1,348 research outputs found

    Whisper-to-speech conversion using restricted Boltzmann machine arrays

    Get PDF
    Whispers are a natural vocal communication mechanism, in which vocal cords do not vibrate normally. Lack of glottal-induced pitch leads to low energy, and an inherent noise-like spectral distribution reduces intelligibility. Much research has been devoted to processing of whispers, including conversion of whispers to speech. Unfortunately, among several approaches, the best reconstructed speech to date still contains obviously artificial muffles and suffers from an unnatural prosody. To address these issues, the novel use of multiple restricted Boltzmann machines (RBMs) is reported as a statistical conversion model between whisper and speech spectral envelopes. Moreover, the accuracy of estimated pitch is improved using machine learning techniques for pitch estimation within only voiced (V) regions. Both objective and subjective evaluations show that this new method improves the quality of whisper-reconstructed speech compared with the state-of-the-art approaches

    Learning Latent Representations for Speech Generation and Transformation

    Full text link
    An ability to model a generative process and learn a latent representation for speech in an unsupervised fashion will be crucial to process vast quantities of unlabelled speech data. Recently, deep probabilistic generative models such as Variational Autoencoders (VAEs) have achieved tremendous success in modeling natural images. In this paper, we apply a convolutional VAE to model the generative process of natural speech. We derive latent space arithmetic operations to disentangle learned latent representations. We demonstrate the capability of our model to modify the phonetic content or the speaker identity for speech segments using the derived operations, without the need for parallel supervisory data.Comment: Accepted to Interspeech 201

    Non-Parallel Training in Voice Conversion Using an Adaptive Restricted Boltzmann Machine

    Get PDF
    In this paper, we present a voice conversion (VC) method that does not use any parallel data while training the model. VC is a technique where only speaker-specific information in source speech is converted while keeping the phonological information unchanged. Most of the existing VC methods rely on parallel data-pairs of speech data from the source and target speakers uttering the same sentences. However, the use of parallel data in training causes several problems: 1) the data used for the training are limited to the predefined sentences, 2) the trained model is only applied to the speaker pair used in the training, and 3) mismatches in alignment may occur. Although it is, thus, fairly preferable in VC not to use parallel data, a nonparallel approach is considered difficult to learn. In our approach, we achieve nonparallel training based on a speaker adaptation technique and capturing latent phonological information. This approach assumes that speech signals are produced from a restricted Boltzmann machine-based probabilistic model, where phonological information and speaker-related information are defined explicitly. Speaker-independent and speaker-dependent parameters are simultaneously trained under speaker adaptive training. In the conversion stage, a given speech signal is decomposed into phonological and speaker-related information, the speaker-related information is replaced with that of the desired speaker, and then voice-converted speech is obtained by mixing the two. Our experimental results showed that our approach outperformed another nonparallel approach, and produced results similar to those of the popular conventional Gaussian mixture models-based method that used parallel data in subjective and objective criteria
    • 

    corecore