18 research outputs found

    Ultra Low Power FPGA-Based Architecture for Wake-up Radio in Wireless Sensor Networks

    Get PDF
    In this paper the capabilities of ultra low power FPGAs to implement Wake-up Radios (WuR) for ultra low energy Wireless Sensor Networks (WSNs) are analyzed. The main goal is to evaluate the utilization of very low power configurable devices to take advantage of their speed, flexibility and low power consumption instead of the more common approaches based on ASICs or microcontrollers. In this context, energy efficiency is a key aspect, considering that usually the instant power consumption is considered a figure of merit, more than the total energy consumed by the application

    EC-CENTRIC: An Energy- and Context-Centric Perspective on IoT Systems and Protocol Design

    Get PDF
    The radio transceiver of an IoT device is often where most of the energy is consumed. For this reason, most research so far has focused on low power circuit and energy efficient physical layer designs, with the goal of reducing the average energy per information bit required for communication. While these efforts are valuable per se, their actual effectiveness can be partially neutralized by ill-designed network, processing and resource management solutions, which can become a primary factor of performance degradation, in terms of throughput, responsiveness and energy efficiency. The objective of this paper is to describe an energy-centric and context-aware optimization framework that accounts for the energy impact of the fundamental functionalities of an IoT system and that proceeds along three main technical thrusts: 1) balancing signal-dependent processing techniques (compression and feature extraction) and communication tasks; 2) jointly designing channel access and routing protocols to maximize the network lifetime; 3) providing self-adaptability to different operating conditions through the adoption of suitable learning architectures and of flexible/reconfigurable algorithms and protocols. After discussing this framework, we present some preliminary results that validate the effectiveness of our proposed line of action, and show how the use of adaptive signal processing and channel access techniques allows an IoT network to dynamically tune lifetime for signal distortion, according to the requirements dictated by the application

    Efficient and Interference-Resilient Wireless Connectivity for IoT Applications

    Full text link
    With the coming of age of the Internet of Things (IoT), demand on ultra-low power (ULP) and low-cost radios will continue to boost tremendously. The Bluetooth-Low-energy (BLE) standard provides a low power solution to connect IoT nodes with mobile devices, however, the power of maintaining a connection with a reasonable latency remains the limiting factor in defining the lifetime of event-driven BLE devices. BLE radio power consumption is in the milliwatt range and can be duty cycled for average powers around 30渭W, but at the expense of long latency. Furthermore, wireless transceivers traditionally perform local oscillator (LO) calibration using an external crystal oscillator (XTAL) that adds significant size and cost to a system. Removing the XTAL enables a true single-chip radio, but an alternate means for calibrating the LO is required. Innovations in both the system architecture and circuits implementation are essential for the design of truly ubiquitous receivers for IoT applications. This research presents two porotypes as back-channel BLE receivers, which have lower power consumption while still being robust in the presents of interference and able to receive back-channel message from BLE compliant transmitters. In addition, the first crystal-less transmitter with symmetric over-the-air clock recovery compliant with the BLE standard using a GFSK-Modulated BLE Packet is presented.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162942/1/abdulalg_1.pd

    Performance evaluation of wake-up radio based wireless body area network

    Get PDF
    Abstract. The last decade has been really ambitious in new research and development techniques to reduce energy consumption especially in wireless sensor networks (WSNs). Sensor nodes are usually battery-powered and thus have very limited lifetime. Energy efficiency has been the most important aspect to discuss when talking about wireless body area network (WBAN) in particular, since it is the bottleneck of these networks. Medium access control (MAC) protocols hold the vital position to determine the energy efficiency of a WBAN, which is a key design issue for battery operated sensor nodes. The wake-up radio (WUR) based MAC and physical layer (PHY) have been evaluated in this research work in order to contribute to the energy efficient solutions development. WUR is an on-demand approach in which the node is woken up by the wake-up signal (WUS). A WUS switches a node from sleep mode to wake up mode to start signal transmission and reception. The WUS is transmitted or received by a secondary radio transceiver, which operates on very low power. The energy benefit of using WUR is compared with conventional duty-cycling approach. As the protocol defines the nodes in WUR based network do not waste energy on idle listening and are only awakened when there is a request for communication, therefore, energy consumption is extremely low. The performance of WUR based MAC protocol has been evaluated for both physical layer (PHY) and MAC for transmission of WUS and data. The probabilities of miss detection, false alarm and detection error rates are calculated for PHY and the probabilities of collision and successful data transmission for channel access method Aloha is evaluated. The results are obtained to compute and compare the total energy consumption of WUR based network with duty cycling. The results prove that the WUR based networks have significant potential to improve energy efficiency, in comparison to conventional duty cycling approach especially, in the case of low data-reporting rate applications. The duty cycle approach is better than WUR approach when sufficiently low duty cycle is combined with highly frequent communication between the network nodes

    Improving network reliability by exploiting path diversity in ad hoc networks with bursty losses

    Get PDF
    In wireless mobile ad hoc networks, end-to-end connections are often subject to failures which do not make the connection non-operational indefinitely but interrupt the communication for intermittent short periods of time. These intermittent failures usually arise from the mobility of hosts, dynamics of the wireless medium or energy-saving mechanisms, and cause bursty packet losses. Reliable communication in this kind of an environment is becoming more important with the emerging use of ad hoc networks for carrying diverse multimedia applications such as voice, video and data. In this thesis, we present a new path reliability model that captures intermittent availability of the paths, and we devise a routing strategy based on our path reliability model in order to improve the network reliability. Our routing strategy takes the advantage of path diversity in the network and uses a diversity coding scheme in order not to compromise efficiency. In diversity coding scheme, if the original information is encoded by using a (N,K) code, then it is enough for the destination to receive any K bits correctly out of N bits to successfully decode the original information. In our scheme, the original information is divided into N subpackets and subpackets are distributed among the available disjoint paths in the network. The distribution of subpackets among the diverse paths is a crucial decision. The subpackets should be distributed 'intelligently' so that the probability of successful reconstruction of the original information is maximized. Given the failure statistics of the paths, and the code rate (N, K), our strategy determines the allocation of subpackets to each path in such a manner that the probability of reconstruction of the original information at the destination is maximized. Simulation results justify the accuracy and efficiency of our approach. Additionally, simulation results show that our multipath routing strategy improves the network reliability substantially compared to the single path routing. In wireless networks, a widely used strategy is to place the nodes into a low energy consuming sleep mode in order to prolong the battery life. In this study, we also consider the cases where the intermittent availability of the nodes is due to the sleep/awake cycles of wireless nodes. A sleep/awake scheduling strategy is proposed which minimizes the packet latency while satisfying the energy saving ratio specified by the energy saving mechanism

    Energy-efficient MAC protocol for wireless sensor networks

    Get PDF
    A Wireless Sensor Network (WSN) is a collection of tiny devices called sensor nodes which are deployed in an area to be monitored. Each node has one or more sensors with which they can measure the characteristics of their surroundings. In a typical WSN, the data gathered by each node is sent wirelessly through the network from one node to the next towards a central base station. Each node typically has a very limited energy supply. Therefore, in order for WSNs to have acceptable lifetimes, energy efficiency is a design goal that is of utmost importance and must be kept in mind at all levels of a WSN system. The main consumer of energy on a node is the wireless transceiver and therefore, the communications that occur between nodes should be carefully controlled so as not to waste energy. The Medium Access Control (MAC) protocol is directly in charge of managing the transceiver of a node. It determines when the transceiver is on/off and synchronizes the data exchanges among neighbouring nodes so as to prevent collisions etc., enabling useful communications to occur. The MAC protocol thus has a big impact on the overall energy efficiency of a node. Many WSN MAC protocols have been proposed in the literature but it was found that most were not optimized for the group of WSNs displaying very low volumes of traffic in the network. In low traffic WSNs, a major problem faced in the communications process is clock drift, which causes nodes to become unsynchronized. The MAC protocol must overcome this and other problems while expending as little energy as possible. Many useful WSN applications show low traffic characteristics and thus a new MAC protocol was developed which is aimed at this category of WSNs. The new protocol, Dynamic Preamble Sampling MAC (DPS-MAC) builds on the family of preamble sampling protocols which were found to be most suitable for low traffic WSNs. In contrast to the most energy efficient existing preamble sampling protocols, DPS-MAC does not cater for the worst case clock drift that can occur between two nodes. Rather, it dynamically learns the actual clock drift experienced between any two nodes and then adjusts its operation accordingly. By simulation it was shown that DPS-MAC requires less protocol overhead during the communication process and thus performs more energy efficiently than its predecessors under various network operating conditions. Furthermore, DPS-MAC is less prone to become overloaded or unstable in conditions of high traffic load and high contention levels respectively. These improvements cause the use of DPS-MAC to lead to longer node and network lifetimes, thus making low traffic WSNs more feasible.Dissertation (MEng)--University of Pretoria, 2008.Electrical, Electronic and Computer EngineeringMEngUnrestricte

    Wake-up communication system using solar panel and visible light communication

    Get PDF
    [ANGL脠S] One of the most promising energy-efficient communication methods is the use of wake-up receivers. In this work we propose and develop a wake-up communication system that uses Visible Light Communication (VLC) and an indoor solar panel with two functions: act as the receiver of the wake-up signal and harvest power from the light. After the reception of the wake-up signal an interrupt generated by the wake-up receiver wakes up the wireless device attached. Two configuration options are presented: an addressable and a broadcast-based wake-up configuration. In addressable configuration, after the reception of the wake-up signal a comparison is made with the identification code configured in the device; as consequence only the device with the match code is woken up. In broadcast-based wake-up configuration the wireless node attached wakes up after the detection of the carrier burst frequency, allowing use this system for wake up several nodes at once. Two options of configuration for the receiver are presented, and also the design of a transmitter who copes with flickering mitigation. Through experiments the feasibility of the system is shown and its performances is characterized in terms of wake-up probabilities for different distances. The effect of light interferences is evaluated, which shows that the achieved wake-up distances are reasonable for indoor scenarios.[CASTELL脌] Uno de los m谩s prometedores m茅todos para la comunicaci贸n con mayor eficiencia energ茅tica en las Redes de Sensores Inal谩mbricos (Wireless Sensor Networks - WSN) es el uso de wake-up receivers. Es este trabajo se propone y desarrolla un sistema de comunicaci贸n de wake-up que usa las comunicaciones por luz visible (Visible Light Communication - VLC) y un panel solar de interiores con dos funciones: actuar como receptor de la se帽al de wake-up y recoger energ铆a de la luz. Despu茅s de la recepci贸n de la se帽al el wake-up receiver genera una interrupci贸n activando el nodo inal谩mbrico adjunto. Se presentan dos configuraciones para la generaci贸n de la interrupci贸n: una basada en direcci贸n y otra basada en la transmisi贸n de la frecuencia portadora. En la configuraci贸n basada en direcci贸n, despu茅s de la recepci贸n de la se帽al de wake-up se hace una comparaci贸n con el c贸digo de identificaci贸n configurado en el dispositivo; como consecuencia s贸lo el dispositivo con el c贸digo correcto es activado. En la configuraci贸n basada en la transmisi贸n de la frecuencia portadora, el nodo inal谩mbrico adjunto se activa con la detecci贸n de dicha frecuencia, lo cual permite usar el sistema para activar varios nodos a la vez. Se describen dos opciones de configuraci贸n para el receptor, as铆 como el dise帽o de un transmisor dise帽ado para mitigar el parpadeo del LED. A trav茅s de experimentos se muestra la factibilidad del sistema y se caracteriza su desempe帽o en t茅rminos de la probabilidad de generar la interrupci贸n de activaci贸n a diferentes distancias entre la fuente de luz y el receptor. Se eval煤a el efecto de las interferencias de luz y se muestra que las distancias alcanzadas son razonables para escenarios intramuros.[CATAL脌] Un dels m猫todes m茅s prometedors per a la comunicaci贸 amb una major efici猫ncia energ猫tica en les Xarxes de Sensors Sense fil (Wireless Sensor Networks - WSN) 茅s l'煤s de wake-up receivers en el node receptor. Els wake-up receivers s贸n dispositius d'ultra-baix consum de pot猫ncia connectats al node sense fil que li permeten romandre en estat inactiu mentre esperen un senyal d'activaci贸. En aquest treball es proposa i desenvolupa un sistema d鈥檃ctivaci贸 que usa les comunicacions per llum visible (Visible Light Communication - VLC) i un panell solar d鈥櫭簊 interior amb dues funcions: actuar com a receptor del senyal d鈥檃ctivaci贸 i recollir energia de la llum ambient. Despr茅s de la recepci贸 del senyal de l鈥檈missor, el wake-up receiver genera una interrupci贸 activant el node sense fil adjunt. Es descriuen dues alternatives per a la generaci贸 de la interrupci贸: una basada en identificador i una altra basada en la transmissi贸 de la freq眉猫ncia portadora. En la configuraci贸 basada en identificador, despr茅s de la recepci贸 del senyal de wake-up es fa una comparaci贸 amb el codi d'identificaci贸 al dispositiu i, com a conseq眉猫ncia, nom茅s el dispositiu amb el codi correcte 茅s activat. En la configuraci贸 basada en la transmissi贸 de la freq眉猫ncia portadora, el node sense fil adjunt s'activa amb la detecci贸 d'aquesta freq眉猫ncia, la qual cosa permet utilitzar el sistema per activar diversos nodes alhora. Tamb茅 se detallen dues opcions de configuraci贸 per al receptor aix铆 com el disseny d'un transmissor per mitigar el parpelleig del LED. Mitjan莽ant experiments es mostra la factibilitat del sistema i s鈥檃valua el seu funcionament en termes de la probabilitat de generar la interrupci贸 d'activaci贸 a diferents dist脿ncies entre la font de llum i el receptor. S'avalua l'efecte de les interfer猫ncies del senyal i es mostra que les dist脿ncies assolides s贸n raonables per escenaris en interiors

    Signal-Processing-Driven Integrated Circuits for Energy Constrained Microsystems.

    Full text link
    The exponential growth in IC technology has enabled low-cost and increasingly capable wireless sensor nodes which provide a promising way forward to realize the vision of a trillion connected sensors in the next decade. However there are still many design challenges ahead to make these sensor nodes small,low-cost,secure,reliable and energy-efficient to name a few. Since the wireless nodes are expected to operate on a limited energy source or in some cases on harvested energy, the energy consumption of each building block is of prime importance to prolong the life of a sensor node. It has been found that the radio communication when active has been one of the highest power consuming modules on a sensor node. Low-energy protocols, e.g. processing the raw sensor data on-node, are more energy efficient for some applications as compared to transmitting the raw data over a wireless channel to a cloud server. In this thesis we explore signal processing techniques to realize a low power radio solution for wireless communication. Two prototype chips have been designed and their performance has been evaluated. The first prototype chip exploits compressed sensing for Ultra-Wide-Band (UWB) communication. UWB signals typically require a high ADC sampling rate in the receiver which results in high power consumption. Compressed sensing is demonstrated to relax the ADC sampling rate to save power. The second prototype chip exploits the sensitivity vs. power trade-off in a radio receiver to achieve iso-performance at lower power consumption and the time-varying wireless channel characteristics are used to adapt the sampling frequency of the receiver based on the SNR/Link quality of the communication channel, saving power, while maintaining the desired system performance. It is envisioned that embedded machine learning will play a key role in the integration of sensory data with prior knowledge for distributed intelligent sensing which might enable reduced wireless network traffic to a cloud server. A Near-Threshold hardware accelerator for arbitrary Bayesian network was designed for clique-tree message passing algorithm used for probabilistic inference. The hardware accelerator was benchmarked by the mid-size ALARM Bayesian network with total energy consumption of 76nJ for 250碌S execution time.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107130/1/oukhan_1.pd

    Low-energy sensor network protocols and application to smart wind turbines

    Get PDF
    The Internet of Things (IoT) has shown promise as an enabling technology for a wide variety of applications, from smart homes to infrastructure monitoring and management. However, a number of challenges remain before the grand vision of an everything-sensed, everything-connected world can be achieved. One of these challenges is the energy problem: how can embedded, networked sensor devices be sustainably powered over the lifetime of an application? To that end, this dissertation focuses on reducing energy consumption of communication protocols in wireless sensor networks and the IoT. The motivating application is wind energy infrastructure monitoring and management, or smart wind turbines. A variety of approaches to low-energy protocol design are studied. The result is a family of low-energy communication protocols, including one specifically designed for nodes deployed on wind turbine blades. This dissertation also presents background information on monitoring and management of wind turbines, and a vision of how the proposed protocols could be integrated and deployed to enable smart wind turbine applications

    Analysis and Design of Energy Efficient Frequency Synthesizers for Wireless Integrated Systems

    Full text link
    Advances in ultra-low power (ULP) circuit technologies are expanding the IoT applications in our daily life. However, wireless connectivity, small form factor and long lifetime are still the key constraints for many envisioned wearable, implantable and maintenance-free monitoring systems to be practically deployed at a large scale. The frequency synthesizer is one of the most power hungry and complicated blocks that not only constraints RF performance but also offers subtle scalability with power as well. Furthermore, the only indispensable off-chip component, the crystal oscillator, is also associated with the frequency synthesizer as a reference. This thesis addresses the above issues by analyzing how phase noise of the LO affect the frequency modulated wireless system in different aspects and how different noise sources in the PLL affect the performance. Several chip prototypes have been demonstrated including: 1) An ULP FSK transmitter with SAR assisted FLL; 2) A ring oscillator based all-digital BLE transmitter utilizing a quarter RF frequency LO and 4X frequency multiplier; and 3) An XO-less BLE transmitter with an RF reference recovery receiver. The first 2 designs deal with noise sources in the PLL loop for ultimate power and cost reduction, while the third design deals with the reference noise outside the PLL and explores a way to replace the XO in ULP wireless edge nodes. And at last, a comprehensive PN theory is proposed as the design guideline.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/153420/1/chenxing_1.pd
    corecore