5 research outputs found

    Volatile STT-RAM Scratchpad Design and Data Allocation for Low Energy

    Get PDF
    [Abstract] On-chip power consumption is one of the fundamental challenges of current technology scaling. Cache memories consume a sizable part of this power, particularly due to leakage energy. STT-RAM is one of several new memory technologies that have been proposed in order to improve power while preserving performance. It features high density and low leakage, but at the expense of write energy and performance. This article explores the use of STT-RAM--based scratchpad memories that trade nonvolatility in exchange for faster and less energetically expensive accesses, making them feasible for on-chip implementation in embedded systems. A novel multiretention scratchpad partitioning is proposed, featuring multiple storage spaces with different retention, energy, and performance characteristics. A customized compiler-based allocation algorithm suitable for use with such a scratchpad organization is described. Our experiments indicate that a multiretention STT-RAM scratchpad can provide energy savings of 53% with respect to an iso-area, hardware-managed SRAM cache

    High-Performance Energy-Efficient and Reliable Design of Spin-Transfer Torque Magnetic Memory

    Get PDF
    In this dissertation new computing paradigms, architectures and design philosophy are proposed and evaluated for adopting the STT-MRAM technology as highly reliable, energy efficient and fast memory. For this purpose, a novel cross-layer framework from the cell-level all the way up to the system- and application-level has been developed. In these framework, the reliability issues are modeled accurately with appropriate fault models at different abstraction levels in order to analyze the overall failure rates of the entire memory and its Mean Time To Failure (MTTF) along with considering the temperature and process variation effects. Design-time, compile-time and run-time solutions have been provided to address the challenges associated with STT-MRAM. The effectiveness of the proposed solutions is demonstrated in extensive experiments that show significant improvements in comparison to state-of-the-art solutions, i.e. lower-power, higher-performance and more reliable STT-MRAM design
    corecore