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Abstract—In this paper, we present a voice conversion (VC)
method that does not use any parallel data while training the
model. VC is a technique where only speaker specific information
in source speech is converted while keeping the phonological
information unchanged. Most of the existing VC methods rely
on parallel data—pairs of speech data from the source and target
speakers uttering the same sentences. However, the use of parallel
data in training causes several problems; 1) the data used for
the training is limited to the pre-defined sentences, 2) the trained
model is only applied to the speaker pair used in the training,
and 3) mismatches in alignment may occur. Although it is, thus,
fairy preferable in VC not to use parallel data, a non-parallel
approach is considered difficult to learn. In our approach, we
achieve non-parallel training based on a speaker adaptation
technique and capturing latent phonological information. This
approach assumes that speech signals are produced from a
RBM(restricted Boltzmann machine)-based probabilistic model,
where phonological information and speaker-related information
are defined explicitly. Speaker-independent (SI) and speaker-
dependent (SD) parameters are simultaneously trained under
speaker adaptive training. In the conversion stage, a given
speech signal is decomposed into phonological and speaker-
related information, the speaker-related information is replaced
with that of the desired speaker, and then voice-converted speech
is obtained by mixing the two. Our experimental results showed
that our approach outperformed another non-parallel approach,
and produced results similar to those of the popular conventional
GMM-based method that used parallel data in subjective and
objective criteria.

Index Terms—Voice conversion, restricted Boltzmann machine,
unsupervised training, speaker adaptation.

I. INTRODUCTION

IN recent years, voice conversion (VC), which is a technique
used to change speaker-specific information in the speech

of a source speaker into that of a target speaker while retaining
linguistic information, has been garnering much attention
since the VC techniques can be applied to various tasks
[1], [2], [3], [4], [5]. Most of the existing approaches rely
on statistical models [6], [7], and the approaches based on
Gaussian mixture models (GMM) [8], [9], [10], [11] are one of
the mainstream methods nowadays. Other statistical models,
such as non-negative matrix factorization (NMF) [12], [13],
neural networks (NNs) [14], restricted Boltzmann machines
(RBMs) [15], [16], and deep learning [17], [18], are also used
in VC. However, almost all of the existing VC methods require
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parallel data (speech data from the source and the target
speakers aligned so that each frame of the source speaker’s
data corresponds to that of the target speaker) for training
the models, as shown in Fig. 1 (a), which leads to several
problems. First, the transcriptions of the training data must
be the same for both speakers, which means that the training
data should be pre-defined and is considerably limited. Second,
the trained model is only applied to the speaker pair used
in the training, and it is difficult to reuse the model on the
conversion of another speaker pair. Third, the training data
(the parallel data) is not the original speech data anymore
because the speech data is stretched and modified in the time
axis when aligned. Furthermore, it is not guaranteed that each
frame is aligned perfectly, and mismatching may cause some
errors in training.

Several approaches that do not use parallel data from the
source to the target speakers have been also proposed [19],
[20], [21], [22]. In [19]; for example, they model the spec-
tral relationships between two arbitrary speakers (reference
speakers) using GMMs, and convert the source speaker’s
speech using the matrix that projects the feature space of
the source speaker into that of the target speaker through
that of reference speakers. As a result, parallel data from the
source and target speakers is not required. In [21], codebooks
(eigenvoice) are obtained using the parallel data of reference
speakers, and many-to-many VC is achieved by mapping the
source speaker’s speech into eigenvoice and the eigenvoice
into the target speaker’s speech. However, these approaches
still require parallel data among reference speakers (Fig. 1 (b)),
which causes the above-mentioned problems (regarding the
limitation of the corpus used in training) to remain.

In this paper, we tackle a totally-parallel-data-free1 VC
method that uses a model on latent phonological information
that produces neutral speech, along with a speaker adaptation
technique. The idea behind this is simple and intuitive. As
shown in Fig. 2 (a), we assume that observed acoustic features
obtained from an arbitrary speaker’s speech are considered
to be composed of the neutral acoustic feature that is linked
with the phonological information (the probability of latent
phonological features) and belongs to no one, accompanied
with the speaker specificity that is linked with the speaker-
related information (speaker identity features)2. In this as-

1This means that the method requires neither the parallel data of a source
speaker and target speaker, nor the parallel data of reference speakers as shown
in Fig. 1 (c).

2We use the term “features” for phonological information and speaker-
related information, since they are also used as inputs when generating speech
signals.
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(a) Most existing VC approaches

(c) Proposed approach

(b) Eigen-voice approach
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Fig. 1: Comparison of training schemes in each VC approach.

sumption, VC is achieved by three steps: decomposing a
speech signal into neutral speech and speaker specific in-
formation, replacing the speaker specific information with
that of the desired speaker, and composing a speech signal
using the neutral speech and the speaker information that
was replaced (Fig. 2 (b)). The proposed probabilistic model,
called an adaptive restricted Boltzmann machine (ARBM), is
designed to help such decomposition. The model is an energy-
based function like a restricted Boltzmann machine (RBM),
and consists of a visible layer and a hidden layer having
undirected connections between visible-hidden units with the
weights of the connections that vary with the speaker. The
weights are defined as a sum-product of speaker-independent
and speaker-dependent weight matrices, and these weights can

be simultaneously optimized so as to maximize the likelihood
of speech data that contains multiple speakers (not required to
be parallel data). Most of the related work in VC focuses not
on F0 conversion but on the conversion of spectrum features,
and we conform to that in this paper as well.

Another advantage of the proposed method is that it al-
lows many-to-many voice conversion. Once speaker specific
features of a certain speaker are obtained, the speaker can be
used as a source speaker to any other speakers, and as a target
speaker from any other speakers.

This paper is organized as follows. The definition and the
parameter optimization of the ARBM are presented in section
II. In section III, the way in which we applied the ARBM
to VC is described. We give the VC experimental results in
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Fig. 2: The idea of voice conversion without using parallel data
in training. In the conversion stage, only the speaker specific
features are changed while keeping the phonological informa-
tion that is linked with the neutral speaker’s acoustic features.
The symbol “+” indicates combination for convenience, and
does not indicate a plus operator here.

section IV, and conclude the paper in section V.

II. ADAPTIVE RESTRICTED BOLTZMANN MACHINE

A. Definition

In our speech modeling assumption, observed acoustic
features are represented by two factors: latent phonological
information and speaker specific features. The unobservable
phonological information is not speaker-dependent and may
produce the neutral acoustic features that exclude speaker
specificity. On the other hand, the speaker-specific features
rely upon the speaker.

Restricted Boltzmann machine(RBM [23], [24])-based
probabilistic models are convenient for representing such

v

h

W̄

s

A

Fig. 3: Graphical representation of an ARBM.

latent features that are cannot be observed but surely exist
in the background. As an extension of RBMs, in order to
extract speaker specific features, we define a probabilistic
model called an “adaptive restricted Boltzmann machine”
(ARBM) as shown in Figure 3. In this model, we represent
observed acoustic features and latent phonological features
as the visible units v ∈ RI and hidden units h ∈ {0, 1}J ,
respectively (I and J indicate the numbers of dimensions
in acoustic features and latent phonemes, respectively). In
addition to visible units and hidden units, we introduce speaker
identity units s ∈ {0, 1}R,∑R

r=1 sr = 1 that represent which
speaker utters the sentence (R is the number of speakers used
in the training). Usually s is used as a one-hot vector. For
example, if we have one-hot vector s, whose elements are
sr = 1,∀sr′ = 0 (r′ 6= r), it means that the rth speaker
is of interest. In this model, the connection weights between
visible units and hidden units and bias terms of the visible
units and the hidden units are controlled by s. We define the
visible-hidden connections W(s), the visible biases b(s) and
the hidden biases c(s)as follows:

W(s) =
∑
r

ArsrW̄ (1)

b(s) = b̄+
∑
r

brsr = b̄+ Bs (2)

c(s) = c̄+
∑
r

crsr = c̄+ Cs, (3)

where W̄ ∈ RI×J and b̄ are speaker-independent parameters,
and Ar ∈ RI×I , br ∈ RI(B = [b1 b2 · · · bR] ∈ RI×R)
and cr ∈ RJ(C = [c1 c2 · · · cR] ∈ RJ×R) are speaker-
specific parameters of the rth speaker. If s is a one-hot vector
where only the rth element is switched-on, Ar is viewed as an
adaptation matrix that adapts the speaker-independent weight
matrix (phoneme-related features) W̄ to the rth speaker. br
and cr indicate the speaker specific bias of the rth speaker
for the visible units and the hidden units, respectively. For
convenience, we use a symbol A = {Ar}Rr=1 for a collection
of the speaker adaptation matrices.

Given the speaker information s, we define the joint prob-
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ability of visible units and hidden units p(v,h|s) as follows:

p(v,h|s) =
1

Z
e−E(v,h|s) (4)

E(v,h|s) =
1

2

∥∥∥∥v − b(s)σ

∥∥∥∥2 − c(s)>h− ( vσ2

)>
W(s)h

(5)

Z =
∑
v,h

e−E(v,h|s), (6)

where ‖·‖2 denotes L2 norm. σ ∈ RI and c ∈ RJ are also
parameters of an ARBM, indicating the standard deviations
associated with the Gaussian visible units and a bias vector
of the hidden units, respectively. The fraction bar in Eq. (5)
denotes the element-wise division. As Eq. (5) indicates, the
model is regarded as a Gaussian-Bernoulli RBM with the
weight matrix and the bias terms adapted to the rth speaker.

Because there are no connections between visible units or
between hidden units, the conditional probabilities p(h|v, s)
and p(v|h, s) form simple equations as follows:

p(vi = v|h, s) = N (v | b(s)i + W(s)i,:h, σ
2
i ) (7)

p(hj = 1|v, s) = S(c(s)j + W(s)>:,j(
v

σ2
)), (8)

where W(s)i,: and W(s):,j denote the ith row vector and
jth column vector of W(s), respectively. N (·|µ, σ2) and S(·)
indicate a Gaussian probability density function with the mean
µ and variance σ2 and a sigmoid function, respectively.

B. Parameter optimization

In this section, we describe the way in which parameters
are estimated in the previously-defined model, an ARBM.
Given a collection of N speech data {v(n), s(n)}Nn=1 that is
composed of R speakers, the parameters of an ARBM Θ =
{W̄,A,B,C, b̄, c̄,σ}, which include speaker-dependent and
speaker independent parameters, are simultaneously estimated
so as to maximize the conditional likelihood as:

L(Θ) = log
∏
n

p(v(n)|s(n))

=
∑
n

log
∑
h(n)

p(v(n),h(n)|s(n)).
(9)

Differentiating partially with respect to each parameter, we
obtain:
∂L
∂W̄

=〈
∑
r

A>r v
′h>sr〉data − 〈

∑
r

A>r v
′h>sr〉model (10)

∂L
∂Ar

=〈v′h>W̄>sr〉data − 〈v′h>W̄>sr〉model (11)

∂L
∂B

=〈v′s>〉data − 〈v′s>〉model (12)

∂L
∂C

=〈hs>〉data − 〈hs>〉model (13)

∂L
∂b̄

=〈v′〉data − 〈v′〉model (14)

∂L
∂c̄

=〈h〉data − 〈h〉model (15)

∂L
∂σ

=
1

σ3
◦
(
〈v ◦ v − 2v ◦

(
b(s) + W(s)h

)
〉data

− 〈v ◦ v − 2v ◦
(
b(s) + W(s)h

)
〉model

)
,

(16)

where v′ = v
σ2 , 〈·〉data and 〈·〉model indicate expectations

of the training data and the inner model, respectively, and
◦ denotes the Hadamard product. It is generally difficult to
compute the expectations of the inner model 〈·〉model; however,
we can still use contrastive divergence [23] and efficiently
approximate them with the expectations of the reconstructed
data 〈·〉recon. that are obtained by repeating Gibbs sampling
of Eqs. (7) and (8) starting from the empirical distribution.
Using these gradients, each parameter can be updated using
stochastic gradient descent with momentum. Updating the
parameters σ in Eq. (16) is unstable; therefore, we used a
technique similar to that described in [24] where we take the
substitution of z = logσ2 and update it with z.

C. Softmax constraints

We can further add constraints of
∑J

j=1 hj = 1 to our
model resulting in a one-hot vector h, which indicates that
only a certain phonological component is activated. In the
real speech, only one phoneme, such as /a/ and /e/, should
be activated in the background at a certain frame. Therefore,
this modification may give better representation for speech.

Such constraints give small modifications in the conditional
probabilities of h in Eq. (8), which results in softmax hidden
units as [25], [26]:

p(hj = 1|v, s) =
ec(s)j+W(s)>:,j(

v
σ2 )∑

j′ e
c(s)j′+W(s)>

:,j′ (
v
σ2 )

. (17)

III. APPLICATION TO VC

In this section, we describe how an ARBM is applied to
VC tasks. As shown in Figure 4, the VC system needs the
model that was trained beforehand using speech data uttered
by R reference speakers, which was discussed in the previous
section. Although all parameters W̄, A, B, C, b̄, c̄, and
σ are simultaneously estimated in the pre-training, we only
use speaker-independent parameters (W̄, b̄, c̄, and σ) for
the following processes. The VC begins with an adaptation
step where speaker-dependent parameters for the source and
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the target speakers are estimated. Using a small amount of
speech data from the source speaker and the target speaker,
we estimate the additional adaptive parameters Ax, Ay , bx,
by , cx, and cy using Eqs. (11), (12) and (13) (where Ax and
Ay are adaptive matrices, bx and by are visible bias vectors,
and cx and cy are hidden bias vectors for the source speaker
and for the target speaker, respectively) while fixing the other
parameters. Here, we extend the identity variable s and the
speaker-dependent parameters A, B, and C to have the length
of (R + 2) in the speaker-identity axis, where the (R + 1)th
and the (R + 2)th elements of those parameters belong to
the source speaker and the target speaker, respectively. If the
source or the target speaker is included in the R reference
speakers, we skip this step. In the next step, we convert the
source speaker’s acoustic features x(t) (we often use mel-
cepstral features) at frame t to those of the target speaker
y(t) via latent phonological features ĥ(t) so as to maximize
the probability p(y(t)|x(t)) as:

ŷ(t) , argmax
y(t)

p(y(t)|x(t))

= argmax
y(t)

∑
h(t)

p(h(t)|x(t))p(y(t)|h(t))

' argmax
y(t)

p(ĥ(t)|x(t))p(y(t)|ĥ(t))

= argmax
y(t)

p(y(t)|ĥ(t))

= b̄+ by + AyW̄ĥ(t),

(18)

where

ĥ(t) , argmax
h(t)

p(h(t)|x(t))

' E[p(h(t)|x(t))]

= S(c̄+ cx + W̄>A>x (
x(t)

σ2
)).

(19)

As Eq. (19) indicates, the (optimum) latent phonologi-
cal features are approximated as the expectation values of
p(h(t)|x(t)), which results in the sigmoidal outputs of affine-
transformed acoustic features of the source speaker projected
with the matrix W̄>A>x . Because the column vectors of this
matrix are similar to the patterns appearing in the source
speaker’s acoustic features, the obtained latent features ĥ
represent speaker-independent, possibly phonological, infor-
mation. Eq. (18) shows that the converted speech is generated
from the phonological information that is projected to the
acoustic feature space using the weight matrix adapted to the
target speaker. In addition, as Eqs. (19) and (18) indicate, our
VC method is based on a non-linear function that maps the
acoustic features of the source speaker to those of the target
speaker.

IV. EXPERIMENTAL EVALUATION

A. System configuration

In our VC experiments, we evaluated the performance of
our model using the ASJ Continuous Speech Corpus for
Research (ASJ-JIPDEC3). For training, we randomly selected

3http://research.nii.ac.jp/src/ASJ-JIPDEC.html

Input: T -frame acoustic feature vectors of the source speaker
x = [x(1) x(2) · · · x(T )], an ARBM with parameters
Θ = {W̄,A,B,C, b̄, c̄,σ} pre-trained using speech data of
R reference speakers, and speech data used for adaptation of
the source speaker xa = [x

(1)
a x

(2)
a · · · x(Tx)

a ] and of the
target speaker ya = [y

(1)
a y

(2)
a · · · y(Ty)

a ]

Output: converted acoustic feature vectors to the target
speaker ŷ = [ŷ(1)ŷ(2) · · · ŷ(T )]

Process the following steps:
1) Estimate adaptation parameters for the source and the

target speakers {Ax,Ay, bx, by, cx, cy} using the
adaptation data xa and ya by Eqs. (11), (12) and (13).

2) Process the following steps for each time step t:
a) Calculate the following equation to obtain latent

phonological features ĥ(t) from the input vector
x(t):

ĥ(t) = S(c̄+ cx + W̄>A>x (
x(t)

σ2
))

b) Calculate acoustic features of the target speaker
(voice-converted acoustic features) ŷ(t) as:

ŷ(t) = b̄+ by + AyW̄ĥ(t)

Fig. 4: Flow of voice conversion using an ARBM.

and used speech data of 40 sentences uttered by up to 16
speakers (8 males and 8 females) from set A in the corpus.
For evaluation, we used the speech data of a male and a
female speaker as a source and a target speaker, respectively,
with 10 sentences that were not included in the training.
In order to effectively evaluate the methods, we included
the speaker pair of evaluation in the training stage. As an
acoustic feature vector, we used 32-dimensional mel-cepstral
features that were calculated from 513-dimensional WORLD
[27] spectra without dynamic features. In the training of the
system, we used up to 32 hidden units with or without softmax
constraints discussed in section II-C, a learning rate of 0.01,
a momentum of 0.9, and a batch-size of R× 100, and set the
number of iterations as 100.

Mel-cepstral distortion (MCD) is generally used for objec-
tive evaluation in VC. However, we used the mel-cepstral
distortion improvement ratio (MDIR) instead, in this paper,
because it does not make sense to see the distance between
the spectral features in mel-scale of the source and the
target speakers when we want to recognize the differences
in speaker identities, and because the scale of MCD varies in
the evaluation data. The MDIR is defined as follows:

MDIR[dB] =
10
√

2

ln 10
(
∥∥∥y(t) − x(t)

∥∥∥
2
−
∥∥∥y(t) − ŷ(t)

∥∥∥
2
)

(20)

where x(t), y(t), and ŷ(t) are mel-cepstral features at a frame
t of the source speaker’s speech, target speaker’s speech,
and converted speech, respectively. The higher the value of
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TABLE I: Average MDIR [dB] of each method

Method GMM linear ARBM ARBM+sm
Non-parallel? No Yes Yes Yes
MDIR 4.05 1.27 3.19 3.76

3.88

3.94

3.99

4.05

4.10

16 32 64 128

M
D

IR

Number of mixtures in GMM

Fig. 5: Average MDIR of the conventional GMM-based VC
with varying the number of mixtures.

MDIR is, the better the VC performance. For the evalua-
tion, as Eq. (20) indicates, we needed to use parallel data
{x(t),y(t)}Tt=1 of the source and the target speakers that was
aligned using dynamic programming. But again, note that all
the speech data used for the training was NOT parallel. The
MDIR was calculated for each frame from the parallel data of
the 10 sentences, and averaged.

B. Comparison methods

It is difficult to evaluate the proposed method because most
of the existing VC approaches use parallel data in training
and it is not fair to compare our method, which does not
use parallel data, with those methods. Nevertheless, a linear-
transform-based approach, which has not been proposed so far,
presents an interesting comparison. This approach is simple;
the vector ŷ(t) is calculated as

ŷ(t) , AyA
−1
x (x(t) − bx) + by, (21)

which was derived under the assumption that x(t) = Axv
(t)+

bx and ŷ(t) = Ayv
(t)+by , which means the acoustic features

of each speaker are generated from the neutral acoustic fea-
tures v(t) projected to the speaker using the adaptation matrix
Ax or Ay . The parameters Ax, Ay , bx, and by are estimated
using stochastic gradient decent just the same as our proposed
method.

Just for a reference, we also compared our approach with
a popular GMM-based VC method using parallel data of 40
sentences as a VC method based on parallel training (the VC
type as in Fig. 1 (a)). We changed the number of mixtures
M to 16, 32, 64, and 128. In our experiments, we found that
M = 32 performed best, as shown in Fig. 5.

Table I summarizes the VC experimental results, com-
paring non-parallel-training-based VC methods (we refer to
this as non-parallel VC), such as ‘linear’, ‘ARBM’ for our
model without softmax constraints, and ‘ARBM+sm’ for our

1

2

3

4

5

Speaker identity Speech quality

2.68

3.58 3.61

1.55

2.65

3.95

M
O

S

GMM linear ARBM

Fig. 6: Average MOS w.r.t. speaker specificity and speech
quality for each method.

model with softmax constraints, and a supplementary parallel-
training-based VC method (we refer to this as parallel VC),
‘GMM’. Each method was best-conditioned; choosing the
number of hidden units H for our method will be discussed
in the following section. For our method, we used the best-
condition of H = 8 for the models with and without softmax
constraints, which were trained using only the source and
the target speakers’ speech unless otherwise noted. As shown
in Table I, when we compare the results of non-parallel
VC methods, we obtained a relatively low MDIR with the
linear approach (‘linear’). However, the MDIR dramatically
increased by almost two points when the existence of the latent
phonological information was considered (‘ARBM’). The soft-
max constraints further increased the MDIR (‘ARBM+sm’).
This is because the ARBM with softmax constraints helped
to represent the phonological information behind the speech
data. Interestingly, the performance of our model was close
to that of the parallel VC, which benefits from the parallel
data, which is restricted to match the frames of the source
and the target features. Our non-parallel approach produced
results similar to that of the parallel approach without having
such a benefit.

C. Subjective evaluation

We also conducted a subjective evaluation using mean
opinion score (MOS) listening tests. Since we are interested
in the spectral conversion, the converted speech of each
method was generated from the obtained mel-cepstral features
followed by conversion into signals with the original target’s
F0 and aperiodic features. In this evaluation, eight participants
listened to 10 sets of the original target speech (generated
from analysis-by-synthesis) and the converted speech for each
method (our method, the linear-based non-parallel approach,
and the conventional GMM-based approach), and then selected
how close the converted speech sounded to the original speech
on a 5-point scale (5: excellent; 4: good; 3: fair; 2: poor; and
1: bad) with respect to speaker specificity and speech quality.

The results are shown in Fig. 6. Compared with GMM,
our method had slightly lower MOS w.r.t. speaker identity
but almost the same MOS w.r.t. speech quality. In the linear
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approach, the generated speech was very close to the original
speech of the source speaker. That is why it produced a rather
low MOS w.r.t. speaker identity, and high speech quality. In
our approach, on the other hand, even though it does not use
any parallel data in training, it produced similar MOS scores
to the VC method, which uses parallel data in training. The
speech data above will be available on our website4.

D. Number of hidden units

In this section, we see the effects of changing the number of
hidden units in our model. Figs. 7 and 8 show the results with-
out and with softmax constraints, respectively, when changing
the number of hidden units as 2, 4, 8, 16, and 32. Through
the experiments, we found that the results were rather varied
even if the same number of hidden units were used; hence we
took the best performance in several trials for each condition.
The reasons will be discussed later. As shown in Figs. 7 and
8, the optimal numbers were around 8 in both cases, and the
performance degraded as the number of hidden units increased.
This is considered to be due to the fact that the model with
more hidden units better represents the speech data; meanwhile
it makes more spaces in hidden units to represent speaker-
dependent information, and hence it cannot convert the voice

4http://www.sd.is.uec.ac.jp/nakashika

TABLE II: Average MDIR [dB] of our model w/o softmax in
src-to-tar transformation (conversion) and tar-to-tar transfor-
mation (reconstruction).

# of hidden units src-to-tar tar-to-tar
H = 8 3.35 4.98
H = 32 2.60 6.41

properly. To prove this, we reconstructed the target speech
using our model; i.e., we input the acoustic features of the
target speaker’s speech to the ARBM, calculated the hidden
unit activations using the speaker-dependent parameters of
the target speaker, and calculated the acoustic features from
the hidden units using the target speaker’s parameters again.
The results of the reconstruction are shown in the column
of ‘tar-to-tar’ in Table II. As shown in Table II, when we
gave more hidden units as H = 32, the MDIR of ‘tar-to-
tar’ increased considerably (in other words, the reconstruction
error decreased). Meanwhile in the conversion from the source
to the target (‘src-to-tar’), the model with H = 32 had poor
performance. Besides, the result in the case with H = 32
shows the interesting potential of our model. If we could obtain
the true distribution of the phonological information (hidden
units), the proposed method would produce a considerably
high performance in VC.

We further visually analyzed the effect of the number of
hidden units. Fig. 9 shows examples of the distribution of the
hidden units without softmax constraints, comparing the cases
where H = 8 and H = 32 hidden units were used. The
left and the right columns in Fig. 9 indicate the distribution
calculated from the source speaker’s speech using the source
speaker’s parameters, and from the target speaker’s speech
using the target speaker’s parameters, respectively. In the
case of H = 8, the two distributions are similar to each
other, compared with the case of H = 32, where the two
distributions are relatively different from each other. With
softmax constraints, the two distributions are closer to each
other as shown in Fig. 10 in both cases, which improved the
average MDIR. Therefore, we can conclude that the following
factors are important to improving the MDIR:
• high representation ability (with more hidden units)
• closeness of the hidden unit distributions between the

source and the target speakers,
though there is a tradeoff between them, especially without
softmax constraints.

E. Spectral analysis

Fig. 11 shows the comparison of the spectrograms of the
converted speech using our method with softmax constraints
(Fig. 11 (b)) and the target speech (Fig. 11 (c)) using a
sentence selected from the evaluation sets. The converted
spectrogram came from the source speaker’s spectrogram as
shown in Fig. 11 (a). Note that the source and the target
spectrograms in Fig. 11 were calculated from their mel-
cepstral features for comparison. For clarity, Figs. 12 and 13
illustrate some examples of the spectra.
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Fig. 9: The probability distribution of hidden units p(h|v, s) given the source speaker’s features (a) and the target speaker’s
features (b) of the same sentence “Arayuru genjitsu o subete jibuN no ho: e nejimagetanoda” when H = 8 (upper row) and
H = 32 (lower row) hidden units without softmax constraints are used. The white and the black indicate the high and the low
probability, respectively.

As shown in Figs. 11, 12 and 13, we can say that the
converted spectrum more or less captures the characteristics of
the target speaker’s spectrum. This is seen clearly in Figs. 12
and 13, where the frequencies of the spectral peaks (formant
information) of the converted spectra are similar to those of
the target speaker. Our proposed method has a great advantage
in that even though we did not train a model of the direct
conversion from the source to the target speakers and never
used parallel data during the training, the source speech was
converted into that of the target speaker.

The actually estimated parameters Ax, Ay , and W̄ are
shown in Figs. 14, 15, and 16, respectively. Interestingly, the
tridiagonal elements loom over the matrices in Figs. 14 and
15. In some literature, such as [28], [29], [30], it is known that
warping cepstral-based features between different speakers is
achieved by linear transformation with an adaptation matrix,
and tridiagonal elements of the adaptation matrix are sufficient
for warping when mel-cepstral features are used. We obtained
such characteristics in unsupervised learning.

F. Adding speech from more people

As noted before, the speaker-independent parameters in our
model will be improved using speech data of more than the
source and the target speakers. In this section, we report the
results when the number of persons included in the training

speech data is changed without softmax constraints as shown
in Fig. 17. We found that the MDIR improved as the number
of persons increased up to 8, but did not improve so much
beyond 8. This is considered to be due to the way of training,
which is based on stochastic gradient decent. Assume that the
numbers of training data for each person are all the same; i.e.
the probability of the number of appearance of the speaker r
in a minibatch is multinomial-distributed with the probability
p(r) = 1

R in B = B0 ·R trials, where R, B, and B0 denote the
numbers of persons, total batchsize, and batchsize per person,
respectively. In this case, the expected value of the number of
training data of the speaker r in the batch (we refer to this
number as “the number of selection”) becomes B · p(r) =
B0, which means the number of selections does not change
as the number of persons increased. However, the variance
of the number of selection is calculated as B · p(r) · (1 −
p(r)) = B0(1− 1

R ). This indicates that the number of selection
gradually varies more as the number of persons increases. The
stochastic gradient decent updates parameters just based on
that batch; hence, the speaker-independent parameters become
biased and are updated improperly as the number of persons
increases, which leads to poor the MDIR.

Fig. 18 shows the distribution of the learnt speaker-
dependent parameters (A, B, and C) when R = 16 persons’
speech was used that is projected into the two most principal
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features (b) of the same sentence “Arayuru genjitsu o subete jibuN no ho: e nejimagetanoda” when H = 8 (upper row) and
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probability, respectively.

spaces using principal component analysis (PCA) with the
notation of male or female for each. The most interesting
point from Fig. 18 is that it can be easily devided into
male and female groups in the first principal component even
though they are trained in an unsupervised manner. This
agrees with the intuition that when we try to recognize the
identities of speakers, we feel the differences between the
genders larger than the differences between individual persons.
Another important point in Fig. 18 is that some individuals
are categorized together, which implies that our model may
be applicable to speaker clustering techniques, such as cluster
adaptive training (CAT) [31].

V. CONCLUSION

In this paper, we presented a voice conversion (VC) method
using a structured energy-based probabilistic model called an
adaptive restricted Boltzmann machine (ARBM) aiming at
non-parallel training, where no parallel data is required during
the training. Compared with most existing VC approaches,
which are based on parallel training, the non-parallel training
is difficult and challenging because there are no restrictions on
the frame-wise matching of the related acoustic features of the
source and the target speakers under phonological supervision.
Nevertheless, such non-parallel approaches have attractive
advantages; theoretically, the texts of the speech data used

for the training do not have to be the same for both speakers,
the trained parameters can be reused in the conversion of any
other speaker pairs, and there is no need to make alignment
that takes some efforts. Our experimental results showed that
the proposed method produced results similar to that of the
popular parallel-training approach, GMM, in regard to both
objective and subjective criteria. Since the proposed model
is designed for unsupervised separation of speaker-specific
features and speaker-independent, phonological-related infor-
mation from the observed acoustic features, it may be appli-
cable to various other tasks, such as speaker identification,
speech recognition, noise reduction, and controlling emotions
in speech, which will be the focus of future work.

Contrary to our expectation, the large number of persons in
training did not always help to estimate speaker-independent
parameters and improve the performance. Many reasons could
be considered; however, the learning method of stochastic
gradient decent should be one of the reasons. We will consider
using other learning techniques such as stochastic average
gradient (SAG) [32] in the future.
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