6 research outputs found

    The parallel computation of morse-smale complexes

    Get PDF
    pre-printTopology-based techniques are useful for multi-scale exploration of the feature space of scalar-valued functions, such as those derived from the output of large-scale simulations. The Morse-Smale (MS) complex, in particular, allows robust identification of gradient-based features, and therefore is suitable for analysis tasks in a wide range of application domains. In this paper, we develop a two-stage algorithm to construct the Morse-Smale complex in parallel, the first stage independently computing local features per block and the second stage merging to resolve global features. Our implementation is based on MPI and a distributed-memory architecture. Through a set of scalability studies on the IBM Blue Gene/P supercomputer, we characterize the performance of the algorithm as block sizes, process counts, merging strategy, and levels of topological simplification are varied, for datasets that vary in feature composition and size. We conclude with a strong scaling study using scientific datasets computed by combustion and hydrodynamics simulations

    09251 Abstracts Collection -- Scientific Visualization

    Get PDF
    From 06-14-2009 to 06-19-2009, the Dagstuhl Seminar 09251 ``Scientific Visualization \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, over 50 international participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Aeronautical Engineering: A continuing bibliography with indexes (supplement 177)

    Get PDF
    This bibliography lists 469 reports, articles and other documents introduced into the NASA scientific and technical information system in July 1984

    An evolution-based generative design system : using adaptation to shape architectural form

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Architecture, 2001.Includes bibliographical references (leaves 284-291).This dissertation dwells in the interstitial spaces between the fields of architecture, environmental design and computation. It introduces a Generative Design System that draws on evolutionary concepts to incorporate adaptation paradigms into the architectural design process. The initial aim of the project focused on helping architects improving the environmental performance of buildings, but the final conclusions of the thesis transcend this realm to question the process of incorporating computational generative systems in the broader context of architectural design. The Generative System [GS] uses a Genetic Algorithm as the search and optimization engine. The evaluation of solutions in terms of environmental performance is done using DOE2.1E. The GS is first tested within a restricted domain, where the optimal solution is previously known, to allow for the evaluation of the system's performance in locating high quality solutions. Results are very satisfactory and provide confidence to extend the GS to complex building layouts. Comparative studies using other heuristic search procedures like Simulated Annealing are also performed. The GS is then applied to an existing building by Alvaro Siza, to study the system's behavior in a complex architectural domain, and to assess its capability for encoding language constraints, so that solutions generated may be within certain design intentions. An extension to multicriteria problems is presented, using a Pareto-based method.(cont.) The GS successfully finds well-defined Pareto fronts providing information on best trade-offs between conflicting objectives. The method is open-ended, as it leaves the final decision-making to the architect. Examples include finding best trade-offs between costs of construction materials, annual energy consumption in buildings, and greenhouse gas emissions embedded in materials. The GS is then used to generate whole building geometries, departing from abstract relationships between design elements and using adaptation to evolve architectural form. The shape-generation experiments are performed for distinct geographic locations, testing the algorithm's ability to adapt buildings shape to different environments. Pareto methods are used to investigate what forms respond better to conflicting objectives. New directions of research are suggested, like combining the GS with a parametric solid modeler, or extending the investigation to the study of complex adaptive systems in architecture.by Luisa Gama Caldas.Ph.D
    corecore