4 research outputs found

    Volcanic impacts on modern glaciers: a global synthesis

    Get PDF
    Volcanic activity can have a notable impact on glacier behaviour (dimensions and dynamics). This is evident from the palaeo-record, but is often difficult to observe for modern glaciers. However, documenting and, if possible, quantifying volcanic impacts on modern glaciers is important if we are to predict their future behaviour (including crucial ice masses such as the West Antarctic Ice Sheet) and to monitor and mitigate glacio-volcanic hazards such as floods (including jökulhlaups) and lahars. This review provides an assessment of volcanic impacts on the behaviour of modern glaciers (since AD 1800) by presenting and summarising a global dataset of documented examples. The study reveals that shorter-term (days-to-months) impacts are typically destructive, while longer-term (years-to-decades) are more likely protective (e.g., limiting climatically driven ice loss). However, because these events are difficult to observe, particularly before the widespread availability of global satellite data, their frequency and importance are likely underestimated. The study also highlights that because the frequency and nature of volcano-glacier interactions may change with time (e.g., glacier retreat may lead to an increase in explosive volcanic activity), predicting their future importance is difficult. Fortunately, over coming years, continued improvements in remotely sensed data will increase the frequency, and enhance the quality, of observations of volcanic impacts on glaciers, allowing an improved understanding of their past and future operation

    Discrete Path Planing Strategies for Coverage and Multi-Robot Rendezvous

    Get PDF
    This thesis addresses the problem of motion planning for autonomous robots, given a map and an estimate of the robot pose within it. The motion planning problem for a mobile robot can be defined as computing a trajectory in an environment from one pose to another while avoiding obstacles and optimizing some objective such as path length or travel time, subject to constraints like vehicle dynamics limitations. More complex planning problems such as multi-robot planning or complete coverage of an area can also be defined within a similar optimization structure. The computational complexity of path planning presents a considerable challenge for real-time execution with limited resources and various methods of simplifying the problem formulation by discretizing the solution space are grouped under the class of discrete planning methods. The approach suggests representing the environment as a roadmap graph and formulating shortest path problems to compute optimal robot trajectories on it. This thesis presents two main contributions under the framework of discrete planning. The first contribution addresses complete coverage of an unknown environment by a single omnidirectional ground rover. The 2D occupancy grid map of the environment is first converted into a polygonal representation and decomposed into a set of convex sectors. Second, a coverage path is computed through the sectors using a hierarchical inter-sector and intra-sector optimization structure. It should be noted that both convex decomposition and optimal sector ordering are known NP-hard problems, which are solved using a greedy cut approximation algorithm and Travelling Salesman Problem (TSP) heuristics, respectively. The second contribution presents multi-robot path-planning strategies for recharging autonomous robots performing a persistent task. The work considers the case of surveillance missions performed by a team of Unmanned Aerial Vehicles (UAVs). The goal is to plan minimum cost paths for a separate team of dedicated charging robots such that they rendezvous with and recharge all the UAVs as needed. To this end, planar UAV trajectories are discretized into sets of charging locations and a partitioned directed acyclic graph subject to timing constraints is defined over them. Solutions consist of paths through the graph for each of the charging robots. The rendezvous planning problem for a single recharge cycle is formulated as a Mixed Integer Linear Program (MILP), and an algorithmic approach, using a transformation to the TSP, is presented as a scalable heuristic alternative to the MILP. The solution is then extended to longer planning horizons using both a receding horizon and an optimal fixed horizon strategy. Simulation results are presented for both contributions, which demonstrate solution quality and performance of the presented algorithms

    Observation and integrated Earth-system science: a roadmap for 2016–2025

    Get PDF
    This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types of observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016–2025 and some of the issues to be faced. Observations that are organised on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the representations of processes that are already incorporated or through adding new processes or components, are discussed. Some important elements of Earth-system models are considered more fully. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Inverse methods for surface-flux or model-parameter estimation are also covered. Reviews are given of the way observations and the processed datasets based on them are used for evaluating models, and of the combined use of observations and models for monitoring and interpreting the behaviour of the Earth system and for predicting and projecting its future. A set of concluding discussions covers general developmental needs, requirements for continuity of space-based observing systems, further long-term requirements for observations and other data, technological advances and data challenges, and the importance of enhanced international co-operation

    Volcano Monitoring with small Unmanned Aerial Systems

    No full text
    corecore