732 research outputs found

    On the non-local geometry of turbulence

    Get PDF
    A multi-scale methodology for the study of the non-local geometry of eddy structures in turbulence is developed. Starting from a given three-dimensional field, this consists of three main steps: extraction, characterization and classification of structures. The extraction step is done in two stages. First, a multi-scale decomposition based on the curvelet transform is applied to the full three-dimensional field, resulting in a finite set of component three-dimensional fields, one per scale. Second, by iso-contouring each component field at one or more iso-contour levels, a set of closed iso-surfaces is obtained that represents the structures at that scale. The characterization stage is based on the joint probability density function (p.d.f.), in terms of area coverage on each individual iso-surface, of two differential-geometry properties, the shape index and curvedness, plus the stretching parameter, a dimensionless global invariant of the surface. Taken together, this defines the geometrical signature of the iso-surface. The classification step is based on the construction of a finite set of parameters, obtained from algebraic functions of moments of the joint p.d.f. of each structure, that specify its location as a point in a multi-dimensional ‘feature space’. At each scale the set of points in feature space represents all structures at that scale, for the specified iso-contour value. This then allows the application, to the set, of clustering techniques that search for groups of structures with a common geometry. Results are presented of a first application of this technique to a passive scalar field obtained from 5123 direct numerical simulation of scalar mixing by forced, isotropic turbulence (Reλ = 265). These show transition, with decreasing scale, from blob-like structures in the larger scales to blob- and tube-like structures with small or moderate stretching in the inertial range of scales, and then toward tube and, predominantly, sheet-like structures with high level of stretching in the dissipation range of scales. Implications of these results for the dynamical behaviour of passive scalar stirring and mixing by turbulence are discussed

    Multi-scale geometric analysis of Lagrangian structures in isotropic turbulence

    Get PDF
    We report the multi-scale geometric analysis of Lagrangian structures in forced isotropic turbulence and also with a frozen turbulent field. A particle backward-tracking method, which is stable and topology preserving, was applied to obtain the Lagrangian scalar field φ governed by the pure advection equation in the Eulerian form ∂_tφ + u · ∇φ = 0. The temporal evolution of Lagrangian structures was first obtained by extracting iso-surfaces of φ with resolution 1024^3 at different times, from t = 0 to t = T_e, where T_e is the eddy turnover time. The surface area growth rate of the Lagrangian structure was quantified and the formation of stretched and rolled-up structures was observed in straining regions and stretched vortex tubes, respectively. The multi-scale geometric analysis of Bermejo-Moreno & Pullin (J. Fluid Mech., vol. 603, 2008, p. 101) has been applied to the evolution of φ to extract structures at different length scales and to characterize their non-local geometry in a space of reduced geometrical parameters. In this multi-scale sense, we observe, for the evolving turbulent velocity field, an evolutionary breakdown of initially large-scale Lagrangian structures that first distort and then either themselves are broken down or stretched laterally into sheets. Moreover, after a finite time, this progression appears to be insensible to the form of the initially smooth Lagrangian field. In comparison with the statistical geometry of instantaneous passive scalar and enstrophy fields in turbulence obtained by Bermejo-Moreno & Pullin (2008) and Bermejo-Moreno et al. (J. Fluid Mech., vol. 620, 2009, p. 121), Lagrangian structures tend to exhibit more prevalent sheet-like shapes at intermediate and small scales. For the frozen flow, the Lagrangian field appears to be attracted onto a stream-surface field and it develops less complex multi-scale geometry than found for the turbulent velocity field. In the latter case, there appears to be a tendency for the Lagrangian field to move towards a vortex-surface field of the evolving turbulent flow but this is mitigated by cumulative viscous effects

    Automatic Graphics And Game Content Generation Through Evolutionary Computation

    Get PDF
    Simulation and game content includes the levels, models, textures, items, and other objects encountered and possessed by players during the game. In most modern video games and simulation software, the set of content shipped with the product is static and unchanging, or at best, randomized within a narrow set of parameters. However, ideally, if game content could be constantly and automatically renewed, players would remain engaged longer in the evolving stream of content. This dissertation introduces three novel technologies that together realize this ambition. (1) The first, NEAT Particles, is an evolutionary method to enable users to quickly and easily create complex particle effects through a simple interactive evolutionary computation (IEC) interface. That way, particle effects become an evolvable class of content, which is exploited in the remainder of the dissertation. In particular, (2) a new algorithm called content-generating NeuroEvolution of Augmenting Topologies (cgNEAT) is introduced that automatically generates graphical and game content while the game is played, based on the past preferences of the players. Through cgNEAT, the game platform on its own can generate novel content that is designed to satisfy its players. Finally, (3) the Galactic Arms Race (GAR) multiplayer online video game is constructed to demonstrate these techniques working on a real online gaming platform. In GAR, which was made available to the public and playable online, players pilot space ships and fight enemies to acquire unique particle system weapons that are automatically evolved by the cgNEAT algorithm. The resulting study shows that cgNEAT indeed enables players to discover a wide variety of appealing content that is not only novel, but also based on and extended from previous content that they preferred in the past. The implication is that with cgNEAT it is now possible to create applications that generate their own content to satisfy users, potentially significantly reducing the cost of content creation and considerably increasing entertainment value with a constant stream of evolving content

    The Numerical Simulation of Fluid Flow

    Get PDF
    This book collects the accepted contributions to the Special Issue "The Numerical Simulation of Fluid Flow" in the Energies journal of MDPI. It is focused more on practical applications of numerical codes than in its development. It covers a wide variety of topics, from aeroacoustics to aerodynamics and flow-particles interaction

    Enhancement of engine simulation using LES turbulence modeling and advanced numerical schemes

    Get PDF
    The goal of this study is to develop advanced numerical models and algorithms to improve the accuracy of engine spray combustion simulation. This study developed a large eddy simulation (LES) turbulence model and adaptive mesh refinement (AMR) algorithms to enhance the accuracy and computational efficiency of engine simulation. The LES approach for turbulence modeling is advantageous over the traditional Reynolds Averaged Navier Stokes (RANS) approach due to its capability to obtain more detailed flow information by resolving large-scale structures which are strongly geometry dependent. The current LES approach used a one-equation, non-viscosity, dynamic structure model for the sub-grid stress tensor and also used a gradient method for the sub-grid scalar fluxes. The LES implementation was validated by comparing the predicted spray penetrations and structures in a non-evaporating diesel spray. The present LES model, when coupled with spray breakup and detailed chemistry models, were able to predict the overall cylinder pressure history, heat release rate data, and the trends of NOx and soot emissions with respect to different injection timings and EGR levels in a heavy-duty diesel engine. Results also indicated that the LES model could predict the unsteadiness of in-cylinder flows and have the potential to provide more detailed flow structures compared to the RANS model. AMR algorithms were also developed to improve transient engine spray simulation. It is known that inadequate spatial resolution can cause inaccuracy in spray simulation using the stochastic Lagrangian particle approach due to the over-estimated diffusion and inappropriate liquid-gas phase coupling. Dynamic local mesh refinement, adaptive to fuel spray and vapor gradients, was developed to increase the grid resolution in the spray region. AMR was parallelized using the MPI library and various strategies were also adopted in order to improve the computational efficiency, including timestep control, reduction in search of the neighboring cells on the processor boundaries, and re-initialization of data at each adaptation. The AMR implementation was validated by comparing the predicted spray penetrations and structures. It was found that a coarse mesh using AMR could produce the same results as those using a uniformly fine mesh with substantially reduced computer time. The parallel performance using AMR varied depending on the geometry and simulation conditions. In general, the computations without valve motion or using a fine mesh could obtain better parallel performance than those with valve motion or using a coarse mesh

    Mixing enhancement by dual speed rotating stirrer

    Get PDF
    Stirring is a well-known means of fluid mixing due to the emergence of complex patterns in the flow, even at low Reynolds numbers. In this work, we consider a stirrer rotating along a circular trajectory at constant speed. The fluid flow, considered incompressible, inviscid and two dimensional (in a circular container), is modeled by a point vortex model consisting of a vortex rotating in a circular container at constant angular speed. The mixing problem is addressed by considering the Hamiltonian form of the advection equations formulated in a frame of reference moving with the vortex. The dynamics of passive fluid particles is considered using dynamical systems theory. The bifurcation diagram reveals the presence of degenerate fixed points and homoclinic/heteroclinic orbits, whose nature varies for different parameter values. By considering an initially concentrated set of marker particles and using the various structures of the phase space in the bifurcation diagram, we produce a complex dynamics which, in turn, can generate efficient mixing. The latter is studied using both numerical simulations and physical experiments. A perturbation study for one particular structure for the phase space shows the presence of a transverse homoclinic orbit as well as resonances, or a set of closed trajectories

    Numerical simulation of separated flows

    Get PDF
    A new numerical method, based on the Vortex Method, for the simulation of two-dimensional separated flows, was developed and tested on a wide range of gases. The fluid is incompressible and the Reynolds number is high. A rigorous analytical basis for the representation of the Navier-Stokes equation in terms of the vorticity is used. An equation for the control of circulation around each body is included. An inviscid outer flow (computed by the Vortex Method) was coupled with a viscous boundary layer flow (computed by an Eulerian method). This version of the Vortex Method treats bodies of arbitrary shape, and accurately computes the pressure and shear stress at the solid boundary. These two quantities reflect the structure of the boundary layer. Several versions of the method are presented and applied to various problems, most of which have massive separation. Comparison of its results with other results, generally experimental, demonstrates the reliability and the general accuracy of the new method, with little dependence on empirical parameters. Many of the complex features of the flow past a circular cylinder, over a wide range of Reynolds numbers, are correctly reproduced
    corecore