4 research outputs found

    Dynamic Performance of Mobile Haptic Interfaces

    Full text link

    Supporting Eyes-Free Human–Computer Interaction with Vibrotactile Haptification

    Get PDF
    The sense of touch is a crucial sense when using our hands in complex tasks. Some tasks we learn to do even without sight by just using the sense of touch in our fingers and hands. Modern touchscreen devices, however, have lost some of that tactile feeling while removing physical controls from the interaction. Touch is also a sense that is underutilized in interactions with technology and could provide new ways of interaction to support users. While users are using information technology in certain situations, they cannot visually and mentally focus completely during the interaction. Humans can utilize their sense of touch more comprehensively in interactions and learn to understand tactile information while interacting with information technology. This thesis introduces a set of experiments that evaluate human capabilities to understand and notice tactile information provided by current actuator technology and further introduces a couple of examples of haptic user interfaces (HUIs) to use under eyes-free use scenarios. These experiments evaluate the benefits of such interfaces for users and concludes with some guidelines and methods for how to create this kind of user interfaces. The experiments in this thesis can be divided into three groups. In the first group, with the first two experiments, the detection of vibrotactile stimuli and interpretation of the abstract meaning of vibrotactile feedback was evaluated. Experiments in the second group evaluated how to design rhythmic vibrotactile tactons to be basic vibrotactile primitives for HUIs. The last group of two experiments evaluated how these HUIs benefit the users in the distracted and eyes-free interaction scenarios. The primary aim for this series of experiments was to evaluate if utilizing the current level of actuation technology could be used more comprehensively than in current-day solutions with simple haptic alerts and notifications. Thus, to find out if the comprehensive use of vibrotactile feedback in interactions would provide additional benefits for the users, compared to the current level of haptic interaction methods and nonhaptic interaction methods. The main finding of this research is that while using more comprehensive HUIs in eyes-free distracted-use scenarios, such as while driving a car, the user’s main task, driving, is performed better. Furthermore, users liked the comprehensively haptified user interfaces

    Microdevices and Microsystems for Cell Manipulation

    Get PDF
    Microfabricated devices and systems capable of micromanipulation are well-suited for the manipulation of cells. These technologies are capable of a variety of functions, including cell trapping, cell sorting, cell culturing, and cell surgery, often at single-cell or sub-cellular resolution. These functionalities are achieved through a variety of mechanisms, including mechanical, electrical, magnetic, optical, and thermal forces. The operations that these microdevices and microsystems enable are relevant to many areas of biomedical research, including tissue engineering, cellular therapeutics, drug discovery, and diagnostics. This Special Issue will highlight recent advances in the field of cellular manipulation. Technologies capable of parallel single-cell manipulation are of special interest

    ”Haptic Processor Unit” : vers une Plate-Forme Transportable pour la Simulation Temps-Réel Synchrone Multisensorielle

    Get PDF
    This work is related to the field of Human-Computer Interaction, and particularly to the field of multisensory instrumental simulation, as conceptualized by the research group ACROE & ICA, and which needs a strong coupling between the human and the instrument.The first part of this thesis presents various degrees of the integration of gesture in computer uses, then develops a functional approach of force feedback technologies. This analysis elicits the mainstreams that are currently sharing the field of haptics research. We then present a study of the hardware and software components that are used in haptic simulation, and the various approaches used to connect a force feedback device to a real time modelling system. The analysis of the role of each of the components in the simulation chain and their relationships allowed us to conceptualize the “Haptic Processor Unit”. This component guarantees in particular the conditions of reactivity that are required for multisensory simulation. The new simulation architecture that we designed in this work, named ERGON_X, implements the concept of HPU. ERGON_X is a compact and transportable simulator, and handles simulation frequencies up to 44 100Hz. The third part presents the validation of the simulation platform ERGON_X. It mainly focuses on the design of new models, which were used in the framework of the research carried on by ACROE & ICA about instrumental interaction. The “E” is a model demonstrating the capabilities of the ERGOS technology, which is now fully exploitable thanks to this new simulation architecture. The models of tapping and of deformable paste allowed us to bring new results on human-object interaction, and validate the simulator as a tool for psychophysical experimentation. The Enactive Emblematic Scenarii “Ergotic Sounds” and “Pebble Box” illustrate the conception of Enaction. They validate the use of our simulation architecture as an experimental platform and lead us to a paradigm shift from “instrumental interaction” to “enactive interaction”Ce travail se situe dans le domaine de l’Interaction Personne-Système, et plus particulièrement dans celui de la simulation instrumentale multisensorielle telle que conceptualisée par le groupe de recherche ACROE & ICA, qui nécessite un couplage fort homme-instrument.La première partie de cette thèse présente les différents degrés d’intégration du geste dans l’ordinateur, puis propose une approche fonctionnelle des technologies pour le retour d’effort. Nous dégageons de cette analyse les grandes approches qui se partagent actuellement le champ de la recherche « haptique ».Nous présentons ensuite une étude sur les différents composants matériels et logiciels nécessaires à la chaîne de simulation haptique, ainsi que les différentes approches utilisées pour connecter un système à retour d’effort à un processus de simulation en temps réel. L’analyse du rôle des composants de la chaîne de simulation et de leurs relations permet de formaliser le concept de « Haptic Processor Unit ». Ce composant permet en particulier de garantir les conditions de réactivité propres à la simulation multisensorielle. La nouvelle architecture de simulation multisensorielle que nous avons réalisée, ERGON_X, met en œuvre le concept de HPU.ERGON_X est un simulateur compact et transportable, et permet d’utiliser des fréquences de simulation jusqu’à 44 100Hz. La dernière partie présente la validation de la plate-forme de simulation ERGON_X. Elle est essentiellement orientée vers l’implantation de nouveaux modèles, utilisés dans le cadre d’un travail de recherche sur la situation instrumentale médiatisée. Le « E » est un modèle de démonstration des performances de la technologie ERGOS que la nouvelle architecture de simulation permet d’exploiter pleinement. Les modèles de tapping (percussion) et de pâtes déformables ont permis d’avancer des résultatssur l’interaction homme-objet, et valident le simulateur comme un outil pour l’expérimentation psychophysique. Les Enactive Emblematic Scenarii « Ergotic Sounds » (frottement d’archet) et « Pebble Box » (la boîte à cailloux) sont des illustrations du concept de l’Enaction. Elles valident l’utilisation de l’architecture de simulation comme une plate-forme pour l’expérimentation et ouvrent de nouvelles perspectives de recherche sur l’enaction et la notion de présence en simulation interactive
    corecore