1,045 research outputs found

    FastM: Design and Evaluation of a Fast Mobility Mechanism for Wireless Mesh Networks

    Get PDF
    Although there is a large volume of work in the literature in terms of mobility approaches for Wireless Mesh Networks, usually these approaches introduce high latency in the handover process and do not support realtime services and applications. Moreover, mobility is decoupled from routing, which leads to inefficiency to both mobility and routing approaches with respect to mobility. In this paper we present a new extension to proactive routing protocols using a fast mobility extension, FastM, with the purpose of increasing handover performance in Wireless Mesh Networks. With this new extension, a new concept is created to integrate information between neighbor wireless mesh routers, managing locations of clients associated to wireless mesh routers in a certain neighborhood, and avoiding packet loss during handover. The proposed mobility approach is able to optimize the handover process without imposing any modifications to the current IEE 802.11 MAC protocol and use unmodified clients. Results show the improved efficiency of the proposed scheme: metrics such as disconnection time, throughput, packet loss and control overhead are largely improved when compared to previous approaches. Moreover, these conclusions apply to mobility scenarios, although mobility decreases the performance of the handover approach, as expected

    ๋ถ„์‚ฐ ์ œ์•ฝํ•˜์—์„œ ์›๊ฒฉ ์ œ์–ด๋˜๋Š” ๋‹ค์ˆ˜์˜ ๋…ผํ™€๋กœ๋…ธ๋ฏน ์ด๋™ํ˜• ๋กœ๋ด‡ ๋Œ€ํ˜• ์žฌ๊ตฌ์„ฑ ์ œ์–ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2019. 2. ์ด๋™์ค€.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ณ€ํ™”ํ•˜๋Š” ์ฃผํ–‰ ํ™˜๊ฒฝ์—์„œ ๋ถ„์‚ฐ ์ œ์•ฝ ํ•˜์— ๋‹ค์ˆ˜์˜ ์›๊ฒฉ์œผ๋กœ ์ œ์–ด๋˜๋Š” ๋…ผํ™€๋กœ๋…ธ๋ฏน ์ด๋™ํ˜• ๋กœ๋ด‡ ๋Œ€ํ˜• ์žฌ๊ตฌ์„ฑ ์ œ์–ด์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ์„ผ์‹ฑ๊ณผ ์ปดํ“จํŒ… ๋Šฅ๋ ฅ์ด ๊ฐ–์ถ”์–ด์ง„ ์˜จ๋ณด๋“œ ์‹œ์Šคํ…œ ๋กœ๋ด‡๋“ค์„ ํ™œ์šฉํ•˜์—ฌ ์ตœ๊ทผ ๊ฐœ๋ฐœ๋œ ์˜ˆ์ธก ๋””์Šคํ”Œ๋ ˆ์ด ๊ธฐ๋ฒ•์„ ์ ์šฉ, ํšจ์œจ์ ์ธ ๊ตฐ์ง‘ ๋กœ๋ด‡์˜ ์›๊ฒฉ ์ œ์–ด๊ฐ€ ๊ฐ€๋Šฅํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ์ž˜ ์•Œ๋ ค์ง„ ๋…ผํ™€๋กœ๋…ธ๋ฏน ํŒจ์‹œ๋ธŒ ๋””์ปดํฌ์ง€์…˜ ๊ธฐ๋ฒ•์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋Œ€ํ˜• ๋ณ€๊ฒฝ์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ์ƒˆ๋กœ์šด ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ถ”๊ฐ€, ๋Œ€ํ˜• ๋ณ€๊ฒฝ๊ฐ„ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌธ์ œ๋“ค์— ๋Œ€ํ•ด ํŒŒ์•…ํ•˜๊ณ  ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํฌํ…์…œ ํ•„๋“œ๋ฅผ ํ™œ์šฉํ•˜์˜€๋‹ค. n๋Œ€์˜ ๋กœ๋ด‡์œผ๋กœ ๋‹ค์–‘ํ•œ ๋Œ€ํ˜• ๋ณ€๊ฒฝ์ด ๊ฐ€๋Šฅํ† ๋ก ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ™˜๊ฒฝ์„ ์กฐ์„ฑ, 39๋Œ€์˜ ํƒฑํฌ๋ฅผ ์ด์šฉํ•˜์—ฌ์—ฌ 5๊ฐ€์ง€์˜ ๊ฐ๊ธฐ ๋‹ค๋ฅธ ๋Œ€ํ˜•์œผ๋กœ์˜ ๋ณ€ํ™˜์„ ์ƒˆ๋กœ์ด ์ œ์‹œํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ ์šฉํ•˜์—ฌ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ๋˜ํ•œ ์‹ค์ œ ๋กœ๋ด‡ 3๋Œ€๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํšจ์šฉ์„ฑ์— ๋Œ€ํ•œ ์‹คํ—˜์„ ํ•„๋‘๋กœ ์ข์€ ๊ธธ๋ชฉ, ๊ฐœํ™œ์ง€ ๋“ฑ ์—ฐ์†์ ์œผ๋กœ ๋ณ€ํ™”ํ•˜๋Š” ํ™˜๊ฒฝ ์†์—์„œ์˜ ๊ตฌ๋™์„ ํ†ตํ•ด ์ตœ์ข…์ ์œผ๋กœ ์ œ์‹œํ•œ ํ”„๋ ˆ์ž„์›Œํฌ์˜ ํƒ€๋‹น์„ฑ์— ๋Œ€ํ•ด ๊ฒ€์ฆํ•˜์˜€๋‹ค.We propose a novel framework for formation reconguration of multiple nonholonomic wheeled mobile robots (WMRs) in the changing driving environment. We utilize an onboard system of WMRs with the capability of sensing and computing. Each WMR has the same computing power for visualizing the driving environment, handling the sensing information and calculating the control action. One of the WMRs is the leader with the FPV camera and SLAM, while others with monocular cameras with limited FoV, as the followers, keep a certain desired formation during driving in a distributed manner. We set two control objectives, one is group driving and the other is holding the shape of the formation. We have to capture the control objectives separately and simultaneously, we make the best use of nonholonomic passive decomposition to split the WMRs' kinematics into those of the formation maintaining and group driving. The repulsive potential function to prevent the collision among WMRs and attractive potential function to restrict the boundary of follower WMRs' moving space due to limited FoV range of the monocular cameras while switching their formation are also used. Simulation with 39 tanks and experiments with three WMRs are also performed to verify the proposed framework.Acknowledgements iii List of Figures vii Abbreviations ix 1 Introduction 1 2 Formation Reconguration Control Design 5 2.1 Nonholonomic Passive Decomposition . . . . . . . . . . . . . . . 5 2.2 Attractive and Repulsive Potential Function . . . . . . . . . . . . 10 2.3 Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 Estimation and Predictive Display 20 3.1 Distributed Pose Estimation . . . . . . . . . . . . . . . . . . . . . 20 3.1.1 EKF Pose Estimation of Leader WMR . . . . . . . . . . . 20 3.1.2 EKF Pose Estimation of Follower WMRs . . . . . . . . . 22 3.2 Predictive Display for Distributed WMRs Teleoperation . . . . . 23 4 Experiment 27 4.1 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2 Demonstrate the Proposed Algorithm . . . . . . . . . . . . . . . 30 4.3 Teleoperation Experiment with the Algorithm . . . . . . . . . . . 33 5 Conclusion 40Maste

    Evaluating the validity of the Automated Working Memory Assessment

    Get PDF
    The aim of the present study was to investigate the construct stability and diagnostic validity of a standardised computerised tool for assessing working memory: the Automated Working Memory Assessment (AWMA). The purpose of the AWMA is to provide educators with a quick and effective tool to screen for and support those with memory impairments. Findings indicate that working memory skills in children with memory impairments are relatively stable over the course of the school year. There was also a high degree of convergence in performance between the AWMA and the WISC-IV Working Memory Index. The educational implications are discussed

    Monitoring Long-Term Spatiotemporal Changes in Iran Surface Waters Using Landsat Imagery

    Get PDF
    Within water resources management, surface water area (SWA) variation plays a vital role in hydrological processes as well as in agriculture, environmental ecosystems, and ecological processes. The monitoring of long-term spatiotemporal SWA changes is even more critical within highly populated regions that have an arid or semi-arid climate, such as Iran. This paper examined variations in SWA in Iran from 1990 to 2021 using about 18,000 Landsat 5, 7, and 8 satellite images through the Google Earth Engine (GEE) cloud processing platform. To this end, the performance of twelve water mapping rules (WMRs) within remotely-sensed imagery was also evaluated. Our findings revealed that (1) methods which provide a higher separation (derived from transformed divergence (TD) and Jefferiesโ€“Matusita (JM) distances) between the two target classes (water and non-water) result in higher classification accuracy (overall accuracy (OA) and user accuracy (UA) of each class). (2) Near-infrared (NIR)-based WMRs are more accurate than short-wave infrared (SWIR)-based methods for arid regions. (3) The SWA in Iran has an overall downward trend (observed by linear regression (LR) and sequential Mannโ€“Kendall (SQMK) tests). (4) Of the five major water basins, only the Persian Gulf Basin had an upward trend. (5) While temperature has trended upward, the precipitation and normalized difference vegetation index (NDVI), a measure of the countryโ€™s greenness, have experienced a downward trend. (6) Precipitation showed the highest correlation with changes in SWA (r = 0.69). (7) Long-term changes in SWA were highly correlated (r = 0.98) with variations in the JRC world water map

    Simultaneous Obstacle Avoidance and Target Tracking of Multiple Wheeled Mobile Robots With Certified Safety

    Get PDF
    Collision avoidance plays a major part in the control of the wheeled mobile robot (WMR). Most existing collision-avoidance methods mainly focus on a single WMR and environmental obstacles. There are few products that cast light on the collision-avoidance between multiple WMRs (MWMRs). In this article, the problem of simultaneous collision-avoidance and target tracking is investigated for MWMRs working in the shared environment from the perspective of optimization. The collision-avoidance strategy is formulated as an inequality constraint, which has proven to be collision free between the MWMRs. The designed MWMRs control scheme integrates path following, collision-avoidance, and WMR velocity compliance, in which the path following task is chosen as the secondary task, and collision-avoidance is the primary task so that safety can be guaranteed in advance. A Lagrangian-based dynamic controller is constructed for the dominating behavior of the MWMRs. Combining theoretical analyses and experiments, the feasibility of the designed control scheme for the MWMRs is substantiated. Experimental results show that if obstacles do not threaten the safety of the WMR, the top priority in the control task is the target track task. All robots move along the desired trajectory. Once the collision criterion is satisfied, the collision-avoidance mechanism is activated and prominent in the controller. Under the proposed scheme, all robots achieve the target tracking on the premise of being collision free

    The Formation Stability of a Multi-Robotic Formation Control System

    Get PDF

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each othersโ€™ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applicationsโ€™ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated
    • โ€ฆ
    corecore