241 research outputs found

    An Ultra-Low-Power Oscillator with Temperature and Process Compensation for UHF RFID Transponder

    Get PDF
    This paper presents a 1.28MHz ultra-low-power oscillator with temperature and process compensation. It is very suitable for clock generation circuits used in ultra-high-frequency (UHF) radio-frequency identification (RFID) transponders. Detailed analysis of the oscillator design, including process and temperature compensation techniques are discussed. The circuit is designed using TSMC 0.18μm standard CMOS process and simulated with Spectre. Simulation results show that, without post-fabrication calibration or off-chip components, less than ±3% frequency variation is obtained from –40 to 85°C in three different process corners. Monte Carlo simulations have also been performed, and demonstrate a 3σ deviation of about 6%. The power for the proposed circuitry is only 1.18µW at 27°C

    UHF Power Transmission for Passive Sensor Transponders

    Get PDF
    Passive transponder tags operating in the ultra high frequency (UHF) range receive their power supply from the electromagnetic carrier wave from a remote base station. The maximum range is largely determined by the circuits’ current consumption and the rectifier efficiency. Reading ranges of several meters have recently been reported for several state of the art RFID (Radio frequency IDentification) tags [1]. The presented UHF transponder chip with integrated temperature sensor was designed for a 0.35 ?m CMOS process with EEPROM, Schottky diodes, and double poly layers. Due to a more complex architecture and additional functionality, the power consumption of the presented sensor transponder tag is significantly larger than that of simple RFID tags. The A/D conversion requires a stable, ripple-free supply voltage with a relatively large DC value. A novel rectifier circuit generates the supply voltage from the high frequency antenna signal. The circuit requires only -11.4 dBm input power and is insensitive to temperature and process variations. The maximum operating distance is approximately 4.5 m

    Definition, Characteristics and Determining Parameters of Antennas in Terms of Synthesizing the Interrogation Zone in RFID Systems

    Get PDF
    The radio frequency identification (RFID) systems are gaining in popularity in automated processes of object identification in various socioeconomic areas. However, despite the existing belief, there is no universal RFID system on the commercial market that could be used in all user applications. All components of a developed solution should be carefully selected or designed according to the specification of objects being recognized and characteristics of their environment. In order to determine parameters of propagation or inductively coupled system, especially when it is dedicated to uncommon applications, a multiaspect analysis has to be taken into consideration. Due to complexity, the problem is reduced to analytical or experimental determination of RFID system operation range and a “trial and error” method is mostly used in the industry practice. In order to cope with the barriers existing in the RFID technology, the authors give the review of latest achievements in this field. They focus on the definition, comprehensive characteristics and determination of the antenna parameters. They also pay attention to the 3D interrogation zone (IZ) that is the main parameter in which multitude technical aspects of the RFID systems are gathered simultaneously, as regards the theoretical synthesis as well as market needs

    Performance Improvement in Passive Backscatter Based RFID System with Low DCR Modulations

    Get PDF
    This paper presents application of the low Duty Cycle Ratio (DCR) modulations: isochronous Digital Pulse Position Modulation (DPPM) and anisochronous Digital Pulse Interval Modulation (DPIM) in backscatter based passive RFID communication system. The proposed modulations are compared to commonly used Amplitude Shift Keying (ASK) modulation. Low DCR modulations are customized for data transmission through inductively coupled link between reader and the tag operating at frequency of 13.56 MHz. The RFID system is mathematically formulated and the performances of the tag are evaluated for each modulation. Observed parameters are modulation depth of backscattered signal, voltage-current characteristics of tag rectifier circuit and ripple of rectifier output voltage. The application of proposed low DCR modulation techniques improves the performance of the RFID system by up to 250%

    Nanopower CMOS transponders for UHF and microwave RFID systems

    Get PDF
    At first, we present an analysis and a discussion of the design options and tradeoffs for a passive microwave transponder. We derive a set of criteria for the optimization of the voltage multiplier, the power matching network and the backscatter modulator in order to optimize the operating range. In order to match the strictly power requirements, the communication protocol between transponder and reader has been chosen in a convenient way, in order to make the architecture of the passive transponder very simple and then ultra-low-power. From the circuital point of view, the digital section has been implemented in subthreshold CMOS logic with very low supply voltage and clock frequency. We present different solutions to supply power to the transponder, in order to keep the power consumption in the deep sub-µW regime and to drastically reduce the huge sensitivity of the subthreshold logic to temperature and process variations. Moreover, a low-voltage and low-power EEPROM in a standard CMOS process has been implemented. Finally, we have presented the implementation of the entire passive transponder, operating in the UHF or microwave frequency range

    Design of solar harvested semi active RFID transponder with supercapacitor storage

    Get PDF
    This paper presents the analysis, design and manufacture of a low cost, low maintenance and long-range prototype of RFID transponder with continuous operability. A prototype of semi-active RFID transponder is produced with a range that can be extended via a DC input to allow all of the readers signal power to be reflected via backscatter modulation. The transponder is powered via solar harvested power which is selected over other energy harvesting technologies as it provides a greater energy density and lower cost. Solar has one major drawback in terms of providing a steady DC voltage in it needed a constant supply of sunlight. A method of power storage is proposed, and the use of a supercapacitor over a rechargeable battery is used as it has a longer lifespan due to higher recharge rates. The prototype underwent a series of experiments in various working environments and proves an effective solution in providing long lasting operability. The paper concludes the use of solar harvesting with supercapacitor storage has potential for further uses in external remote sensors used in the Internet of Things

    Implementation of Sensor RFID: Carrying Sensor Information in the Modulation Frequency

    Get PDF
    An approach that can be used for exploiting the sensing capabilities of radio-frequency identification (RFID) is presented and formulated. In this approach, sensor information is carried through the modulation frequency of RFID . The aim of this work is to investigate the sensor concept and to characterize the sensor performance both theoretically and experimentally. Furthermore, the operation of the sensor radio-frequency (RF) parts and oscillator are described analytically, and the equationsare verified by simulations and measurements. The concept is experimentally demonstrated at a single carrier frequency to test its suitability for ultra-high frequency (UHF) RFID applications, and shown to be feasible for implementing sensors that can be read across distances up to 14 meters.Peer reviewe

    MR4RF: MEM-device with impedance and their usage with impedance matching networks for passive RFID tags in the UHF

    Get PDF
    The passive RFID tag in the UHF has been employed in several different applications including, tracking, logistics, and as a sensing platform for the Internet of things (IoT). The tag is ideal for this industry due to its unique design. It harvests all of its energy from the environment, and is small, cheap, and requires little to no maintenance. However, there are two major issues limiting the potential of the passive RFID systems: the limited power harvested by the tag, and the high susceptibility to interference and coupling. In particular, dynamic environments render the traditionally fixed, RF impedance matching network ineffective. A novel design for a flexible Impedance-Switching Network (ISN) for passive RFID tags in the UHF is presented in this thesis. This novel approach can maximize power harvested by the tag. We propose two approaches to implementing the ISN. First, a more traditional design with a series of varactors is developed and studied. Each varactor is placed in parallel impedance lanes that are controlled via a feedback loop to maximize harvested power. A four-lane ISN is designed, tested, and tuned. The simulations and experiments demonstrate that ISN is capable of compensating for negative effect of mutual coupling in a ferromagnetic-reach environment. The second design employs a new material called a memristive switch that can replace the varactors in the ISN. State of a memristive switch is non-volatile and requires little energy to operate, thus making it ideal for passive RFID tags. We are the first to characterize the Co3O4 based memristive switch in UHF range. The results show that it can be employed as a varying capacitor in the RF front-end design. We propose three general configurations for the ISNs --Abstract, page iii

    Work in Progress: RFID Sports Timing System

    Get PDF
    Timing plays a critical role in most sporting events. RFID-based timing solutions offer a high level of automation. Current timing solutions are high in cost and frequently do not offer live results to spectators. Existing RFID hardware is evaluated for suitability in a new timing solution. An architecture for an open source timing solution is then evaluated. The new solution offers a novel combination of features making ownership feasible for smaller sporting events

    A low-area reference-free power supply sensor

    Get PDF
    Power supply unpredictable uctuations jeopardize the functioning of several types of current electronic systems. This work presents a power supply sensor based on a voltage divider followed by buffer-comparator cells employing just MOSFET transistors and provides a digital output. The divider outputs are designed to change more slowly than the thresholds of the comparators, in this way the sensor is able to detect voltage droops. The sensor is implemented in a 65nm technology node occupying an area of 2700?m2 and displaying a power consumption of 50?W. It is designed to work with no voltage reference and with no clock and aiming to obtain a fast response
    corecore