1,025 research outputs found

    Evolution of Wikipedia's Category Structure

    Get PDF
    Wikipedia, as a social phenomenon of collaborative knowledge creating, has been studied extensively from various points of views. The category system of Wikipedia, introduced in 2004, has attracted relatively little attention. In this study, we focus on the documentation of knowledge, and the transformation of this documentation with time. We take Wikipedia as a proxy for knowledge in general and its category system as an aspect of the structure of this knowledge. We investigate the evolution of the category structure of the English Wikipedia from its birth in 2004 to 2008. We treat the category system as if it is a hierarchical Knowledge Organization System, capturing the changes in the distributions of the top categories. We investigate how the clustering of articles, defined by the category system, matches the direct link network between the articles and show how it changes over time. We find the Wikipedia category network mostly stable, but with occasional reorganization. We show that the clustering matches the link structure quite well, except short periods preceding the reorganizations.Comment: Preprint of an article submitted for consideration in Advances in Complex Systems (2012) http://www.worldscinet.com/acs/, 19 pages, 7 figure

    Early Prediction of Movie Box Office Success based on Wikipedia Activity Big Data

    Get PDF
    Use of socially generated "big data" to access information about collective states of the minds in human societies has become a new paradigm in the emerging field of computational social science. A natural application of this would be the prediction of the society's reaction to a new product in the sense of popularity and adoption rate. However, bridging the gap between "real time monitoring" and "early predicting" remains a big challenge. Here we report on an endeavor to build a minimalistic predictive model for the financial success of movies based on collective activity data of online users. We show that the popularity of a movie can be predicted much before its release by measuring and analyzing the activity level of editors and viewers of the corresponding entry to the movie in Wikipedia, the well-known online encyclopedia.Comment: 13 pages, Including Supporting Information, 7 Figures, Download the dataset from: http://wwm.phy.bme.hu/SupplementaryDataS1.zi

    Changing Higher Education Learning with Web 2.0 and Open Education Citation, Annotation, and Thematic Coding Appendices

    Get PDF
    Appendices of citations, annotations and themes for research conducted on four websites: Delicious, Wikipedia, YouTube, and Facebook

    Creating a Semantic Graph from Wikipedia

    Get PDF
    With the continued need to organize and automate the use of data, solutions are needed to transform unstructred text into structred information. By treating dependency grammar functions as programming language functions, this process produces \property maps which connect entities (people, places, events) with snippets of information. These maps are used to construct a semantic graph. By inputting Wikipedia, a large graph of information is produced representing a section of history. The resulting graph allows a user to quickly browse a topic and view the interconnections between entities across history

    Document controversy classification based on the Wikipedia category structure

    Get PDF
    Dispute and controversy are parts of our culture and cannot be omitted on the Internet (where it becomes more anonymous). There have been many studies on controversy, especially on social networks such as Wikipedia. This free on-line encyclopedia has become a very popular data source among many researchers studying behavior or natural language processing. This paper presents using the category structure of Wikipedia to determine the controversy of a single article. This is the first part of the proposed system for classification of topic controversy score for any given text

    The Computer Science Ontology: A Comprehensive Automatically-Generated Taxonomy of Research Areas

    Get PDF
    Ontologies of research areas are important tools for characterising, exploring, and analysing the research landscape. Some fields of research are comprehensively described by large-scale taxonomies, e.g., MeSH in Biology and PhySH in Physics. Conversely, current Computer Science taxonomies are coarse-grained and tend to evolve slowly. For instance, the ACM classification scheme contains only about 2K research topics and the last version dates back to 2012. In this paper, we introduce the Computer Science Ontology (CSO), a large-scale, automatically generated ontology of research areas, which includes about 14K topics and 162K semantic relationships. It was created by applying the Klink-2 algorithm on a very large dataset of 16M scientific articles. CSO presents two main advantages over the alternatives: i) it includes a very large number of topics that do not appear in other classifications, and ii) it can be updated automatically by running Klink-2 on recent corpora of publications. CSO powers several tools adopted by the editorial team at Springer Nature and has been used to enable a variety of solutions, such as classifying research publications, detecting research communities, and predicting research trends. To facilitate the uptake of CSO, we have also released the CSO Classifier, a tool for automatically classifying research papers, and the CSO Portal, a web application that enables users to download, explore, and provide granular feedback on CSO. Users can use the portal to navigate and visualise sections of the ontology, rate topics and relationships, and suggest missing ones. The portal will support the publication of and access to regular new releases of CSO, with the aim of providing a comprehensive resource to the various research communities engaged with scholarly data

    DARIAH and the Benelux

    Get PDF
    corecore