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ABSTRACT

MIXING ENHANCEMENT BY DUAL SPEED ROTATING STIRRER

by
Arnaud Goullet

Stirring is a well-known means of fluid mixing due to the emergence of complex

patterns in the flow, even at low Reynolds numbers. In this work, we consider a stirrer

rotating along a circular trajectory at constant speed. The fluid flow, considered

incompressible, inviscid and two dimensional (in a circular container), is modeled by

a point vortex model consisting of a vortex rotating in a circular container at constant

angular speed. The mixing problem is addressed by considering the Hamiltonian

form of the advection equations formulated in a frame of reference moving with the

vortex. The dynamics of passive fluid particles is considered using dynamical systems

theory. The bifurcation diagram reveals the presence of degenerate fixed points and

homoclinic/heteroclinic orbits, whose nature varies for different parameter values. By

considering an initially concentrated set of marker particles and using the various

structures of the phase space in the bifurcation diagram, we produce a complex

dynamics which, in turn, can generate efficient mixing. The latter is studied using

both numerical simulations and physical experiments. A perturbation study for one

particular structure for the phase space shows the presence of a transverse homoclinic

orbit as well as resonances, or a set of closed trajectories.
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CHAPTER 1

INTRODUCTION

The problem of fluid mixing is almost an every day situation, where the most trivial

example is the homogeneization of sugar in a cup of coffee.

However even in this simple situation, the turbulence created by the spoon, or stirrer,

facilitates the mixing, and the flow is intrinsically complex with swirls and eddies of

different sizes. The issue of fluid mixing becomes more challenging when turbulence

is absent, or quasi-absent. Such a situation occurs for a fluid with high viscosity, or

for small scale problems where the Reynolds number is small. In this case, natural

molecular diffusion eventually accomplishes mixing. However, even at micro-scale,

mixing by diffusion is by far too slow for industrial applications. For example, at

room temperature, the coefficient of diffusion in water is about 10 -11m2/s, and the

time constant for diffusion along a length of 100pm is 10 3s 16min.

Before considering a problem of mixing in a laminar flow, referred to as laminar

mixing, there is a need to define what we mean by mixing. Even though the question

looks simple, the literature is unfortunately not uniform. Back in the middle of the

20th century, the distinction of two different mechanisms "stirring" and "mixing" is

pointed out, involving two different physical processes [13].

Considering a small volume of fluid, or initially localized blob of fluid, "stirring"

refers to the mechanical process, or macro-scale dynamics of the flow, which will

spread the blob of fluid more uniformly within a container. This spreading is achieved

by stretching and deforming the blob. On the other hand, mixing is a small-scale

process, based on diffusion across intermaterial surfaces. Stirring facilitates or enhances

mixing by "producing" more intermaterial area. However, in some areas of research,

e.g. chemical engineering, the word "mixing" is sometimes used without any consideration

1
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of the diffusion phenomenon. There is also a mathematical definition of mixing in

dynamical systems theory [26].

In this work, we will use the words "stirring" and "mixing" , without any

distinction, to mean the spreading of a blob of fluid within some given domain. In our

work, this spreading will lead to a more uniform distribution of an initially localized

blob and it will be facilitated by an underlying chaotic laminar flow. In particular,

We will say that the mixing is "good" if an initially localized blob of dye will spread

"everywhere" within the container. However, we notice that the presence of a chaotic

flow will not necessarily imply that the spreading will take place everywhere or even in

a uniform manner, in contrast with the mathematical definition where mixing implies

ergodicity [15],[26].

Experimentally, studies of mixing have been performed using visualization techniques

which have allowed one to follow the evolution of a blob of fluorescent dye. The

different patterns of the flow are then visible, showing in certain cases very complex

dynamics, including the multiple eddy structure of turbulence and the folding/stretching

of materials lines typical of chaotic advection in laminar flows [46],[34

Figure 1.1 Evolution of a Blob of Dye with a Time dependent Laminar Flow [46].
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From a theoretical point of view, it has been shown that the Hamiltonian

formalism applies to point vortex flows and that chaotic material lines which fold

and stretch can be particularly efficient at enhancing mixing. This approach through

which a set of ordinary differential equations are solved uses dynamical systems theory

to study the structure of the flow.

In this context, it is well known that a one degree of freedom system is incapable

of exhibiting chaotic behavior. However, the introduction of time dependency into

the Hamiltonian, or system, can lead to a complex dynamics.

A simple two-dimensional model of stirring [1] consists of a point vortex, which

stirs a fluid inside a circular container. This model is based on a vortex jumping

back and forth between two fixed positions. Not only this system has been shown

numerically to exhibit chaotic behavior, but also an explicit construction of a Smale

Horseshoe [15], [38], [47] has actually been possible [36]. The term "chaotic advection"

then started to be used to characterize the chaotic behavior of material lines in such

flows, while the flow itself remains simple and laminar. Experimental, as well as

analytical and numerical studies, have been performed on other related problems

[16], [36].

For some time, it was thought that the presence of either vorticity or saddle

connection (with non-zero circulation) was responsible for the generation of chaotic

advection. However, an example based on a pulsed source-sink system with zero

circulation everywhere was shown to exhibit chaotic advection as well [20].

Previous studies have revealed the importance of the kinematics of the flow

itself for inducing good mixing. Whether the flow is a Stokes flow [3],[12], [37] or a

potential flow [4[21], the key ingredient leading to a chaotic advected particle path is

the complexity of the material lines in space and time [30], and not the force balance

in the momentum equation [2].



4

Mixers can be classified in two groups. The first group consists of passive mixers

which do not require any external source of energy. For instance, the flow through a

channel with some special geometry, like a 3D-serpentine [27] can facilitate mixing.

Likewise, straight channels with ribs have also shown some enhancement [41]. In

contrast, mixers in the second group require the injection of

an external source of energy. For example, it was shown that a magnetic field

used to create vortices act like a stirrer in the fluid [16]. This can be done for a

conducting fluid or by adding magnetic particles or beads to the fluid [43]. Our work

belongs to the second category. It requires the generation and control of vortices to

stir the fluid.

Applications of enhanced mixing via chaotic advection are numerous. Here, We

restrict ourselves to the description of two examples only. The first one consists of

the generation of manufactured layer composites in material processing [50] through

chaotic advection whereby the layers are induced by chaotic (stretching/folding)

material lines. Composite materials with thousands of layers have been produced

successfully, with a layer thickness as small as 200 nm. The second example is in

the area of biology, where it is proposed that the feeding of cells in a cavity can

be achieved with a pulsating flow capable of inducing a chaotic dynamics from the

breaking of a separatrix [18, 17] (see Figure (1.2)). A fluid with the appropriate

nutrients flows above the cavity, acting as a perfusion.

One of the latest developments is a topological approach to determine if the

stirring protocol itself implies chaos or mixing without any consideration of the

flow itself [14]. Through mapping theory, more precisely a homotopy argument, a

criterion for chaos is derived for a circular tank stirred with three stirrers under

certain conditions.
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Figure 1.2 feeding of biological cell using chaotic advection.

In this work, we consider a model for stirring the fluid inside a circular container

with one vortex only. In the first part of this study, we consider a vortex rotating

around the container at a constant angular speed. After a simplification of the

Hamiltonian itself in this case, we study the dynamics in phase space and derive

the bifurcation diagram. While the dynamics thus generated is simple in nature, we

will use this study to derive an alternative scenario capable of creating a dynamics

sufficiently complicated to induce chaos. The latter will be shown numerically through

the stretching and folding of material lines, but also by constructing a Smale horseshoe

in the frame of reference of the vortex. An important characteristic of the proposed

protocol is the possibility of mixing not only in the interior of the domain but also in

the vicinity of the boundary due to the presence of a heteroclinic orbit there.

In order to explore the validity and relevance of our theoretical results, an

experiment will be set up at the macro scale. A comparison between experimental

flow visualizations and theoretical predictions will be performed.

Finally, we will add a time perturbation to our system and integrate the perturbed

system by using a symplectic scheme.



CHAPTER 2

DESCRIPTION OF THE PROBLEM

2.1 Hamiltonian Formalism

The description of the spreading of a species in a fluid is given by the advection-

diffusion equation. A scalar field 0, which can be the concentration of the advected

quantity satisfies

The equation (2.1) uses the Eulerian representation [6] and the advecting velocity

field V(x, t) is prescribed. For a small diffusivity constant D or large Peclet number,

where V and L are velocity and length of the system considered, the

advection dominates the dynamics of the flow.

An alternative way to look at the spreading of blob of fluid is the Lagrangian represen-

tation of the fluid [23]. We denote by

the velocity and the position respectively of a passive fluid

particle. The advection equation becomes

A particle is said to be advected, or undergo "passive advection", if it is passive

with respect to the flow, i.e. of negligible mass and with no interaction with the fluid

(inert), and the particle "adjusts" its velocity to the velocity of the fluid instantaneously,

If we know the velocity field, then the study of the fluid can be performed by

solving the set of ordinary differential equations given by (2.2), which can exhibit

chaotic behavior, or Lagrangian chaos.

In a two-dimensional flow, the assumption of incompressibility

6



7

In the case of a steady flow, the pithiness coincide with streamlines, i.e. the level

curves ‘11(x, y) = constant. It is easy to realize that (2.3) and (2.4) define a Hamiltonian

problem, where the streamfunction is the Hamiltonian itself and the space variables

(x, y) are the canonical variables defining the phase space.

We assume that the flow is created by a set of N point vortices, or a singular

distribution of vorticity. A point vortex can be considered as an idealized stirrer. We

can then write the vorticity field as :

where F. is the circulation, strength of the itch vortex and (5 is the Dirac delta function.

By taking the curl of the system (2.3)-(2.4), the streamfunction and the vorticity field

are related by the following equation:

the complex notation is used here for convenience.

Notice that the Hamiltonian (2.7) is expressed in a fixed frame of reference, denoted

by 9Z.

For an autonomous system, i.e. independent of time, the Hamiltonian has one degree

of freedom, independently of the number of vortices N and is therefore integrable.
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The system can be integrated by quadratures, through action-angle variables, and

chaos cannot occur in this system [4], [15].

However, it is known that adding time dependency to such a system can produce

chaotic behavior [26]. Here, we introduce the time dependency in the position of the

vortex and consider a moving set of vortices z2(t). Hereafter, we keep in mind that in

the mixing problem studied here, the motion is prescribed and not part of the problem;

that is, for instance, interacting vortices are not considered. The experimentalist

imposes the motion of the vortices and their motion can be seen as a part of the

mixing protocol.

In order to study a non-autonomous Hamiltonian, i.e explicitly time dependent,

a procedure known as "phase space extension" is used. The idea is to introduce

a new pair of canonical variables (r, E), or add a new degree of freedom to the

system to obtain an autonomous Hamiltonian. This is achieved by introducing a new

parametrization of time. The details of the procedure, especially the consequences on

the different invariants can be found in [4], [26], [42]. It is important to notice that this

phase space extension does not give any additional information about the dynamics

and the "extended" set of canonical equations used to solve the problem is equivalent

to the conventional one. For our problem, we perform the trivial parametrization

r = r(t) = t and define the new Hamiltonian :
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Here r plays the role of time, and the equations for (x, y) are actually unchanged.

The new variable E, which is the conjugate of r, is necessary to keep the dimension

of the phase space even, which is required by its symplectic structure.

Consequently, the study of a two-dimensional incompressible flow, with N moving

point vortices is equivalent to the following problem with the following Hamiltonian

where " "' denotes the derivative with respect to the real time t. This system has two

degrees of freedom and may produce chaotic behavior, depending upon the motion

of the vortices.

2.2 Problem Description

We now consider the physical problem of an incompressible fluid within a circular

container of radius a. Without loss of generality, we set a = I. The flow is generated

by a point vortex, which models the stirrer. The position of the latter, considered

fixed for the moment, is given by

By using the method of images and considering the boundary condition boundary (X y) =-

constant, whereby the container itself is a streamline, the general form of the Hamiltonian

is

In this case of a constant vortex, the streamlines or level curves of ii(x, y) are non-

concentric circles around the vortex (see Figure (2.2)).
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In this simple case, we give the solution z(t) for the motion of a passive particle. We

first start with the standard approach based on the fact that W (x y) = Hex, y)

coast along the trajectory. We then use the Hamiltonian formulation to introduce a

simple canonical transformation to obtain the action-angle variables.

For the sake of simplicity, since the angle a is irrelevant, we take a = 0. The

trajectories are given by the level curves of H (x , y) cst = B where B is the value

of the Hamiltonian (or energy) at the initial position z(t = 0). Since the trajectories

are non-concentric circles, we look for a solution of the form (see Figure (2.3)):

which implies that the center of the circle depends on B, or the initial condition. For

B = 111 we have z, = 0 and p = 1; this is for an initial condition on the boundary,



Figure 2.3 Schematic for the case of a fixed vortex

closer and closer to the vortex. In this case, the energy (Hamiltonian) tends to infinity

due to the logarithmic singularity, and OM satisfies the following equation :

11
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his equation is known in celestial mechanics, from Kepler's problem

where e is the eccentricity. A solution can be written explicitly in

terms of Bessel functions of the first kind [45] :

The infinite sum is known as Kapteyn's series which is rapidly convergent for e < 1

and still convergent for e = 1. We now adopt the Hamiltonian approach and show

that it is possible to study the same problem in a very simple way.

The problem has one degree of freedom, and is consequently integrable. It is well

known that special variables, the action-angle variables (A, 0), can be found such that

the Hamiltonian depends only on the action A. We thus look for a transformation

where x, y, A, 0 are functions of B, 0, which are the previously defined intermediate

variables that are not canonical. After expanding the wedge product and using the
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In summary, the problem of the fixed vortex is trivial. In this case, a solution

can be explicitly written as an infinite sum of Bessel functions of the first kind (first

approach). By using a second (Hamiltonian) approach, the Hamiltonian itself can be

simplified through the action-angle variables, which leads to a very simple solution.

It is worth mentioning, however, that this simplification has a cost: the canonical

transformation used to obtain the action-angle variables can be difficult to find. In

any case, it is easy to show that the case of a fixed vortex leads to very simple

trajectories and that in this situation the flow is not chaotic.

We now consider the physical problem in which a stirrer rotates within the fluid

domain along a circle concentric with the circular container. For this, we introduce the

azimuthal motion of the vortex through the time dependence of the angle a act),

which makes the Hamiltonian time dependent. In order to account for this time
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dependency, we extend the phase space as before and write the new Hamiltonian in



15

leading to the following scalar partial differential equations for the function fcx, y, 7).

So far, we have not made any assumption on act). In the following section, we

consider the simplest time dependency which allows us to make a complete analysis

of the phase space.

2.3 Hamiltonian for a Vortex Rotating at Uniform Speed

Since the first derivative of act) appears in c2.33), we take the particular case of a

vortex rotating along a circular trajectory within the container at constant angular

velocity. In this case, the time dependency of the angle a reduces to act) = ca, where

co is a constant corresponding to the rotational vortex speed. This implies that the

"time" dependent term in the Hamiltonian c2.33) expressed in the moving frame of

reference becomes a constant, thus allowing us to recover an autonomous system.
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of the system, together with

their stability properties. As we will see in the next section, the number and nature

of the fixed points depends on the particular location in the parameter space c1), 0).

This leads to a bifurcation diagram where the dynamics differs in various regions of

the b0-plane.

Hereafter, the position of the vortex in the rotating frame of reference, centered at

c0,0), is denoted by cX„, 0) = cce-b, 0). In addition, we restrict the study of the

dynamics in the subspace cX, Y) to the unit disk, corresponding to the physical fluid

domain.



CHAPTER 3

PHASE SPACE ANALYSIS

For an incompressible flow created by a uniformly rotating vortex, the system of

equations describing the motion of a passive particle within the unit disk are

18
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This third degree polynomial has in general three roots. However, the particular

values of the two parameters b and 0 determine the number and type of roots, and

consequently the structure of the phase space. The position of the local maxima and

minima of the cubic polynomial are independent of 0 :
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a second root appears at X* = +1. Therefore, for 0 > 0+1 , we have two simple roots

in [-1, 1].

A second family of fixed points exists on the unit circle, i.e Z* = e0. By performing a

change of variables into polar coordinates and noticing that the circle is an invariant

curve, the equation O = 0 leads to

where 0 is the angle with respect to the X-axis. Consequently, in the range 0 E

c0- 1 , 0+1 ), we have two fixed points on the boundary located symmetrically with

respect to the X-axis.

Remark: The relation c3.5) is not valid for the particular parameter value 0 = 0.

However, in this case, we have a fixed vortex, i.e w = 0, and therefore there exists no

fixed point within the fluid domain.

In summary, we have in the fluid domain within the unit circle

The relations between /3 and b, c3.8),c3.9) and c3.10), correspond to three

distinct curves in the cb, 0) -plane csee Figure c3.1)), defining four distinct regions

with their own phase space dynamics.

We will return to the description of this bifurcation diagram after studying the

stability of the fixed points and the bifurcations.
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Figure 3.1 Bifurcation diagram in the parameter space cb, 13)

3.2 Stability of the Non-Degenerate Fixed Points

In this section, we study the stability of the fixed points, Z* = X* + id*, determined

previously. The following calculations were performed using the mathematical software

M athernatica [28]. By considering the dynamics in a neighborhood of the fixed point,
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From Equations c3.1)-c3.2), we can show the following relation between the off-

diagonal elements of the Jacobian matrix

By considering the eigenvalues of the Jacobian matrix at the various fixed points,

in the case where the latter are hyperbolic ci.e. with no eigenvalues with zero real

part), we can determine locally the dynamics of the solution near the fixed points

and understand the local structure of the streamlines inside the container.

3.2.1 Stability of Fixed Points on the X-axis

By substituting d* = 0 into Equation (3.13), the Jacobian matrix can be reduced to:

which is formally a function of the dimensionless parameters b and only, since X*

is itself a function of these two parameters.

By considering the sign of the numerator of Equation c3.17), we can show that

the right-hand side crhs) of equation c3.17) is negative on the segment [-1, X:), so

the fixed points are elliptic, or centers, on this interval and positive on the segment
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so the fixed points are hyperbolic, or saddle points, on this

interval. In general, the above elliptic points have a two-dimensional center eigenspace,

while the saddle points have a one-dimensional stable eigenspace and a one-dimensional

unstable eigenspace.

From equation c3.17), we find three cases for which the Jacobian matrix has a double

zero eigenvalue. These degenerate cases correspond to specific fixed points in the

phase plane. More precisely, those located at

Since for these fixed points the eigenvalues have zero real part, we cannot linearize

the system as = Jet cHartman-Grobman theorem). Another approach such as that

using Normal Forms is needed in order to determine the flow locally around these

fixed points as well as their bifurcations, if any csee Section 3.3).

3.2.2 Stability of Fixed Points On the Boundary

The second family of fixed points on the boundary for the particular interval 0_ 1 <

< 0+1 are two fixed points located symmetrically to one another with respect to

the X-axis and moving along the boundary as /3 varies. Their position is given by

On the 0 interval considered here, the right hand side of Equation c3.19) is always

positive. Consequently, on the boundary, the fixed points are all saddle points.
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The boundary, i.e. the unit circle, is an invariant curve in our system defining

one stable and unstable manifold of these saddle points and connecting the two saddle

points to one another through a heteroclinic orbit. Another heteroclinic orbit is found

numerically inside the container csee Figure 3.7).

3.3 Bifurcation Analysis, Normal Form

In this section, we study in detail the degenerate fixed points, i.e with double zero

eigenvalues, and their bifurcations. This case is known as Takens-Bogdanov bifurcation,

named after two mathematicians who studied it independently in the 70's [9], [44].

The degeneracy of these fixed points can lead to different bifurcation scenarios, but

the fact that our system is Hamiltonian prevents certain bifurcations from occurring.

As we will see below, this constraint will allow us to identify the right bifurcation

from the different possibilities. In Appendix cB.2), we give some details on the normal

form approach, as well as the notation that we are going to use below.

3.3.1 Degenerate Fixed Points on the Boundary

The study of both fixed points can be carried out simultaneously since they involve

the same Jacobian and lead to the same normal form. We will point out the differences

when necessary, especially in the bifurcation diagram.

v d), and a new time t' = 2t to normalize the Jacobian. We can formally write



the system c3.1)-c3.2) as

o o 	 u 	 E akuivi

( —1 0 ) v ) 	 Efiktevi
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(3.21)

where Bak, 3k are the coefficients of the Taylor expansion of the right-hand side of the

system of ODEs starting from the second order.

In order to put the Jacobian into its Jordan form, we introduce the linear transformation

. We first make the following

= P ( :
Hence, we can write

F p 	Ap(C)+(Eakc-11)13
Ft

71 	 E i3kc--n)13

We then multiply on the left by P-1

EF e 
= P-1AP( C )-1- P-1	

ak(-n)=V
Ft (

E Ok(-0C3

(3.22)

(3.23)

with P-1AP = J

at

( 0 10

0

0

ak(-7/)'i'

E i3kc-77)20

(3.24)

In the right hand side, the second term at the quadratic order reduces to

0
: P =

—1 )
and its inverse P-1 =

0 1

1 0 —1

u 

0

change of variables: u —* --n and v —* e, i.e.

v( )

42 	
(3.25)



In this case, the normal form is actually equivalent to a Taylor expansion since we

kept all the terms in 12 due to the choice of the basis for G2. If we make another

choice such as that described in Appendix cB.2), then the right bifurcation is more

difficult to obtain and we have to go to higher order terms in the normal form and

the unfolding. Consequently, it becomes harder to find a simpler form of the equation

than derive a regular Taylor expansion. Here is an example of the difference between a

generic normal form, and a universal cor versa) unfolding and a normal form adapted

to the problem. Since, the normal form is not unique, we choose the simplest one and

do not follow Appendix B which is more interesting from mathematical viewpoint.

It follows that the normal form up to the cubic order is given by

Studying this unfolded system allows us to know which bifurcations can occur in our

problem. From now on, we need to distinguish between the two fixed points although
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results for the second fixed point can be directly drawn from the analysis of the first

one and symmetry considerations. We study the possible bifurcations in the space of

parameters ccp1,p2).
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Figure c3.3) gives the complete bifurcation diagram in the parameter space

citi,P2

The bifurcation we have in our system is the merging of two saddle points with

an elliptic point, i.e. branch P2 = 0, starting with z1 < 0 and increasing it to get a

degenerate fixed point.



Figure 3.3 Bifurcation diagram for the normal form c3.30) at the degenerate fixed
point c+1,0).
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3.3.2 Degenerate Fixed Point Inside the Container

Finally, we have a degenerate case at X* = X: for the particular parameter value

= /3g. This fixed point has the following Jacobian matrix

.1c = 
0 2 	

(3.46)
0 0

In order to understand the dynamics around the latter fixed point X* 	 X:, we

introduce two new variables cu, v) with u = X — X:, v = y and a new time t' 2t.

A degenerate fixed point at cX,, 0) occurs for some particular value of /3. More

precisely, we can write

2 cosh(b) — A/-1 + 2 cosh(2b b)
= 	

3
sinh(b)

= X,(1 + — 2 cosh(b)XX)

The quadratic order of the Taylor expansion reads

( ((-2 + cosh(2b)),V-1 + 2 2cosh(2b) + cosh(b)) 	 (b)
f2 =

(—(-2 + cosh(b)) V— 1 + 2 cosh(2b) — cosh(314)

(3.47)

(3.48)

(3.49)

To simplify the formulas, we define F as

(-2 + cosh(2b)) 1/-1 + 2 cosh(b) + coshc3b)
	 > 0 , b E 	 00). 	 c3.50)

2 sinh2 (b)

It follows that

2duv ).f2 —
F(u2 + v2 )

(3.51)

The resonant term cGuckenheimer and Holmes [15]) is

f2 -
	 (3.52)
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Figure 3.4 Bifurcation diagram for the normal form c3.55).

Due to the fact that our system is Hamiltonian, we cannot have stable cor

unstable) foci, sinks or sources. It follows that we end up with only the branch

Pi > 0 and ,u2 --- 0, corresponding to a saddle loop-node bifurcation.
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3.4 Bifurcation Diagram for a Uniformly Rotating Vortex

We now describe the dynamics in the four different regions of the phase space, which

we refer to regions I-IV, respectively. The different figures are given for a positive F,

i.e. a counterclockwise circulation. For F < 0, we have the same structure but the

direction of the flow is reversed.

We start from Region I and decrease the parameter /3, going through all the

dynamics of the various regions and the bifurcations occurring in between two different

regions.

Region I, defined by ,3 > N i csee Figure c3.5)), contains two fixed points, an elliptic

point and a saddle point in the interior of the fluid domain. The saddle point

has a one-dimensional stable manifold and a one-dimensional unstable manifold.

A homoclinic orbit consisting of a small loop around the vortex and a large loop

quasi-parallel to the boundary is connected to the saddle point. Small periodic orbits

surround the vortex while large periodic orbits surround the elliptic point, located

in between the boundary and the large loop. The fluid domain is divided into three

sub-regions. As )3 decreases, the saddle point approaches the boundary, and the small
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loop of the homoclinic orbit becomes larger while the large loop moves closer to the

circular boundary of the domain.

When /3 reaches the particular value /3 = 0 +1 csee Figure c3.6)), the saddle

point becomes degenerate, located on the boundary at X = 1, d = 0, and the large

loop of the homoclinic orbit coincides with the boundary.

Figure 3.6 Phase space for transition from REGION I to REGION II.

As /3 decreases, such that /3_ 1 < < /3+1 csee Figure c3.7)), the degenerate fixed point

splits into two saddle points, which start moving away from the location X = 1, d = 0

in opposite directions as /3 varies, while remaining on the boundary, symmetrically

located with respect to the horizontal axis d = 0. The saddle points have a one-

dimensional unstable manifold and a one-dimensional stable manifold. In this region,

the fluid domain is divided into two subdomains separated by an interior separatrix.

This is an interesting phenomenon which looks quite promising for improving fluid

mixing in the vicinity of the boundary. Meanwhile, the elliptic point is pushed to the

left by the heteroclinic orbit.



Figure 3.8 Phase space for the transition REGION IT-REGION III.
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The boundary is now a homoclinic cycle and the streamlines are periodic orbits around
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the vortex. The fluid domain is no longer divided into two regions. When 0 is smaller

than 0_ 1 but remains larger than 0, csee Figure c3.9)), the saddle point on the

boundary has disappeared and all streamlines, including the boundary, are periodic

orbits encircling the vortex. When /3 takes the value /3 = ,3, csee Figure c3.10)),

a degenerate fixed point located at cX:, 0) appears. A homoclinic orbit connected

to the fixed point separates the fluid into two regions in the vicinity of the vortex

located inside the homoclinic orbit, and the remainder of the domain. Finally, when

/3 < 0, csee Figure c3.11)), an elliptic fixed point appears and the saddle point loses

its degeneracy cTakens-Bogdanov bifurcation, Node-Saddle loop), so that its stable

and unstable manifolds are now two-dimensional, leading to a classical figure eight

homoclinic cycle. The fluid domain is then divided into three regions; two regions are

located within the two loops of the homoclinic cycle, and a region outside.
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It is interesting to notice that a fixed point in T, corresponds in J, to a circular

streamline centered at the origin with a period identical to that of the vortex Tv =

27r/w. Let us consider a closed streamline in 54 with period T.
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CHAPTER 4

NUMERICAL SIMULATION

In order to illustrate the mixing and its enhancement by a dual speed rotating

vortex, we numerically integrate the nonlinear system c2.36)-c2.37) by using the

software Matlab [29]. A Runge-Kutta numerical scheme is used to integrate the

Hamiltonian equations. We first check the accuracy of the numerical scheme by

checking the invariant or constant of motion for different initial conditions, and also

by comparing the theoretical eigenvalues of saddle points in our system with those

obtained numerically. We then give a numerical simulation of the mixing with a dual

speed vortex.

4.1 Vortex Rotating at Uniform Speed

The numerical scheme adopted here is the Runge-Kutta method using 7th order

formulas, with an order 0ch8) accuracy due to a local interpolation. This is not

implemented by default in Matlab, but can be found for example in reference [49].

The function implemented by default, 4th order Runge-Kutta ccODE45), is not used

because it lacks the necessary accuracy for some invariants. We would also like to

point out that the Runge-Kutta scheme is not a symplectic integrator and consequently

it does not preserve the symplectic structure cvolume preserving) of the phase space,

which may cause problems for very long time simulations. However, for the different

simulations presented in this chapter, the 8th order Runge-Kutta was sufficiently

accurate for the running time considered.

We recall that the Hamiltonian, HcX, )7, r, F), is always a constant of motion.

Consequently, we can check the accuracy of our numerical scheme by comparing the

Hamiltonian along the trajectory computed numerically and its theoretical value,

which is determined by the initial condition solely. From theoretical considerations,

we know that for a constant angular speed the four-dimensional phase space is actually
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comprised of two independent subspaces. The Hamiltonian is independent of r, and

we take F = cst = 0 for convenience. We thus have along a trajectory:

and take the initial condition on the X-axis [-1 : +1] with a spatial step Fx 0.1.

Avoiding the neighborhood of the vortex (since the vortex is a singular point), that is

we compute the error for the different regions of the bifurcation

diagram versus the initial condition on the X-axis csee Figure c4.1)). The maximum

of the relative error is found to be about 10 -11 .

4.2 Stability of the Fixed Points

To check numerically the stability of the hyperbolic fixed points, or eigenvalue along

the stable or unstable manifold, we use the following standard approach. We integrate

numerically c2.36) - c2.37), starting with an initial condition in a neighborhood of a

saddle point Z*, and plot the distance F(t) = IZct) — Z*1 versus time on a semilog

scale cFigure c4.2)). For a saddle point, we expect the distance to behave like eoe At

where eon is the initial perturbation, i.e. 141 = 10-12 and A denotes the positive

cnegative) eigenvalue along the unstable cstable) eigenspace. The perturbation was

found numerically to grow exponentially, with exponents very close to the eigenvalues

given by the relation c3.19). We perform a curve fitting on the semilog plot for small

dct) numerical values, typically 10 -9 < Fct) < 10-6 ; the slope of the fitting curve

gives us the numerical eigenvalue of the saddle point. For )3 E [-8, 8], we present the

error in the eigenvalue of the saddle points for the regions I,II,IV cFigure c4.3)).
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The numerical results are in good agreement cerror of the order 10') with the

theoretical predictions c3.17).
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We now address following up the stable and unstable manifolds of the saddle

points. The latter, connected through homoclinic cheteroclinic) orbits, are computed

from the Hamiltonian itself. That is, for each position Z: of the saddle point,

we compute the value of the Hamiltonian and plot the corresponding level curves,

including the homoclinic cheteroclinic) orbit.

Figure c4.4) displays the result of a numerical simulation in Region II showing

the evolution of an initial blob containing about 2000 points. One can clearly observe

that the blob stretches, forming a spiral between two specific streamlines. The

blob cannot spread everywhere within the container, particularly beyond the two

streamlines. This phenomenon, leading to poor mixing, takes place in all the regions

of the phase space.

Consequently, a single speed rotating vortex creates a stretch but not a folding

of the material lines. In this case, the spreading, limited by the structure of the flow

itself and the initial condition, remains confined in between streamlines of the flow.



CHAPTER 5

DUAL SPEED VORTEX AND CHAOS

H. Aref [1] introduced a vortex jumping back and forth between two fixed positions in

a circular container and proved the existence of a chaotic regime for the dynamics. We

now replace the space discontinuity in [1] by a discontinuity in time in the rotational

velocity of the vortex in the container. Notice that changing the spinning speed of the

vortex would have the same effect in terms of the dimensionless parameter /3

5.1 Dual Speed Rotating Vortex

We thus introduce a dual speed rotating vortex by switching periodically the angular

velocity csee Figurec5.1)).

In terms of the dynamics, we seek to create chaotic dynamics by using two different

parameters c(31 , $2 ), which may result in two sets of transverse streamlines. For

example, we create an alternative clockwise and counterclockwise vortex motion at

the same or different speeds, or alternate slow speeds and high speeds in the same
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angular direction in a periodic fashion.
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Figure 5.2 Schematic of the mapping f for a dual speed rotating vortex

From Figure c5.2), we can see that by considering two sets of transverse streamlines,

the trajectory of a passive particle will experience a significant change in direction,

a "90 degrees" turn, and the smoothness of the trajectory will be typically C 1 . We

observe that the dynamics of the fluid generated by a dual speed rotating vortex can

be described as the composition of two mappings, fiband 12, corresponding to cthe, T1)

and c/32, T2 ), respectively. The resulting mapping can thus be written as 1=120

In the next section, we will construct explicitly an invariant set of the mapping f.

From a dynamical viewpoint, it seems promising to take two speeds from two distinct

regions of the dynamics out of the four regions previously described. For this purpose,

Region II seems particularly interesting as it presents an opportunity to increase

fluid mixing close to the boundary due to the heteroclinic orbit coinciding with the

boundary of the domain. This orbit connecting one point on the contour to its

symmetric image on the opposite side of the boundary in a direction transverse to

the contour allows us to exchange fluid close to the boundary with fluid inside the
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container, relatively far away from the boundary. It is expected that such an exchange

will facilitate mixing.

5.2 Numerical Simulation of the Dual Speed

We now consider the dual speed vortex with the following parameters:

The initial condition for the mixing problem is a marked square blob of fluid

consisting of approximately 6000 points, all concentrated within a small area of size

1% of the container. The aim of our simulation is to study the spreading of the fluid

blob after a certain number of periods nT.

Mixing is studied by imposing two different velocities of the vortex, as we

previously described. Particularly, the parameter A. is chosen to be 01 = —5,

corresponding to the dynamics in Regions IV, and 02 was given the value 02 = 1,

corresponding to the dynamics of region III. Notice that we chose T1 L T2 in order

for the vortex to describe a full circular trajectory. That is, the vortex is going back

and forth, although, on average, it is still rotating counter-clockwise. This example

results in a quasi-uniform mixing inside the entire container, as shown in Figure c5.3).

One can clearly observe that mixing is due to the folding and stretching of the

marked blob of fluid within the container. In particular, we notice that after a few

iterations, some marked fluid reaches the vicinity of the boundary.



5.3 Smale Horseshoe Construction

In order to show that chaotic advection is present in our system, we describe the

construction of a Smale Horseshoe [ 15] , 147] in the frame of reference of the vortex.

For this, we consider a small region, T) 1 , in the container and seek its invariant

points A, that is the set of points which, through the dynamics, return to this region
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D 1 after a certain number of iterations. It is well known that the existence of such a

closed and compact set for which each of its points is an accumulation point, referred

to as Cantor set or hyperbolic invariant set [15], [47] implies that the dynamics is

chaotic, that is sensitive to the initial condition csee Appendix C).

In our search for a Cantor set, we first observe that the dynamics of the fluid

generated by a dual speed rotating vortex can be described as the composition of

two mappings, f iband f2, corresponding to cthe, T1) and (32, T2), respectively. The

resulting mapping can thus be written as f = 12 0 f1 , with T being the difference

between the two periods T1 and T2.

For any dynamics corresponding to a value A, the streamlines in the frame of

reference of the vortex are closed. Each streamline has thus a period associated with

it. Any initial marked blob of fluid in between two streamlines stretches into a spiral,

while remaining confined within the space between the streamlines csee Figure c4.4)).

In order to construct the horseshoe, we choose an initial blob of fluid delimited

by four streamlines, two streamlines whose periods are shifted by some time T 1 ,

corresponding to a velocity parameter c0 1 and a period difference T1 ), and two

streamlines corresponding to c/32 , T2) csee Figure c5.4)). The intersection of the two

domains define two small regions D 1 and D2. Notice that the four corners of D 1 and

D2 are fixed points for the mapping f.

We now follow the dynamics of one of these regions, D 1 . For this, we consider

the image of D 1 by fib; as previously discussed, this image is a spiral between the first

set of streamlines. In search of the invariant hyperbolic set, we retain the intersection

of this spiral with D i and D2 only and define Si = n Di and S2 h cDi) n D2,

as shown in Figure c5.5).

The next step consists in applying the mapping 12 to Si and S2 and, once again,

we retain the intersection with D i , see Figure c5.6). At this point, it is easy to realize
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the importance of D2 in the construction of the invariant set since some of its points

return to D1.
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Figure 5.7 2 first steps (forward) of the construction of the horseshoe

Iterations backward in time will lead to stripes transverse to the ones we just

described and a repetition of the iterations will generate the Cantor set within D 1 .

5.4 Islands Chains and Chaotic Layer

As in other works where mixing is achieved by means of chaotic advection [1], it is

also possible to find some dynamics where the marked blob of fluid does not spread
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everywhere in the container, thus leaving unreachable islands or invariant regions in

onsider the dynamics corresponding to the

and take a snapshot of the location of the

marked fluid blob after each period T; this is equivalent to taking a Poincare section

in phase space. We can observe in Figure c5.8) the appearance of islands after 10,000

iterations, which clearly reduces the mixing efficiency. Both the size and the number

of these islands depend on the particular parameter values. A systematic numerical

parameter study to investigate this dependency would be a tedious exercise and is not

included in this paper. In Figurec5.8), we can see the transient chaotic region-regular

island. This example has a periodic point of period three inside the island and on the

boundary as well. A magnification of the transient region, called the stochastic layer

or Arnold's web 126] is given in Figure c5.9).
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CHAPTER 6

EXPERIMENT

An experiment has been set up at NJIT by John Batton and Ahmed Ould el Moctar,

in order to test the theoretical predictions. The different phase space regions with

their own dynamics were obtained experimentally. Experimental and theoretical

results agree well qualitatively, although differences, particularly in numerical values

at which bifurcations take place, will be highlighted as well.

6.1 Description of the Apparatus

For convenience, the experiment was set up at macro-scale in a circular container

with a radius of 2 inches and a height of 4 inches. The tank was made out of glass

to facilitate the visualization of the flow through a clear boundary csee Figure 6.1).

The stirrer is a rod of radius 1.6 mm, capable of spinning with a rotational speed of

2000 rpm. The fluid used is glycerin which has a density of 1173 Kg/m3 and the high

viscosity of 0.76 Pa.s (water 0.001 Pa.․) .

The passive tracer is a fluorescent dye made up of fluorescent powder cCole-

Palmer, Fluorescent Dye Tablets Model 295-17) dissolved in glycerin prior to performing

the experiment. This fluorescent dye is characterized by a very low diffusion coefficient

and a sharp contrast with glycerin [25]. The dye is excited by four sets of long-wave

365 nm UV lights (Fisher, model XX-015N) which originate from a square array

located directly above the container. In order to avoid the effect of surface tension,

the dye is injected about 2 mm underneath the free surface of glycerin with a syringe.

The best view of the flow was obtained by taking pictures from below the

container through a mirror, with a digital 5 Mega-pixels camera. Pictures thus

captured will be used later for comparison with the theoretical streamline patterns

as well as for mixing measurements.
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We define a Reynolds number for our system based on the parameters of the

apparatus.

where

• r0 is the radius of the rod,

• r is the radius of the container,

• w is the angular velocity of the arm,

• it is the angular velocity of the rod

• and v is the kinematic viscosity of the glycerin.

AZ ranges from 0 to 18000 RPM cSpindle motor - Buehler Model 13.65 Permanent

Magnet with AC Tachometer Output). A regulation device using a feedback action

enables the precise control of this rotating speed.

The range of w values, from 0.5 to 12 RPM, has been determined so that

turbulence does not occur behind the 2D-cylinder rod cMotor to move swing Arm -

McMaster-Carr 6331K34 Permanent Magnet DC Gearmotor). The Reynolds number

c6.1) indeed remains between 114 and 116 in the conditions of our experiments.

The computation of the value of experimentally is carried out by using the

formula

where a is the radius of the container. Throughout the previous chapters, the radius

was taken as a = 1, but for comparison with the experiment we need to consider the

relation c6.2). The strength of the vortex, F, is determined by the circulation of the
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With the dimensions of our apparatus being a = 5cm, r ob = 1.6mm, we have =

485.7w.

6.2 Experimental Results

In order to capture the various features of the dynamics in the different regions of the

phase space, three droplets of fluorescent glycerin were injected into the container as

initial conditions. The evolution of the droplets was then followed as time increased.

6.2.1 Flow with a Uniform Rotating Vortex

The first set of experiments were conducted for the purpose of checking the existence

of the four different phase space dynamics predicted by the theory, referred to as

Region I, II, III, IV on the bifurcation diagram Figure 6.2 displays the dynamics in

the four regions.

The reversibility of the dynamics was also corroborated experimentally with

one droplet as the initial condiiton. The inverse dynamics was produced by changing

the direction of the angular rotation (w —w) as well as the vortex circulation

c9 — —11), while keeping i3  unchanged ccorresponding to the same flow structure but

with a reversed flow direction).

A set of experiments and the corresponding numerical simulations were run for

the purpose of comparison. The presence of viscous effects in the experiments led to

a disagreement between the values of bifurcation parameters in the theory and the

experiments. A direct comparison thus needed additional care. For this purpose, the

initial angular position of the vortex and that of the initial blob of dye were directly

measured from the experimental photos. The value of the dimensionless parameter $

was then deduced by measuring the position of the saddle point from the experimental

visualizations. That is, the matching of parameters was performed by matching the

position of the saddle point only.
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The initial condition was composed of three different blobs along the diameter

in order to capture the various flow structures.

One can clearly observe from the experimental photographs that the flow patterns

obtained experimentally are very similar to those derived from the theory. Differences,

however, are noticeable in the bifurcation diagram, particularly in the transition

values of between the different regions. We give below a table comparing the values

of at which the transition between the various regimes occurs.

It is conjectured that the viscous effects neglected in the theory are responsible

for this discrepancy cof a factor of 10).

While the velocity profile of a point vortex is N 1/r in potential flow theory,

the high viscosity of the glycerin used in the experiments leads to a greater damping

in the velocity field. Consequently, for the same configuration, for instance in Region

I, for a given speed Dv, the saddle point is closer to the vortex in the experiment than

it is according to the theoretical predictions of the previous chapters.

For example, the transition between Region I and Region II occurs when the

saddle point approaches the boundary of the container. Since the position of the

saddle point is closer to the vortex experimentally, we have to decrease the parameter

/3, or equivalently w in the experiment, for the saddle point to reach the boundary of

the container.

Another discrepency between theory and experiment occurs in the neighborhood

of the edge of the container. In the potential flow model, the boundary is identified

with a specific streamline. However, in a viscous flow, the no-slip boundary condition

manifests itself by a zero velocity of the fluid on the edge of the container. Consequently,
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the heteroclinic orbit joining two saddle points on the boundary in Region II of the

theoretical model is shifted toward the inside of the container in the experiment.

Finally, the experimental identification of Region III is a challenge since this

regime requires a very low speed of the arm, at the limit of the range of speeds

generated by the motor used. Although the dynamics of this region was identified, the

motion of the arm was not very smooth and the experimental streamlines somewhat

disturbed.
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Figure 6.2 Comparison between experiment and theory for the four different flow
patterns.
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6.2.2 The Dual Speed Vortex

6.3 Comparison of the Measure of the Mixing between Experiment and

Numerical Simulation

In order to compare the different cases, the degree cor index) of mixing was measured

by considering the relative covering of the dye with respect to the container. A low

index, where the dye remains in a relatively concentrated area is referred to as poor

mixing while an index close to 1 corresponds to very good mixing, i.e the dye spreads

almost everywhere.

The measure is obtained by a digital treatment of the experimental photographs

csee Figure c6.3))with the software Image [19].

We first convert the color picture into grey scales, the different levels of grey

corresponding to the local concentration of the fluorescent dye. We then filter the

dye from the background by setting a threshold on the grey level. The value of

this threshold is selected to capture as much as possible of the real spreading of the

dye throughout the picture when mixing occurs. The same threshold is kept for all

pictures of one experiment. By doing so, some of the regions showing a poor contrast

with the background are left out.

The measurement of the dye covering is carried out by counting the number of

pixels of the filtered dye, a function available in the software ImageJ.
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The number of pixels in the container is counted initially in order to be able

to compute the percentage of the dye covering within the container as a function of

time.

We give below the covering of the dye versus time for different mixing protocols

corresponding to various values of ail, a2. In this case, the dimensionless parameter

takes the value /3 = 0.24, and we denote by ir — 7r/2 the experiment in which the

vortex crod) travels in the counterclockwise direction over the angle ir and in the

clockwise direction over the angle 7r/2. This motion is then repeated in a periodic

fashion.



Figure 6.4 Relative covering of the dye for different protocols of mixing with =
0.24

Figure c6.4) shows a significant enhancement of mixing with a dual speed

rotating vortex. With only one angular speed, the covering of the dye is about 15-20

percent of the container. However, with the dual speed protocol 7r/4 — 7r12, almost

100 percent is reached in a short period of time. In Figure c6.4), the importance of the

two angles a l , a2 is clearly shown. A detailed study of how these angles influence the

dye covering is not considered here. However, we can point out that more frequent

changes in direction, i.e. decreases in a 1 , a2 , facilitate the mixing csee Figure c6.4)).

In Figure c6.5)-c6.6), we give several snapshots of Both the numerical simulation

and experiment in order to compare the time evolution of the initial blobs. Particularly,

we consider the case 7r/4 — 7r/2 and 7r/2 — 7r/4 for an experimental value of the

dimensionless parameter j3 = 0.24. Qualitatively, the numerical simulations exhibit

the same flow patterns or shape of blobs as the experimental visualizations. The

numerical accuracy required to obtain the folding and stretching of the material lines

clearly visible in this figure consisted of about 10 5 points in each initial blob.
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(a)
	

(b)

(c )

	

(d)

(e)

(g)
	

(h)

Figure 6.5 Comparison numerical simulation and experiment for the case of an
experimental /3 = 0.24 and 7r/2 counterclockwise and 7114 clockwise
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(a)	 (b)

(c)
	

(d)

(e) (f)   

(g)

	

(h)

Figure 6.6 Comparison numerical simulation and experiment for the case of an
experimental /3 = 0.24 and r/4 counterclockwise and r/2 clockwise



CHAPTER 7

CHAOTIC ADVECTION USING PERTURBATION

We consider in this section only Region IV of Chapter 3, which has two homoclinic

orbits with an "eight shape" and study the influence of a perturbation in the Hamiltonian

corresponding to the case of a constant angular speed. The perturbation is introduced

in the angular velocity of the vortex, so that cect) , cot+A sinc1-20. The numerical

procedure used in this section is a symplectic Runge-Kutta scheme.

7.1 Symplectic Runge-Kutta Scheme

The numerical simulations performed in the next sections involve integrations which

need to be carried out over a very long time or possessing specific structures. It is

known that a regular Runge-Kutta scheme which is not symplectic is inappropriate

for Hamiltonian problems especially for long times of integration. In particular, some

quantities like constants of motion may not be preserved, and there may be a drift in

the energy or some canonical features may not be satisfied.

Figure 7.1 Drift in the energy with a Runge-Kutta scheme of 8th order

Figure c7.1) shows a drift in the energy of the order of 10 -8 . Although this drift

is quite small, it has a significant effect on the trajectory as we can see on the plot in

the right. Indeed, in this case, we have a closed, periodic orbit in phase space, but the
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error due to the numerical scheme produces a non-periodic, complicated trajectory.

We will return to this example in Section 7.3.

One way to fix this problem is to perform a convergence study by decreasing the

time step in the Runge-Kutta scheme. However, as we will see in Section 7.3, the time

of integration required for convergence can be quite long, which makes the study too

cps consuming. Consequently, we decided to implement a symplectic scheme based

on the Runge-Kutta approach. We give here some details about the scheme which can

be found in references [33],[34],[35]. More information about integrating Hamiltonian

problems can be found in [40], or on the Synode project [39].

The goal is to solve a set of ODE'S, more precisely the Hamiltonian equations

c2.34). We rewrite these equations in the generic form



Here the coefficients CI are defined by

ca = E
j=1

The parameters c; , b; , K2; are chosen so that Fyn represents an approximation of

the Taylor expansion of the solution. In the literature, these coefficients are given in

a table referred to as a "Butcher Tableau" [11}.
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c7.5)

CI all . • tits

c7.6)
C8 a81 • • ass

b1 	b8

We denote by (13h a map with time step h, 4h : y„ —> yn+1, for the evolution of

the solution.

Definition 1 A method 43% is symplectic for any h and any Hamiltonian system for

which it is applicable if its Jacobian alzh satisfies

c Vi)h ) JcVi3h ) =

0 I
,with J —

—I 0)
c7.7)

A condition to ensure that the Runge-Kutta scheme c7.3) is symplectic csee [24],

[40]) is

bia2i biaii — bibj = 0, i, j =- 1, . S. 	 (7.8)

The internal stages require the solution of an implicit system c7.4) at each time

step. For instance, a three stage scheme will produce a system of 12 equations for our

Hamiltonian equations with the canonical variables cX, d; i-, F). Newton's method is

used to solve this system.
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For a nonlinear system gcx) = 0 with several variables, we recall Newton's

method. After solving the following linear system at the n-th time step:



A convergence study for one set of parameters is given in Figure c7.2). The

following plot shows the drift in energy as a function of time step h. For smaller time

steps, the drift should be reduced since the energy or Hamiltonian is a constant of

motion.
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Figure 7.2 Drift in the Hamiltonian versus the time h for three different symplectic
schemes.

In the next sections, we will use the Gauss-Legendre method of order 6, with

time step 10 -6 to ensure sufficient accuracy for the broad range of situations we will

encounter.

7.2 Formation of Lobes, Homoclinic Tangles and Chaotic Transport

First, we study the stability of the homoclinic orbit under perturbation. The perturbation

is introduced in the angular position of the vortex, i.e. a ct) 	 cot+ A sincCit).

Consequently, our Hamiltonian becomes

For A ----- 0, we know from Section 3.2 that we have a saddle point with two homoclinic

orbits. Numerically, we choose to investigate only the homoclinic orbit around the

vortex. One of the interesting scenarios occurs in the case of small A, i.e A << Do,

where the homoclinic connection breaks and leads to a transverse homoclinic orbit,

where the unstable and stable manifold intersect transversally.
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In this situation, it is known that the two manifolds intersect an infinite number

of times, leading to a complicated pattern csee Figure c7.4)), and that there is a

hyperbolic invariant set in the neighborhood of the saddle point cSmale's Theorem),

i.e an horseshoe [15], [47].

Such a configuration for the stable and unstable manifold leading to chaotic

transport have been studied in detail [7], [48].

The Melnikov method can be used to check the existence of the transverse

intersection, as well as a direct numerical simulation with the unperturbed homoclinic

orbit as the initial condition.

We now consider a direct simulation with the following parameter values T 1 =

condition is the unperturbed homoclinic orbit defined with about 4000 discrete points.

The discretization of the homoclinic orbit is carried out with Matlab c[29]) by plotting

the level curve corresponding to the homoclinic orbit with a small mesh size, Ax =

10-2.
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Figure 7.2 displays the trajectory going twice around the homoclinic orbit

showing the presence of lobes and tangles. In this situation, the chaotic transport

was described theoretically by studying the evolution of the lobes and tangles [7].
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7.3 Resonances and bifurcation cascade

We now consider a perturbation of the angular velocity of the vortex so that w now

becomes w + A cosc12t ; the amplitude A is now a function of 	 such that A =

1/a. The corresponding dimensionless rotation parameter becomes /3ct) = w-f-;-7r

4j1-r cos cqt).

From the phase space analysis of Chapter 3, we know that the value of this

parameter determines the topology of the flow, i.e. its fixed points and separatrices.

The time dependent /3 above will result in a separatrix oscillating about the unperturbed

separatrix, which is also its average position.

In the limit case where S2 << 1, corresponding to a slow separatrix motion,

well-known techniques are available to study the dynamics such as the method of

averaging [26]. However, in order to have a significant change in the dynamics, we

consider the rotation parameter value : 130 = wr/F = —6. At this value, the flow

has two homoclinic orbits with an eight shape cREGION IV) and Air = 1. This

constraint implies that —7 < /3ct) < —5, which means that the trajectory remains

in the REGION IV for all ,(3 values. The initial condition is the unperturbed saddle

The trajectory fills a region delimited by the

extremal positions of "the oscillating separatrix" and is referred to as the stochastic

region.
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However, for specific values of 9, the trajectory becomes more localized in space

and does not spread everywhere in the stochastic region. These values will be referred

to as resonances and the trajectory is periodic with period T. This period is a multiple

of the period of the forcing term, T1 2ir/S2. Hereafter, we denote a resonance n : 1,

if the period of the trajectory is n times that of the forcing term, i.e. T = nT1 .

We rewrite 9 = pD..; and use as our parameter for the numerical simulations

below.

The values of p at which resonances occur are found by minimizing the distance

of the returning point in the neighborhood of the initial condition zQ after a time of

integration which is a multiple of the forcing period T1. We stop the minimization

when the distance is less than 10' 3 . We consider the corresponding trajectory as

periodic, and the value of p is referred to as resonance n : 1.

The tuning of the parameter p is performed automatically by a "search program" ,

given an initial guess.

Example for 1:1 resonance.

Initial Guess : 0.6. Best value ctuned value) : p = 0.63256760329605 as we tune the

parameter p cor go down the digit), the distance decreases csee Figure c7.8)).
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Figure 7.8 Distance of the returning point versus the number of digits.

Since we expect the trajectory to be periodic for these specific values, we

compute the trajectory over 400 periods with our numerical scheme.

In Figure c7.9), we display the plot of it versus the resonance n : 1, showing the

existence of five different families. For a given family, the values of 1u accumulate, and

seem to converge to some limit value as the resonance n : 1 increases. However, the

convergence is not exponential; a semilog plot of u versus the resonance n : 1 does not

give a straight line even for high values of n. Consequently, we cannot characterize

each family with an exponent or constant of convergence.

In order to observe the cascade of bifurcations and the period of the trajectory,

we plot the canonical variable F versus time and give below the five different families.

This list is not exhaustive, and more families can be found.
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7.3.1 First family

The values of the parameter t for the first family of resonances are
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We display below the plot of the canonical variable F and the trajectory for

each value of i.
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From Figure c7.9), the different families seem to form pairs, first with second

family and third with fourth family. For each pair, the parameter it for each family

converges, as the resonance a : 1 increases to two close limit values. As the resonance

a : 1 increases, we can see from the previous figures that the trajectory, or cycle,

becomes more and more complicated and challenging to integrate. Even though we

are using a symplectic scheme to integrate the Hamiltonian equations, it is limited

by its finite accuracy and running time to compute the trajectories. In a limit of

resonance a : 1 going to infinity, the trajectory will have an infinite number of loops

and will be dense in some finite region of the phase space.



CHAPTER 8

CONCLUSION

From a simple protocol consisting of stirring with only one rotating vortex, we were

able to obtain good mixing within a circular container. For this, we first derived the

Hamiltonian in the frame of reference of the vortex. By studying the Hamiltonian

equations and the corresponding phase space dynamics, we produced the bifurcation

diagram in a two parameter space, the two dimensionless parameters being the relative

position of the vortex with respect to the radius of the container and the ratio of

strength to angular velocity of the vortex. Four different streamline patterns of the

flow were found, consisting of fixed points cor stagnation points) connected through

homoclinic/heteroclinic orbits. These specific trajectories correspond to separatrices

dividing the container into two or three independent regions.

The different patterns of the flow obtained numerically were compared to experi-

mental results. While a good qualitative agreement was obtained, some differences

could be discerned due to the high viscosity of the fluid used in the experiments. A

theoretical model considering viscosity could be derived and studied to identify the

effect of viscous diffusion by changing the singularity introduced by the point vortex

into a stokeslet [3], [37].

The difference between the case of a single speed vortex and that of a dual

speed rotating vortex was shown by means of numerical simulations. In particular, in

the latter case, we performed the explicit construction of a Smale's Horseshoe, thus

demonstrating the presence of chaos. Furthermore, an example of a stochastic layer,

between a chaotic island and a regular one, was obtained numerically with the chaotic

island clearly displaying a fractal structure.

Finally, a numerical study of the situation where the angular position of the

vortex is perturbed in a sinusoidal fashion in time was carried out by using a symplectic
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scheme, allowing us to show the existence of a transverse homoclinic orbit, and

therefore the presence of chaotic transport in this situation as well [7]. By considering

a perturbation with a particular constraint, we found five families of resonances for

which periodic orbits or limit cycles exist, whose periods are equal to multiples of the

period of the perturbation.

We would like to close this work by referring to an interesting prior experiment in

which the idea of a dual speed was capable of enhancing mixing [10]. The experiment

consisted of a straight channel filled with a conducting fluid. A magnetic field, created

by a current going through two wires along the channel located outside of the flow

domain, was applied to the flow in order to induce vortices. Two pairs of vortices were

induced through the generated Laplace forces and rotated through the rotation of the

two wires capable of rotating about the axis of the channel at different cclockwise or

counterclockwise) speeds. The difference between a uniform angular speed and a dual

speed was highlighted in terms of the mixing index of a dye, but no mathematical

explanation was given.

The work displayed in this thesis gave a rational explanation for the mixing

enhancement generated by a dual speed vortex. With four vortices, the different

patterns of the flow are undoubtedly more complicated but the main ingredients of

the observed chaotic advection can be explained by our work, the basic phenomenon

being a periodic switch between two sets of transverse streamlines.
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FP A dQ = E FPS A FQ.
S=1

cA.6)
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in the set of coordinates (P(p, q), Qcp, q)), the 2-form FP A dQ can be written

The equation cA.5) implies that

o POD OF  OP Ok 	k  CAD 
E 	 = 1

k_iPk oak Doak oak
cA.7)

Or Oak Oaks Oaks Oaks
A P At) At) A P = 1k =1 AZ i k tzuelc 	 tfuek t" I k

(A.8)

We have {ak , dqk} = dq A dak and da A dq = E:z_ i FpS A dq2 , it follows from cA.7) and

cA.8)

dp A da = dP A FQ	 cA.9)
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An example of a left null-eigenvector of LA2 [15] is given by
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APPENDIX C

The Smale Horseshoe

C.1 Introduction

We consider a dynamical system * = fcx) and suppose that the dynamics has a saddle

point with an homoclinic orbit. Under small perturbations, the homoclinic orbit can

break, i.e. the stable cW8) and unstable cWu) manifolds are not connected in a

tangential manner. In the case of a transverse homoclinic orbit, there is a hyperbolic

invariant set in the neighborhood of the saddle point cSmale's theorem). The following

description of the Smale Horseshoe is generic, that is it is the linearization of the

dynamics in the neighborhood of the saddle point.

The first part is a description of the construction of the mapping and its invariant set.

The second part describes the mathematical tool we use to derive all the properties

of the invariant set.
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f can be decomposed into two steps.

In the first step, f expands the unit square by a factor in the y-direction, and

contracts by a factor A in the y-direction, with 0 < A < 2 and pc > 2. If the dynamics

preserves the volume, which is the case for a Hamiltonian system, then we have

Aft = 1. The second step consists in folding the thin rectangle in order to obtain a

"horseshoe shape" for f cD).

The intersection f cV) fl D corresponds to two rectangles denoted V on and V1 ,

respectively. We denote by Ho and H1 two horizontal rectangles in D such that

fcHo ) = Von and fcH1) = VI •

Figure C.2 defines the inverse map f"

Figure C.2 The action of I -1 on D

where f-1 contracts by a factor /1 -1 in the y-direction, expands by a factor A -1

in the x-direction, and folds. We have Ho U H1 = D fl rice).

C.3 Invariant Set : A

The invariant set, A, of the mapping f is such that fcA) = A. Since at each iteration

by f or I-1 we cut, or remove, a part of the horseshoe, we have to consider all the

possible iterations by f and f' of the unit square D.

In other words, the invariant set A is given by

+°°A = n fn cD)
n=-oo
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where A is the set of points which remain in V under all possible iterations of f.
Iterations of f

Remark :

In order to describe the dynamics, we will introduce the symbolic dynamics. Prior to

doing this, we need to label the rectangle in a proper manner with some rules.

After each iteration, we add a new symbol to the left of the index. For example,

V01 means that the rectangle is in V0 but that it was previously in V1 . In this manner,

one can see right away the history of the rectangle by reading the sequence of symbols

representing the index.
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For example, V01 is in Vo and also in Ali), that is Vol = Von n /WO = Sp E D,a E

Vo7f -1 cP) E VS }.

We can thus write

D n f2cD) n /2cv) = Poo u void u vino u vii

= (von n /WO) u cVac n cvi)) u cvi n icV0)) u cVi n /WO)

"=2,2
= Uss_ iES (f(v5_2) n II3_1)

= {p ED,pe Vs_„/-S cp) E V8_2 ,s_i E S,i = 1,21

=- = 2 '2 v08—iES 8-1 8-2

Figure CA represents the set • D n f (D) n /2 cv) n f3 (v).

N.......""%ve-N,.....,

V
0

Figure C.4 Von n 1 cV) n f2cD) n f3 cD)

This set is composed of 23 vertical rectangles, 4 rectangles in V on and 4 rectangles

in V2 .

For example, V010 is in V0 , and also in fcVi) and f 2 cVo ),

that is Vow = Von n 1cV2) n f2(V0) = {p EV,PE V0, f-2cp) E V2, f -2cp) E Vol.



The image of a horizontal rectangle by f-1 is the union of two thinner horizontal

rectangles.
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Each vertical line intersects each horizontal line at a unique point, so A is an

infinite set of points. More precisely, it is a Cantor set, closed, compact and perfect.

Let p E A, p = 14.9_ 1 ...8_„... fl Hso.,„.... We label the point p by a bi-infinite sequence of

0's and l's:
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for an element s in E, that is the map a shifts each element of the sequence by one

place to the left, as indicated by the changed location of the ".".

For any fixed k, the number of sequences having a periodically repeating block

of length k is finite, i.e a has 2k periodic orbits of period k.

It follows that a has a countable infinity of periodic orbits.
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Non periodic orbitsWe consider a non-periodic infinite sequence s = {.so • • • an • • .}.

s being non-periodic, it is equivalent to an irrational number, in the unit interval,

expressed in base 2. This irrational number in the closed unit interval constitutes an

uncountable set.

Moreover, we can construct an infinite number of hi-infinite sequences s' such

that sZ = s ibVi > 0. We thus have a correspondence between an uncountable set of

points and non-repeating sequences.

The orbits of these sequences are non-periodic orbits of a, and there is an

uncountable number of such orbits.

A dense orbit We must find an element s E E, whose orbit is dense in E, i.e for

any given s' E E , E > 0 , art E N such that Fco-cs)n , s') < E.

We consider all possible sequences of 0's and l's having length 1, 2, 3,...

length 1 : 0 , 1

length 2 : 00 , 01 , 01 , 11

We now introduce a rule to order the collection of sequences of length k. Let

3 be two finite sequences

• for k < k' , < 3 for

• k k', s < 3 if < -37 where "i" is the first integer such that

This rule is equivalent to considering g ands integer numbers expressed in base

2, and ordering these integer numbers in increasing order.
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C.6 Conclusion

We have a relation between f and g which are topologically conjugate. The shift map

has the following properties.

• There is a countable infinite number of periodic orbits of arbitrarily high period.

• There is an uncountable infinite number of non-periodic orbits.

• There is a dense orbit.

It is then possible to transport these properties to f.

The Smale horseshoe, f , has :

• A countable infinite number of periodic orbits of arbitrarily high period. These
periodic orbits are all of saddle type.

• An uncountable infinite number of non-periodic orbits.

• A dense orbit.

Furthermore, the skth element of the sequence 1cp), with p E A, corresponds

to fkcp). It follows that the shift map a from E into itself is "equivalent" to the

horseshoe map f.
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