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ABSTRACT Dynamic single-molecule force spectroscopy is often used to distort bonds. The resulting responses, in the form
of rupture forces, work applied, and trajectories of displacements, are used to reconstruct bond potentials. Such approaches
often rely on simple parameterizations of one-dimensional bond potentials, assumptions on equilibrium starting states, and/or
large amounts of trajectory data. Parametric approaches typically fail at inferring complicated bond potentials with multiple
minima, while piecewise estimation may not guarantee smooth results with the appropriate behavior at large distances. Existing
techniques, particularly those based on work theorems, also do not address spatial variations in the diffusivity that may arise
from spatially inhomogeneous coupling to other degrees of freedom in the macromolecule. To address these challenges, we
develop a comprehensive empirical Bayesian approach that incorporates data and regularization terms directly into a path in-
tegral. All experimental and statistical parameters in our method are estimated directly from the data. Upon testing our method
on simulated data, our regularized approach requires less data and allows simultaneous inference of both complex bond poten-
tials and diffusivity profiles. Crucially, we show that the accuracy of the reconstructed bond potential is sensitive to the spatially
varying diffusivity and accurate reconstruction can be expected only when both are simultaneously inferred. Moreover, after
providing a means for self-consistently choosing regularization parameters from data, we derive posterior probability distribu-
tions, allowing for uncertainty quantification.
INTRODUCTION
Inverse problems involving random walks are encountered
throughout the sciences. In these problems, one seeks to
reconstruct one or more functions that describe the dynamics
of the random process, from measurements of trajectories or
first-exit times. Examples include the reconstruction of
absorption and scattering profiles in diffuse optical
tomography (1) and inference of stochastic volatility in
finance (2,3).

Such inverse problems also arise in molecular bio-
physics, in which one wishes to infer molecular energy
landscapes (4–15) relevant to protein interactions (16–
18), chromosome and DNA structure (19–22), bio-
recognition (16,20,21), and cellular structure (23–26). In
these applications, dynamic force spectroscopy (DFS) is
typically used to pull apart molecules or bonds along
one direction in a complicated high-dimensional energy
landscape (see Fig. 1). Much of the existing literature
on this inverse problem has focused on recovery of the
underlying molecular-bond potential based on rupture
force statistics (6,8,27–31).

While such approaches allow reconstruction of simple
parametric forms of the bond potential, they require careful
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tuning of experimental parameters. For example, the pulling
device cannot be too stiff if a transient barrier and rupturing
behavior is desired (32). Moreover, event-based reconstruc-
tion requires pulling over a range of carefully tuned speeds.
Most importantly, reconstruction based on rupture forces
also ignores the full wealth of information contained in mea-
surements of the individual displacements, and is at best ill
conditioned (33).

Indeed, there exists extensive literature on drift recovery
for random walks using trajectory measurements and/or
relating energy gaps to work averages over paths using
work theorems (14,15,34–36). In fact, the diffusivity cannot
be independently extracted using work-theorem-based re-
constructions. Nonetheless, spatial variations in diffusivity
are intertwined with displacement trajectory-based recovery
of the underlying bond potential. Variations in diffusivity
are associated with varying landscape roughness (37), which
ultimately arises from projections of higher-dimensional
trajectories onto the path defined by the external pulling
(38). Thus, spatially varying diffusivity contains informa-
tion on how a high-dimensional system projects down to
form a one-dimensional potential profile.

Regardless of inversion method, samples of Brownian tra-
jectories are taken pointwise, meaning that the recovery of
continuous functions governing Brownian motion is ill
posed. Inference on random walks is typically performed
at a certain spatial resolution wherein averaging of
http://dx.doi.org/10.1016/j.bpj.2015.07.028
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FIGURE 1 Dynamic force spectroscopy (DFS) setup and measurement.

(a) Schematic of a DFS pulling experiment. A pulling device with spring

constant K and reference control position L(t) is attached to one end of a

bond. As the device is lifted, it deflects by amount d, but also stretches

the observed bond coordinate x, which is a measurement of the underlying

true bond coordinate x. (b) Schematic of trajectories for L(t), d(t), and

x(t)h L(t)� d(t). In reconstructions based on rupture forces, the maximum

value dmax determines the force at rupture, indicated by the sharp increase

in x(t). To see this figure in color, go online.
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observations occurs (39–42). Computationally, these ap-
proaches typically involve discretization of the solution
domain (39,40,42), where piecewise-constant solutions are
obtained through binwise Bayesian inference, maximum
likelihood, or moment-matching as in the case of work the-
orems (15,43,44).

Bayesian path integral-based approaches have been
developed for the recovery of mathematically continuous
solutions, where candidate reconstructions are weighted
by properties encoded in a distribution that reflects a priori
knowledge. In this vein, Lemm et al. (45) demonstrated such
an approach for the recovery of potential functions from
paths observed in quantum systems. Similar methodology
has been adapted to the problem of unsupervised density
estimation (46,47).

We will show that using this type of approach in the DFS
setting naturally incorporates the simultaneous reconstruc-
tion of both diffusivity and bond potential. Bayesian theory
then provides a procedure for inference, uncertainty quanti-
fication, and parameter identification. The application of
Bayesian theory in this way also defines the inverse problem
in its more-natural continuum representation using partial
differential equations. Any discretization used in solving
the partial differential equations is independent of the prob-
lem formulation.

Here, we develop a path integral-based empirical
Bayesian procedure to reconstruct bond forces and diffu-
sivities directly from trajectory measurements. Our method
is general in that we need make no assumption about the
pulling protocol or device spring constant; the only
assumption made is applicability of the one-dimensional
Brownian motion. We provide an efficient numerical pro-
cedure, test our approach on simulated trajectories, and
show that very reasonable numbers of trajectories are suf-
ficient to simultaneously reconstruct complicated multimi-
nima bond potentials and diffusivities. The sensitivity of
bond-force reconstruction to the diffusivity profile is also
explored and a physical interpretation of our regularization
discussed.
MATERIALS AND METHODS

Problem setup

Fig. 1 shows a schematic of DFS in which a bond is pulled apart along the

spatial direction x, while the bond displacement x(t) is measured and re-

corded. We assume that the bond coordinate is an overdamped random var-

iable obeying the Smoluchowski equation. As derived in Sancho et al. (48),

adiabatic elimination of the inertial variable through application of the fluc-

tuation-dissipation theorem results in a stochastic differential equation of

the form

dx ¼ Aðx; tÞdt þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2DðxÞ

p
dW; (1)

where W is a Wiener process, D(x) is the space-dependent diffusivity func-

tion, and A(x,t) is the spatially varying drift. Because D(x) is assumed to be
spatially varying, the exact form of A(x,t) is to be chosen according to the

stochastic integration scheme used. If one uses Stratonovich rules for inte-

grating Eq. 1, the appropriate convective drift is A(x,t) h �D(x)vxF(x,t),

where F(x,t) is the combined molecular and device potential. The expected

overdamped Fokker-Planck equation (FPE) for the probability distribution

function P(x,t) takes the form (44) of

vPðx; tÞ
vt

� v

vx

�
PDðxÞ vF

vx

�
¼ v

vx

�
DðxÞ vP

vx

�
: (2)

If, however, one wishes to use Itô calculus to evaluate Eq. 1, one finds that

the appropriate form for the drift is A(x,t) h �D(x)vxF(x,t) þ vxD(x). The
motion described by this drift term results from forces arising from a poten-

tial gradient and a diffusivity gradient. The additional drift force arises from

a statistical bias in the motion induced by a spatially varying diffusivity.

Applying Itô calculus to Eq. 1 and using this definition of A(x,t) yields

the same overdamped FPE (44). Either choice of A(x,t) yields the correct

Stratonovich physics (49) and Eq. 2 as long as the correct integration rule

is followed in each case. In this article, for ease of implementing stochastic

simulations, we use A(x,t) h �D(x)vxF(x,t) þ vxD(x) and the Itô calculus

to evaluate Eq. 1.

The total dimensionless (normalized by kBT) potential F(x,t) is

composed of the molecular bond potential U(x) and a moving harmonic po-

tential arising from the pulling device (typically an optical trap or atomic

force microscopy cantilever, as shown in Fig. 1). The origin L(t) of the har-

monic potential is controlled by the pulling device. Together, the total po-

tential takes the form

Fðx; tÞ ¼ UðxÞ|ffl{zffl}
bond

þK

2
ðx � LðtÞÞ2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

harmonic

; (3)

where K is the device spring constant. After differentiating Eq. 3, one finds
Aðx; tÞ ¼ DðxÞ
2
4FðxÞ þ KðLðtÞ � xÞ

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{Fa
3
5þ D0ðxÞ; (4)

where F(x) ¼ �dU(x)/dx is the intermolecular bond force, and Fa is the

force applied by the pulling apparatus. In practice, the pulling device is
moved at a constant velocity V starting from an initial position L0: L(t) ¼
L0 þ Vt. Equation 4 shows that pulling (increasing L(t)) increases the drift

thereby encouraging displacement of the bond coordinate away from x ¼
L0. The goal of such experiments is to infer properties of the bond potential

U(x), from many realizations of x(t).

The bond force F(x) will be assumed to be a smooth continuous function

that will be decomposed in the form

FðxÞ ¼ FdðxÞ þ f ðxÞ; (5)
Biophysical Journal 109(5) 966–974
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where Fd(x) ¼ kx�n (k R 0, n > 1) is the most divergent component of the

force associated with the divergent part of the potentialU(x) ~ x�n (n> 1) as

x / 0. At large separations, we assume the total force vanishes and f(x /
N)/ 0. The behavior of F near x¼ 0 is not particularly interesting, so we

will make the simplifying assumption that Fd(x)¼ 6(x/2)�7, and restrict our

recovery problem to the region [L0, N). Ultimately, our reconstruction for

the potential and diffusivity for x > L0 will not be too sensitive to the exact

form of the divergence; there will be very few trajectories that sample the

strongly repulsive region where x is small. The smooth function f(x) cap-

tures all other features of the intermolecular bond force we wish to recon-

struct. We impose vanishing boundary conditions at x ¼ 0 and x /N, but

do not assume f(x) obeys any particular parametric form. In our subsequent

inverse problem, because Fd(x) is specified, and molecular forces are con-

servative, the reconstruction of f(x) will be equivalent to reconstruction of

F(x) and, up to an additive constant, the molecular potential U(x).
Empirical Bayes formulation

Because the recovery of continuous f(x) directly from discretely sampled

data is ill posed, we now describe a path-integral-based Bayesian interpre-

tation of the so-called Tikhonov regularization (45–47,50–55). The key

feature this method is the usage of a smoothness penalty to select solutions

from particular well-behaved function spaces. The choice of function space

and smoothing is considered prior knowledge and is determined either from

physical considerations or estimated directly from the data. The inverse

problem is then investigated through the evaluation of a partition function,

using a path integral over the given function space. A general form of

Tikhonov regularization manifests itself through a prior probability density

on f(x) of the form

pð f j qÞ ¼ Z�1
f exp

8<
:� 1

2

Z N

0

f ðyÞRf ð�DÞf ðyÞdy
9=
;; (6)

where D is the Laplacian operator, Rf is a self-adjoint pseudo-differential

regularization operator containing some parameters q, and Zf is a normal-

ization factor. We assume for now that we know Rf, Rg, and their associated

parameters q. A more thorough discussion on their choice is presented in

the next section.

To enforce the positivity of D(x), we express diffusivity in terms of the

log-diffusivity

gðyÞ ¼ log
DðyÞ
D0

; (7)

where D0 > 0, a uniform background diffusivity, can be estimated directly

from the data (see Eqs. S15 and S16 given in the Supporting Material). We

assume a similar prior distribution on the log-diffusivity g(y) of the form

pðg j qÞ ¼ Z�1
g exp

8<
:� 1

2

Z N

0

gðyÞRgð�DÞgðyÞdy
9=
;: (8)

The normalization factorsZf,Zg do not affect the inference of f(x) and g(x),

but are important when one wishes to self-consistently determine specific

forms of regularization Rf, Rg. Equations 6 and 8 enforce that the prior prob-

ability distributions are over a collection of functions f(x) and g(x) that have

Gaussian spatial autocorrelations. These autocorrelations are determined by

the Green’s functions of the pseudo-differential-operators Rf and Rg, which

can be thought of as kernels encoding certain magnitude and scale informa-

tion about the spatial variability in the set of functions f and g.

Experimentally, a trajectory is composed of measurements of bond dis-

placements, x h (x1,x2,.,xN), taken at times t1,t2,.,tN. If the force
Biophysical Journal 109(5) 966–974
F(x) ¼ Fd(x) þ f(x) and diffusivity D(x) ¼ D0e
g(x) are given, the likelihood

or probability of observing a given trajectory xj (0 % j % N) can be for-

mulated in terms of the product of transition probabilities

pðx j f ; gÞ ¼ Q
jPrðxjþ1

�� xj; f ; gÞ. In the limit as dt/ 0, the transition prob-

abilities, interpreted using Itô rules, are themselves Gaussian with mean

A(xj,tj)dt and variance 2D(xj)dt (see Eq. S11 and the Supporting Methods

in the Supporting Material for the derivation). We have assumed that mea-

surement times ti and displacements xi are precisely measured (the error

remains small relative to 2Ddt), and that the sampling frequency is suffi-

ciently high (dt ¼ tjþ1 – tj is small).

Given a collection ofM independently measured trajectories X ¼ {x(a)},

(1% a%M), one can integrate the stochastic differential equation (Eq. 1)

using A(x,t)h�D(x)vxF(x,t)þ vxD(x) and the Itô calculus to find the total

likelihood function for observing the entire ensemble of trajectories as a

product of the likelihoods of the individual trajectories:

pðX j f ; gÞ ¼ Q
a

p
�
xðaÞ

�� f ; g�

¼ exp

8><
>:�P

a;j

2
64
	
x
ðaÞ
jþ1 � x

ðaÞ
j � A

	
x
ðaÞ
j ; tj



dt

2

4D
	
x
ðaÞ
j



dt

3
75
9>=
>;

� Q
a;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4pD
	
x
ðaÞ
j



dt

vuut :

(9)

We remind the reader here that Eq. 9 is invariant to the choice of stochastic

calculus as long as the right choice of A(x,t) is used. Using Bayes’ rule, the
posterior probability distribution for f and g, given observation of X and

regularization parameters q, is

pð f ; g jX; qÞ ¼ pðX j f ; gÞpð f j qÞpðg j qÞ
pðXÞ h

e�H½ f ;g jX;q�

Z ;

(10)

where Z is a dimensionless normalization constant and H is an information

Hamiltonian given by
H½ f ; g jX; q� ¼ 1

2

Z N

0

f ðyÞRf ð�DÞf ðyÞdy

þ 1

2

Z N

0

gðyÞRgð�DÞgðyÞdy

þ 1

2

X
a;j

logD
	
x
ðaÞ
j




þ
X
a;j

	
x
ðaÞ
jþ1 � x

ðaÞ
j � A

	
x
ðaÞ
j ; tj



dt

2

4D
	
x
ðaÞ
j



dt

;

(11)

where the last two terms arise from taking the logarithm of the likelihood

given in Eq. 9. As a reminder, we have assumed that measurement noise
is negligible relative to the inherent stochastic noise of the Brownian motion

at timescale dt. Relaxation of this assumption would require the evaluation

of an additional path-integral in x, as performed in Masson et al. (39,56).

Recall that the terms f and g are present implicitly in the drift term of the

Hamiltonian, as defined in Eq. 4. The most-probable reconstructions for

f(x), g(x), minimize Eq. 11. These reconstructions constitute the maximum

a posteriori solution, or the specific choice of force F(x) ¼ Fd(x) þ f(x) and
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diffusivity D(x)¼ D0e
g(x) that minimizes Eq. 11. They are found by solving

the coupled system of Euler-Lagrange equations

dH

df
¼ 0 and

dH

dg
¼ 0;

(12)

and constitute the mean-field or classical solution. The main difficulty in

solving these equations lies in inverting a large matrix of rank equal to

the number of observed trajectory positions. A computational method for

approximating the solution about evaluation points is presented in the Sup-

porting Methods in the Supporting Material. In this method, sufficient sta-

tistics of the data are computed only a single time, after which optimization

occurs in a lower-dimensional space. Furthermore, the sufficient statistics

are independent of the regularization parameters, allowing an arbitrary

number of candidate solutions to be computed without reprocessing the

data. While the resulting optimization problem is nonconvex, we discuss

three reasonable choices for the initialization state in Supporting Methods

section 4 c in the Supporting Material. Through analysis of a related scalar

problem, we also note that the Hamiltonian is locally convex over most of

the admissible function space.
Regularization parameters and uncertainty
quantification

Up to this point, we have assumed that one knows what to use for the op-

erators Rf (�D) and Rg(�D). Because these operators can be thought of as

prior information, their choice can be motivated from physical consider-

ations whenever such information is available (50). Typically, the uncer-

tainty in the reconstructed functions arises from the mathematical

ill-posedness of the inverse problem. However, in the DFS problem, the

one-dimensional bond potential is a projection from a high-dimensional

macromolecular stochastic process and the effective bond potential will suf-

fer physical thermal fluctuations that also contribute to its uncertainty.

Therefore, it is desirable to choose Rf, Rg directly from the data, which

may shed light on how orthogonal modes are thermally coupled to the

one-dimensional bond potential.

Note that if Rf ¼ Rg ¼ 1 is chosen as the regularization operator, the cor-

responding Green’s function is the Dirac d-distribution. This situation cor-

responds to the spatially unregularized inverse problem. Numerically, if this

inverse problem is solved over a discrete lattice, then the solution is the re-

covery of piecewise constant force and diffusivity. For a more physically

realistic and better-behaved inversion, it is convenient to restrict Rf, Rg to

a family of operators that impose spatial regularity.

Henceforth, we will assume f and g are infinitely differentiable and use

operators of the form

Rf ð�DÞ ¼ e�gfD=2

bf

ffiffiffiffiffiffiffiffiffiffi
2pgf

q ;

Rgð�DÞ ¼ e�ggD=2

bg

ffiffiffiffiffiffiffiffiffiffi
2pgg

q :

(13)

Using the operators in Eq. 13, one need only determine two parameters for

each field: the spatial scale g and the reciprocal temperature b. Assuming

that no information is known about these parameters, one may utilize any

number of available information-theory-based methods, such as Bayesian

model comparison or maximum marginal likelihood (empirical Bayes).

Here, we describe the application of approximate maximum marginal like-

lihood to the problem of choosing regularization parameters.
As its name implies, maximum marginal likelihood estimation seeks to

determine unknown parameters q ¼ (bf, bg, gf, gf) by maximizing the mar-

ginal likelihood function

pðX j qÞ ¼
ZZ

DfDg pðX j f ; gÞpðf j qÞpðg j qÞ (14)

with respect to q. This expression can be interpreted as the probability of

obtaining the observed data given the regularization parameters q. The opti-

mization of this quantity requires the evaluation of the path integrals with

respect to both fields f and g. These integrals can be approximated using

the semiclassical approximation (50) in which the Hamiltonian (Eq. 11)

is expanded about its extremal points f*, g* to quadratic order:

H½f ; g jX; q�zH½f �; g� jX; q�
þ 1

2

ZZ
4ðyÞtS�14ðzÞdydz: (15)

The difference of the functions from their classical solution is defined by the

new field
4ðxÞ ¼
�
f ðxÞ � f �ðxÞ
gðxÞ � g�ðxÞ

�
;

and the semiclassical Hessian S�1 matrix is

S�1 ¼

2
6664

d2H

df ðyÞdf ðzÞ
d2H

df ðyÞdgðzÞ
d2H

dgðyÞdf ðzÞ
d2H

dgðyÞdgðzÞ

3
7775

f �;g�

: (16)

The probability distribution over the functions f(x) and g(x) has a spread

defined by S, which encodes the distribution of f(x) and g(x) about their
most likely values f*(x) and g*(x), thereby providing an estimate of the er-

rors in the estimates f*(x) and g*(x). Performing the resulting Gaussian path

integral Z�1
f Z�1

g

R D4e�H½4 jX;q� yields the semiclassical approximation to

the negative of the marginal likelihood function

�logpðX j qÞ ¼ const þ H½f �; g� jX; q� þ Tr logS

� Tr logGf ðx; yÞ � Tr logGgðx; yÞ; (17)

where the additive constant is independent of the regularization parameters

and the TrlogGf and TrlogGg terms come from the normalization terms Zf
and Zg. Note that an implicit q-dependence arises in all terms involving Rf,

Rg, and the data-derived f* and g*. In the Supporting Methods in the Sup-

porting Material, we show that the computation of Eq. 17 is equivalent to

the computation of the eigenvalues of a finite-dimensional matrix—allow-

ing for quick evaluation of Eq. 17 for use in standard optimization routines.
Reconstruction procedure

Summarizing, our general procedure for simultaneous force and diffusivity

reconstruction is:

1) If unknown, estimate the background diffusivity D0 and the spring con-

stant K directly from data using Eqs. S15 and S16 in the Supporting

Material.

2) For each choice of regularization parameters bf,g, gf,g:

a) Solve for the maximum a posteriori solution f*, g* by solving Eqs.

12 using the method outlined in Supporting Methods in the Support-

ing Material.
Biophysical Journal 109(5) 966–974
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b) Compute the semiclassical variance matrixS by inverting the matrix

in Eq. 16.

3) Choose regularization parameters that minimize Eq. 17.
RESULTS

To demonstrate our method, we first simulated data from
DFS pulling experiments using two different bond poten-
tials and diffusivities. Fig. 2 shows representative examples
of simulated trajectories. Although the dynamics are gov-
erned by complicated bond potentials and spatially varying
diffusivities, individual trajectories are rather featureless.
The distributions that solve the associated FPE are also
qualitatively generic and featureless. However, data across
multiple trajectories can be aggregated as shown on the right
of Fig. 2.

Next, discrete measurements were extracted from our
simulated trajectories and used within our inference scheme
to recover the bond force and diffusivities that were used to
generate the simulated data in the first place. We imple-
mented our inference method in the software language
Python 2.7.5 (https://www.python.org/) using the SciPy
0.14.0 library (http://www.scipy.org/) for numerical optimi-
zation. (The source code for our implementation is publicly
available at https://github.com/joshchang/dfsinference.) In
all of the following examples, functions were recovered
within the interval from ~x ¼ 4 to x ¼ 32, where L0 ¼ 4
was assumed to be the starting point for the bond coordinate.
a

b

FIGURE 2 Trajectory data. Simulations using bond force and diffusivity

given by (a) Eqs. S1 and S2 in the Supporting Material and (b) Eq. S3 in the

Supporting Material. (Solid) Three individual simulated trajectories (out of

103). Each trajectory represented a different pulling experiment of duration

5 s, sampled at 10 kHz, with V ¼ 20, K¼ 0.15. (Shaded region) Compactly

supported area; it represents the intensity of all 103 trajectories through each

space-time point. While these trajectories are rather featureless, the histo-

gram of positions observed across all trajectories (up to time 5 s) is shown

on the right and contains more features. Each point in the histogram repre-

sents a single instance in which a position is sampled. Thus, each trajectory

can sample a specific position many times. The total number of sample

points is 103 trajectories � 10 kHz � 5 s ¼ 5 � 107. These data can be

aggregated across different experimental conditions and contain sufficient

information with which to simultaneously reconstruct f(x) and g(x). To

see this figure in color, go online.
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In this interval, 200 evenly spaced evaluation points were
chosen.

Fig. 3 shows reconstruction from trajectories simulated
under dynamics determined by two examples of the pair
of functions (F(x), D(x)). These functions are explicitly
given by Eqs. S1–S3 in the Supporting Material. The bond
force shown in Fig. 3 corresponds to the F(x) and D(x)
used to generate the trajectories shown in Fig. 2. Although
D(x) is spatially varying, we first use a constant D�

0 obtained
from Eq. S16 in the Supporting Material in our reconstruc-
tion. Note that regularized reconstruction (blue, dashed
curves) results in smoother and more stable recovery of
F(x) ¼ Fd(x) þ f(x) compared to unregularized recovery
(thin, red curves). However, regardless of regularization, ne-
glecting the true spatial dependence of D(x) results in poor
reconstruction of the true bond force.

Fig. 4 demonstrates regularized reconstruction where
diffusivity variations are taken into account. It also shows
how reconstructions change as the number of observed tra-
jectories increases. Uncertainty quantification is also pro-
vided, where the ~95% posterior credible interval is
shown by the yellow-shaded region. Using physically
reasonable values, we see that a reasonable number of ex-
periments (~102 � 103) is sufficient for simultaneous recov-
ery of D(x) and complicated potentials.
DISCUSSION

We have developed a nonparametric Bayesian approach to
the simultaneous reconstruction of spatially varying bond
force and diffusivity functions directly from stochastic
displacement trajectories measured in DFS experiments.
Our approach introduces both a path integral with explicit
data terms in the energy and a Tikhonov regularization
term in the form of a prior distribution over the functions
to be recovered. As only weak regularity conditions based
on the notion of L2 integrability are used, the method is flex-
ible in the range of functions that can be recovered. More-
over, the regularization provides a formal basis for
uncertainty quantification of the reconstructed functions.
The approach presented here is versatile in that it is
nonparametric, allows a broad class of functions to be stably
reconstructed, is based on the statistically optimal principle
of Bayesian inference, and can allow aggregation of data
sets from experiments performed under different conditions
(such as pulling speed V, device spring constant K, and
temperature).

Our method directly uses the inherently stochastic nature
of bond trajectories to provide a likelihood formulation for
use in Bayesian inference. Hence, we are able to simulta-
neously and self-consistently reconstruct two functions:
the bond force and the diffusivity. In our example recoveries
of Fig. 3, spatially varying diffusivity is not included, and
qualitatively incorrect reconstruction of the bond force
arises. Potentials reconstructed using constant diffusivity

https://www.python.org/
http://www.scipy.org/
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FIGURE 3 Failure to account for diffusivity variations. Molecular bond

force F*(x) ¼ f*(x) þ Fd(x) derived from unregularized (thin black) and

regularized (solid blue) reconstruction data simulated using a given ground

truth force field (dashed red). For reconstruction purposes, a constant diffu-

sivity D�
0 estimated from Eq. S16 in the Supporting Material was assumed.

Although regularization allows for smoother and more stable reconstruc-

tions, the neglect of spatial structure in D(x) leads to inaccurate results.

For example, the reconstructions in (a) cannot accurately determine the po-

sition of the minima, while those in (b) miss the minima entirely. The errors

are especially apparent in regions where the diffusivity is significantly

different from the constant value: (a) D�
0 ¼ 1.0042, (b) D�

0 ¼ 0.9995. To

see this figure in color, go online.
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can yield minima in the wrong position or miss them alto-
gether. To the best of our knowledge, prior methods for ex-
tracting information from DFS experiments, including those
that exploit work theorems (14,15,34,44), are not able to
reconstruct diffusivity profiles. For this reason, they provide
an incomplete picture of the bond dynamics.

Simultaneous bond potential and diffusivity reconstruc-
tion provides added insight into the molecular physics of
the bond. Although our test data are generated by simula-
tions using a fixed, static ground truth molecular potential
U(x) and bond force F(x) ¼ �dU(x)/dx, real molecules
contain many coupled degrees of freedom. The effective po-
tential along the direction of bond pulling is a potential of
mean force (PMF). Coupling of bond displacements to other
modes of the molecule collectively contributes to a trans-
verse restoring force, creating a confined molecular tunnel
FIGURE 4 Regularized reconstruction with a variable number of trajectories

Supporting Material. (Shaded yellow) 95% semiclassical posterior confidence int

tion here arises from narrow bins and intrinsic sampling variability. (Blue) R

D�
0 ¼ 0.9995, bf ¼ 19,884, bf ¼ 2.28, and gg ¼ 1.02. To see this figure in colo
that varies in thickness. Such a picture of the high-dimen-
sional potential naturally leads to axial variations in diffu-
sivity (37,38). Even though our simulations were
generated from a fixed PMF U(x), real data are derived
from pulling bonds that are subject to temporal fluctuations
from thermal coupling to other modes of the molecule.
Thus, both axially varying diffusivity and thermal fluctua-
tions are naturally subsumed in our reconstruction of both
F(x) and D(x) from real data.

Our approach further complements those using work the-
orems because approaches using statistics of work data can
be used to recover only the mean-field solution f*(x). More-
over, our approach also does not rely on an initial equilib-
rium distribution. The regularization operator, determined
from data, incorporates the inherent uncertainty arising
from the ill-posedness of the static inverse problem as
well as the physical thermal fluctuations of the function to
be reconstructed. As the amount of data increases (i.e., if
more experimental trajectories are collected), the posterior
distribution for f and g will reflect more of the physical un-
certainty arising from the thermal fluctuations. Our empiri-
cally determined regularization, along with the spatially
varying channel diffusivity representation of the high-
dimensional molecular bond, provides a picture that com-
plements the notion of a one-dimensional PMF.

Another feature of our methodology is the inclusion of
uncertainty quantification, which provides a handle for opti-
mizing pulling protocols and improving recoveries. When
full trajectories are observed and sampled, one has access
to displacements in a vicinity about any particular spatial
location x. The reconstruction of the functions at x utilizes
trajectory measurements observed in the neighborhood of
that location, weighted by distance relative to a character-
istic length-scale

ffiffiffi
g

p
(see Eq. S86 in the Supporting Mate-

rial). Typically,
ffiffiffi
g

p
spans more than one local data bin,

and self-consistent reconstructions using significantly less
experimental data are possible. Theoretically, the recovery
error of the bond force is a function of the number of locally
. Reconstruction of the bond force and diffusivity is given in Eq. S3 in the

erval. (Gray) Unregularized binwise reconstruction. The noising reconstruc-

egularized reconstructions. Optimal parameters used at trajectories were

r, go online.
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observed displacements, the local diffusivity, and the net
drift (see Eq. S86 in the Supporting Material). In particular,
the error is at a minimum when the net drift is zero, or when
the pulling force is equal and opposite to the intrinsic bond
force.

In Fig. 4, we empirically investigated the recovery error
as a function of the number of pulling trajectories per-
formed. These plots demonstrate that features of the two
functions can already be seen with a single trajectory, are
qualitatively similar to the ground truth at 100 trajectories,
and are quantitatively accurate at 1000 trajectories. Exam-
ining Fig. 4 in the context of Fig. 2, one sees that spatial re-
gions that are more heavily sampled are recovered with
fewer pulling experiments. By directly observing trajec-
tories x, one may extract information content after a few
pulls to determine optimal adjustments in K and V. For
example, K and V can be modified to better probe under-
sampled regions of the spatial coordinate, and data from ex-
periments using different parameters can be aggregated and
used toward the final reconstruction.

A key assumption of our method is smoothness of the un-
derlying functions f and g that describe the bond motion.
This assumption could be relaxed by exploring regulariza-
tion in other Lp spaces, for 0 < p% 1. The conceptual chal-
lenge lies in formulating an analog to the Gaussian measure
that is present for separable inner product spaces. This math-
ematical hurdle is a significant barrier to the development of
a Bayesian theory over such function spaces.

In this article, we have used the regularization operator
guaranteeing infinite differentiability of the reconstructions.
If infinite differentiability is not desired, other choices are
possible (50). We note, however, that the commonly used
Laplacian (�D) operator is not appropriate because its cor-
responding Green’s function in R1 does not have the correct
decay characteristics that one would expect of the bond
force.

The knowledge that diffusivity is pointwise nonnegative
is an example of prior knowledge. We chose to enforce
this constraint by expressing the diffusivity as the exponen-
tial of an analytical function g. This choice had the addi-
tional benefit of making the Hamiltonian smooth in g. It is
notable that other choices for satisfying this constraint
may have benefits—for instance the use of D ¼ jgj2. Future
modifications of this work could explore alternative param-
eterizations of the diffusivity such as this one.

Ideally, one chooses regularization to represent one’s
prior knowledge of the functions. For instance, one may
know that the functions should have no variations below a
certain spatial scale. In practice, this type of knowledge
may not be available. We have utilized an empirical
Bayesian approach, thereby using the data to estimate the
regularization parameters. Reconstruction given the optimal
parameters within the empirical Bayesian approach is
shown by the blue curves in Fig. 4. Our work can be
extended to a full Bayesian treatment through use of priors
Biophysical Journal 109(5) 966–974
on these parameters—albeit at higher computational cost.
Another simple extension of this work is the case of nonne-
gligible observation noise, by approximation of an addi-
tional path integral as in Masson et al. (39,56).

The ease of simultaneous reconstruction of F(x) and D(x)
also suggests that our analysis can be extended to recon-
struct potential landscapes in a few higher dimensions
(15,57), such as those arising in catch bonds (58,59). Our
approach can be readily adapted to reconstructing energy
and internal mobility profiles in extended biopolymers and
multimolecular assemblies that exhibit complicated multi-
minimum energy and diffusivity profiles (11,19,60,61).
SUPPORTING MATERIAL

Supporting Methods and two figures are available at http://www.biophysj.

org/biophysj/supplemental/S0006-3495(15)00735-3.
AUTHOR CONTRIBUTIONS

T.C. posed the inverse problem; P.-W.F. performed simulations of the DFS

experiment; J.C.C. developed the statistical method and analytical approx-

imations; J.C.C. developed the numerical approximation method and im-

plemented the method; J.C.C. and T.C. drafted the article; and all authors

were involved in editing the article.
ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foun-

dation under Agreement No. 0635561 (to J.C.C.), grant No. DMS-1021818

(to T.C. and J.C.C.), and grant No. PHY11-25915 (KITP/UCSB), and the

Army Research Office under grant No. 58386MA (to T.C. and J.C.C.).
REFERENCES

1. Arridge, S. R. 1999. Optical tomography in medical imaging. Inverse
Probl. 15:R41.

2. Coleman, T. F., Y. Li, and A. Verma. 1999. Reconstructing the un-
known local volatility function. J. Comput. Finance. 2:77–102.
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9. Hinterdorfer, P., and Y. F. Dufrêne. 2006. Detection and localization of
single molecular recognition events using atomic force microscopy.
Nat. Methods. 3:347–355.

http://www.biophysj.org/biophysj/supplemental/S0006-3495(15)00735-3
http://www.biophysj.org/biophysj/supplemental/S0006-3495(15)00735-3
http://refhub.elsevier.com/S0006-3495(15)00735-3/sref1
http://refhub.elsevier.com/S0006-3495(15)00735-3/sref1
http://refhub.elsevier.com/S0006-3495(15)00735-3/sref2
http://refhub.elsevier.com/S0006-3495(15)00735-3/sref2
http://refhub.elsevier.com/S0006-3495(15)00735-3/sref3
http://refhub.elsevier.com/S0006-3495(15)00735-3/sref3
http://refhub.elsevier.com/S0006-3495(15)00735-3/sref4
http://refhub.elsevier.com/S0006-3495(15)00735-3/sref4
http://refhub.elsevier.com/S0006-3495(15)00735-3/sref4
http://refhub.elsevier.com/S0006-3495(15)00735-3/sref5
http://refhub.elsevier.com/S0006-3495(15)00735-3/sref5
http://refhub.elsevier.com/S0006-3495(15)00735-3/sref6
http://refhub.elsevier.com/S0006-3495(15)00735-3/sref6
http://refhub.elsevier.com/S0006-3495(15)00735-3/sref6
http://refhub.elsevier.com/S0006-3495(15)00735-3/sref7
http://refhub.elsevier.com/S0006-3495(15)00735-3/sref7
http://refhub.elsevier.com/S0006-3495(15)00735-3/sref7
http://refhub.elsevier.com/S0006-3495(15)00735-3/sref8
http://refhub.elsevier.com/S0006-3495(15)00735-3/sref8
http://refhub.elsevier.com/S0006-3495(15)00735-3/sref8
http://refhub.elsevier.com/S0006-3495(15)00735-3/sref9
http://refhub.elsevier.com/S0006-3495(15)00735-3/sref9
http://refhub.elsevier.com/S0006-3495(15)00735-3/sref9


Bayesian Inference of Bond Dynamics 973
10. Rawicz, W., B. A. Smith, ., E. Evans. 2008. Elasticity, strength, and
water permeability of bilayers that contain raft microdomain-forming
lipids. Biophys. J. 94:4725–4736.

11. Koch, S. J., andM. D.Wang. 2003. Dynamic force spectroscopy of pro-
tein-DNA interactions by unzipping DNA. Phys. Rev. Lett. 91:028103.

12. Jobst, M. A., C. Schoeler,., M. A. Nash. 2013. Investigating receptor-
ligand systems of the cellulosome with AFM-based single-molecule
force spectroscopy. J. Vis. Exp. 82:e50950.

13. Maitra, A., and G. Arya. 2010. Model accounting for the effects of pull-
ing-device stiffness in the analyses of single-molecule force measure-
ments. Phys. Rev. Lett. 104:108301.

14. Hummer, G., and A. Szabo. 2001. Free energy reconstruction from
nonequilibrium single-molecule pulling experiments. Proc. Natl.
Acad. Sci. USA. 98:3658–3661.

15. Hummer, G., and A. Szabo. 2010. Free energy profiles from single-
molecule pulling experiments. Proc. Natl. Acad. Sci. USA.
107:21441–21446.

16. Rief, M., F. Oesterhelt, ., H. E. Gaub. 1997. Single molecule force
spectroscopy on polysaccharides by atomic force microscopy. Science.
275:1295–1297.

17. Puchner, E. M., and H. E. Gaub. 2009. Force and function: probing pro-
teins with AFM-based force spectroscopy. Curr. Opin. Struct. Biol.
19:605–614.

18. Fernandez, J. M., and H. Li. 2004. Force-clamp spectroscopy monitors
the folding trajectory of a single protein. Science. 303:1674–1678.

19. Dobrovolskaia, I. V., and G. Arya. 2012. Dynamics of forced nucleo-
some unraveling and role of nonuniform histone-DNA interactions.
Biophys. J. 103:989–998.

20. Ros, R., R. Eckel,., D. Anselmetti. 2004. Single molecule force spec-
troscopy on ligand-DNA complexes: from molecular binding mecha-
nisms to biosensor applications. J. Biotechnol. 112:5–12.

21. Rief, M., J. Pascual,., H. E. Gaub. 1999. Single molecule force spec-
troscopy of spectrin repeats: low unfolding forces in helix bundles.
J. Mol. Biol. 286:553–561.

22. Clausen-Schaumann, H., M. Seitz, ., H. E. Gaub. 2000. Force spec-
troscopy with single bio-molecules. Curr. Opin. Chem. Biol. 4:
524–530.

23. Helenius, J., C.-P. Heisenberg,., D. J. Muller. 2008. Single-cell force
spectroscopy. J. Cell Sci. 121:1785–1791.

24. Anselmetti, D., N. Hansmeier,., K. Toensing. 2007. Analysis of sub-
cellular surface structure, function and dynamics. Anal. Bioanal. Chem.
387:83–89.

25. Benoit, M., D. Gabriel, ., H. E. Gaub. 2000. Discrete interactions in
cell adhesion measured by single-molecule force spectroscopy. Nat.
Cell Biol. 2:313–317.

26. Evans, E. A., and D. A. Calderwood. 2007. Forces and bond dynamics
in cell adhesion. Science. 316:1148–1153.

27. Dudko, O. K., G. Hummer, and A. Szabo. 2008. Theory, analysis, and
interpretation of single-molecule force spectroscopy experiments.
Proc. Natl. Acad. Sci. USA. 105:15755–15760.

28. Dudko, O. K. 2009. Single-molecule mechanics: new insights from the
escape-over-a-barrier problem. Proc. Natl. Acad. Sci. USA. 106:8795–
8796.

29. Freund, L. B. 2009. Characterizing the resistance generated by a mo-
lecular bond as it is forcibly separated. Proc. Natl. Acad. Sci. USA.
106:8818–8823.

30. Fuhrmann, A., D. Anselmetti,., P. Reimann. 2008. Refined procedure
of evaluating experimental single-molecule force spectroscopy data.
Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77:031912.

31. Evstigneev, M., and P. Reimann. 2003. Dynamic force spectroscopy:
optimized data analysis. Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
68:045103.

32. Shapiro, B. E., and H. Qian. 1997. A quantitative analysis of single pro-
tein-ligand complex separation with the atomic force microscope. Bio-
phys. Chem. 67:211–219.
33. Fok, P.-W., and T. Chou. 2010. Reconstruction of potential energy pro-
files from multiple rupture time distributions. Proc. Roy. Soc. A Math.
Phys. Eng. Sci. 466:3479–3499.

34. Hummer, G., and A. Szabo. 2005. Free energy surfaces from single-
molecule force spectroscopy. Acc. Chem. Res. 38:504–513.

35. Balsera, M., S. Stepaniants, ., K. Schulten. 1997. Reconstructing po-
tential energy functions from simulated force-induced unbinding pro-
cesses. Biophys. J. 73:1281–1287.

36. Woodside, M. T., and S. M. Block. 2014. Reconstructing folding en-
ergy landscapes by single-molecule force spectroscopy. Annu. Rev.
Biophys. 43:19–39.

37. Zwanzig, R. 1988. Diffusion in a rough potential. Proc. Natl. Acad. Sci.
USA. 85:2029–2030.

38. Best, R. B., and G. Hummer. 2010. Coordinate-dependent diffusion in
protein folding. Proc. Natl. Acad. Sci. USA. 107:1088–1093.

39. Masson, J.-B., P. Dionne,., M. Dahan. 2014. Mapping the energy and
diffusion landscapes of membrane proteins at the cell surface using
high-density single-molecule imaging and Bayesian inference: applica-
tion to the multiscale dynamics of glycine receptors in the neuronal
membrane. Biophys. J. 106:74–83.

40. Türkcan, S., A. Alexandrou, and J.-B. Masson. 2012. A Bayesian infer-
ence scheme to extract diffusivity and potential fields from confined
single-molecule trajectories. Biophys. J. 102:2288–2298.

41. Schuss, Z. 2009. Theory and Applications of Stochastic Processes: An
Analytical Approach, Springer Series on Applied Mathematical Sci-
ences, Vol 170. Springer, New York.

42. Schuss, Z. 2011. Nonlinear Filtering and Optimal Phase Tracking,
Springer Series on Applied Mathematical Sciences, Vol. 180. Springer,
New York.

43. Alemany, A., A. Mossa, ., F. Ritort. 2012. Experimental free-energy
measurements of kinetic molecular states using fluctuation theorems.
Nat. Phys. 8:688–694.

44. Seifert, U. 2012. Stochastic thermodynamics, fluctuation theorems and
molecular machines. Rep. Prog. Phys. 75:126001.

45. Lemm, J. C., J. Uhlig, and A. Weiguny. 2000. Bayesian approach to in-
verse quantum statistics. Phys. Rev. Lett. 84:2068–2071.

46. Nemenman, I., and W. Bialek. 2002. Occam factors and model inde-
pendent Bayesian learning of continuous distributions. Phys. Rev. E
Stat. Nonlin. Soft Matter Phys. 65:026137.

47. Bialek, W., C. G. Callan, and S. P. Strong. 1996. Field theories for
learning probability distributions. Phys. Rev. Lett. 77:4693–4697.

48. Sancho, J., M. San Miguel, and D. Dürr. 1982. Adiabatic elimination
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