445 research outputs found

    Cleaning large correlation matrices: tools from random matrix theory

    Full text link
    This review covers recent results concerning the estimation of large covariance matrices using tools from Random Matrix Theory (RMT). We introduce several RMT methods and analytical techniques, such as the Replica formalism and Free Probability, with an emphasis on the Marchenko-Pastur equation that provides information on the resolvent of multiplicatively corrupted noisy matrices. Special care is devoted to the statistics of the eigenvectors of the empirical correlation matrix, which turn out to be crucial for many applications. We show in particular how these results can be used to build consistent "Rotationally Invariant" estimators (RIE) for large correlation matrices when there is no prior on the structure of the underlying process. The last part of this review is dedicated to some real-world applications within financial markets as a case in point. We establish empirically the efficacy of the RIE framework, which is found to be superior in this case to all previously proposed methods. The case of additively (rather than multiplicatively) corrupted noisy matrices is also dealt with in a special Appendix. Several open problems and interesting technical developments are discussed throughout the paper.Comment: 165 pages, article submitted to Physics Report

    Large Vector Auto Regressions

    Get PDF
    One popular approach for nonstructural economic and financial forecasting is to include a large number of economic and financial variables, which has been shown to lead to significant improvements for forecasting, for example, by the dynamic factor models. A challenging issue is to determine which variables and (their) lags are relevant, especially when there is a mixture of serial correlation (temporal dynamics), high dimensional (spatial) dependence structure and moderate sample size (relative to dimensionality and lags). To this end, an \textit{integrated} solution that addresses these three challenges simultaneously is appealing. We study the large vector auto regressions here with three types of estimates. We treat each variable's own lags different from other variables' lags, distinguish various lags over time, and is able to select the variables and lags simultaneously. We first show the consequences of using Lasso type estimate directly for time series without considering the temporal dependence. In contrast, our proposed method can still produce an estimate as efficient as an \textit{oracle} under such scenarios. The tuning parameters are chosen via a data driven "rolling scheme" method to optimize the forecasting performance. A macroeconomic and financial forecasting problem is considered to illustrate its superiority over existing estimators

    Discovering the hidden structure of financial markets through bayesian modelling

    Get PDF
    Understanding what is driving the price of a financial asset is a question that is currently mostly unanswered. In this work we go beyond the classic one step ahead prediction and instead construct models that create new information on the behaviour of these time series. Our aim is to get a better understanding of the hidden structures that drive the moves of each financial time series and thus the market as a whole. We propose a tool to decompose multiple time series into economically-meaningful variables to explain the endogenous and exogenous factors driving their underlying variability. The methodology we introduce goes beyond the direct model forecast. Indeed, since our model continuously adapts its variables and coefficients, we can study the time series of coefficients and selected variables. We also present a model to construct the causal graph of relations between these time series and include them in the exogenous factors. Hence, we obtain a model able to explain what is driving the move of both each specific time series and the market as a whole. In addition, the obtained graph of the time series provides new information on the underlying risk structure of this environment. With this deeper understanding of the hidden structure we propose novel ways to detect and forecast risks in the market. We investigate our results with inferences up to one month into the future using stocks, FX futures and ETF futures, demonstrating its superior performance according to accuracy of large moves, longer-term prediction and consistency over time. We also go in more details on the economic interpretation of the new variables and discuss the created graph structure of the market.Open Acces

    Untangling hotel industry’s inefficiency: An SFA approach applied to a renowned Portuguese hotel chain

    Get PDF
    The present paper explores the technical efficiency of four hotels from Teixeira Duarte Group - a renowned Portuguese hotel chain. An efficiency ranking is established from these four hotel units located in Portugal using Stochastic Frontier Analysis. This methodology allows to discriminate between measurement error and systematic inefficiencies in the estimation process enabling to investigate the main inefficiency causes. Several suggestions concerning efficiency improvement are undertaken for each hotel studied.info:eu-repo/semantics/publishedVersio

    Bayesian field theoretic reconstruction of bond potential and bond mobility in single molecule force spectroscopy

    Get PDF
    Quantifying the forces between and within macromolecules is a necessary first step in understanding the mechanics of molecular structure, protein folding, and enzyme function and performance. In such macromolecular settings, dynamic single-molecule force spectroscopy (DFS) has been used to distort bonds. The resulting responses, in the form of rupture forces, work applied, and trajectories of displacements, have been used to reconstruct bond potentials. Such approaches often rely on simple parameterizations of one-dimensional bond potentials, assumptions on equilibrium starting states, and/or large amounts of trajectory data. Parametric approaches typically fail at inferring complex-shaped bond potentials with multiple minima, while piecewise estimation may not guarantee smooth results with the appropriate behavior at large distances. Existing techniques, particularly those based on work theorems, also do not address spatial variations in the diffusivity that may arise from spatially inhomogeneous coupling to other degrees of freedom in the macromolecule, thereby presenting an incomplete picture of the overall bond dynamics. To solve these challenges, we have developed a comprehensive empirical Bayesian approach that incorporates data and regularization terms directly into a path integral. All experiemental and statistical parameters in our method are estimated empirically directly from the data. Upon testing our method on simulated data, our regularized approach requires fewer data and allows simultaneous inference of both complex bond potentials and diffusivity profiles.Comment: In review - Python source code available on github. Abridged abstract on arXi
    • …
    corecore