD candidate).
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Figure 6. Programme participants from 2018–2021.

6.2. The Results of the Research Analysis

The benefits and results to be gained from participation in the InnoEnergy PhD School
programme include the acquisition of skills as well as business and decision-making
competences enabling the transformation of basic research into projects applicable to the
energy sector. One of the tools for verifying the progress of PhD candidates in these areas
was a qualitative study conducted using a survey and an open-ended interview (IDI)
technique. The survey was conducted annually by the PhD InnoEnergy Officers.

The study was divided into five areas: Section I: Scientific progress; section II: Capacity
for innovation; section III: Personal professional plan; section IV: InnoEnergy PhD School
activities; section V: General feedback and suggestions for the programme. The responses
were varied in nature. The interviews were semi-structured and included the following:

- Beforehand preparation
- Opportunity to collect more in-depth information
- Allowing respondents time to open up about sensitive issues
- Providing qualitative data for joint models.

The following is a summary of the interviews conducted at the end of 2021. Nine
active PhD candidates (two women and seven men, ranging in age from 29–38) participated
in the interviews.

Section I: Scientific Progress
This section was the broadest section, consisting of four questions.
The first question was about the progress made in 2021. In general, for most students,

the main progress in 2021 focused on finalizing their work, i.e., summarizing past studies
(such as experimental and computational research) and developing scientific conclusions.
Some candidates pointed out that the tremendous support from Knowledge Innovation
Community InnoEnergy during those years had simplified the development of their PhDs,
including the incorporation of a business approach into an extremely technical thesis.

The second question was ‘Which academic competences have been reinforced for your
research progress while undertaking InnoEnergy PhD School programme participation?’
Among the academic competencies that were reinforced, the PhD candidates listed seeking
funds and applying for grants, writing papers and reports, and making research logs and
notes, as well as public speaking, teamwork, and networking. Most of them emphasized
their improved English. A good example was one of the participants who conducts classes
with ERASMUS+ students, who, due to InnoEnergy, feels confident teaching foreigners
in English. Some candidates became oriented towards business and opportunities, and
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opened up to others. Participants also become project managers or task managers by
participating in projects, including European schemes (Horizon Europe, Cost, EIT).

The answers to the third question ‘Could you give a highlight from the last year, that
you are proud of?’ were varied, among which may be distinguished those relating to the
PhD itself. The PhD candidates were happy and proud that they were finishing their theses
and of having completed the courses provided in the EIT InnoEnergy Programme. One
mentioned that he participated in the Battle of Green Talent organized by EIT InnoEnergy
and his start-up sent the first samples of its product to China, Switzerland, Germany,
Poland, Australia, and Argentina. Another was proud of beginning to cooperate with
a start-up from Poland. Some of them specified that they applied for financial support
for projects. It is worth mentioning that one of the students received financial support
of 1.3 million euro for a project of which she is the manager. Finally, one of the PhD
candidates also emphasized that participation in InnoEnergy may not have resulted in the
commercialization of research, but it certainly expanded their horizons and understanding
of the need for a business approach in such work.

To the fourth question ‘What was the main difficulty you met, whatever the nature of
it?’, there were also many answers on different levels, such as, for example, time manage-
ment, overtasking, and personal challenges. Among those connected with undertaking a
PhD, the candidates listed securing financial support (i.e., for new equipment and appli-
ances) and accurately locating the findings of their PhD theses within the realities of the
market at its current state. Only one person mentioned the COVID-19 restrictions and their
impact on daily life.

Section II: Capacity for Innovation
In this section, PhD candidates sought to answer whether their work has a capacity

for innovation, and what kind. All PhD candidates saw potential for innovation in their
research or knowledge. Some of them have elaborated prototypes of their devices. Among
them are a number who have already launched their start-up, and some who have devel-
oped a supply chain for individual components for prototypes but need to raise necessary
funds. Others are performing research into increasing levels of technological readiness. The
latter group identified areas in which their studies have innovative and business potential.

Section III: Personal Professional Plan
Most PhD candidates have specific goals for their future careers. This is related to

the fact that some have jobs, and others want to continue their careers in academic and
commercial industries connected to their PhD topics, and thus will be able to further their
PhD research after their defence. Among those who have jobs, a number want to climb the
career ladder, and others are thinking of opening their own businesses.

Section IV: InnoEnergy PhD School Activities
This section gathered information about the activities in which the PhD candidates

participated in 2021, as well as their assessment of those activities. All PhD candidates
completed all the provided courses in the EIT InnoEnergy Programme in 2020. In 2021,
three of them participated in placements. For these PhD candidates, these were very fruitful.
For one of them, the key aspect of this practice was to gain knowledge about running a
business, which he succeeded in doing. For the second, the main goals were to verify the
ideas of his thesis and to test his simulations in real-life industrial applications, and he
also achieved them all. For the third, the experience provided him with the opportunity
to build new relationships and increased his self-management skills (prioritization, time
management, and focus).

Section V: General Feedback and Suggestions for the Programme
In general, all the feedback was positive. Some of the PhD candidates mentioned that

InnoEnergy provided them with possibilities that they would not have access to in any other
way, for example, interesting courses relevant to their topic and held professionally even in
difficult pandemic circumstances. These activities taught them the business approach to
research, which was very helpful when applying for financial support and has had a positive
impact on their current as well as undoubtedly their future professional careers. Most of
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them mentioned the placement as a unique experience which increased their competences
significantly, and demonstrated that individuals can make a change if surrounded by
passionate people and given the right tools. Many participants pointed out that their soft
skills increased, and they developed interpersonally because this programme offered a
great opportunity to network with industry leaders, scientific specialists, and other PhD
candidates around the world. With a clear conscience, all the candidates recommended
the InnoEnergy PhD School programme to anyone interested in studying at the border
between science and business, as well as for those who are not afraid of challenges.

The survey presented shows that PhD candidates participating in the InnoEnergy
PhD School programme recognize the key value of gaining expertise in conjunction with
business education. Their understanding of the entrepreneurial spirit, and thus the need
to commercialize their work, enables them as young innovators to advance their careers
in ways that they did not foresee before joining the programme. They also appreciate
the opportunities they have received through participation. These have included testing
their solutions in real-world conditions and presenting their ideas to experienced business
players. With the knowledge of how to turn research activities into concrete innovation,
some have found their place in the business world. One PhD candidate founded his
own start-up. Others, even if they have not created their own start-ups, are involved
in commercial activities and continue their research work. At the same time, they have
achieved an understanding of the importance of creating disruptive innovation in the
age of energy transition. The soft skills noted by the PhD candidates, their development
emphasized by the EIT throughout the programme, have been helpful in realizing the
chosen directions of development. Collaboration between research and private companies
has offered great opportunity in terms of knowledge transfer and development of cross-
sector skills and competence. In many cases, after international experiences by PhD
candidates, collaboration continues. This is also a great return for the network, as PhD
candidates exchanging knowledge and experience have a significant impact on the financial
stability of the European community [90].

Attention should also be given to PhD candidates who have remained at the university.
Several of these have become project managers or task managers through participating
in projects, or are passing on to students the knowledge they themselves have gained. In
addition, all continue to develop the research they began during their PhD studies. It is also
worth noting that the PhD candidates who are employed at the universities continue the
mission of InnoEnergy. This means that they do not simply focus on teaching or traditional
research work, but continue to seek opportunities and pathways for growth through partic-
ipation in training, including soft skills. They participate in tutoring and mentor training
and become leaders of small teams themselves. Participation in the programme has sparked
PhD candidates’ interest in the possibility of European scholarships, which they apply for
with greater confidence that they will succeed on the international stage. They also seek
national funds to conduct international staff exchanges and gain new experience, which
results in joint research. The PhD InnoEnergy School has also strengthened cooperation
between AGH University of Science and Technology faculties in Krakow. The result has
been the formation of new working groups and the preparation of joint papers, and in the
future perhaps also projects. This makes the approach to science more interdisciplinary
and broadens horizons [90].

Finally, taking into account the challenges faced by Poland in the fields of mining and
energy, the project also implements the strategic goals of other EIT networks, including
Raw Materials, extending the reach of its impact. This primarily relates to two strategic
goals of EIT Raw Materials, i.e., the designing of solutions and the closing of material loops.
This means the project implements the agenda of building the diversity and strength of
the InnoEnergy network across the value chain. Once a partnership has been established,
incorporating a wide range of stakeholders, it integrates all the actors who rely on natural
resources, including start-ups and local communities. The Consortium, representing ESEE
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(east and southeast Europe) and RIS (Regional Innovation Scheme) countries, fills a gap
related to the KTI (knowledge triangle integration) goals [90].

7. Conclusions

The European initiative presented in this article, implemented in cooperation with
AGH University of Science and Technology in Krakow, among other institutions, is a
practical example of a tool that supports education by enriching it with entrepreneurship,
innovation, and business education (EIB) and that can help the future generation mitigate
the effects of the energy transition. Through the implementation of courses, workshops and
international mobilities, PhD candidates have been equipped with the right competencies
to become experts and entrepreneurs. Programme participants find it easier to imple-
ment innovative solutions in their workplaces, start their own businesses, and transfer
knowledge. This confirms the hypothesis that an appropriate pedagogical approach and
personnel training outside the traditional model can contribute to tangible benefits in the
context of the economic transformations that European countries will face in the coming
decades. Universities are likely to play a key role in tackling climate change and will
influence the attitudes of young people as they embark on their careers, so their role should
not be limited to imparting knowledge, but should also equip them with the tools to tackle
the problems on an immediate basis. Key to the future will be shaping the mindset of an
innovator who is able to offer a powerful range of products and services that can be tailored
to meet the most complex business needs.

It should be emphasized the research group was relatively small (see the Section 6.1),
which may raise doubts as to the representativeness of the study. However, considering the
total number of all survey participants and the participation of Polish PhD candidates, the
results are satisfactory and may allow certain conclusions to be drawn and some analysis
to be conducted.

This article is the first in a series on educational programs responding to the challenges
related to the energy sector and its transformation. Further research will be aimed at
verifying the legitimacy of investing in educational programs. The criteria of research
interest will be business ideas that respond to real socio-economic problems in the energy
sector and are of interest to key market players. In addition, it is planned to conduct
a comparative analysis of the results of the InnoEnergy programme in other countries,
including Portugal. Portugal is an example of a country that has stopped using coal to
generate electricity, so it can be a model for countries like Poland, which is still determined
by high-carbon economy.

The study does not in any way pretend to present a theoretical model of how higher
education should face the climate crisis. Its task is to recognize the possibilities of using
European initiatives in the field of education, and the benefits they bring; e.g., stimulat-
ing innovation through an appropriate pedagogical approach, or pointing to the need to
strengthen the business imperative in doctoral education. The authors believe that support-
ing such educational initiatives in the future will provide a basis for changing curricula
in higher education, and thus contribute to mitigating the effects of the energy transition.
Furthermore, in the context of reinforcing the need for a transition to a green economy
(i.e., a fundamental transformation towards more sustainable modes of production and
consumption), this kind of initiative should be helpful, because it (i) promotes the devel-
opment and adoption of innovative and sustainable technologies, (ii) offers information
on the growing importance of global environmental challenges, and (iii) provides future
decision-makers (in this case, PhD candidates) with knowledge about the business sector
and so-called sustainability entrepreneurs who can play a part in bringing about the shift
to a green economy.
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1. Cała, M.; Szewczyk-Świątek, A.; Ostręga, A. Challenges of Coal Mining Regions and Municipalities in the Face of Energy
Transition. Energies 2021, 14, 6674. [CrossRef]

2. Climate Target Plan. Available online: https://ec.europa.eu/clima/eu-action/european-green-deal/2030-climate-target-plan_en
(accessed on 2 September 2022).

3. Paris Agreement. Available online: https://ec.europa.eu/clima/eu-action/international-action-climate-change/climate-
negotiations/paris-agreement_en (accessed on 2 September 2022).

4. EU Emissions Trading System (EU ETS). Available online: https://ec.europa.eu/clima/eu-action/eu-emissions-trading-system-
eu-ets_en (accessed on 2 September 2022).

5. The European Parliament and the Council of the European Union. Regulation (EU) 2018/842 of the European Parliament and
of the Council of 30 May 2018 on Binding Annual Greenhouse Gas Emission Reductions by Member States from 2021 to 2030
Contributing to Climate Action to Meet Commitments Under the Paris Agreement and Official Journal of the European Union
L156. 2018, Volume 61, pp. 26–42. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:
32018R0842&from=EN (accessed on 2 September 2022).

6. The European Parliament and the Council of the European Union. Regulation (EU) 2021/1119 of the European Parliament and of
the Council of 30 June 2021 Establishing the Framework for Achieving Climate Neutrality and Amending Regulations (EC) No
401/2009 and (EU) 2018/1999 (‘European Climate Law’),” Official Journal of the European Union L243. 2021, Volume 64, pp. 1–19.
Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021R1119&from=EN (accessed on 2
September 2022).

7. Fawzy, S.; Osman, A.I.; Doran, W.J.; Rooney, D.W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020,
18, 2069–2094. [CrossRef]

8. Verma, S.; Gustafsson, A. Investigating the emerging COVID-19 research trends in the field of business and management: A
bibliometric analysis approach. J. Bus. Res. 2020, 118, 253–261. [CrossRef] [PubMed]

9. Jackson, J.K.; Weiss, M.A.; Schwarzenberg, A.B.; Nelson, R.M.; Sutter, K.M.; Sutherland, M.D. Global Economic Effects of Covid-19;
Congressional Research Service. 2020. Available online: https://sgp.fas.org/crs/row/R46270.pdf (accessed on 2 September 2022).

10. Roy, S. Economic Impact of Covid-19 Pandemic. 2020. Available online: https://www.researchgate.net/publication/343222400_
ECONOMIC_IMPACT_OF_COVID-19_PANDEMIC (accessed on 2 September 2022).

11. Szmigiera. Impact of the Coronavirus Pandemic on the Global Economy—Statistics & Facts. 2022. Available online: https:
//www.statista.com/topics/6139/covid-19-impact-on-the-global-economy/#topicHeader__wrapper (accessed on 2 September
2022).

12. Eurostat. PRC_HICP_MANR. 2022. Available online: https://ec.europa.eu/eurostat/databrowser/view/PRC_HICP_MANR_
_custom_79197/bookmark/table?lang=en&bookmarkId=c8a8c259-ee51-444c-9c4b-9e1d41397f63 (accessed on 2 September 2022).

13. Agaton, C.B. Will a Geopolitical Conflict Accelerate Energy Transition in Oil-Importing Countries? A Case Study of the Philippines
from a Real Options Perspective. Resources 2022, 11, 59. [CrossRef]

14. Gatto, A. The energy futures we want: A research and policy agenda for energy transitions. Energy Res. Soc. Sci. 2022, 89, 102639.
[CrossRef]
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74. Adach-Pawelus, K.; Gogolewska, A.; Górniak-Zimroz, J.; Herbert, J.H.; Hidalgo, A.; Kiełczawa, B.; Krupa-Kurzynowska, J.;
Lampinen, M.; Mamelkina, M.; Paszkowska, G.; et al. Towards Sustainable Mining in the Didactic Process—MEITIM Project as an
Opportunity to Increase the Attractiveness of Mining Courses (A Case Study of Poland). Sustainability 2020, 12, 10138. [CrossRef]

75. Borges, F.; Benayas, J. Research in EE and ESD in Portuguese public universities. Int. J. Sustain. High. Educ. 2019, 20, 57–74.
[CrossRef]
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