9 research outputs found

    Doppler Radar Vital Signs Detection Method Based on Higher Order Cyclostationary

    Get PDF
    Due to the non-contact nature, using Doppler radar sensors to detect vital signs such as heart and respiration rates of a human subject is getting more and more attention. However, the related detection-method research meets lots of challenges due to electromagnetic interferences, clutter and random motion interferences. In this paper, a novel third-order cyclic cummulant (TOCC) detection method, which is insensitive to Gaussian interference and non-cyclic signals, is proposed to investigate the heart and respiration rate based on continuous wave Doppler radars. The k-th order cyclostationary properties of the radar signal with hidden periodicities and random motions are analyzed. The third-order cyclostationary detection theory of the heart and respiration rate is studied. Experimental results show that the third-order cyclostationary approach has better estimation accuracy for detecting the vital signs from the received radar signal under low SNR, strong clutter noise and random motion interferences

    Experimental validation of a quasi-realtime human respiration detection method via UWB radar

    Get PDF
    In this paper, we propose a quasi-realtime human respiration detection method via UWB radar system in through-wall or similar condition. With respect to the previous proposed automatic detection method, the new proposed method assures competitive performance in the human respiration motion detection and effective noise/clutter rejection, which have been proved by experimental results in actual scenario. This new method has also been implemented in a UWB through-wall life-detection radar prototype, and its time consuming is about 2 s, which can satisfy the practical requirement of quasi-realtime for through-wall sequential vital sign detection. Therefore, it can be an alternative for through-obstacles static human detection in antiterrorism or rescue scenarios

    Robust Detection of Moving Human Target Behind Wall via Impulse through-Wall Radar

    Get PDF
    Through-wall human target detection is highly desired in military applications. We have developed an impulse through-wall radar (TWR) to address this problem. In order to obtain a robust detection performance, firstly we adopt the exponential average background subtraction (EABS) method to mitigate clutters and improve the signal-to-clutter ratio (SCR). Then, different from the conventional constant false alarm rate (CFAR) methods that are applied along the fast-time dimension, we propose a new CFAR method along the slow-time dimension to resist the residual clutters in the clutter mitigation output because of timing jitters, based on the presence of a larger relative variation of human target moving in and out in comparison with that of residual clutters in the slow-time dimension. The proposed method effectively solves the false alarm issue caused by residual clutters in the conventional CFAR methods, and obtains robust detection performance. Finally, different through-wall experiments are provided to verify the proposed method.Defence Science Journal, 2013, 63(6), pp.636-642, DOI:http://dx.doi.org/10.14429/dsj.63.576

    Wide Band Embedded Slot Antennas for Biomedical, Harsh Environment, and Rescue Applications

    Get PDF
    For many designers, embedded antenna design is a very challenging task when designing embedded systems. Designing Antennas to given set of specifications is typically tailored to efficiently radiate the energy to free space with a certain radiation pattern and operating frequency range, but its design becomes even harder when embedded in multi-layer environment, being conformal to a surface, or matched to a wide range of loads (environments). In an effort to clarify the design process, we took a closer look at the key considerations for designing an embedded antenna. The design could be geared towards wireless/mobile platforms, wearable antennas, or body area network. Our group at UT has been involved in developing portable and embedded systems for multi-band operation for cell phones or laptops. The design of these antennas addressed single band/narrowband to multiband/wideband operation and provided over 7 bands within the cellular bands (850 MHz to 2 GHz). Typically the challenge is: many applications require ultra wide band operation, or operate at low frequency. Low frequency operation is very challenging if size is a constraint, and there is a need for demonstrating positive antenna gain

    Vital Signs Monitoring Based On UWB Radar

    Get PDF
    Contactless detection of human vital sign using radar sensors appears to be a promising technology which integrates communication, biomedicine, computer science etc. The radar-based vital sign detection has been actively investigated in the past decade. Due to the advantages such as wide bandwidth, high resolution, small and portable size etc., ultra-wideband (UWB) radar has received a great deal of attention in the health care field. In this thesis, an X4 series UWB radar developed by Xethru Company is adopted to detect human breathing signals through the radar echo reflected by the chest wall movement caused by breath and heartbeat. The emphasis is placed on the estimation of breathing and heart rate based on several signal processing algorithms. Firstly, the research trend of vital sign detection using radar technology is reviewed, based on which the advantages of contactless detection and UWB radar-based technology are highlighted. Then theoretical basis and core algorithms of radar signals detection are presented. Meanwhile, the detection system based on Xethru UWB radar is introduced. Next, several preprocessing methods including SVD-based clutter and noise removal algorithms, the largest variance-based target detection method, and the autocorrelation-based breathing-like signal identification method are investigated, to extract the significant component containing the vital signs from the received raw radar echo signal. Then the thesis investigates four time-frequency analysis algorithms (fast Fourier transform + band-pass filter (FFT+BPF), empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD) and variational mode decomposition (VMD) and compare their performances in estimating breathing rate (BR) and heart rate (HR) in different application scenarios. A python-based vital signs detection system is designed to implement the above-mentioned preprocessing and BR and HR estimation algorithms, based on which a large number of single target experiments are undertaken to evaluate the four estimation algorithms. Specifically, the single target experiments are divided into simple setup and challenging setup. In the simple setup, testees face to radar and keep normal breathing in an almost stationary posture, while in the challenging setup, the testee is allowed to do more actions, such as site sitting, changing the breathing frequency, deep hold the breathing. It is shown that the FFT+BPF algorithm gives the highest accuracy and the fastest calculation speed under the simple setup, while in a challenging setup, the VMD algorithm has the highest accuracy and the widest applicability. Finally, double targets breathing signal detection at different distances to the radar are undertaken, aiming to observe whether the breathing signals of two targets will interfere with each other. We found that when two objects are not located at the same distance to the radar, the object closer to the radar will not affect the breath detection of the object far from the radar. When the two targets are located at the same distance, the 'Shading effect' appears in the two breathing signals and only VMD algorithm can separate the breathing signals of the targets

    Noncontact Vital Signs Detection

    Get PDF
    Human health condition can be accessed by measurement of vital signs, i.e., respiratory rate (RR), heart rate (HR), blood oxygen level, temperature and blood pressure. Due to drawbacks of contact sensors in measurement, non-contact sensors such as imaging photoplethysmogram (IPPG) and Doppler radar system have been proposed for cardiorespiratory rates detection by researchers.The UWB pulse Doppler radars provide high resolution range-time-frequency information. It is bestowed with advantages of low transmitted power, through-wall capabilities, and high resolution in localization. However, the poor signal to noise ratio (SNR) makes it challenging for UWB radar systems to accurately detect the heartbeat of a subject. To solve the problem, phased-methods have been proposed to extract the phase variations in the reflected pulses modulated by human tiny thorax motions. Advance signal processing method, i.e., state space method, can not only be used to enhance SNR of human vital signs detection, but also enable the micro-Doppler trajectories extraction of walking subject from UWB radar data.Stepped Frequency Continuous Wave (SFCW) radar is an alternative technique useful to remotely monitor human subject activities. Compared with UWB pulse radar, it relieves the stress on requirement of high sampling rate analog-to-digital converter (ADC) and possesses higher signal-to-noise-ratio (SNR) in vital signs detection. However, conventional SFCW radar suffers from long data acquisition time to step over many frequencies. To solve this problem, multi-channel SFCW radar has been proposed to step through different frequency bandwidths simultaneously. Compressed sensing (CS) can further reduce the data acquisition time by randomly stepping through 20% of the original frequency steps.In this work, SFCW system is implemented with low cost, off-the-shelf surface mount components to make the radar sensors portable. Experimental results collected from both pulse and SFCW radar systems have been validated with commercial contact sensors and satisfactory results are shown

    Bio-Radar Applications for Remote Vital Signs Monitoring

    Get PDF
    Nowadays, most vital signs monitoring techniques used in a medical context and/or daily life routines require direct contact with skin, which can become uncomfortable or even impractical to be used regularly. Radar technology has been appointed as one of the most promising contactless tools to overcome these hurdles. However, there is a lack of studies that cover a comprehensive assessment of this technology when applied in real-world environments. This dissertation aims to study radar technology for remote vital signs monitoring, more specifically, in respiratory and heartbeat sensing. Two off-the-shelf radars, based on impulse radio ultra-wideband and frequency modu lated continuous wave technology, were customized to be used in a small proof of concept experiment with 10 healthy participants. Each subject was monitored with both radars at three different distances for two distinct conditions: breathing and voluntary apnea. Signals processing algorithms were developed to detect and estimate respiratory and heartbeat parameters, assessed using qualitative and quantitative methods. Concerning respiration, a minimum error of 1.6% was found when radar respiratory peaks signals were directly compared with their reference, whereas a minimum mean absolute error of 0.3 RPM was obtained for the respiration rate. Concerning heartbeats, their expression in radar signals was not as clear as the respiration ones, however a minimum mean absolute error of 1.8 BPM for heartbeat was achieved after applying a novel selective algorithm developed to validate if heart rate value was estimated with reliability. The results proved the potential for radars to be used in respiratory and heartbeat contactless sensing, showing that the employed methods can be already used in some mo tionless situations. Notwithstanding, further work is required to improve the developed algorithms in order to obtain more robust and accurate systems.Atualmente, a maioria das técnicas usadas para a monitorização de sinais vitais em contexto médicos e/ou diário requer contacto direto com a pele, o que poderá tornar-se incómodo ou até mesmo inviável em certas situações. A tecnologia radar tem vindo a ser apontada como uma das mais promissoras ferramentas para medição de sinais vitais à distância e sem contacto. Todavia, são necessários mais estudos que permitam avaliar esta tecnologia quando aplicada a situações mais reais. Esta dissertação tem como objetivo o estudo da tecnologia radar aplicada no contexto de medição remota de sinais vitais, mais concretamente, na medição de atividade respiratória e cardíaca. Dois aparelhos radar, baseados em tecnologia banda ultra larga por rádio de impulso e em tecnologia de onda continua modulada por frequência, foram configurados e usados numa prova de conceito com 10 participantes. Cada sujeito foi monitorizado com cada um dos radar em duas situações distintas: respirando e em apneia voluntária. Algorit mos de processamento de sinal foram desenvolvidos para detetar e estimar parâmetros respiratórios e cardíacos, avaliados através de métodos qualitativos e quantitativos. Em relação à respiração, o menor erro obtido foi de 1,6% quando os sinais de radar respiratórios foram comparados diretamente com os sinais de referência, enquanto que, um erro médio absoluto mínimo de 0,3 RPM foi obtido para a estimação da frequência respiratória via radar. A expressão cardíaca nos sinais radar não se revelou tão evidente como a respiratória, no entanto, um erro médio absoluto mínimo de 1,8 BPM foi obtido para a estimação da frequência cardíaca após a aplicação de um novo algoritmo seletivo, desenvolvido para validar a confiança dos valores obtidos. Os resultados obtidos provaram o potencial do uso de radares na medição de atividade respiratória e cardíaca sem contacto, sendo esta tecnologia viável de ser implementada em situações onde não existe muito movimento. Não obstante, os algoritmos desenvolvidos devem ser aperfeiçoados no futuro de forma a obter sistemas mais robustos e precisos

    Interference management in impulse-radio ultra-wide band networks

    Get PDF
    We consider networks of impulse-radio ultra-wide band (IR-UWB) devices. We are interested in the architecture, design, and performance evaluation of these networks in a low data-rate, self-organized, and multi-hop setting. IR-UWB is a potential physical layer for sensor networks and emerging pervasive wireless networks. These networks are likely to have no particular infrastructure, might have nodes embedded in everyday life objects and have a size ranging from a few dozen nodes to large-scale networks composed of hundreds of nodes. Their average data-rate is low, on the order of a few megabits per second. IR-UWB physical layers are attractive for these networks because they potentially combine low-power consumption, robustness to multipath fading and to interference, and location/ranging capability. The features of an IR-UWB physical layer greatly differ from the features of the narrow-band physical layers used in existing wireless networks. First, the bandwidth of an IR-UWB physical layer is at least 500 MHz, which is easily two orders of magnitude larger than the bandwidth used by a typical narrow-band physical layer. Second, this large bandwidth implies stringent radio spectrum regulations because UWB systems might occupy a portion of the spectrum that is already in use. Consequently, UWB systems exhibit extremely low power spectral densities. Finally IR-UWB physical layers offer multi-channel capabilities for multiple and concurrent access to the physical layer. Hence, the architecture and design of IR-UWB networks are likely to differ significantly from narrow-band wireless networks. For the network to operate efficiently, it must be designed and implemented to take into account the features of IR-UWB and to take advantage of them. In this thesis, we focus on both the medium access control (MAC) layer and the physical layer. Our main objectives are to understand and determine (1) the architecture and design principles of IR-UWB networks, and (2) how to implement them in practical schemes. In the first part of this thesis, we explore the design space of IR-UWB networks and analyze the fundamental design choices. We show that interference from concurrent transmissions should not be prevented as in protocols that use mutual exclusion (for instance, IEEE 802.11). Instead, interference must be managed with rate adaptation, and an interference mitigation scheme should be used at the physical layer. Power control is useless. Based on these findings, we develop a practical PHY-aware MAC protocol that takes into account the specific nature of IR-UWB and that is able to adapt its rate to interference. We evaluate the performance obtained with this design: It clearly outperforms traditional designs that, instead, use mutual exclusion or power control. One crucial aspect of IR-UWB networks is packet detection and timing acquisition. In this context, a network design choice is whether to use a common or private acquisition preamble for timing acquisition. Therefore, we evaluate how this network design issue affects the network throughput. Our analysis shows that a private acquisition preamble yields a tremendous increase in throughput, compared with a common acquisition preamble. In addition, simulations on multi-hop topologies with TCP flows demonstrate that a network using private acquisition preambles has a stable throughput. On the contrary, using a common acquisition preamble exhibits an effect similar to exposed terminal issues in 802.11 networks: the throughput is severely degraded and flow starvation might occur. In the second part of this thesis, we are interested in IEEE 802.15.4a, a standard for low data-rate, low complexity networks that employs an IR-UWB physical layer. Due to its low complexity, energy detection is appealing for the implementation of practical receivers. But it is less robust to multi-user interference (MUI) than a coherent receiver. Hence, we evaluate the performance of an IEEE 802.15.4a physical layer with an energy detection receiver to find out whether a satisfactory performance is still obtained. Our results show that MUI severely degrades the performance in this case. The energy detection receiver significantly diminishes one of the most appealing benefits of UWB, specifically its robustness to MUI and thus the possibility of allowing for parallel transmissions. This performance analysis leads to the development of an IR-UWB receiver architecture, based on energy detection, that is robust to MUI and adapted to the peculiarities of IEEE 802.15.4a. This architecture greatly improves the performance and entails only a moderate increase in complexity. Finally, we present the architecture of an IR-UWB physical layer implementation in ns-2, a well-known network simulator. This architecture is generic and allows for the simulation of several multiple-access physical layers. In addition, it comprises a model of packet detection and timing acquisition. Network simulators also need to have efficient algorithms to accurately compute bit or packet error rates. Hence, we present a fast algorithm to compute the bit error rate of an IR-UWB physical layer in a network setting with MUI. It is based on a novel combination of large deviation theory and importance sampling

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore