21 research outputs found

    Detection of Breast Cancer using AI Techniques – A Survey

    Get PDF
    Cancer refers to any one of a large number of diseases characterized by the development of abnormal cells that divide uncontrollably and have the ability to infiltrate and destroy normal body tissue.Without treatment, it can cause serious health issues andresult in a loss of life. Breast cancer is the most common cancer among women around the world. Despite enormous medical progress, breast cancer has still remained the second leading cause of death worldwide. Early detection of cancer may reduce mortality and morbidity. This paper presents a review of the detection methods for cancer through Artificial Intelligence (AI) in different ways. Previously Microscopic reviews of tissues on glass slides are used for cancer diagnostics to improve diagnostic accuracy. We can use different techniques such as digital imaging and artificial intelligence algorithm. Cancer care is also advancing thanks to AI’s ability to collect and process data. Due to the nature of processing this information, the task is often a time-consuming and tedious job for doctors. This process may be made much easier, quicker and efficient through the advancement as well as by using modified technologies

    Books’ Rating Prediction Using Just Neural Network

    Get PDF
    Abstract: The aim behind analyzing the Goodreads dataset is to get a fair idea about the relationships between the multiple attributes a book might have, such as: the aggregate rating of each book, the trend of the authors over the years and books with numerous languages. With over a hundred thousand ratings, there are books which just tend to become popular as each day seems to pass. We proposed an Artificial Neural Network (ANN) model for predicting the overall rating of books. The prediction is based on these features (bookID, title, authors, isbn, language_code, isbn13, # num_pages, ratings_count, text_reviews_count), which were used as input variables and (average_rating) as output variable for our ANN model. Our model were created, trained, and validated using data set in JNN environment, which its title is “Goodreads-books”. Model evaluation showed that the ANN model is able to predict correctly 99.78% of the validation samples

    Tumor Prediction in Mammogram using Neural Network

    Get PDF
    Detecting micro calcifications - early breast cancer indicators 2013; is visually tough while recognizing malignant tumors is a highly complicated issue. Digital mammography ensures early breast cancer detection through digital mammograms locating suspicious areas with benign/- malignant micro calcifications. Early detection is vital in treatment and survival of breast cancer as there are no sure ways to prevent it. This paper presents a method of tumor prediction based on extracting features from mammogram using Gabor filter with Discrete cosine transform and classify the features using Neural Network

    Breast Cancer Diagnosis and Survival Prediction Using JNN

    Get PDF
    Abstract: Breast cancer is reported to be the most common cancer type among women worldwide and it is the second highest women fatality rate amongst all cancer types. Notwithstanding all the progresses made in prevention and early intervention, early prognosis and survival prediction rates are still not sufficient. In this paper, we propose an ANN model which outperforms all the previous supervised learning methods by reaching 99.57 in terms of accuracy in Wisconsin Breast Cancer dataset. Experimental results on Haberman’s Breast Cancer Survival dataset show the superiority of proposed method by reaching 88.24 % in terms of accuracy. The results are the best reported ones obtained from Artificial Neural Network using JNN environment without any preprocessing of the dataset

    Data mining applied to the cognitive rehabilitation of patients with acquired brain injury

    Get PDF
    Acquired brain injury (ABI) is one of the leading causes of death and disability in the world and is associated with high health care costs as a result of the acute treatment and long term rehabilitation involved. Different algorithms and methods have been proposed to predict the effectiveness of rehabilitation programs. In general, research has focused on predicting the overall improvement of patients with ABI. The purpose of this study is the novel application of data mining (DM) techniques to predict the outcomes of cognitive rehabilitation in patients with ABI. We generate three predictive models that allow us to obtain new knowledge to evaluate and improve the effectiveness of the cognitive rehabilitation process. Decision tree (DT), multilayer perceptron (MLP) and general regression neural network (GRNN) have been used to construct the prediction models. 10-fold cross validation was carried out in order to test the algorithms, using the Institut Guttmann Neurorehabilitation Hospital (IG) patients database. Performance of the models was tested through specificity, sensitivity and accuracy analysis and confusion matrix analysis. The experimental results obtained by DT are clearly superior with a prediction average accuracy of 90.38%, while MLP and GRRN obtained a 78.7% and 75.96%, respectively. This study allows to increase the knowledge about the contributing factors of an ABI patient recovery and to estimate treatment efficacy in individual patients

    Medical disease prediction using Grey Wolf optimization and auto encoder based recurrent neural network

    Get PDF
    Big data development in biomedical and medical service networks provides a research on medical data benefits, early ailment detection, patient care and network administrations.e-Health applications are particularly important for the patients who are unfit to see a specialist or any health expert. The objective is to encourage clinicians and families to predict disease using Machine Learning (ML) procedures. In addition, diverse regions show important qualities of certain provincial ailments, which may hinder the forecast of disease outbreaks. The objective of this work is to predict the different kinds of diseases using Grey Wolf optimization and auto encoder based Recurrent Neural Network (GWO+RNN). The features are selected using GWO and the diseases are predicted by using RNN method. Initially the GWO algorithm avoids the irrelevant and redundant attributes significantly, after the features are forwarded to the RNN classifier. The experimental result proved that the performance of GWO+RNN algorithm achieved better than existing method like Group Search Optimizer and Fuzzy Min-Max Neural Network (GFMMNN) approach. The GWO-RNN method used the medical UCI database based on various datasets such as Hungarian, Cleveland, PID, mammographic masses, Switzerland and performance was measured with the help of efficient metrics like accuracy, sensitivity and specificity. The proposed GWO+RNN method achieved 16.82% of improved prediction accuracy for Cleveland dataset

    Artificial metaplasticity prediction model for cognitive rehabilitation outcome in acquired brain injury patients

    Get PDF
    Objective The main purpose of this research is the novel use of artificial metaplasticity on multilayer perceptron (AMMLP) as a data mining tool for prediction the outcome of patients with acquired brain injury (ABI) after cognitive rehabilitation. The final goal aims at increasing knowledge in the field of rehabilitation theory based on cognitive affectation. Methods and materials The data set used in this study contains records belonging to 123 ABI patients with moderate to severe cognitive affectation (according to Glasgow Coma Scale) that underwent rehabilitation at Institut Guttmann Neurorehabilitation Hospital (IG) using the tele-rehabilitation platform PREVIRNEC©. The variables included in the analysis comprise the neuropsychological initial evaluation of the patient (cognitive affectation profile), the results of the rehabilitation tasks performed by the patient in PREVIRNEC© and the outcome of the patient after a 3–5 months treatment. To achieve the treatment outcome prediction, we apply and compare three different data mining techniques: the AMMLP model, a backpropagation neural network (BPNN) and a C4.5 decision tree. Results The prediction performance of the models was measured by ten-fold cross validation and several architectures were tested. The results obtained by the AMMLP model are clearly superior, with an average predictive performance of 91.56%. BPNN and C4.5 models have a prediction average accuracy of 80.18% and 89.91% respectively. The best single AMMLP model provided a specificity of 92.38%, a sensitivity of 91.76% and a prediction accuracy of 92.07%. Conclusions The proposed prediction model presented in this study allows to increase the knowledge about the contributing factors of an ABI patient recovery and to estimate treatment efficacy in individual patients. The ability to predict treatment outcomes may provide new insights toward improving effectiveness and creating personalized therapeutic interventions based on clinical evidence
    corecore