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ABSTRACT
MIXING ENHANCEMENT BY DUAL SPEED ROTATING STIRRER

by
Arnaud Goullet

Stirring is a well-known means of fluid mixing due to the emergence of complex
patterns in the flow, even at low Reynolds numbers. In this work, we consider a stirrer
rotating along a circular trajectory at constant speed. The fluid flow, considered
incompressible, inviscid and two dimensional (in a circular container), is modeled by
a point vortex model consisting of a vortex rotating in a circular container at constant
angular speed. The mixing problem is addressed by considering the Hamiltonian
form of the advection equations formulated in a frame of reference moving with the
vortex. The dynamics of passive fluid particles is considered using dynamical systems
theory. The bifurcation diagram reveals the presence of degenerate fixed points and
homoclinic/heteroclinic orbits, whose nature varies for different parameter values. By
considering an initially concentrated set of marker particles and using the various
structures of the phase space in the bifurcation diagram, we produce a complex
dynamics which, in turn, can generate efficient mixing. The latter is studied using
both numerical simulations and physical experiments. A perturbation study for one
particular structure for the phase space shows the presence of a transverse homoclinic

orbit as well as resonances, or a set of closed trajectories.



MIXING ENHANCEMENT BY DUAL SPEED ROTATING STIRRER

by
Arnaud Goullet

A Dissertation
Submitted to the Faculty of
New Jersey Institute of Technology and
Rutgers, The State University of New Jersey — Newark
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Mathematical Sciences

Department of Mathematical Sciences, NJIT
Department of Mathematics and Computer Science, Rutgers-Newark

May 2004



Copyright (©) 2004 by Arnaud Goullet
ALL RIGHTS RESERVED



APPROVAL PAGE
MIXING ENHANCEMENT BY DUAL SPEED ROTATING STIRRER

Arnaud Goullet

Dr. Nadine N. Aubry, Dissertation Advisor Date
Distinguished Professor and Chair of the Mechanical Engineering Department,
NJIT, Newark NJ

Dr. Denis Blackmore, Committee Member Date
Professor of Mathematical Sciences, NJIT, Newark NJ

Dr. Lou Kondic, Committee Member Date
Associate Professor of Mathematics, NJIT, Newark NJ

Dr. Bemetrius Papageorgiou, Committee Member Date
Professor of Mathematical Sciences, NJIT, Newark NJ

Dr. Michael Siegel, Committee Member Date
Associate Professor of Mathematical Sciences, NJIT, Newark NJ member



BIOGRAPHICAL SKETCH

Author: Arnaud Goullet
Degree: Doctor of Philosophy
Date: May 2004

Undergraduate and Graduate Education:

e Doctor of Philosophy in Applied Mathematics,
New Jersey Institute of Technology and Rutgers University , Newark, NJ, 2004

e Post-Graduate diploma in Theoretical Physics,
Centre de Physique Théorique, CNRS , Marseille, France, 2000

e Bachelor of Science and Master in Physics,
Université GrandMont, Tours, France, 1998-1999

Major: Applied Mathematics

Presentations and Publications:

"Mizing enhancement by dual speed rotating stirrer” presented at the 14th U.S.
National Congress of Theoretical and Applied Mechanics at Blacksburg
(Virginia) June 2002.

”Mizing enhancement by dual speed rotating stirrer” presented at the APS Division
of Fluid Dynamics 55th Annual Meeting at Dallas (Texas) November 2002.

"Chaotic Mizing with a single stirrer” presented at the APS Division of Fluid
Dynamics 56th Annual Meeting at East Rutherford (New Jersey) November 2003.

”Microfluidic Mizing Using Time Pulsing” AIMS’ Fifth International Conference
on Dynamical Systems and Differential Equations. Wednesday June 16 2004-
Saturday June 19 2004. Department of Mathematics and Statitics California
State Polytechnic University Pomona. (On behalf of Dr. Nadine Aubry, New
Jersey Institute of Technology).

v



To my parents

and sisters Valérie and Maryline.



ACKNOWLEDGMENT

I would like to thank my advisor, Dr. Nadine Aubry, for her support during the past
years. It was a great and valuable experience for me to be under her supervision.
From the beginning of my stay at NJIT, she helped me more than I could have asked
for.

I would like to thank my committee members, Professors D. Blackmore, L.
Kondic, D. Papageorgiou and M. Siegel whose very useful comments and suggestions
led to significant improvements of my Ph.D. dissertation.

I would like to extend my gratitude to Dr. Ahmed Ould El Moctar, Mr. John
Batton and Mr. George barnes without whom the experiments would not have been
possible.

I would like to thank Drs. Ricardo Lima and Michel Vittot from the Centre de
Physique Theorique, Luminy, Marseille, France. I had my first classes in Dynamical
Systems Theory from them while I was studying for my Marster’s degree in France.
They raised my curiosity and interests in Dynamical Systems Theory and showed me
how interesting this field of research can be.

I would also like to thank my fellow graduate students, more specifically, Ahmed,
Christina, Jyoti, Lin, Nick, Eliana, and Evros for being such good friends.

Finally, I would like to thank my parents and my sisters, Valérie and Maryline,
for their support. My parents always trusted me and most of all they always gave me

the freedom of choice in everything.

vi



TABLE OF CONTENTS

Chapter
1 INTRODUCTION . . . . . et e e e e e e e

2 DESCRIPTION OF THEPROBLEM . ... ................
2.1 Hamiltonian Formalism . . . . .. ....................
2.2 Problem Description . . ... ... ... ... .. .. .. .. ...
2.3 Hamiltonian for a Vortex Rotating at Uniform Speed . ... ... ..

3 PHASE SPACE ANALYSIS . . . . .. .. . e
31 FixedPoints . . . . ... ... .. L
3.2 Stability of the Non-Degenerate Fixed Points . . . . . . ... ... ..

3.2.1 Stability of Fixed Points on the X-axis . ... ... ... ...
3.2.2 Stability of Fixed Points On the Boundary . ... .. ... ..
3.3 Bifurcation Analysis, Normal Form . ... ...............
3.3.1 Degenerate Fixed Points on the Boundary . . . . . .. ... ..
3.3.2 Degenerate Fixed Point Inside the Container . . . .. ... ..
3.4 Bifurcation Diagram for a Uniformly Rotating Vortex . . .. ... ..

4 NUMERICAL SIMULATION . .. .. .. ... .. .
4.1 Vortex Rotating at Uniform Speed . . . . . . . . ... ... ... ...
4.2 Stability of the Fixed Points . . . . ... ... .............

5 DUAL SPEED VORTEX AND CHAOS ... ... .............
5.1 Dual Speed Rotating Vortex . . . . ... ... ... ... ... ...
5.2 Numerical Simulation of the Dual Speed . . ... .. ... ... ...
5.3 Smale Horseshoe Construction . . . . .. ... .. ... ........
5.4 Islands Chains and ChaoticLayer . . . . ... ... ..........

6 EXPERIMENT . . .. .. .. . .. ettt e
6.1 Description of the Apparatus . . . . ... ... .............
6.2 Experimental Results . . . .. ... ... ... ... ..........

vii

Page



TABLE OF CONTENTS

(Continued)

Chapter Page
6.2.1 Flow with a Uniform Rotating Vortex . . . . .. ... ... .. 59
6.2.2 The Dual Speed Vortex . . . . .. ... ... .. ........ 63

6.3 Comparison of the Measure of the Mixing between Experiment and
Numerical Simulation . ... ... .. ... ............. 63
7 CHAOTIC ADVECTION USING PERTURBATION . . ........ .. 68
7.1 Symplectic Runge-Kutta Scheme . . . . . . .. .. ... ... ..... 68

7.2 Formation of Lobes, Homoclinic Tangles and Chaotic Transport . .. 73

7.3 Resonances and bifurcationcascade . . . . . ... .. ... ... ... 76
73.1 Firstfamily ... ... .. ... ... ... ... 80

732 Second family . . ... ... ... ... .. ... o 0. 84

733 Thirdfamily . . . ... ... ... ... ... .. .. ... 87

734 Fourthfamily ... .. ... ... .. ... .. ... . ... 89

735 Fifthfamily . .. ... ... ... ... ... ... . .. ... 91

8 CONCLUSION . . . . . e e e e s e e 93
APPENDIX A Canonical Transformation . . . . . ... ... ......... 95
APPENDIXB NORMALFORM ........................ 97
B.1 Generalities . . ... .. ... .. ... . ... e 97
B.2 Double Zero Eigenvalues Case (2jets) . . . . . ... ... ....... 100
APPENDIX C The Smale Horseshoe . . .. .. ................ 102
C.1 Imtroduction . . . . . .. . .. .. . . e 102
C.2 Definition . . ... ... ... e e e 102
C3 Invariant Set : A . . . . ... ... o o 103
C.4 Symbolic Dynamics . . . . .. ... ... ... ..., 108
C4.1 Generalities . . . . . ... ... ... o o 108

C.4.2 Properties of the shiftmape . . . . .. .. .. ... ... ... 109

C.5 fand o are topologically conjugate . . ... ... ........... 111

viii



TABLE OF CONTENTS

(Continued)
Chapter Page
C51 Definition. . . . . .. ... ... e 111
C.5.2 Propertiesofthemap ®. . . . .. .. ... .. ......... 112
C6 Conclusion . . . . . ... ... . e 113
REFERENCES . . . . . . . . e e e 114



LIST OF FIGURES

Figure
1.1 Evolution of a Blob of Dye with a Time dependent Laminar Flow [46]. .
1.2 feeding of biological cell using chaotic advection. . . .. .........
2.1 Schematic for the problem. . .. ... ... ... .............
2.2 Streamlines fora fixed vortex. . . . . .. ... ... ... 0.
2.3 Schematic for the case of a fixed vortex . . ... ... ... .......
3.1 Bifurcation diagram in the parameter space (b,3) . . . . . ... ... ..
3.2 Bifurcation diagram for the normal form (3.30) at the degenerate fixed
point (-1,0). . .. ...
3.3 Bifurcation diagram for the normal form (3.30) at the degenerate fixed
point (+1,0). . . . .. L
3.4 Bifurcation diagram for the normal form (3.55). . . . ... ... ... ..
3.5 Phase space dynamicsin REGIONL . . ... .. ... ..........
3.6 Phase space for transition from REGION Ito REGIONIL. . . . ... ..
3.7 Phase space dynamicsin REGIONIL. . .. .. ... ...........
3.8 Phase space for the transition REGION II-REGION IIL. . . .. ... ..
3.9 Phase space dynamicsin REGIONIIL. . . . ... ... ... .......
3.10 Phase space for transition REGION III-REGION IV. . . . . ... .. ..
3.11 Phase space dynamics in REGIONIV. . . . ... ... ... .......
3.12 Frame of reference of the vortex R,,. . . . . . . . . . . . . ... .. ...
3.13 Fixed frameofreference R. . . . . . .. .. ... ... . ... ...,
4.1 Relative error of the Hamiltonian along numerical trajectories versus the
initial condition on the X-axis for the different regions I, IL, III, IV . .
4.2 dashed line fitting curve, solid line numerical data. . . . . . .. ... ..
4.3 Comparison of the eigenvalues of the saddle points between numerical
simulations and theory . . . ... .. ... ... ... . 000y
44 Evolutionintimeofablob. . .. ... ... ... .. ... . ...
51 DualSpeed . . . . . .. . .. e



LIST OF FIGURES

(Continued)
Figure Page
5.2 Schematic of the mapping f for a dual speed rotating vortex . . . . . .. 48
5.3 Evolution of a blob of dye with adualspeed . . . . . ... ... ..... 50
5.4 Initial domain D; for the construction of the horseshoe . . . . . . .. .. 52
55 S1=fi(D)NDrand So=fi(D1)NDy .. . . oo oo 52
56 DiNf(D1) - o o oo e 53
5.7 2 first steps (forward) of the construction of the horseshoe . . . . .. .. 53
58 Stochasticlayer . . . . . .. ... ... .. ... o oo 55
5.9 Magnification of the stochasticlayer . . .. ... ... ... ....... 55
6.1 Apparatus. . . . . . . . . ... e e e e 57
6.2 Comparison between experiment and theory for the four different flow
patterns . . . . . .. oL L e e 62
6.3 Digital treatment of the experimental picture . . . . .. ... ... ... 64
6.4 Relative covering of the dye for different protocols of mixing with 8 = 0.24 65
6.5 Comparison numerical simulation and experiment for 8 = 0.24 and 7/2
counterclockwise and n/4 clockwise . .. ................ 66
6.6 Comparison numerical simulation and experiment for 3 = 0.24 and 7 /4
counterclockwise and /2 clockwise . . . ... ... .......... 67
7.1 Drift in the energy with a Runge-Kutta scheme of 8th order . . . . . . . 68
7.2 Drift in the Hamiltonian versus the time h for three different symplectic
schemes. . . . . . . . . L e 73
7.3 Unperturbed homoclinicorbit . . . . .. .. ... ... ... ... ..., 74
7.4 Transverse intersection unstable/stable manifold . ... .. .. I 74
7.5 Numerical simulation of the transverse homoclinic orbit . . .. ... .. 75
7.6 Stochasticregion . . . . ... ... ... ... ... 76
7.7 Poincarésection. . . . . . . . . . .. i e e 77
7.8 Distance of the returning point versus the number of digits. . . . .. .. 78
79 pversusrtesonance mm:l. . . . . . .. ..o e 79

xi



LIST OF FIGURES

(Continued)

Figure

7.10 First family: Resonance 1:1 . . . . ... .. ..
7.11 First family: Resonances 2:1, 3:1 and 4:1 . . . .
7.12 First family: Resonances 5:1, 6:1 and 7:1 . . . .
7.13 First family: Resonances 8:1 and 9:1 . . .. ..
7.14 Second Family: Resonance 1:1 . .. .. .. ..
7.15 Second family: Resonances 2:1, 3:1 and 4:1 . .
7.16 Second family: Resonance 5:1, 6:1 and 7:1 . . .
7.17 Second family: Resonance 8:1 and 9:1 . . . ..
7.18 Third family: Resonances 1:1, 2:1 and 3:1 . . .
7.19 Fourth family: Resonance 1:1 . . .. .. .. ..
7.20 Fourth family: Resonance 2:1, 3:1 and 4:1 . . .
7.21 Fourth family: Resonance 8:1 . . .. .. .. ..
7.22 Fifth family: Resonance 2:1 . . ... ... ...
7.23 Fifth family: Resonance 3:1 . . . .. .. .. ..
8.1 Schematic of a quadripolar flow . . . . . .. ..
C.1 Theactionof fonD ... ...........
C.2 Theactionof flonD .............
C3 a) f(D),b) fA(D),c)DNF(D)NFED) . ...
Ca4 unfO)NFAD)NFD) ...........

C5 a) f7(D), b) f*(D), ) DN f~HD)N f~*(D)

xii



CHAPTER 1

INTRODUCTION

The problem of fluid mixing is almost an every day situation, where the most trivial
example is the homogeneization of sugar in a cup of coffee.

However even in this simple situation, the turbulence created by the spoon, or stirrer,
facilitates the mixing, and the flow is intrinsically complex with swirls and eddies of
different sizes. The issue of fluid mixing becomes more challenging when turbulence
is absent, or quasi-absent. Such a situation occurs for a fluid with high viscosity, or
for small scale problems where the Reynolds number is small. In this case, natural
molecular diffusion eventually accomplishes mixing. However, even at micro-scale,
mixing by diffusion is by far too slow for industrial applications. For example, at
room temperature, the coefficient of diffusion in water is about 10~1'm?2/s, and the
time constant for diffusion along a length of 100um is 103s ~ 16min.

Before considering a problem of mixing in a laminar flow, referred to as laminar
mixing, there is a need to define what we mean by mixing. Even though the question
looks simple, the literature is unfortunately not uniform. Back in the middle of the
20t century, the distinction of two different mechanisms ”stirring” and ”mixing” is
pointed out, involving two different physical processes [13].

Considering a small volume of fluid, or initially localized blob of fluid, ”stirring”
refers to the mechanical process, or macro-scale dynamics of the flow, which will
spread the blob of fluid more uniformly within a container. This spreading is achieved
by stretching and deforming the blob. On the other hand, mixing is a small-scale
process, based on diffusion across intermaterial surfaces. Stirring facilitates or enhances
mixing by ”producing” more intermaterial area. However, in some areas of research,

e.g. chemical engineering, the word "mixing” is sometimes used without any consideration



of the diffusion phenomenon. There is also a mathematical definition of mixing in
dynamical systems theory [26].

In this work, we will use the words ”stirring” and ”mixing”, without any
distinction, to mean the spreading of a blob of fluid within some given domain. In our
work, this spreading will lead to a more uniform distribution of an initially localized
blob and it will be facilitated by an underlying chaotic laminar flow. In particular,
We will say that the mixing is "good” if an initially localized blob of dye will spread
”everywhere” within the container. However, we notice that the presence of a chaotic
flow will not necessarily imply that the spreading will take place everywhere or even in
a uniform manner, in contrast with the mathematical definition where mixing implies
ergodicity [15],[26].

Experimentally, studies of mixing have been performed using visualization techniques
which have allowed one to follow the evolution of a blob of fluorescent dye. The
different patterns of the flow are then visible, showing in certain cases very complex
dynamics, including the multiple eddy structure of turbulence and the folding/stretching

of materials lines typical of chaotic advection in laminar flows [46],[31].
C | F

Figure 1.1 Evolution of a Blob of Dye with a Time dependent Laminar Flow [46].



3

From a theoretical point of view, it has been shown that the Hamiltonian
formalism applies to point vortex flows and that chaotic material lines which fold
and stretch can be particularly efficient at enhancing mixing. This approach through
which a set of ordinary differential equations are solved uses dynamical systems theory
to study the structure of the flow.

In this context, it is well known that a one degree of freedom system is incapable
of exhibiting chaotic behavior. However, the introduction of time dependency into
the Hamiltonian, or system, can lead to a complex dynamics.

A simple two-dimensional model of stirring [1] consists of a point vortex, which
stirs a fluid inside a circular container. This model is based on a vortex jumping
back and forth between two fixed positions. Not only this system has been shown
numerically to exhibit chaotic behavior, but also an explicit construction of a Smale
Horseshoe [15], [38], [47] has actually been possible [36]. The term ” chaotic advection”
then started to be used to characterize the chaotic behavior of material lines in such
flows, while the flow itself remains simple and laminar. Experimental, as well as
analytical and numerical studies, have been performed on other related problems
(16], [36].

For some time, it was thought that the presence of either vorticity or saddle
connection (with non-zero circulation) was responsible for the generation of chaotic
advection. However, an example based on a pulsed source-sink system with zero
circulation everywhere was shown to exhibit chaotic advection as well [20].

Previous studies have revealed the importance of the kinematics of the flow
itself for inducing good mixing. Whether the flow is a Stokes flow [3],[12], [37] or a
potential flow [1],[21], the key ingredient leading to a chaotic advected particle path is
the complexity of the material lines in space and time [30], and not the force balance

in the momentum equation [2].



Mixers can be classified in two groups. The first group consists of passive mixers
which do not require any external source of energy. For instance, the flow through a
channel with some special geometry, like a 3D-serpentine [27] can facilitate mixing.
Likewise, straight channels with ribs have also shown some enhancement [41]. In
contrast, mixers in the second group require the injection of

an external source of energy. For example, it was shown that a magnefic field
used to create vortices act like a stirrer in the fluid [16]. This can be done for a
conducting fluid or by adding magnetic particles or beads to the fluid [43]. Our work
belongs to the second category. It requires the generation and control of vortices to
stir the fluid.

Applications of enhanced mixing via chaotic advection are numerous. Here, We
restrict ourselves to the description of two examples only. The first one consists of
the generation of manufactured layer composites in material processing [50] through
chaotic advection whereby the layers are induced by chaotic (stretching/folding)
material lines. Composite materials with thousands of layers have been produced
successfully, with a layer thickness as small as 200 nm. The second example is in
the area of biology, where it is proposed that the feeding of cells in a cavity can
be achieved with a pulsating flow capable of inducing a chaotic dynamics from the
breaking of a separatrix [18, 17] (see Figure (1.2)). A fluid with the appropriate
nutrients flows above the cavity, acting as a perfusion.

One of the latest developments is a topological approach to determine if the
stirring protocol itself implies chaos or mixing without any consideration of the
flow itself [14]. Through mapping theory, more precisely a homotopy argument, a
criterion for chaos is derived for a circular tank stirred with three stirrers under

certain conditions.






CHAPTER 2

DESCRIPTION OF THE PROBLEM

2.1 Hamiltonian Formalism
The description of the spreading of a species in a fluid is given by the advection-
diffusion equation. A scalar field ¢, which can be the concentration of the advected
quantity satisfies
o¢

5 T V-Vo=DAg. (2.1)

The equation (2.1) uses the Eulerian representation [6] and the advecting velocity
field V(x,1) is prescribed. For a small diffusivity constant D or large Péclet number,
Pe = Y& where V and L are velocity and length of the system considered, the
advection dominates the dynamics of the flow.

An alternative way to look at the spreading of blob of fluid is the Lagrangian represen-
tation of the fluid [23]. We denote by V(z,y, z) = (u(z,y, 2),v(z, y, 2), w(z,y, 2)) and
X(t) = (2(t),y(t), 2(t)) the velocity and the position respectively of a passive fluid

particle. The advection equation becomes

dX
E = Vﬂm’d- (2.2)

A particle is said to be advected, or undergo ”passive advection”, if it is passive
with respect to the flow, i.e. of negligible mass and with no interaction with the fluid
(inert), and the particle ”adjusts” its velocity to the velocity of the fluid instantaneously,
i.e. Viia = Vparticle-

If we know the velocity field, then the study of the fluid can be performed by
solving the set of ordinary differential equations given by (2.2), which can exhibit
chaotic behavior, or Lagrangian chaos.

In a two-dimensional flow, the assumption of incompressibility, i.e V.V =0,



allows us to introduce the streamfunction ¥(z,y) such that

o
oy
ov

-5

T=u

(2.3)

y=v= (2.4)
In the case of a steady flow, the pathlines coincide with streamlines, i.e. the level
curves ¥(z,y) = constant. It is easy to realize that (2.3) and (2.4) define a Hamiltonian
problem, where the streamfunction is the Hamiltonian itself and the space variables
(z,y) are the canonical variables defining the phase space.

We assume that the flow is created by a set of NV point vortices, or a singular
distribution of vorticity. A point vortex can be considered as an idealized stirrer. We
can then write the vorticity field as :

N
w(z,y) = Z [id(z — z:)0(y — ) (2.5)

=1

where I; is the circulation, strength of the i** vortex and § is the Dirac delta function.
By taking the curl of the system (2.3)-(2.4), the streamfunction and the vorticity field

are related by the following equation:

A = —y. (2.6)

By solving (2.6), using the Green’s function for two-dimensional free space, we obtain
1 N

U(z,y) = H(z,y) = —5- D _Tslog|z -z (2.7)
i-1

where 2 = z +1y and 2; = z; + iy; the complex notation is used here for convenience.
Notice that the Hamiltonian (2.7) is expressed in a fixed frame of reference, denoted
by R.

For an autonomous system, i.e. independent of time, the Hamiltonian has one degree

of freedom, independently of the number of vortices N and is therefore integrable.
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The system can be integrated by quadratures, through action-angle variables, and
chaos cannot occur in this system [4], [15].

However, it is known that adding time dependency to such a system can produce
chaotic behavior [26]. Here, we introduce the time dependency in the position of the
vortex and consider a moving set of vortices 2;(t). Hereafter, we keep in mind that in
the mixing problem studied here, the motion is prescribed and not part of the problem:;
that is, for instance, interacting vortices are not considered. The experimentalist
imposes the motion of the vortices and their motion can be seen as a part of the
mixing protocol.

In order to study a non-autonomous Hamiltonian, i.e explicitly time dependent,
a procedure known as ”phase space extension” is used. The idea is to introduce
a new pair of canonical variables (7, E), or add a new degree of freedom to the
system to obtain an autonomous Hamiltonian. This is achieved by introducing a new
parametrization of time. The details of the procedure, especially the consequences on
the different invariants can be found in [4], [26], [42]. It is important to notice that this
phase space extension does not give any additional information about the dynamics
and the “extended” set of canonical equations used to solve the problem is equivalent
to the conventional one. For our problem, we perform the trivial parametrization

T = 7(t) = t and define the new Hamiltonian :

1 N
H(.’B,y;T,E):—Q—WZF,-]IIIZ—Z,'(T”‘I‘E (2.8)
im1

with the following Hamilton equations :

) . OH
. OH )
=~ b= (2.10)



Here 7 plays the role of time, and the equations for (z,y) are actually unchanged.
The new variable E, which is the conjugate of 7, is necessary to keep the dimension
of the phase space even, which is required by its symplectic structure.

Consequently, the study of a two-dimensional incompressible flow, with N moving

point vortices is equivalent to the following problem with the following Hamiltonian

1 N
H(:v,y;T,E)=~EF—ZFalnIz—z,~(1)|+E (2.11)
=1

and its corresponding equations

. OH . OH
T = By =25 =1 (2.12)
: OH . OH
V=" e BE=- or (2.13)

where 7" denotes the derivative with respect to the real time ¢. This system has two
degrees of freedom and may produce chaotic behavior, depending upon the motion

of the vortices.

2.2 Problem Description

We now consider the physical problem of an incompressible fluid within a circular
container of radius a. Without loss of generality, we set a = 1. The flow is generated
by a point vortex, which models the stirrer. The position of the latter, considered
fixed for the moment, is given by 2, = exp(—b + ia) (see Figure (2.1)).
By using the method of images and considering the boundary condition Hyoundary(Z,y) =
constant, whereby the container itself is a streamline, the general form of the Hamiltonian
is

r

H(x,y) = —2—111

- (2.14)

2 — g~ btia

In this case of a constant vortex, the streamlines or level curves of H(z,y) are non-

concentric circles around the vortex (see Figure (2.2)).
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with ¢(0) = 0. This equation is known in celestial mechanics, from Kepler’s problem
u — esin(u) = 7, where e is the eccentricity. A solution can be written explicitly in

terms of Bessel functions of the first kind [45] :

sm(m’) (2.19)

u(r)=1+2 Z Ju(n.e

The infinite sum is known as Kapteyn’s series which is rapidly convergent for e < 1

and still convergent for e = 1. We now adopt the Hamiltonian approach and show
that it is possible to study the same problem in a very simple way.

The problem has one degree of freedom, and is consequently integrable. It is well

known that special variables, the action-angle variables (A, ), can be found such that

the Hamiltonian depends only on the action A. We thus look for a transformation

(z,y) — (A,0) satisfying :

dz Ady =dAAdO (2.20)

where z,y, A, 8 are functions of B, ¢, which are the previously defined intermediate
variables that are not canonical. After expanding the wedge product and using the

fact that = =z, + pcos(¢),y = y. + psin(g)

00

(—dB + %d(,!;) (——dB + d¢) (—dB + %d@ A (—dB + 5499
LR LA TR I
s (oste) —comn(Ey) 020004
We choose A independent of ¢, and take
A(B, ¢) =% (%)2 (2.21)
0(B,¢) =¢ — sin(¢) (2.22)

cosh(#B)
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The equation (2.21) can be inverted :

. L 12
B=log (S.‘nh(b) 4 yfSnbe®) (2.23)

2T V2A 2A

Consequently,

r sinh(b) sinh?(b)
= — . 2.24
H(A,0) 27rlog( 7oA TV 24 +1 (2.24)

Notice that this Hamiltonian is valid for a fixed vortex only. The Hamiltonian

equations then become trivial:

. OH
= = = 2.2
A 50 0= A=cst (2.25)
. OH
with w(A) = L—=2h® ___ 4 refers to the parametrization of the circles, A €

2m 2A;72A+sinh2 ®)
[0;1/2]; A = 1/2 on the boundary (unit circle), and H(1/2,6) = 2 and A =0 on

the vortex, H(0,0) = 0o. The energy values are consistent with the ones previously
found.

In summary, the problem of the fixed vortex is trivial. In this case, a solution
can be explicitly written as an infinite sum of Bessel functions of the first kind (first
approach). By using a second (Hamiltonian) approach, the Hamiltonian itself can be
simplified through the action-angle variables, which leads to a very simple solution.
It is worth mentioning, however, that this simplification has a cost: the canonical
transformation used to obtain the action-angle variables can be difficult to find. In
any case, it is easy to show that the case of a fixed vortex leads to very simple
trajectories and that in this situation the flow is not chaotic.

We now consider the physical problem in which a stirrer rotates within the fluid
domain along a circle concentric with the circular container. For this, we introduce the
azimuthal motion of the vortex through the time dependence of the angle a — af(t),

which makes the Hamiltonian time dependent. In order to account for this time
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dependency, we extend the phase space as before and write the new Hamiltonian in

the form
H(z,y;7,E) = —% In ZZ——_%;% +FE (2.27)
with the corresponding Hamilton equations
i:%,g:—%g;%:-g—gzl,l?:—?;- (2.28)

For the sake of simplicity, it is useful to study the flow dynamics in the frame of
reference of the vortex, denoted hereafter by R,. For this, we introduce the change
of variables (z,y;7,E) — (X,Y;7, F) defined by the rotation Z(r) = X +1iY =
z()e~(). The relation between the old and new canonical variables needs to satisfy

(see Appendix A)

dz Ady+dr AdE =dX AdY +dr AdF (2.29)

where X, Y, F are functions of (z,y, 7). Looking for a solution such that F = E +

f(z,y,7) and expanding the wedge products, we compute that

0X 0X BX BY 6Y oy
+dr /\(dE+gf 6fd +6de)
0X oYy O0XoY 0X 0y 0X0Y
oty oy o N o o oy BN
8X dY 98X oYy of
(Ey—g; - E%)dy/\d7'+ dr AdE + 6de/\d£L’
of
+ =—dr Ad
By Y

with X = zcos(a(r)) + ysin(a(r)), Y = ycos(a(r)) — zsin(a(r)). After some

simplification, equation (2.29) becomes :

0a  Of Oa  Of
dxr Ndy + d = dy +dr NdE — (— - — (= i
t ANdy +dr ANdE = dx ANdy +dr ANdE (BT:BJrax)da:/\dT (8Ty+6y)dyAdT
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leading to the following scalar partial differential equations for the function f(z,y, 7).

?_J: Ba('r)

Oz or (2:30)
of  0a(r)
3= o (2.31)

Integrating equations (2.30) and (2.31) leads to the following expression for f(z,y)

13a(7')( 9 1 60:(1') 122 = __1da(r)

.32
2D zE. (2a)

flz,y) = ¥ = -

It follows that, in the moving frame of reference R,, the new Hamiltonian takes the

form
H(X,Y;7,F) = —é% In ZZ— e’ ;a‘;(ﬂ 12 + (2.33)
with the Hamiltonian equations
X:%g,}'f_ g§;+—gj; 1,F=—%—Ij. (2.34)

So far, we have not made any assumption on a(t). In the following section, we
consider the simplest time dependency which allows us to make a complete analysis

of the phase space.

2.3 Hamiltonian for a Vortex Rotating at Uniform Speed
Since the first derivative of a(t) appears in (2.33), we take the particular case of a
vortex rotating along a circular trajectory within the container at constant angular
velocity. In this case, the time dependency of the angle o reduces to a(t) = wt, where
w is a constant corresponding to the rotational vortex speed. This implies that the
"time” dependent term in the Hamiltonian (2.33) expressed in the moving frame of

reference becomes a constant, thus allowing us to recover an autonomous system.
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We have

I |Z-e?
H(X,Y;T,F):—Q—lnl—z—_e—eb—

78

+ g |Z? + F. (2.35)

After introducing the dimensionless time variable £ = t/w, the Hamilton equations

take the form

2sinh(b)(X — cosh(b))

X=v 1+%((X—e‘b)2+Y2) ((X——e")2+Y2j (2:36)
. sinh(b) (Y2 - (X —e®) (X —¢*))

N Dl (e eeD B
s w (2.38)
F= 0 (2.39)

where ” ° ” denotes d/dt, and 8 = “F is a dimensionless parameter which is the
ratio of two rotational speeds. One can clearly see, in this case, that the phase
space is composed of two independent subspaces (X,Y) and (7, F) and that the
system is integrable since it consists of two integrable (of one degree of freedom) and
independent subspaces. In the subspace (1, '), in which we refer to the "action” F
and ”angle” 7 variables, the dynamics is trivial. It is possible, at least theoretically,
to find the action-angle variables in the subspace (X, Y'); unfortunately, they have not
been found and we restrict our study to the subspace (X,Y’). Even though the full
problem depends on three parameters (b, I', w), the subspace (X,Y’) reduces to a two
parameter problem (b, 3). This implies that if we consider two different experiments
with the same 3 = 47, the structure of the flow in the subspace (X,Y) will be the
same, but the dynamics will evolve faster or slower according to the value of w in
each experiment, i.e 7 = w.

A complete analysis of the dynamics in the latter subspace (X,Y’) fully describes

the flow in the physical plane within the container. In order to carry out such an
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analysis, we examine the fixed points Z* = X* + ¢Y™* of the system, together with
their stability properties. As we will see in the next section, the number and nature
of the fixed points depends on the particular location in the parameter space (b, ).
This leads to a bifurcation diagram where the dynamics differs in various regions of
the bG-plane.

Hereafter, the position of the vortex in the rotating frame of reference, centered at
(0,0), is denoted by (X,,0) = (e~b,0). In addition, we restrict the study of the
dynamics in the subspace (X,Y) to the unit disk, corresponding to the physical fluid

domain.



CHAPTER 3

PHASE SPACE ANALYSIS

For an incompressible flow created by a uniformly rotating vortex, the system of

equations describing the motion of a passive particle within the unit disk are

v— ylia1 2sir;h(b)(X —cosh(b))2 3.1
R I CEoeTs) B
sab(8) (V2 - (X — ) (X — &)) (32)

Y=o X %(( e?)’ +Y2) ((X—-e”)2+Y2).

3.1 Fixed Points
In this section, we concentrate on finding the fixed points Z* = X* + Y™ of the
Hamiltonian equations (3.1), (3.2); that is, locations in the container where fluid
particles are at rest in the moving frame of reference R,. Notice that such fixed
points correspond to limit cycles in the fixed frame of reference R, corresponding to
fluid particles traveling along circular trajectories with angular velocity w for a fixed
observer. Fixed points (X*, Y*) for an observer traveling with the vortex are obtained

by setting X and Y equations (3.1),(3.2) to zero, that is

2 smh(b)(X * — cosh(d))

B v (7
%

=0 (3.3)

sinb(5) (Y,.2 (3 - &) (x+ - )

(( e?) + Y*2) ((X ~#)’ 4+ Y*2)

Looking for solutions of the system of algebraic equations (3.3),(3.4), we first concentrate

*

—0. (3.4)

on the family of fixed points located on the X-axis, i.e. such that Y* = 0, which
systematically satisfy (3.3). Equation (3.4) immediately leads to the following condition

for such fixed points:

FX*) = X*(X* — e®)(X* — &) + %sinh(b) 0. (3.5)

18
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This third degree polynomial has in general three roots. However, the particular
values of the two parameters b and 3 determine the number and type of roots, and
consequently the structure of the phase space. The position of the local maxima and

minima of the cubic polynomial are independent of 3 :

local maxima : X7 = 3(2cosh(b) — {/2cosh(2b) — 1) € (-1, X,) (3.6)
local minima : X. = 3(2cosh(b) + /2 cosh(2b) — 1) > 1. (3.7)

For the case of three real roots, i.e. f(X?) > 0 and f(X.) < 0, one root will be
located at X* > X_. > 1 outside the domain [—1,1]. Consequently there will be at
most 2 roots on the interval [—1,1].

A degenerate root (double root) located at X} can be found for a particular value of
B:

sinh(b)

Be = B() =~ —FoompyxTr x= < (3.8)

Remark: Varying the values of 3 is equivalent to shifting the cubic polynomial f(X*)
up and down .

For values of 3 such that 3 < (., we have two simple roots (f(X}) > 0), one in the
interval [0, X.] and the other one in [X,, X,]. For 8. < 8 < 0, there is no fixed point
on [—1,1].

For 3 > 0, we can substitute X* = %1 into (3.5), i.e. the fixed points on the boundary,

and find a relation between 3 and b :

For X*=+41= 34, = %coth(g) >0 (3.9
1 b
For X* =-1=> ﬂ_l = —2-ta.nh(—2-) > 0. (310)

For 8 < (-1, we have no roots on [—1,1]. For 8 > (-1, we have only one root on

[—1, 1] starting at X* = —1 and moving to the right as 3 increases. Then for 3 = (,;,
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a second root appears at X* = +1. Therefore, for 3 > 3;;, we have two simple roots
in [—1,1].

A second family of fixed points exists on the unit circle, i.e Z* = €. By performing a
change of variables into polar coordinates and noticing that the circle is an invariant

curve, the equation 6 = 0 leads to

sinh(b)
28

cos(f) = (cosh(b) — ) valid for (-1 < < B (3.11)

where 0 is the angle with respect to the X-axis. Consequently, in the range 8 €
(8-1, B+1), we have two fixed points on the boundary located symmetrically with
respect to the X-axis.

Remark: The relation (3.5) is not valid for the particular parameter value 3 = 0.
However, in this case, we have a fixed vortex, i.e w = 0, and therefore there exists no
fixed point within the fluid domain.

In summary, we have in the fluid domain within the unit circle

e one fixed point
double root : (X?,0) for 8= 4.
simple root : (—1,0) for 8= 3_;

e two fixed points (simple roots)
X1 € [Xy,+1] and X3 € [-1,X?] for B > B1
Xt € [-1, X and X3 € [ X2, X,] for B < ..

e one fixed point (simple root) (X*,0) where X* € (-1, X?) and two symmetrical
fixed points on the boundary at Z* = €* where 0 is determined by Equation
(3.11) for B4 < B < B41.

The relations between 3 and b, (3.8),(3.9) and (3.10), correspond to three
distinct curves in the (b, 3) -plane (see Figure (3.1)), defining four distinct regions
with their own phase space dynamics.

We will return to the description of this bifurcation diagram after studying the

stability of the fixed points and the bifurcations.
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From Equations (3.1)-(3.2), we can show the following relation between the off-

diagonal elements of the Jacobian matrix

J12 = J21 + 2. (3.14)

By considering the eigenvalues of the Jacobian matrix at the various fixed points,
in the case where the latter are hyperbolic (i.e. with no eigenvalues with zero real
part), we can determine locally the dynamics of the solution near the fixed points

and understand the local structure of the streamlines inside the container.

3.2.1 Stability of Fixed Points on the X-axis

By substituting Y* = 0 into Equation (3.13), the Jacobian matrix can be reduced to:

, 0 Fa(X*(6,6),b, ) a15)

Jl2(X*(th)ab76) -2 0

where

2 sinh(b)(X* — cosh(bd))

J12(X*(b7 ﬂ))bv ﬂ) =1+ ﬂ(X' _ Cb)z(X* _ e—b)2'

(3.16)

In this case, X*(b, 3) is a solution of Equation (3.5), explicitly given in Appendix A.
The eigenvalues of the Jacobian matrix can then be fully determined by using

(3.5) to obtain

_ (X*2—1)(3X*? — 4X* cosh(b) + 1)

A2 (X* _ eb)2(X* _ 6—b)2

(3.17)
which is formally a function of the dimensionless parameters b and 3 only, since X*
is itself a function of these two parameters.

By considering the sign of the numerator of Equation (3.17), we can show that
the right-hand side (rhs) of equation (3.17) is negative on the segment [—1, X?], so

the fixed points are elliptic, or centers, on this interval and positive on the segment
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(X2, X,) U (Xy,41), so the fixed points are hyperbolic, or saddle points, on this

interval. In general, the above elliptic points have a two-dimensional center eigenspace,

while the saddle points have a one-dimensional stable eigenspace and a one-dimensional
unstable eigenspace.

From equation (3.17), we find three cases for which the Jacobian matrix has a double

zero eigenvalue. These degenerate cases correspond to specific fixed points in the

phase plane. More precisely, those located at

e (~1,0) for =, = 1 tanh(})
* (X,0) for g =20,
e (+1,0) for B = B41 = }coth(})

Since for these fixed points the eigenvalues have zero real part, we cannot linearize
the system as £ = J¢ (Hartman-Grobman theorem). Another approach such as that
using Normal Forms is needed in order to determine the flow locally around these

fixed points as well as their bifurcations, if any (see Section 3.3).

3.2.2 Stability of Fixed Points On the Boundary
The second family of fixed points on the boundary for the particular interval §_; <
B < B4 are two fixed points located symmetrically to one another with respect to

the X-axis and moving along the boundary as 3 varies. Their position is given by

sinh(b)

cos(0) = (cosh(b) ~ 53

) valid for .1 << ﬂ+1 (3.18)

where 6 is the angle with respect to the X-axis.

The corresponding eigenvalues are A;. and Ay given as

Ao =—4 (,B — %coth (g)) (ﬂ — —;—tanh (-;-)) ) (3.19)

On the 3 interval considered here, the right hand side of Equation (3.19) is always

positive. Consequently, on the boundary, the fixed points are all saddle points.
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The boundary, i.e. the unit circle, is an invariant curve in our system defining
one stable and unstable manifold of these saddle points and connecting the two saddle
points to one another through a heteroclinic orbit. Another heteroclinic orbit is found

numerically inside the container (see Figure 3.7).

3.3 Bifurcation Analysis, Normal Form
In this section, we study in detail the degenerate fixed points, i.e with double zero
eigenvalues, and their bifurcations. This case is known as Takens-Bogdanov bifurcation,
named after two mathematicians who studied it independently in the 70’s [9], [44].
The degeneracy of these fixed points can lead to different bifurcation scenarios, but
the fact that our system is Hamiltonian prevents certain bifurcations from occurring.
As we will see below, this constraint will allow us to identify the right bifurcation
from the different possibilities. In Appendix (B.2), we give some details on the normal

form approach, as well as the notation that we are going to use below.

3.3.1 Degenerate Fixed Points on the Boundary

The study of both fixed points can be carried out simultaneously since they involve
the same Jacobian and lead to the same normal form. We will point out the differences
when necessary, especially in the bifurcation diagram.

The two degenerate fixed points are located at (—1,0) with 8 = _; and at (0,+1)

for 8 = (B41. Their Jacobian reduces to

0 0
A= (3.20)

-2 0

We introduce new spatial variables (u,v) with u =X + 1, v =Y (resp. u = X — 1,

v =Y), and a new time ¢’ = 2t to normalize the Jacobian. We can formally write
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the system (3.1)-(3.2) as

u 0 0 u ¥ oy’
+

l

o (3.21)
v -1 0 v 3 Gt
where ay, O; are the coefficients of the Taylor expansion of the right-hand side of the

system of ODEs starting from the second order.

In order to put the Jacobian into its Jordan form, we introduce the linear transformation

0 -1 0 1
P = and its inverse P! = . We first make the following
1 0 -1 0
u 3
change of variables: © — —n and v — &, i.e. =P
v Uj

Hence, we can write

dpl & oap| & |4 Z0PC (3.22)

@\ n 7 3 B(—n)€’

We then multiply on the left by P!

% Sl1_puap| ¢ i Za"(_")fg_ (3.23)
1 n X B(—n)¢
01
with P-1AP = J =
00
afe)_for)fe), T | 24
n 00 U] 3 Be(—n)&

In the right hand side, the second term at the quadratic order reduces to

2
fa= % (3.25)
—dén
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where we have

= ll%‘%%? >1at (—1,0) (3.26)
1 —2cosh(b)

We choose here the basis G : (2p; + ps) and py.

Consequently, the resonant term is
2
f3= “. (3.28)
—dgn

In this case, the normal form is actually equivalent to a Taylor expansion since we
kept all the terms in f; due to the choice of the basis for G,. If we make another
choice such as that described in Appendix (B.2), then the right bifurcation is more
difficult to obtain and we have to go to higher order terms in the normal form and
the unfolding. Consequently, it becomes harder to find a simpler form of the equation
than derive a regular Taylor expansion. Here is an example of the difference between a
generic normal form, and a universal (or versal) unfolding and a normal form adapted
to the problem. Since, the normal form is not unique, we choose the simplest one and
do not follow Appendix B which is more interesting from mathematical viewpoint.

It follows that the normal form up to the cubic order is given by

e
§ =n+df (3.29)
= —dén

where d is defined by (3.26). We unfold this system as follows.

= +n+dg?
§ =m+n+df (3.30)

N = pomn — d€n.

Studying this unfolded system allows us to know which bifurcations can occur in our

problem. From now on, we need to distinguish between the two fixed points although
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results for the second fixed point can be directly drawn from the analysis of the first
one and symmetry considerations. We study the possible bifurcations in the space of

parameters (y, f2)-

The nullclines of the system (3.30), i.e. £€=0and =0, are

n=—dé® — (3.31)
n=0 (3.32)
pip — d€ = 0. (3.33)

The different intersections of these nullclines will determine the fixed points.

Fixed point at (-1,0) We recall that, in this case, we can write d = lff;‘f‘i‘h(g)’) > 1.
First Case : if 1 < 0, from (3.31) and (3.32) we have two fixed points A and B

located at (m, 0) and (—-\/:m, 0), respectively. From (3.31) and (3.33), we

have a third fixed point C located at £ = up/d and n = —p2/d — u;. The eigenvalues

for the three fixed points are

e Point A :

Ao = pip — d\/ '5‘ (3.35)

Point A is a saddle point or a source if py > /—p1d.
e Point B :

A =—2d d L <0 (3.36)

Ay = pip + d‘/:% (3.37)

Point B is a saddle point or a sink if py < —v/—pd.

e Point C :
A= H2 — \/ 2[1% + ﬂld (3.38)
A = g+ \/2u% + pud (3.39)
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.2 <0
—2u2/d < 3 < 0, Saddle point
p < —2p2/d < 0, Stable Focus

. p2 =0, Center

. e >0
—2u2/d < p; < 0, Saddle point
1 < —2p2/d < 0, Unstable Focus

Second Case : if u; > 0, from (3.31) and (3.33), we only have one fixed point, which
is a saddle point. In (3.2), we give the complete bifurcation diagram in the parameter
space (i1, 2). The bifurcation we have in our system is the merging of two saddle

points with an elliptic point, i.e. a branch p; = 0 starting with g; < 0 and increasing

it to get a degenerate fixed point.
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Fixed point at (41,0) We recall that, in this case, we have d = —H‘i‘;?(h_;’) <0.
2

First Case : if p3 < 0, from (3.32) and (3.33), we have only one saddle fixed
point located at £ = pg/d and n = —ps/d — 5.

Second Case : if 3 >0

we have two fixed points A and B located at y; = \/Wi and pu; = —y/—m/d,
respectively. From (3.31) and (3.33), we have a third fixed point C located at £ = uq/d

and = —p3/d — p;. Eigenvalues for the three fixed points:

A = 2d\/ £ <o (3.40)
Ao = pip — d‘/ _T"‘ (3.41)

Point A is a saddle point or a sink if ps < v/—p1d.

e Point A:

e Point B:

A = —2d d 150 (3.42)

do=p + d\/ = (3.43)

Point B is a saddle point or a source if uy > /= d.

e Point C:
A= po — /205 + pud (3.44)
A2 = po +\2u3 + md (3.45)
e <0

—2p3/d < py < 0, Saddle point
p1 < —2u2/d < 0, Stable Focus
p2 = 0, center
. M2 > 0
—2u2/d < py < 0, Saddle point
p1 < —2p2/d < 0, Unstable Focus
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Figure (3.3) gives the complete bifurcation diagram in the parameter space
(b1, p2)-
The bifurcation we have in our system is the merging of two saddle points with

an elliptic point, i.e. branch p; = 0, starting with g; < 0 and increasing it to get a

degenerate fixed point.
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3.3.2 Degenerate Fixed Point Inside the Container
Finally, we have a degenerate case at X* = X for the particular parameter value

B = B.. This fixed point has the following Jacobian matrix

J.= (3.46)

In order to understand the dynamics around the latter fixed point X* = X7, we
introduce two new variables (u,v) with u = X — X?, v = y and a new time ¢/ = 2.
A degenerate fixed point at (X,,0) occurs for some particular value of 3. More

precisely, we can write

X — 2 cosh(b) — \/—l + 2 cosh(2b)

c 3 (3.47)
_ sinh(b)
fe= "~ X.(1+ X2 —2cosh(b)X.)’ (3.48)
The quadratic order of the Taylor expansion reads
—2 + cosh(2b))y/—1 + 2 cosh(2b) + cosh(3b)) %
b (( (2b))y/ (2b) ( ))T(:)z (3.49)
(—(—2+ cosh(2b))/—1 + 2 cosh(2b) — cosh(3b)) 55157
To simplify the formulas, we define d as
(—2 + cosh(2b))y/—1 + 2 cosh(2b) + cosh(3b)
d= 0,b . .
It follows that
2duv
fo= . (3.51)
—d(u? + v?)
The resonant term (Guckenheimer and Holmes [15]) is
0
fr= (3.52)
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and the normal form at the order O(u?) is given by :

u=v (3.53)

b = —du®. (3.54)

The description of the different bifurcations that can occur is now achieved by using

the generic unfolding (see Appendix B.2) :

U =v
(3.55)
U = py + pov — du’.

From this new system, we have two fixed points for v = 0, located at

= \'/7‘7-1 (3.56)

__
Uy = 7 (3.57)

We consider p; > 0 to restrict ourselves to the case of a real solution. Our new

Jacobian is given by

0 1
J= . (3.58)

—2d'u1’2 Ha
At (u;,0), the eigenvalues can be written as

1
= 5 (ﬂz =8/ md+p3 ). (3.59)

The eigenvalue can be imaginary if 2 < 84/21d and the fixed point will be a stable

(unstable) focus for ps < 0 (ua > 0). At (us,0), the eigenvalues are

1
/\izi(mﬂ:\/&mld+;¢§'. (3.60)

In this case, Ay is real for \f > 0 and A\; < 0. Consequently (uz,0) will always be a

saddle point.
























CHAPTER 4

NUMERICAL SIMULATION

In order to illustrate the mixing and its enhancement by a dual speed rotating
vortex, we numerically integrate the nonlinear system (2.36)-(2.37) by using the
software Matlab [29]. A Runge-Kutta numerical scheme is used to integrate the
Hamiltonian equations. We first check the accuracy of the numerical scheme by
checking the invariant or constant of motion for different initial conditions, and also
by comparing the theoretical eigenvalues of saddle points in our system with those
obtained numerically. We then give a numerical simulation of the mixing with a dual

speed vortex.

4.1 Vortex Rotating at Uniform Speed

The numerical scheme adopted here is the Runge-Kutta method using 7th order
formulas, with an order O(h®) accuracy due to a local interpolation. This is not
implemented by default in Matlab, but can be found for example in reference [49].
The function implemented by default, 4th order Runge-Kutta (ODE45), is not used
because it lacks the necessary accuracy for some invariants. We would also like to
point out that the Runge-Kutta scheme is not a symplectic integrator and consequently
it does not preserve the symplectic structure (volume preserving) of the phase space,
which may cause problems for very long time simulations. However, for the different
simulations presented in this chapter, the 8th order Runge-Kutta was sufficiently
accurate for the running time considered.

We recall that the Hamiltonian, H(X,Y, , F), is always a constant of motion.
Consequently, we can check the accuracy of our numerical scheme by comparing the
Hamiltonian along the trajectory computed numerically and its theoretical value,
which is determined by the initial condition solely. From theoretical considerations,

we know that for a constant angular speed the four-dimensional phase space is actually
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comprised of two independent subspaces. The Hamiltonian is independent of 7, and

we take F' = cst = 0 for convenience. We thus have along a trajectory:

(X —e®)?+Y?2
(X — )2 +Y?

H(X,Y)= —51;; log ( ) + -‘23()(2 +Y?) = H(Xinit, Yimie).  (4.1)

We define the maximum of the relative error as

H(X,Y) — H(X;uit, Yinit)

error = max
along trajectory

(4.2)

and take the initial condition on the X-axis [—1 : +1] with a spatial step dz = 0.1.
Avoiding the neighborhood of the vortex (since the vortex is a singular point), that is
(e™®—dz,e® +dz)), we compute the error for the different regions of the bifurcation
diagram versus the initial condition on the X-axis (see Figure (4.1)). The maximum

of the relative error is found to be about 1011,

4.2 Stability of the Fixed Points
To check numerically the stability of the hyperbolic fixed points, or eigenvalue along
the stable or unstable manifold, we use the following standard approach. We integrate
numerically (2.36) - (2.37), starting with an initial condition in a neighborhood of a
saddle point Z*, and plot the distance d(t) = |Z(t) — Z*| versus time on a semilog
scale (Figure (4.2)). For a saddle point, we expect the distance to behave like et
where § is the initial perturbation, i.e. [§| = 107!2 and X denotes the positive
(negative) eigenvalue along the unstable (stable) eigenspace. The perturbation was
found numerically to grow exponentially, with exponents very close to the eigenvalues
given by the relation (3.19). We perform a curve fitting on the semilog plot for small
d(t) numerical values, typically 107° < d(t) < 107; the slope of the fitting curve
gives us the numerical eigenvalue of the saddle point. For 3 € [—8, 8], we present the

error in the eigenvalue of the saddle points for the regions LILIV (Figure (4.3)).
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container, relatively far away from the boundary. It is expected that such an exchange

will facilitate mixing.

5.2 Numerical Simulation of the Dual Speed

We now consider the dual speed vortex with the following parameters:

pr=-5,T1=1 (5.1)

P=1,T>a=0.9. (5.2)

The initial condition for the mixing problem is a marked square blob of fluid
consisting of approximately 6000 points, all concentrated within a small area of size
1% of the container. The aim of our simulation is to study the spreading of the fluid
blob after a certain number of periods nT.

Mixing is studied by imposing two different velocities of the vortex, as we
previously described. Particularly, the parameter (3 is chosen to be 8 = -5,
corresponding to the dynamics in Regions IV, and (3, was given the value 3 = 1,
corresponding to the dynamics of region III. Notice that we chose T3 # T; in order
for the vortex to describe a full circular trajectory. That is, the vortex is going back
and forth, although, on average, it is still rotating counter-clockwise. This example
results in a quasi-uniform mixing inside the entire container, as shown in Figure (5.3).

One can clearly observe that mixing is due to the folding and stretching of the
marked blob of fluid within the container. In particular, we notice that after a few

iterations, some marked fluid reaches the vicinity of the boundary.
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D, after a certain number of iterations. It is well known that the existence of such a
closed and compact set for which each of its points is an accumulation point, referred
to as Cantor set or hyperbolic invariant set [15], [47] implies that the dynamics is
chaotic, that is sensitive to the initial condition (see Appendix C).

In our search for a Cantor set, we first observe that the dynamics of the fluid
generated by a dual speed rotating vortex can be described as the composition of
two mappings, f; and f, corresponding to (6;,71) and (B2, T2), respectively. The
resulting mapping can thus be written as f = f; o f;, with T being the difference
between the two periods T; and Ts.

For any dynamics corresponding to a value 3;, the streamlines in the frame of
reference of the vortex are closed. Each streamline has thus a period associated with
it. Any initial marked blob of fluid in between two streamlines stretches into a spiral,
while remaining confined within the space between the streamlines (see Figure (4.4)).

In order to construct the horseshoe, we choose an initial blob of fluid delimited
by four streamlines, two streamlines whose periods are shifted by some time T,
corresponding to a velocity parameter ($; and a period difference T3), and two
streamlines corresponding to ((2,T2) (see Figure (5.4)). The intersection of the two
domains define two small regions D; and D,. Notice that the four corners of D, and
D, are fixed points for the mapping f.

We now follow the dynamics of one of these regions, D;. For this, we consider
the image of D, by f;; as previously discussed, this image is a spiral between the first
set of streamlines. In search of the invariant hyperbolic set, we retain the intersection
of this spiral with D, and D, only and define S; = f;(D;)ND; and S5 = f1(D;)N Do,
as shown in Figure (5.5).

The next step consists in applying the mapping f, to S; and S3 and, once again,

we retain the intersection with D, see Figure (5.6). At this point, it is easy to realize
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everywhere in the container, thus leaving unreachable islands or invariant regions in
the flow [8],[22]. For example, we now consider the dynamics corresponding to the
values By = —6,06; = 2,71 = T; = 0.3 and take a snapshot of the location of the
marked fluid blob after each period T; this is equivalent to taking a Poincaré section
in phase space. We can observe in Figure (5.8) the appearance of islands after 10,000
iterations, which clearly reduces the mixing efficiency. Both the size and the number
of these islands depend on the particular parameter values. A systematic numerical
parameter study to investigate this dependency would be a tedious exercise and is not
included in this paper. In Figure(5.8), we can see the transient chaotic region-regular
island. This example has a periodic point of period three inside the island and on the
boundary as well. A magnification of the transient region, called the stochastic layer

or Arnold’s web [26] is given in Figure (5.9).
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Magnification of the stochastic layer
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CHAPTER 6

EXPERIMENT

An experiment has been set up at NJIT by John Batton and Ahmed Ould el Moctar,
in order to test the theoretical predictions. The different phase space regions with
their own dynamics were obtained experimentally. Experimental and theoretical
results agree well qualitatively, although differences, particularly in numerical values

at which bifurcations take place, will be highlighted as well.

6.1 Description of the Apparatus
For convenience, the experiment was set up at macro-scale in a circular container
with a radius of 2 inches and a height of 4 inches. The tank was made out of glass
to facilitate the visualization of the flow through a clear boundary (see Figure 6.1).
The stirrer is a rod of radius 1.6 mm, capable of spinning with a rotational speed of
2000 rpm. The fluid used is glycerin which has a density of 1173 Kg/m2 and the high
viscosity of 0.76 Pa.s (water 0.001 Pa.s).

The passive tracer is a fluorescent dye made up of fluorescent powder (Cole-
Palmer, Fluorescent Dye Tablets Model 295-17) dissolved in glycerin prior to performing
the experiment. This fluorescent dye is characterized by a very low diffusion coefficient
and a sharp contrast with glycerin [25]. The dye is excited by four sets of long-wave
365 nm UV lights (Fisher, model XX-015N) which originate from a square array
located directly above the container. In order to avoid the effect of surface tension,
the dye is injected about 2 mm underneath the free surface of glycerin with a syringe.

The best view of the flow was obtained by taking pictures from below the
container through a mirror, with a digital 5 Mega-pixels camera. Pictures thus
captured will be used later for comparison with the theoretical streamline patterns

as well as for mixing measurements.
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We define a Reynolds number for our system based on the parameters of the

apparatus.

_ (Qro+wr)(r —ro)

R, (6.1)

where

e 74 is the radius of the rod,

e 7 is the radius of the container,

e w is the angular velocity of the arm,
e () is the angular velocity of the rod

e and v is the kinematic viscosity of the glycerin.

Q2 ranges from 0 to 18000 RPM (Spindle motor - Buehler Model 13.65 Permanent
Magnet with AC Tachometer Output). A regulation device using a feedback action
enables the precise control of this rotating speed.

The range of w values, from 0.5 to 12 RPM, has been determined so that
turbulence does not occur behind the 2D-cylinder rod (Motor to move swing Arm -
McMaster-Carr 6331K34 Permanent Magnet DC Gearmotor). The Reynolds number
(6.1) indeed remains between 114 and 116 in the conditions of our experiments.

The computation of the value of 3 experimentally is carried out by using the

formula

B = wra®/T (6.2)

where a is the radius of the container. Throughout the previous chapters, the radius
was taken as a = 1, but for comparison with the experiment we need to consider the
relation (6.2). The strength of the vortex, T, is determined by the circulation of the

fluid around the rod, i.e. I' = §,_,v.dl = 2xQrd. It follows that our experimental 3 is

2
s= ;—rz (6.3)

D€
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With the dimensions of our apparatus being a = 5cm,79 = 1.6mm, we have g =

485.7%.

6.2 Experimental Results
In order to capture the various features of the dynamics in the different regions of the
phase space, three droplets of fluorescent glycerin were injected into the container as

initial conditions. The evolution of the droplets was then followed as time increased.

6.2.1 Flow with a Uniform Rotating Vortex

The first set of experiments were conducted for the purpose of checking the existence
of the four different phase space dynamics predicted by the theory, referred to as
Region I, II, III, IV on the bifurcation diagram Figure 6.2 displays the dynamics in
the four regions.

The reversibility of the dynamics was also corroborated experimentally with
one droplet as the initial condiiton. The inverse dynamics was produced by changing
the direction of the angular rotation (w — —w) as well as the vortex circulation
(2 — —Q), while keeping 3 unchanged (corresponding to the same flow structure but
with a reversed flow direction).

A set of experiments and the corresponding numerical simulations were run for
the purpose of comparison. The presence of viscous effects in the experiments led to
a disagreement between the values of bifurcation parameters in the theory and the
experiments. A direct comparison thus needed additional care. For this purpose, the
initial angular position of the vortex and that of the initial blob of dye were directly
measured from the experimental photos. The value of the dimensionless parameter 3
was then deduced by measuring the position of the saddle point from the experimental
visualizations. That is, the matching of parameters was performed by matching the

position of the saddle point only.
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The initial condition was composed of three different blobs along the diameter
in order to capture the various flow structures.

One can clearly observe from the experimental photographs that the flow patterns
obtained experimentally are very similar to those derived from the theory. Differences,
however, are noticeable in the bifurcation diagram, particularly in the transition
values of 3 between the different regions. We give below a table comparing the values

of B at which the transition between the various regimes occurs.

Transition Experiment | Theory
Region I-Region I1 ~ 0.2 2
Region III-Region IV ~ -0.3 -4

It is conjectured that the viscous effects neglected in the theory are responsible
for this discrepancy (of a factor of 10).

While the velocity profile of a point vortex is ~ 1/r in potential flow theory,
the high viscosity of the glycerin used in the experiments leads to a greater damping
in the velocity field. Consequently, for the same configuration, for instance in Region
I, for a given speed w, the saddle point is closer to the vortex in the experiment than
it is according to the theoretical predictions of the previous chapters.

For example, the transition between Region I and Region II occurs when the
saddle point approaches the boundary of the container. Since the position of the
saddle point is closer to the vortex experimentally, we have to decrease the parameter
B, or equivalently w in the experiment, for the saddle point to reach the boundary of
the container.

Another discrepency between theory and experiment occurs in the neighborhood
of the edge of the container. In the potential flow model, the boundary is identified
with a specific streamline. However, in a viscous flow, the no-slip boundary condition

manifests itself by a zero velocity of the fluid on the edge of the container. Consequently,
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the heteroclinic orbit joining two saddle points on the boundary in Region II of the
theoretical model is shifted toward the inside of the container in the experiment.
Finally, the experimental identification of Region III is a challenge since this
regime requires a very low speed of the arm, at the limit of the range of speeds
generated by the motor used. Although the dynamics of this region was identified, the
motion of the arm was not very smooth and the experimental streamlines somewhat

disturbed.
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6.2.2 The Dual Speed Vortex

Experiments were conducted for a dual speed vortex by considering a certain value
of B, and choosing B; = —f3;. This corresponds to fixing an angular speed of the
stirring rod and switching periodically from a clockwise to counterclockwise motion
while keeping the same absolute angular velocity. Instead of considering the time
periods T'1 and T2, we consider the angle a; or as traveled by the vortex during the
time Ty or Ty, where oy = wyT1 and a2 = woT,. Later on, a comparison of mixing

properties between a set of experiments will be made varying a; and as.

6.3 Comparison of the Measure of the Mixing between Experiment and
Numerical Simulation

In order to compare the different cases, the degree (or index) of mixing was measured

by considering the relative covering of the dye with respect to the container. A low

index, where the dye remains in a relatively concentrated area is referred to as poor

mixing while an index close to 1 corresponds to very good mixing, i.e the dye spreads

almost everywhere.

The measure is obtained by a digital treatment of the experimental photographs
(see Figure (6.3))with the software ImageJ [19).

We first convert the color picture into grey scales, the different levels of grey
corresponding to the local concentration of the fluorescent dye. We then filter the
dye from the background by setting a threshold on the grey level. The value of
this threshold is selected to capture as much as possible of the real spreading of the
dye throughout the picture when mixing occurs. The same threshold is kept for all
pictures of one experiment. By doing so, some of the regions showing a poor contrast
with the background are left out.

The measurement of the dye covering is carried out by counting the number of

pixels of the filtered dye, a function available in the software ImageJ.
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error due to the numerical scheme produces a non-periodic, complicated trajectory.
We will return to this example in Section 7.3.

One way to fix this problem is to perform a convergence study by decreasing the
time step in the Runge-Kutta scheme. However, as we will see in Section 7.3, the time
of integration required for convergence can be quite long, which makes the study too
cpu consuming. Consequently, we decided to implement a symplectic scheme based
on the Runge-Kutta approach. We give here some details about the scheme which can
be found in references [33],[34],[35]. More information about integrating Hamiltonian
problems can be found in [40], or on the Synode project [39].

The goal is to solve a set of ODE’s, more precisely the Hamiltonian equations

(2.34). We rewrite these equations in the generic form

% - f(tsY), Y(tO) =Yo (71)

where

(X\ (%{-\

Y —5%
y = f(t,y) = . (7.2)
. oH
OF

oH
\'/ \"r/
In order to integrate System (7.1), we use a time discretization, with time step

h, based on a Runge-Kutta scheme with s stages. The time discretization can be

written as

Ynt1 = Ya + 1Y bif(ts + c;h, yD) (7.3)

=1

where ”the internal stages” y@ are solutions of the following non-linear system of

algebraic equations

vy =y, + Ry af(t, + c;h,y?), i=1,...,s. (7-4)

=1
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Here the coefficients ¢; are defined by
C; = Z ;. (75)
j=1

The parameters c;, b;, a;; are chosen so that y, represents an approximation of
the Taylor expansion of the solution. In the literature, these coeflicients are given in

a table referred to as a ”Butcher Tableau” [11].

ci a1 ... Qi
(7.6)

Cg {Qs1 ... Qgg

by ... bs

We denote by ®;, a map with time step h, ®p : y, — ¥Yn+1, for the evolution of

the solution.

Definition 1 A method &, is symplectic for any h and any Hamiltonian system for
which it is applicable if its Jacobian %ﬂ satisfies
0 I
(Q(I)h)TJ(ﬁ_(bh) =J ,with J = . (77)
0z 0z
-1 0
A condition to ensure that the Runge-Kutta scheme (7.3) is symplectic (see [24],
[40]) is
biai; + bja;; —bib; =0, i,5=1,...,s. (7.8)

The internal stages require the solution of an implicit system (7.4) at each time
step. For instance, a three stage scheme will produce a system of 12 equations for our
Hamiltonian equations with the canonical variables (X,Y’; T, F). Newton’s method is

used to solve this system.
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For a nonlinear system g(x) = 0 with several variables, we recall Newton’s

method. After solving the following linear system at the n-th time step:

J& = —g where J is the Jacobian matrix of g (7.9)

we update the value of x

x®H) = x(® 4 50 (7.10)

Newton’s method is repeated until ||6?|] < 10~!. This involves a 12 by 12 Jacobian
matrix which is generated by the mathematical software, Mathematica [28], and
exported to a C-code automatically.

The algorithm is as follows :

Algorithm 1 Symplectic Scheme :
Initialization of the canonical variables : V = (X,Y; 7, F)

fort =0:h: T, do

while error > 10714 do
Compute Jacobian Matrix J (12x12)
Compute g
Solve J§ = —g {by LU Decomposition}
x < x + ¢ {Update solution}
error = ||6]|oo

end while

V < V + x {Update canonical variables}

end for

We implemented three different schemes in order to compare them and check

their respective convergence.
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The first scheme has one stage and it is of order 2; its Butcher Tableau is

111
212 (7.11)
1
This scheme is equivalent to the midpoint rule.
h 1
Yont1 = ¥Yn + hf (tn + '2"7 E(yn + Yn-i-l)) . (712)

The next scheme is 4** order with two stages, with the following coefficients

14 1 1 14 1
2 + 2V/3 4 4 4 2v3
1 1|1 1 1
2tz |1t o 4 (7.13)
1 1
2 2
The last scheme of 6% order with three stages has the coefficients
1,z 5 2,2 5 &
2 ta 36 stS 3w T3
1 |5 s 2 554
2 36~ 12 9 36 T 12
(7.14)
1_z |5 _&a 2_20 5
2 113 3 9 3 36
5 4 3
18 9 18

where ¢é; = i%\/% This scheme should be the most accurate, and is referred to as

the Gauss-Legendre method of order 6.

A convergence study for one set of parameters is given in Figure (7.2). The
following plot shows the drift in energy as a function of time step h. For smaller time
steps, the drift should be reduced since the energy or Hamiltonian is a constant of

motion.















T

However, for specific values of 2, the trajectory becomes more localized in space
and does not spread everywhere in the stochastic region. These values will be referred
to as resonances and the trajectory is periodic with period 7. This period is a multiple
of the period of the forcing term, Ty = 27 /2. Hereafter, we denote a resonance n : 1,
if the period of the trajectory is n times that of the forcing term, i.e. T = nTy.

We rewrite 2 = pw and use u as our parameter for the numerical simulations
below.

The values of p at which resonances occur are found by minimizing the distance
of the returning point in the neighborhood of the initial condition 2 after a time of
integration which is a multiple of the forcing period T;. We stop the minimization
when the distance is less than 10713, We consider the corresponding trajectory as

periodic, and the value of p is referred to as resonance n : 1.

-k
Initialpoint = |

\ _ retuming point
*A/

Figure 7.7 Poincaré section.

The tuning of the parameter p is performed automatically by a ”search program”,
given an initial guess.

Example for 1:1 resonance.
Initial Guess : 0.6. Best value (tuned value) : p = 0.63256760329605 as we tune the

parameter ¢ (or go down the digit), the distance decreases (see Figure (7.8)).
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6 8
number of digits
Figure 7.8 Distance of the returning point versus the number of digits.

Since we expect the trajectory to be periodic for these specific values, we
compute the trajectory over 400 periods with our numerical scheme.

In Figure (7.9), we display the plot of i versus the resonance n : 1, showing the
existence of five different families. For a given family, the values of p accumulate, and
seem to converge to some limit value as the resonance n : 1 increases. However, the
convergence is not exponential; a semilog plot of y versus the resonance n : 1 does not
give a straight line even for high values of n. Consequently, we cannot characterize
each family with an exponent or constant of convergence.

In order to observe the cascade of bifurcations and the period of the trajectory,
we plot the canonical variable F' versus time and give below the five different families.

This list is not exhaustive, and more families can be found.













































CHAPTER 8

CONCLUSION

From a simple protocol consisting of stirring with only one rotating vortex, we were
able to obtain good mixing within a circular container. For this, we first derived the
Hamiltonian in the frame of reference of the vortex. By studying the Hamiltonian
equations and the corresponding phase space dynamics, we produced the bifurcation
diagram in a two parameter space, the two dimensionless parameters being the relative
position of the vortex with respect to the radius of the container and the ratio of
strength to angular velocity of the vortex. Four different streamline patterns of the
flow were found, consisting of fixed points (or stagnation points) connected through
homoclinic/heteroclinic orbits. These specific trajectories correspond to separatrices
dividing the container into two or three independent regions.

The different patterns of the flow obtained numerically were compared to experi-
mental results. While a good qualitative agreement was obtained, some differences
could be discerned due to the high viscosity of the fluid used in the experiments. A
theoretical model considering viscosity could be derived and studied to identify the
effect of viscous diffusion by changing the singularity introduced by the point vortex
into a stokeslet (3], [37].

The difference between the case of a single speed vortex and that of a dual
speed rotating vortex was shown by means of numerical simulations. In particular, in
the latter case, we performed the explicit construction of a Smale’s Horseshoe, thus
demonstrating the presence of chaos. Furthermore, an example of a stochastic layer,
between a chaotic island and a regular one, was obtained numerically with the chaotic
island clearly displaying a fractal structure.

Finally, a numerical study of the situation where the angular position of the

vortex is perturbed in a sinusoidal fashion in time was carried out by using a symplectic
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scheme, allowing us to show the existence of a transverse homoclinic orbit, and
therefore the presence of chaotic transport in this situation as well [7]. By considering
a perturbation with a particular constraint, we found five families of resonances for
which periodic orbits or limit cycles exist, whose periods are equal to multiples of the
period of the perturbation.

We would like to close this work by referring to an interesting prior experiment in

which the idea of a dual speed was capable of enhancing mixing [10]. The experiment

).
9

A < -1

i |

Figure 8.1 Schematic of a quadripolar flow

consisted of a straight channel filled with a conducting fluid. A magnetic field, created
by a current going through two wires along the channel located outside of the flow
domain, was applied to the flow in order to induce vortices. Two pairs of vortices were
induced through the generated Laplace forces and rotated through the rotation of the
two wires capable of rotating about the axis of the channel at different (clockwise or
counterclockwise) speeds. The difference between a uniform angular speed and a dual
speed was highlighted in terms of the mixing index of a dye, but no mathematical
explanation was given.

The work displayed in this thesis gave a rational explanation for the mixing
enhancement generated by a dual speed vortex. With four vortices, the different
patterns of the flow are undoubtedly more complicated but the main ingredients of
the observed chaotic advection can be explained by our work, the basic phenomenon

being a periodic switch between two sets of transverse streamlines.



APPENDIX A

Canonical Transformation

Let T be a transformation from the old canonical variables (p,q) € R x R into the

new set of variables (P, Q) € R* x R".

T: R*xR*—-R*xR"? (A.1)

(p,q) — (P(p,q),Q(p,9)) (A2)

T is said to be a canonical transformation if and only if the Poisson bracket of

two functions F and H is preserved, i.e.

. 0HOF OHOF

5 Mo = ; Op; 8q;  0q; Op; (A.3)
" 0H 0F 0OH OF
Z <9P.0Q; 0Q;0P {F, H}(po)- (A4)

By expanding the functions P and Q with respect to p and q, we obtain

{F,H}pq = E?Z?,Z gggi
OH 8P, OH 0Q.., OF 0P, OF 0Qx
§§WWn6%MWM%+WMM

OH 0P, OH 0Qi,, OF OP, OF 0Qx

~ (35,9 + 50s oa; )(aPk 35 5Cs op;)
_ OH OF O0H OF 0P, 6Qk 0P, 0Q:
Z 1 0P, 0Qr 0Qx 0P (g Op; 0¢;  Ogq; Op;

)={F,H}po)
It follows that

Z OP 0Qx 0P 0Qy

- Bp; Oa;  Oas opi % (A-5)

{Pr, Qr} = dPx ANdQx
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in the set of coordinates (P(p,q), @(p,q)), the 2-form dP A dQ can be written

as :

dP AdQ = i dP; A dQ;. (A.6)

i=1

The equation (A.5) implies that

i BPk an _ 6Pk an o

=1 A7
kz::l Opr Oqx  Ogqr Opx (A7)

or
3 Opr Oqr  Opx Oqx 1 (A.8)

& 0P.0Q, 0QiOP.

We have {px, gr} = dgr Adgx and dp Adg = ¥, dp; A dg;, it follows from (A.7) and
(A.8)
dp Adq =dP ANdQ (A.9)



APPENDIX B
NORMAL FORM

B.1 Generalities
We give here some generalities about normal forms with double zero eigenvalues [5],

(9], (18], [32], [44].

Let us consider x € R™ and a vector field f(x). We assume that the derivative
of f with respect to time, x, satisfies a system of differential equations x = f(x)
with an equilibrium at x = 0, which is non-hyperbolic. We then apply the Center
Manifold Theorem and seek information regarding the directions of the flow through
higher order terms of f around x = 0.
We then look for a change of variable £ = h(x), with h being a near identity
diffeomorphism h(x) = x + ha(x). The new dynamical system for the perturbation
takes the form £ = 9(é).

We now write the function f(x) in the form

N
fx) = kX_:lfk(X) +O(Ix["*) (B.1)

which is formally a Taylor expansion of f about x = 0 and denote by Hy, the set of

homogeneous polynomials of degree k in x. A basis for H is the set of monomials

™ =Myt .. o (B.2)

where m is a vector of natural numbers such that m € N™ and

Im| =) _m; = k is the degree of the space. (B.3)

i=1

We denote by Hp = H ® ... ® Hj the space of vectors of homogeneous polynomials

on R” and by {e;}2 ; the unit vectors in R™.
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fe= 2": Y €ifim™. (B.4)
i=1 |ml=k

.....

us write the transformation h as

E=h(z)=z+ ha(x) +.... (B'5)

Since € = g(£), we can write

§ = Dh(z)s = g(h(z)) = Dh(z)f (2). (B.6)

The purpose of the transformation h is to simplify the system of equations that
we have to solve. We expect to find g(z) in the form g(z) = Az + O(z?), that is a
linear set of equations up to the third order.

If h(z) = = + hy(z), then

9(h(z)) = Dh(z)f(z) (B.7)
Az + Ahy(z) = f(z) + Dha(z) f () (B.8)
= Az + fa(z) + Dhy(z) Az + O(z). (B.9)

By collecting the quadratic terms, we can write

Aha(z) — Dho(z)Az = fo(z). (B.10)

Homological equation

We now define the homological operator :

La(ha) = |ha, A] = adA(he) = Ahy(z) — Dha(z)Az = fo(2), (B.11)
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where [., .| denotes the Lie bracket, homological operator.

Hy = Range(La(Hy)) © Gi (B.12)

The solvability condition is

O=viLh=vlfi=1,2,...,k (B.13)

where {v;} is the left eigenvector with eigenvalue zero. G} is spanned by {v;}.
The components of f along these vectors cannot be removed by the diffeomorphism

h. We define the projection of f on these left eigenvectors
k
A=Y, (B.14)
i=1

and will refer to f% as the resonant part of f.

It follows that

€= g(€) = AL + f7(€) (B.15)

where ff € G3.

We now state the Poincaré-Dulac Theorem.

Theorem 1
dX
i F(X) (B.16)
can be simplified to
XY 1Y+ Y G.(Y) + O(Y M) (B.17)
d — )

where J s the Jordan form of A= DxF(0) and G, are all the resonant monomials.
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B.2 Double Zero Eigenvalues Case (2-jets)

We consider the following Jacobian

01
J= (B.18)
00
and consider the basis for Hj :
z? Ty y? 0 0 0
nm= p2= ps= Pa= Ps = Ps =
0 0 0 z? Ty y?
The action of L4 on this basis is
—2zy —y? 0\
La(m) = La(p2) = La(ps) = (B.19)
0 0 0 )
2 2y 2
La(pa) = La(ps) = La(ps) = (B.20)
—2Ty —y? 0)

which leads to the matrix representation of L4 in Hp as follows.

(0 001 00)
2 0 00 1 0
0 -10 0 0 1

La, = : (B.21)
0 000 0O
0 0 0-2 0 0
0 000 -10]

\

with dim Range(L4,) = 4 and dim G% = 2. There are several choices for the basis of
G2.
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An example of a left null-eigenvector of La, [15] is given by

(o) (o)
0 0
0 0
n = Vo = (B.22)
0 1
1 0
'/ \%/

The Reduced System (Normal Form) with Guckenheimer-Holmes’ choice [15] is

T=1y (B.23)
§ = dz® + ery (B.24)
where
_ 82f2(z3 y)
_ 62f2($, y)

In order to know what kind of bifurcation can happen for this degenerate fixed
point, we have to ”unfold” the system. This can be done by adding suitable terms in
the equations. We have to introduce two terms with two new parameters y; and o,

thus justifying the name of this bifurcation of codimension-2 or 2-jets.

E=y (B.27)

¥ =+ poy + da’ + exy (B.28)



APPENDIX C

The Smale Horseshoe

C.1 Introduction

We consider a dynamical system x = f(x) and suppose that the dynamics has a saddle
point with an homoclinic orbit. Under small perturbations, the homoclinic orbit can
break, i.e. the stable (W?*) and unstable (W*) manifolds are not connected in a
tangential manner. In the case of a transverse homoclinic orbit, there is a hyperbolic
invariant set in the neighborhood of the saddle point (Smale’s theorem). The following
description of the Smale Horseshoe is generic, that is it is the linearization of the
dynamics in the neighborhood of the saddle point.

The first part is a description of the construction of the mapping and its invariant set.
The second part describes the mathematical tool we use to derive all the properties

of the invariant set.

C.2 Definition
Let f be a map from D to R? where D is the unit square [0, 1] x [0, 1].

f: D— R?
H
H‘ | 4
v -V
/ /) 1
1]
‘% —
~__ "

f

Figure C.1 The action of f on D
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f can be decomposed into two steps.
In the first step, f expands the unit square by a factor y in the y-direction, and
contracts by a factor A in the x-direction, with 0 < A < % and p > 2. If the dynamics
preserves the volume, which is the case for a Hamiltonian system, then we have
Az = 1. The second step consists in folding the thin rectangle in order to obtain a
”horseshoe shape” for f(D).

The intersection f(D) N D corresponds to two rectangles denoted V4 and Vj,
respectively. We denote by Hp and H; two horizontal rectangles in D such that
f(Ho) = Vo and f(Hy) = V; .

Figure C.2 defines the inverse map f~?

Figure C.2 The action of f~! on D

where f~1 contracts by a factor x~! in the y-direction, expands by a factor A1

in the x-direction, and folds. We have Ho U H; = DN f~Y(D).

C.3 Invariant Set : A
The invariant set, A, of the mapping f is such that f(A) = A. Since at each iteration
by f or f~1 we cut, or remove, a part of the horseshoe, we have to consider all the
possible iterations by f and f~! of the unit square D.
In other words, the invariant set A is given by

A= ) @)

n=—0o0
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where A is the set of points which remain in D under all possible iterations of f.

Iterations of f

Figure C.3 displays f(D), f3(D) and - DN f(D) N f3(D).

a)

<

(=)

Figure C.3 ) f(D), b) f2(D), ¢) DN £(D) N (D)

It is clear that DN f(D) N f3(D) c DN f(D).

Remark :
In order to describe the dynamics, we will introduce the symbolic dynamics. Prior to
doing this, we need to label the rectangle in a proper manner with some rules.

After each iteration, we add a new symbol to the left of the index. For example,
Vo1 means that the rectangle is in V§ but that it was previously in V;. In this manner,
one can see right away the history of the rectangle by reading the sequence of symbols
representing the index.

The image of a vertical rectangle Vs (resp. V;) by f consists of two thinner
vertical rectangles Voo U Vo (resp. Vor U V1).
These thinner rectangles are included in previous vertical rectangles, i.e. V;; C V;.
We assign to £ € V the index 0, and to = € V] the index 1 and denote by S the set
of indices so that S = {0,1}.
Let V,_,s_,, with s_3,8_5 € S, be a vertical rectangle in DN f(D) N f2(D); the first
index, s_;, indicates that the vertical rectangle is in V,_,. The second index, s_o,

indicates that the pre-image of V,_,, , is V,_,.
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For example, Vp; is in Vp and also in f(V}), that is Vou = Vo N f(Vi) = {p€ D,p €
Vo, f1(p) € 1}

We can thus write

DNfD)NFAD) =VoeoU Vo1 UVioUVyy
= (W n f(Vo)) U (Vo N f(V1)) U (V10 f(Vo)) U (V1N f(V1))

=US% (F(vas)nV,)
= {p E Dap E V—nf—](p) e ‘/:r_g,s—-i E S71’ = 1a2}

— ¢ =12
= Us_,-GS ‘/3—13—2

Figure C.4 represents the set - DN f(D) N f2(D) N f3(D).

Z
Z
z
Z
7
%z
Z
z
4
Z
Z
Z
%

Figure C.4 V,n f(D) N f3(D) N f3(D)

This set is composed of 23 vertical rectangles, 4 rectangles in V; and 4 rectangles
in V4.
For example, Voo is in Vj, and also in f(V;) and f2(Vp),
that is Voo = Vo N f(V1) N f*(Vo) = {p € D,p € Vo, f~(p) € Vi, F7%(p) € Vo).
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From this example, one can clearly see that M=t f*(D) corresponds to 2*

vertical rectangles of width \*.

=1,....k

n=k i=1,...,
ﬂ fn(D): U V-lws-—k

n=0 s_;€S

If k — 0o, we obtain an infinite number of vertical lines,\* — 0, and each line

can be labeled by a unique sequence {s_j...8_,...}.

n=00 i=1,...,k,...
Nro= U Vs (C.1)
n=0 s_;ES
={peD, f¥Ip eV, s ;€8i=1,...} (C.2)
={peD, f*p) € H, ,i=1,...} since f(Hs,) =V, (C.3)

For n < 0, the same construction holds, substituting H «+» V and f « f~L
We now consider D N f~1(D) N f~2(D), as shown in Figure C.5.

a) H b) c) H

1

H H

0 00

Figure C.5 a) f~!(D), b) f~*(D), c) DN f~4(D)N f*(D)

Remark:
The image of a horizontal rectangle by f~! is the union of two thinner horizontal

rectangles.
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Dn f_l(D) n f—2('D) =Hpo U Hyy U HioU Hyp
= (HoN f7(Ho)) U (Ho N f7(H1)) U

(Hyn £~ (Ho)) U (Hy 0 £~ (HY))
i=1,2

= U (F'(#H) N H,)

5_;€S

={p € D,p € Hy, f(p) € H,,,s: € S,i=1,2}

=12
= U H, s,

8—;€S

Like in the case of the vertical rectangles, N?=2, f*(D) is composed of 2k

horizontal rectangles with width equal to p=*.

n=0 i=1,...,k~1

ﬂ fn(D) = U Hso----?k—l

n=-k s_;E€S

If k — 0o, we obtain an infinite number of horizontal lines, p=* — 0, and each

line can be labeled by a unique sequence {sg...S,...}.

n=0 i=1,...,k,...
N D= U He.s. (C.4)
n=—00 si€S
={peD,fip) € H,,s:€85,i=0,...} (C.5)

It follows that

A= (,.ﬁ r@)n (A ro) (C$)

=00

={peD,fip) € H,,i=0,+1,%2,...} (C.7)
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Each vertical line intersects each horizontal line at a unique point, so A is an
infinite set of points. More precisely, it is a Cantor set, closed, compact and perfect.
Let pe A, p=Vi_, . N Hy s,... Welabel the point p by a bi-infinite sequence of

0’s and 1’s:

Let ® be a map defined from the set of points p € A to bi-infinite sequences in
52Z.

d: pl—-){...S_k...8_1.8031...Sk...}.

From the above construction, the map ® is one-to-one from A to SZ (see also a

proof in Section C.5.2).

C.4 Symbolic Dynamics
C.4.1 Generalities
Let S = {0,1} be the set of symbols, called also the alphabet, and ¥ the collection

of all bi-infinite sequences of elements of S, & = SZ.

s€EX :5={...8.pn...8-1.8081--.8n...}

Notice that we marked the sequence with a “” on the left of sy which means
that the first symbol on its right corresponds to the zero coordinate of the sequence.

We define the distance between two elements of ¥, d(s,s’) by

, +00 63' 0 ’i,f 8; = 32
d(s,s') = Z on where §; =
=% 1 ifs;#£s.

The shift map o from ¥ into itself is defined by

(0(8))i = sina (C8)
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for an element s in X, that is the map o shifts each element of the sequence by one

”» »

place to the left, as indicated by the changed location of the

s={..5.0...8.1.8081...8p...} 2 0(8) ={...8-0...8-180.51...5n...}

Lemma:
Let s,s' € X and € > 0, if d(s,s') < ¢, AN = N(e) such that s; = s] for |i| < N.

s and s’ agree on a 2N+1 central block.

C.4.2 Properties of the shift map o

Fixed PointsWe denote by {3;;7-3;.} a sequence having a periodically repeating
block s;, ...s;,. For instance, {01} = {...0101.0101...}.

It is clear that o has only two fixed points which are the sequences whose elements

are all zeros or ones ({0} or {1}).

Periodic orbitsThe periodic orbits with a period k correspond to the sequences
having a periodically repeating block of length k.

Examples are as follows.
Period 1 : {0.0} , {1.1} ~ fixed points

Period 2: {01.01} , {10.10}
Period 3: {001.001} , {010.010} , {100.100}
{011,011} , {T0L.101} , {110.110}

For any fixed k, the number of sequences having a periodically repeating block

of length k is finite, i.e o has 2F periodic orbits of period k.

It follows that o has a countable infinity of periodic orbits.
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Non periodic orbitsWe consider a non-periodic infinite sequence s = {.89...5,...}.
s being non-periodic, it is equivalent to an irrational number, in the unit interval,
expressed in base 2. This irrational number in the closed unit interval constitutes an
uncountable set.

Moreover, we can construct an infinite number of bi-infinite sequences s’ such
that s! = s; Vi > 0. We thus have a correspondence between an uncountable set of
points and non-repeating sequences.

The orbits of these sequences are non-periodic orbits of o, and there is an

uncountable number of such orbits.

A dense orbit We must find an element s € ¥, whose orbit is dense in ¥, i.e for
any given s' € ¥, ¢ >0, In € N such that d(o(s)*,s') <e.

We consider all possible sequences of 0’s and 1’s having length 1, 2, 3,...

length1: 0,1
length2: 00,01,01,11

We now introduce a rule to order the collection of sequences of length k. Let

3,3 be two finite sequences

o fork<k,3<3for
e k=FK,6 3 <3if §; <3; where “” is the first integer such that §; # 3;

This rule is equivalent to considering § and 3 integer numbers expressed in base

2, and ordering these integer numbers in increasing order.
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If we consider the finite sequence 3 of length k, we have

Fagh<. <5

where the superscript k refers to the length of the sequence and the subscript denotes
the position of a particular sequence in the collection of sequences of length k.

We now construct a bi-infinite sequence s as follows

s = {... 5353535352525 575253535253 . . .}

where s is built by concatenation of all finite sequences §f, k=12,... and
j =1,2,...,2% taken in the order defined above, alternatively to the right and to
the left of the central position. Notice that each finite possible block appears at least
once in s*.

For any given s’ € 3, we suppose an element s" € ¥ in the e-neighborhood of
s, i.e d(¢',s") < e. Therefore, AN = N(e) such that s =s; , |i| < N.
The finite sequence {s’_y ...s";.848] ... sy}, however, is contained somewhere in s.

It follows that 3n € N such that d(o(s)”,s') < ¢, that is the orbit of s is dense in 2.

C.5 f and o are topologically conjugate
C.5.1 Definition
Let f (resp. g) be a C"-diffeomorphism of a topological space A (resp. B). f and g
are said to be C*-conjugate (k < r) if there exists a C*-diffeomorphism h: A — B
such that goh = ho f.

If k=0, f and g are said to be topologically conjugate and h is a homeomorphism.

I .4

N

h

=
[

-5, B

oy
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C.5.2 Properties of the map ¢

Theorem 1 & : A — X is a homeomorphism

Proof:

* @ is one-to-one:

p, P € A if p# P/, then ®(p) # ®(p’). Proof by contradiction:

We suppose ®(p) = ®(¢/) = {...5-n...8-1.%081...5,...}. By construction, p
and p’ lie in the intersection of the vertical line V;_, ,_ ... and the horizontal line
H,,. s,..- The intersection is a unique point, therefore p = 7.

* @ is onto:

Let se X, s={...5_,...5.1.8081-.-8p...}.

The sequences {.8981...8,...} and {...s_,...s_;} correspond respectively to
a unique horizontal line and vertical line. These lines intersect in a unique point
p € A. It follows that every bi-infinite sequence corresponds to a point in A, and that
this point is unique.

* @ is continuous, that is Vp € A,Ve > 0,35 > 0;|p — p'| < § = |®(p) — ®(P)| < ¢

Let € be given, and p,p’ € A :

O(p)={..5pn...5.1.5081..-8n...}.
O(p)=1{...8,...8 1.shs...5...}.

Therefore d(®(s), ®(s')) < € so AN = N(e) € N with s; = s,
i = 0;+1;+2;...;+N. Consequently, p,p’ are in a rectangle defined by H,, sy N
Vi_ys_n and |p—p/| < (AN + p=V) = §, with |p — p/| being the euclidian distance in
R2.

We have therefore a one-to-one, onto, and continuous map between compact
sets in Hausdorfl spaces, and therefore the inverse is continuous.

We thus deduce that & is a homeomorphism.
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C.6 Conclusion
We have a relation between f and g which are topologically conjugate. The shift map

has the following properties.
e There is a countable infinite number of periodic orbits of arbitrarily high period.
e There is an uncountable infinite number of non-periodic orbits.
e There is a dense orbit.

It is then possible to transport these properties to f.
The Smale horseshoe, f, has :
e A countable infinite number of periodic orbits of arbitrarily high period. These
periodic orbits are all of saddle type.
e An uncountable infinite number of non-periodic orbits.

e A dense orbit.

Furthermore, the sy element of the sequence ®(p), with p € A, corresponds
to f¥(p). It follows that the shift map o from ¥ into itself is “equivalent” to the

horseshoe map f.

M — >
l%
M(—;—>

1“
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