1,990 research outputs found

    Water Pipeline Leakage Detection Based on Machine Learning and Wireless Sensor Networks

    Get PDF
    The detection of water pipeline leakage is important to ensure that water supply networks can operate safely and conserve water resources. To address the lack of intelligent and the low efficiency of conventional leakage detection methods, this paper designs a leakage detection method based on machine learning and wireless sensor networks (WSNs). The system employs wireless sensors installed on pipelines to collect data and utilizes the 4G network to perform remote data transmission. A leakage triggered networking method is proposed to reduce the wireless sensor network’s energy consumption and prolong the system life cycle effectively. To enhance the precision and intelligence of leakage detection, we propose a leakage identification method that employs the intrinsic mode function, approximate entropy, and principal component analysis to construct a signal feature set and that uses a support vector machine (SVM) as a classifier to perform leakage detection. Simulation analysis and experimental results indicate that the proposed leakage identification method can effectively identify the water pipeline leakage and has lower energy consumption than the networking methods used in conventional wireless sensor networks

    Water Pipeline Leakage Detection Based on Machine Learning and Wireless Sensor Networks

    Get PDF
    The detection of water pipeline leakage is important to ensure that water supply networks can operate safely and conserve water resources. To address the lack of intelligent and the low efficiency of conventional leakage detection methods, this paper designs a leakage detection method based on machine learning and wireless sensor networks (WSNs). The system employs wireless sensors installed on pipelines to collect data and utilizes the 4G network to perform remote data transmission. A leakage triggered networking method is proposed to reduce the wireless sensor network’s energy consumption and prolong the system life cycle effectively. To enhance the precision and intelligence of leakage detection, we propose a leakage identification method that employs the intrinsic mode function, approximate entropy, and principal component analysis to construct a signal feature set and that uses a support vector machine (SVM) as a classifier to perform leakage detection. Simulation analysis and experimental results indicate that the proposed leakage identification method can effectively identify the water pipeline leakage and has lower energy consumption than the networking methods used in conventional wireless sensor networks

    Localization Techniques for Water Pipeline Leakages: A Review

    Get PDF
    Pipeline leakages in water distribution network (WDN) is one of the prominent issues that has gain an interest among researchers in the past few years. Time and accuracy play an important role in leak localization as it has huge impact to the human population and economic point of view. The complexity of WDN has prompt numerous techniques and methods been introduced focusing on the accuracy and efficacy. In general, localization techniques can be divided into two broad categories; external and internal systems. This paper reviews some of the techniques that has been explored and proposed including the limitations of each techniques. Â

    Precise water leak detection using machine learning and real-time sensor data

    Get PDF
    Water is a crucial natural resource, and it is widely mishandled, with an estimated one third of world water utilities having loss of water of around 40% due to leakage. This paper presents a proposal for a system based on a wireless sensor network designed to monitor water distribution systems, such as irrigation systems, which, with the help of an autonomous learning algorithm, allows for precise location of water leaks. The complete system architecture is detailed, including hardware, communication, and data analysis. A study to discover the best machine learning algorithm between random forest, decision trees, neural networks, and Support Vector Machine (SVM) to fit leak detection is presented, including the methodology, training, and validation as well as the obtained results. Finally, the developed system is validated in a real-case implementation that shows that it is able to detect leaks with a 75% accuracy.info:eu-repo/semantics/publishedVersio

    Framework for integrated oil pipeline monitoring and incident mitigation systems

    Get PDF
    Wireless Sensor Nodes (motes) have witnessed rapid development in the last two decades. Though the design considerations for Wireless Sensor Networks (WSNs) have been widely discussed in the literature, limited investigation has been done for their application in pipeline surveillance. Given the increasing number of pipeline incidents across the globe, there is an urgent need for innovative and effective solutions for deterring the incessant pipeline incidents and attacks. WSN pose as a suitable candidate for such solutions, since they can be used to measure, detect and provide actionable information on pipeline physical characteristics such as temperature, pressure, video, oil and gas motion and environmental parameters. This paper presents specifications of motes for pipeline surveillance based on integrated systems architecture. The proposed architecture utilizes a Multi-Agent System (MAS) for the realization of an Integrated Oil Pipeline Monitoring and Incident Mitigation System (IOPMIMS) that can effectively monitor and provide actionable information for pipelines. The requirements and components of motes, different threats to pipelines and ways of detecting such threats presented in this paper will enable better deployment of pipeline surveillance systems for incident mitigation. It was identified that the shortcomings of the existing wireless sensor nodes as regards their application to pipeline surveillance are not effective for surveillance systems. The resulting specifications provide a framework for designing a cost-effective system, cognizant of the design considerations for wireless sensor motes used in pipeline surveillance

    Hierarchical Leak Detection and Localization Method in Natural Gas Pipeline Monitoring Sensor Networks

    Get PDF
    In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point’s position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate
    corecore