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Abstract—Topology-based techniques are useful for multi-
scale exploration of the feature space of scalar-valued func
tions, such as those derived from the output of large-scale 
simulations. The Morse-Smale (MS) complex, in particular, 
allows robust identification of gradient-based features, and 
therefore is suitable for analysis tasks in a wide range of 
application domains. In this paper, we develop a two-stage 
algorithm to construct the Morse-Smale complex in parallel, 
the first stage independently computing local features per block 
and the second stage merging to resolve global features. Our 
implementation is based on MPI and a distributed-memory 
architecture. Through a set of scalability studies on the IBM 
Blue Gene/P supercomputer, we characterize the performance 
of the algorithm as block sizes, process counts, merging 
strategy, and levels of topological simplification are varied, for 
datasets that vary in feature composition and size. We conclude 
with a strong scaling study using scientific datasets computed 
by combustion and hydrodynamics simulations. 

Keywords -Morse-Smale complex; Parallel topological analy-

I. I N T R O D U C T I O N 

The expanding computational power of modern super
computers enables simulations to generate data with greater 
resolution and complexity than ever before. Furthermore, as 
sensors gain resolution and the size of commodity storage 
increases, the same trend is observed for captured data, 
for example, for CT scans and confocal microscopy mo
saics. Sophisticated analysis techniques that scale with the 
explosion in data size and complexity are necessary for 
the effective analysis of such data. Topology-based graph 
structures are a promising approach because they enable 
a multi-resolution representation that summarizes important 
features and can be explored interactively. 

The Morse-Smale (MS) complex, a segmentation of a 
scalar field into regions of uniform gradient flow behavior, 
is one such topological structure. It is an unstructured 
graph with edges representing the topological connectivity 
of features and nodes storing their attributes and geometric 
embedding. As a cellular decomposition of the domain, it 
can provide a map to the feature space defined by gradient 
flow properties that can be orders of magnitude smaller 
than the input data, depending on the original complexity. 
Furthermore, the process of defining features is reduced to 
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Figure 1. The analysis pipeline using MS complexes starts with acquisition 
of simulation data and computation of a fine-scale complex (left). All 
subsequent analysis queries this structure. A scientist may interactively 
visualize statistics about the topological structure of the data or select 
different threshold values to define features. Such exploration provides 
immediate feedback to the scientist with visualization of the extracted 
features as well as statistics generated on-the-fly (right). 

designing interactive queries on the graph structure. This 
allows scientists to conduct parameter studies without the 
need to rerun analyses on the original data. 

To motivate our work, Figure 1 contains a small example 
of how the MS complex can answer underlying science 
questions. The remainder of this paper then demonstrates 
how to generate similar complexes as in the left side of this 
figure, in parallel and at very large scale. In Figure 1 the MS 
complex is used to find the filament structure of a simulated 
porous material [12], represented as a signed volumetric 
distance field from an uncertain interface demarcating the 
interior and exterior of the material. The MS complex traces 
the potential locations of the filament structures, or three-
dimensional ridge-lines. 

After the MS complex is computed from the data in the 
left side of Figure 1, it is explored interactively on the right. 
This interactive exploration enables viewing the filament 
structures for multiple threshold values and at multiple 
topological scales, making possible a parameter study of 
the impact and stability of the choice of threshold values. 
As an embedded graph, the filaments can be analyzed using 
graph algorithms, extracting statistics such as length, cycle 
count, and the minimum cut. This kind of approach has 
similar applications in a wide variety of disciplines including 
physics, computational chemistry, combustion, biomedical 
imaging, astronomy, and oil exploration. 

The bottleneck until now in the analysis pipeline just 
described has been initial computation of the complex, 
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requiring both significant memory resources and processing 
time. Given the size and complexity of many datasets, 
computing the MS complex requires HPC resources, often 
the same supercomputers used to compute the original data. 
Two main challenges must be addressed to compute the MS 
complex in parallel. 

First, features often have global scope, and the spatial 
decomposition imposed by a parallel approach must be 
overcome to resolve them. When a data set is divided into 
spatial blocks to be processed in parallel, gradient flow 
features identified locally may in fact be part of much 
larger ones spanning several blocks. A globally consistent 
resolution of these features is necessary for robust analysis, 
and the process of resolving the features inevitably requires 
potentially expensive interprocess communication. 

Second, the MS complex encoding the segmentation at 
the finest topological resolution may have a prohibitively 
large memory footprint due to an abundance of insignificant 
features or noise. A multi-resolution representation is needed 
to simplify the fine-scale complex, where typically only the 
coarsest levels of the hierarchy may represent features of 
interest. However, a complete simplification requires knowl
edge about the global connectivity of the complex, limiting 
the simplification that can be performed independently. 

In this paper, we designed, implemented, and tested 
a novel parallel algorithm to construct the 1-skeleton of 
the MS complex. Our solution features tunable parameters 
that allow trade offs in use of resources, output size, and 
accuracy. These parameters include blocking strategy, merg
ing strategy, and simplification level of the topology. The 
key to the scalability of our approach is to balance the 
degree of simplification with communication load, based on 
understanding how the parallel performance of topology-
based techniques is impacted by the distribution and size 
of features in the original data. 

To characterize our algorithm's performance, we con
ducted extensive parameter studies using artificial data as 
well as actual scientific data. The synthetic datasets are de
signed to test best-case and worst-case performance, where 
feature size and count are varied in a range of data sizes and 
processor counts. The scientific datasets demonstrate strong 
scaling on results of large-scale simulations of combustion 
and hydrodynamic simulations. These results indicate guid
ing principles that can further help design the next generation 
of scalable topology-based analysis algorithms with the goal 
of deploying them in situ with simulations. 

This is the first parallel algorithm for computing the 
MS complex that scales efficiently to tens of thousands 
of nodes of distributed-memory HPC supercomputers such 
as the IBM Blue Gene/P. Enabling the large-scale parallel 
computation of the MS complex opens up new possibilities 
for scientists who can use the MS complex for further 
simplification, filtering, feature extraction, and quantitative 
analysis of their data. 

II. R E L A T E D W O R K 

The MS complex is a topological data structure that 
provides an abstract representation of the gradient flow 
behavior of a scalar field [29], [28] that is beginning to 
make an impact in analysis of large-scale scientific data. For 
example, Laney et al. [20] used the descending 2-manifolds 
of a two-dimensional MS complex to segment an interface 
surface and count bubbles in a simulated Rayleigh-Taylor 
instability. Bremer et al. [2] used a similar technique to count 
the number of burning regions in a lean premixed hydrogen 
flame simulation. Gyulassy et al. [12] used carefully selected 
arcs from the 1-skeleton of the three-dimensional MS com
plex to analyze the core structure of a porous solid. 

Efficient computation of the MS complex for large volu
metric data is still an open challenge. The first algorithm for 
two-dimensional piecewise-linear (PL) data was presented 
by Edelsbrunner et al. [6]. Bremer et al. [1] improved 
this by following gradients more faithfully and described 
a multi-resolution representation of the scalar field. Several 
algorithms have been proposed to compute the complex 
for volumetric data [5], [13], [14], [15], however, these 
techniques are limited by computational overhead to small, 
simple data sets. 

A discrete interpretation of Morse theory, as presented 
by Forman [8], simplifies the construction of the complex 
by discretizing gradient flow. In this approach, a discrete 
gradient vector field is computed that uniquely determines 
the combinatorial structure of the MS complex. The main 
computational aspect in using a discrete approach is gen
erating a discrete gradient vector field. Lewiner et al. [21] 
showed how a discrete gradient field can be constructed and 
used to identify the MS complex, however, this construction 
required an explicit graph-based representation of gradient 
paths, prohibitively expensive for large volumetric data. 
King et al. [19] presented a method for constructing a 
discrete gradient field that agrees with the large-scale flow 
behavior of the data defined at vertices of the input mesh. 
In our approach, we use the parallel algorithm presented by 
Gyulassy et at. [10] for its simplicity of implementation and 
its dynamic simulation of simplicity, that greatly reduces the 
number of zero-persistence critical points found. Although 
this algorithm was presented as parallelizable, no implemen
tation had been achieved. 

One challenge to realizing a parallel implementation 
is managing communication in a data-intensive algorithm. 
Parallel analysis algorithms containing global features in 
a distributed architecture need to communicate this in
formation between processes. The computational time of 
these algorithms often scales well, making parallel analysis 
bound by data movement, as [25] demonstrated for volume 
rendering. The dominant communication patterns seen in 
analysis algorithms are local neighborhood communication, 
as in particle tracing [24], [26] and global reduction, as 
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in image compositing [30]. Elements of our configurable 
merge algorithm are motivated by a configurable image 
compositing algorithm called Radix-k, shown to have good 
scalability at the full scale of HPC machines [22]. 

The second stage of our algorithm, merging, is an example 
of graph simplification. Graph simplification approaches 
are used by the information visualization community in 
order to view and interact with complex graph structures, 
such as the sequential simplification algorithm presented 
by Hennessey et al. [17]. Parallel graph simplification is a 
component of multilevel graph partitioning algorithms. This 
stage is usually called coarsening and can be found in the 
ParMeTiS [27] and PT-Scotch libraries [3]. These libraries, 
however, do not provide the exact graph simplification that 
we need, and they have been shown to scale to only 128 
processes. The same is true of the Parallel BGL [9]. 

III. B A C K G R O U N D 

Discretization is the fundamental tool used in the topo
logical analysis of scalar functions available as samples on 
a grid. In the following, we review concepts from Morse 
theory, and present their discrete analogue that is the basis 
for practical algorithms. Finally, we review topology-based 
simplification. 

A. Morse Functions and the MS Complex 

Let / be real-valued smooth map / : M —> R defined 
over a compact c/-manifold M. A point p G M is critical 
when V / ( p ) = 0, that is, the gradient is zero, and is 
non-degenerate when its Hessian (matrix of second partial 
derivatives) is non-singular. The function / is a Morse 
function if all its critical points are non-degenerate and no 
two critical points have the same function value. Morse 
functions are dense in the space of functions, that is, any 
function can be closely approximated by a Morse function, 
a fact that makes them useful in the analysis of real-
world data. The Morse Lemma states that there exist local 
coordinates in a neighborhood around p such that / has the 
following standard form: fp = c db x\ db x\ • • • db x2

n. The 
number of minus signs in this equation gives the index of 
critical point p. In three-dimensional functions, minima are 
index-0, 1-saddles are index-1, 2-saddles are index-2, and 
maxima are index-3. 

An integral line in / is a path in M whose tangent 
vectors agree with the gradient of / at every point along 
the path. The upper and lower limits of an integral line 
are its destination and origin, respectively. Ascending and 
descending manifolds are obtained as clusters of integral 
lines having common origin and destination, respectively. A 
Morse function / is a Morse-Smale function if its ascending 
manifolds intersect descending manifolds only transversally. 
The intersection of the ascending and descending manifolds 
of a Morse-Smale function forms the Morse-Smale (MS) 

complex. Of key importance in the analysis of scalar func
tions is the 1-skeleton of the MS complex, formed by the 
0- and 1-dimensional elements. The 0-dimensional elements 
are critical points, and are called nodes in the complex, 
and the 1-dimensional elements are integral lines connecting 
critical points differing in dimension by 1, and are called 
arcs of the complex. Figure 2(b) illustrates the 1-skeleton 
of the complex on a simple height field. 

B. Discrete Morse Theory 

Simulation data is most often available as samples at the 
vertices of an underlying mesh. The data samples assign 
values to vertices, and a continuous function is recovered on 
the interior of cells through interpolation. Recently, however, 
new approaches embrace the mesh structure, and apply 
topological results directly to a purely discrete, combina
torial representation of the function. Discrete Morse theory, 
introduced by Forman [8], reproduces results from smooth 
Morse theory in this discrete domain. 

The following definitions are used to formalize notions 
about the implicit underlying mesh used in gridded data. A 
d-cell is a topological space that is homeomorphic to a d-
ball Bd = {x G Md : \x\ < 1}. For example, a vertex is 
a 0-cell, an edge is a 1-cell, and a quad is 2-cell. For cells 
a and (3, a < (3 means that a is a face of f3 and f3 is a 
co-face of a, i.e., the vertices of a are a proper subset of 
the vertices of /3. If dim(a) = dim((3) — 1, we say a is a 
facet of j3, and j3 is a co-facet of a. A cell a has dimension 
d, and we denote this as a^d\ We denote by K the regular 
cell complex that is a mesh representation of the underlying 
space M. 

The underlying principle of discrete Morse theory is a 
combinatorial representation of gradient flow. In a discrete 
vector field, flow is described by a pairing of cells: a d + 1 
cell, [ ] ( d + 1 \ is paired uniquely with one of its faces, a c/-cell, 
a^d\ and we say that [3^d+1^ is the head and the tail 
of a discrete vector. Intuitively, this pairing indicates that 
flow passes through and into /3^d+1\ V is a discrete 
vector field when each cell in K is paired in at most one 
discrete vector. The discrete equivalent of an integral line is 
a V-path: 

Ad) Q{d+i) (d) Q{d+i) (d) 0 ( d + i ) Ad) 

such that for each i = 0,..., r, the pair {off* < p\d+1^} G V, 
and {p\d+l^ > a^p! ^ ctf^}- When all V-paths are acyclic, 
the discrete vector field is a discrete gradient vector field. 
Note that unlike their smooth counterparts, discrete gradient 
arrows point in the direction of steepest descent. 

Just as points with zero gradient in smooth Morse theory 
are critical, unpaired cells in a discrete gradient vector field 
are critical, with index of criticality equal to the dimension 
of the cell. Therefore in three dimensional regular grids, 
unpaired vertices are minima, unpaired edges are 1-saddles, 

486 



(c) (d) (e) 
Figure 2. A smooth scalar function is visualized in (a) using a grayscale ramp. The 1-skeleton of the two-dimensional MS complex is overlaid in (b). 
Minima are rendered as blue spheres, 1-saddles as green spheres, and maxima as red spheres. The minimum-1-saddle arcs of the complex are cyan tubes, 
and the 1-saddle-maximum arcs are gold tubes. The same function is coarsely samples at the vertices of a grid (c). A discrete gradient vector field (d) 
describes the flow behavior with gradient arrows. Unpaired cells are critical, and are rendered with blue. The 1-skeleton of the discrete complex (e) has 
nodes at the barycenters of critical cells, and arcs where V-paths connect them. While the locations of nodes can shift by 1/2 the width of a cell in either 
direction from the location of the "smooth" critical point, the connectivity of the complex remains unchanged. 

unpaired quads are 2-saddles, and unpaired voxels are max
ima. The nodes of the discrete MS complex are the critical 
cells of V, and the arcs are the V-paths connecting them. 
Figure 2(c-e) shows how this discrete interpretation can be 
used to recover topological information of an underlying 
function. 

C. Persistence-based Simplification 

A function / is simplified by repeated cancellation of pairs 
of critical points that differ in index by one. Forman [7] 
showed how a cancellation could be achieved in a discrete 
gradient field by reversing the gradient path between two 
critical cells. Gyulassy et al. [10] characterized the cancel
lation in terms of the 1-skeleton of the MS complex. The 
local change in the MS complex indicates a smoothing of 
the gradient vector field and hence of the function / . A can
cellation removes two nodes and the arcs connecting them 
from the MS complex, and creates new arcs reconnecting 
nodes in their neighborhood. Persistence is a measure of the 
weight of a cancellation, and is computed as the absolute 
difference in function value of the canceled pair of nodes. 
Repeated application of the cancellation operation in order 
of persistence results in a hierarchy of MS complexes and 
a multi-resolution representation of the scalar function. 

IV. A P P R O A C H 

Although our algorithm can be considered a two stage 
approach, first computing a local MS complex, and then 
merging the complexes together, it is implemented data-
parallel; in other words, each of the steps listed is performed 

by every processing element in a distributed-memory super
computer or cluster. Algorithm 1 lists and Figure 3 depicts 
these steps, which are described below in greater detail. 

Algorithm 1 Overall algorithm 
Decompose domain (section IV-A) 
Read data blocks (section IV-B) 
for all local blocks do 

Compute discrete gradient (section IV-C) 
Compute MS complex (section IV-D) 
Simplify MS complex (section IV-E) 

end for 
for number of rounds do 

Merge MS complex blocks (section IV-F) 
end for 
Write MS complex blocks (section IV-G) 

A. Domain Decomposition 

The data domain is a structured grid of regularly spaced 
hexahedral cells, with scalar values at the vertices. It is 
decomposed into a number of hexahedral blocks with a 
bisection algorithm that iteratively divides the longest re
maining data dimension in half until the desired total number 
of blocks is attained. One layer of values is shared by two 
neighboring blocks. For example, if a block Bijjk has size 
X x Y x Z, then BiJik[X - l][y}[z] = Bi+1^][y][z]. 

The total number of blocks may be greater than the 
number of processes, in which case blocks are assigned to 
processes in round-robin (block-cyclic) order. We designed 
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Figure 3. In this overview of our algorithm, the arrows and circled component indicate the sequence of operations performed by a single process: (a) 
parallel read, (b) local gradient computation, (c) local MS complex computation, (d) simplification, (e) preparing data structures for communication, (f) 
merging complexes, (g) parallel write. Each merge round repeats (d)-(f). We refer to steps (b) and (c) as the "compute" stage of the algorithm, and (d)-(f) 
as the "merge" stage. 

the domain decomposition with flexibility in mind; depend
ing on the distribution of nodes and arcs in the entire domain, 
multiple blocks per process may increase the chances that 
the computational load is better balanced across processes. 
In our tests, however, we found that computation scaled well 
using just one block per process and we did not further 
evaluate load balance. 

B. Reading Data Blocks 

Once a block decomposition and processor assignment of 
blocks has been determined, each process reads its blocks in 
parallel from storage. Currently, we support unsigned byte, 
single-precision floating point, and double-precision floating 
point data sets. We use an MPI-IO parallel read strategy 
whereby each process loops over its blocks, creates an MPI 
subarray data type for that block, sets an MPI file view using 
that datatype, and reads the block collectively with all other 
processes. 

We considered more sophisticated approaches where 
blocks are first sorted and read in larger, contiguous chunks, 
before distributing to their final destinations. This is the 
method used by Kendall et al. [18], but in the data sizes 
that we have tested so far, the time to read the dataset was 
not a bottleneck. 

C. Discrete Gradient Computation 

We compute the discrete gradient vector field using the 
approach presented in [10], adapted to our parallel envi
ronment. In this algorithm, cells are sorted by increasing 
dimension, and then by increasing function value. Values 
are assigned to higher dimensional cells as the maximum 
of the values at the vertices. In this order, cells are paired 
in gradient arrows in the direction of steepest descent, if 
possible, otherwise are marked critical, and in either case 
are marked as assigned. A d-cell can be paired when it is 
the only unassigned facet of one of its unassigned co-facets. 
We use improved simulation of simplicity [11] to reduce 
the number of zero-persistence critical points found in flat 
regions. 

The ability to glue MS complexes together in the merging 
stage of the algorithm (section IV-F) is predicated on the 
discrete gradients being identical on the shared boundary 
between them. To maintain consistency across neighboring 
blocks, we ensure that the discrete gradients computed on 
the shared block faces are identical by restricting the discrete 
gradient pairing. For a cell on the boundary of two or more 
blocks, we only consider for pairing other cells also on 
the boundary of those same blocks. In this manner, the 
shared boundary between two blocks will be assigned the 
same gradient arrows, independently from the interior of the 
blocks. 

We use a refined grid to store the result of the gra
dient computation, where vertex i, j , k of the refined 
grid represents a rf-cell of the implicit original grid, where 
d = i%2 + j%2 + k%2. This refined grid is two times the 
length of the original structured grid in each dimension, and 
stores the discrete gradient pairing, criticality, and additional 
temporary values complactly in one byte per element. 

D. MS Complex Computation 

The finest-scale MS complex is computed by tracing V-
paths in the discrete gradient field from critical cells. In a 
first pass through the gradient, all critical cells are added to 
the MS complex as nodes. V"-paths are traced downwards 
from each node, and an arc is added to the MS complex 
for every path terminating at a critical cell. The list of cells 
in the V"-path forms the geometric embedding of the arc, 
and is stored as a dynamically allocated array attached to a 
geometry object. The paths are guaranteed to terminate in 
the interior or boundary of a block, due to the restriction 
of the boundary gradient arrows. We use the data structure 
presented in [11] to store the 1 -skeleton of the complex. 
In this data structure, nodes, arcs, and geometry objects are 
constant-sized elements stored in arrays. This structure is 
optimized for efficient simplification. 

E. MS Complex Simplification 

Persistence-based simplification is performed on the local 
complex to reduce the number of critical points and arcs. An 
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input threshold value determines how far the simplification 
will proceed. In each cancellation, two critical points are 
destroyed, along with all the arcs connected to them, and 
several new arcs are created to reconnect the complex. The 
geometry of the new arcs is inherited from the deleted arcs, 
and a new geometry object is created that references the 
geometry objects that were merged in the cancellation. A 
thorough description of the data structure updates can be 
found in [14]. To ensure consistency across block bound
aries, we do not consider for cancellation any arc having 
boundary nodes. 

F. Merging MS Complex Blocks 

So far, we described computing a strictly local MS 
complex for each block in the dataset. At this point, we 
could simply write each of these MS complexes in parallel 
to storage and terminate. While the resulting 1-skeleton is 
a valid MS complex and thus a solution to the problem, 
it may not be the best solution for later analysis, because 
global features spanning multiple blocks remain unresolved. 

Without this step, depending on the dataset, the MS 
complex can be several times larger than necessary. Such 
bloating masks the original critical points and leads to 
large output file sizes, both of which can be alleviated by 
merging MS complex blocks prior to storing. In some cases, 
a complete merge down to a single output block is desired, 
while in others a partial merge down to a reduced number 
of output blocks, compared to the number of input blocks, 
is sufficient. Preparing for communication, performing the 
communication, and computing the merged complex are the 
main steps to consider. 

1) Preparing for Communication: Preparing the local 
complexes for communication involves three steps: identi
fying the portions of the hierarchy that correspond to living 
elements at the desired simplification threshold; cleaning up 
the memory after computing the simplified MS complex; 
and translation of local indices to global ones. 

The approach we use to simplify the MS complex com
putes a feature hierarchy. To reduce the memory footprint 
after simplification, we remove from memory all but the 
coarsest levels of the MS complex hierarchy. 

We refer to the address of a cell as the location in the 
discrete gradient array at which it is stored. This address 
encodes the geometric location of the cell in the volume. 
When two complexes are merged (section IV-F3), the com
plexes are glued at nodes on their shared boundary. To 
detect that two nodes are co-located, we compare their 
address. However, when computed at a single block, the 
nodes and geometric locations of arcs of the MS complex 
are represented in local addresses. Let XG, YG, ZG be 
the length of the x, y, and z sides of the three-dimensional 
grid storing discrete gradients for the entire dataset, and 
XL, YL, ZL be the lengths of the sides of the block. 
Furthermore let Sx, Sy, Sz be the x, y, z offsets in the 

global gradient array of the first element of a block. Then 
the (i, j , k)th element of the block is at global address 
a= (i + Sx) + {j + Sy) x XG + (/c + Sz) x XG x YG. The 
local addresses are translated to global ones prior to the first 
round of communication. 

2) Communication: Previous research demonstrated that 
HPC architectures such as Cray XT and IBM Blue Gene 
have ample bisection bandwidth to support multiple chan
nels of concurrent communication. For example, Peterka et 
al. [22] designed a flexible image compositing algorithm 
with configurable radix values at each round. Our merge 
algorithm is inspired by this idea of specifying the number of 
rounds and radix of each round and is described in detail in 
[23]. It allows us to merge completely or partially, depending 
on the number of rounds and radix (communicating group 
size) per round. 

We restrict merge groups to contain two, four, or eight 
members (radix-2, radix-4, or radix-8). However, instead of 
swapping subsets of information among all group members, 
as in image composition, we designate one member of the 
group as the "root," and the remaining group members send 
all of their information to the root of the group. The root 
performs the merge and retains the result for later steps, 
which can consist of more merge rounds or writing to 
storage. The other, non-root members of a group do not 
participate in these later steps. The number of resulting MS 
complex blocks after merging is the number of input blocks 
divided by the product of radices in each merge round. 

3) Merge Computation: MS complexes are merged at a 
root of a group. After the data structures are communicated, 
the root has a list of independent complexes. The merge 
is performed by enlarging the root's MS complex, MSroot, 
by gluing each non-root complex, MSi to the root. Our 
technique for computing the discrete gradient ensures that 
it is identical on the shared boundary between blocks B r o o t 

and Bi. Therefore, any critical cell in this shared boundary 
is a node in both MSroot and MSi. These shared nodes 
anchor the gluing process. 

To glue MSroot and MSi, first, each node rij in MSi 
that is not on the shared boundary is added to MSroot-
Next, each arc from MSi is added to MSroot along with 
its corresponding geometry objects only if both its endpoints 
are not on the shared boundary. When both endpoints of an 
arc are on the shared boundary, the arc is guaranteed to exist 
in MSroot already. Once all other MS complexes are glued 
to MSroot, the boundary status of each node is updated 
according to the bounds of the merged blocks. The newly 
interior nodes become candidates for cancellation, and we 
use the procedure in section IV-E to create a new hierarchy. 

G. Writing MS Complex Blocks 

MS complex blocks are written to the output file collec
tively. The number and radices of merge rounds determine 
how many output blocks, if any, each process contributes to 
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(1 block) (8 blocks) (64 blocks) 

Figure 4 . The full MS complex (top row) computed with various 
number of blocks. For all three experiments, we use the exact same 
simplification threshold and the same filters to extract relevant filters. After 
1% persistence simplification, block boundary artifacts are removed (middle 
row). Important features are selected (bottom row) by choosing 2-saddle-
maximum arcs and nodes with value greater than 14.5. Although the 
geometric embedding of features can shift by the width of a cell due to 
discretization, we recover large-scale features spanning several blocks. 

the collective write. Those processes with no output blocks 
participate in the collective operation by issuing a "null" 
write consisting of zero bytes. The output file is a binary 
collection of all of the output blocks, followed by a footer 
that provides an index to the MS complexes contained in 
the file. The file format is documented in detail in [23]. 

V. P R O P E R T I E S O F T H E P A R A L L E L MS C O M P L E X 

The main challenges in parallelizing the computation of 
the MS complex are lack of locality and data-dependency of 
the output. The MS complex is, by nature, a global structure, 
that encodes both large- and small-scale features of a scalar 
function. Furthermore, the size of the complex is primarily 
determined by the number of features in the input function. 
In the following, we discuss the stability of nodes and arcs of 
the MS complex computed in parallel with respect to the MS 
complex computed in serial, that is, we answer the question: 
which arcs of the complex computed in serial are guaranteed 
to be present in the parallel computation? Furthermore, we 
discuss the expected size of the MS complex, a result that 
motivates per-block MS complex simplification to manage 
the size of the output. 

A. Stability 

When the complex is computed with a varying number 
of blocks, we observe that while certain nodes and arcs 
of the complex are preserved, others are not. Figure 4 

illustrates this phenomenon for a byte-valued scalar function 
representing the spatial probability density of a hydrogen 
atom residing in a strong magnetic field. Our approach 
to computing the discrete gradient (section IV-C) restricts 
the gradient pairing of cells on the boundary of a block. 
This introduces spurious critical cells, corresponding to 
critical points of the restriction of the scalar function to the 
two-dimensional boundary of a block. These show up as 
nodes in the MS complex having zero persistence; they are, 
however, necessary "handles" for gluing two neighboring 
complexes together (section IV-F). It is the cancellation 
of these boundary artifacts that directly connects important 
critical points in the interiors of neighboring blocks using 
arcs of the MS complex, therefore resolving global features. 

Even after simplification, however, the MS complex com
puted in parallel may differ from the MS complex computed 
in serial. Upon closer inspection, differences originate at 
locations where the gradients do not have a unique direction 
of steepest descent, for example, in flat regions. Note that 
this level of variability is present even in different serial 
implementations, and any robust analysis only accounts for 
stable critical points. 

More formally, nodes are stable under blocking strategy 
when the Hessian of the underlying scalar function at the 
node location is non-singular. In this case, the algorithm that 
constructs the discrete gradient guarantees a nearby critical 
cell. The existence of a stable critical point is an entirely 
local decision, which is the reason that the main features 
are preserved in the parallel implementation. Let a be an 
arc of the complex connecting a node of index d — 1 to 
a node of index d, and P be any plane that transversally 
intersects a. The geometric embedding of a is stable when 
the point of intersection with P is a critical point of index 
d — 1 of the scalar function restricted to P. 

The volume "outside" the hydrogen atom in Figure 4 
(middle row) has constant value, and hence critical points 
and the geometric embedding of arcs connected to them 
are unstable and can shift dramatically. However, important 
features are preserved where the stability conditions are met. 
For instance, in Figure 4 (bottom row), both the parallel and 
serial computation of the MS complex reveal three stable 
maxima connected by stable arcs in a line, and the loop 
representing the toroidal region. Note that, although the arc 
representing this loop is stable, the location of the maximum 
is not, since the function has a plateau along the arc. 

B. MS Complex Size in Practice 

The memory resources needed to store the MS complex 
depend on the topological complexity of the scalar function, 
and the geometric size of the embedded arcs. While there 
may be O(n) critical points in a sampled function with n 
samples, and 0 ( n 2 ) arcs connecting them, the expected value 
is much lower for practical data. The MS complex itself 
is a mesh structure embedded in the domain, with nodes 
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(32 features/side) (8 features/side) (2 features/side) 
(256 points/side) (256 points/side) (256 points/side) 

Figure 5. An artificially generated 256 3 dataset is volume rendered (top 
row), and the corresponding complex is illustrated (bottom row) for varying 
feature counts. 

at critical points and arcs connecting them. The expected 
number of arcs for a mesh is linear in the number of nodes. 
While severely noisy data may in fact have O(n) critical 
points, we argue that features from simulation data are much 
more widely spaced, else the simulation itself would lack 
numerical stability. In practice, we see that the number of 
important features, k, of a dataset will be several orders 
of magnitude less than the number of sample points n. In 
our examples in section VI-D, the number of significant 
features was six orders of magnitude fewer than the number 
of sample locations for the combustion example, and three 
for the mixing fluids. 

In our results, we found that the cost of storing the 
geometric embedding of the arcs was directly proportional to 
the length of one side of the dataset. The arc geometries are 
one-dimensional objects embedded in a three dimensions, 
therefore, for n samples, the cost of storing the geometry of 
one arc was (Xn 1 / 3 ) . Finally, we can estimate the storage 
requirements of the MS complex with / c x c + Z c x n 1 / 3 , where 
k is the expected number of features, and c is a constant that 
represents the cost of storing one node or one arc. Figure 6 
illustrates this behavior for an artificially generated dataset. 

VI. P E R F O R M A N C E R E S U L T S 

A. Test Environment 

The IBM Blue Gene/P Intrepid is a 557-teraflop super
computer operated by the Argonne Leadership Computing 
Facility (ALCF) at Argonne National Laboratory. It consists 
of 40 racks, each rack containing 1,024 nodes, for a total of 
40,960 nodes. Each node has four cores, for a grand total 
of 163,840 cores. The nodes are connected in a 3D torus 
topology. Our tests are conducted in smp mode, that is, one 
process per node. This allows each process 2GB of memory, 
which we found is necessary for some of our larger datasets. 

B. Data Size and Complexity Study 

To better characterize our algorithm's dependence on 
factors such as process count, data size, and data complexity, 
we conducted the following study. We generated synthetic 
datasets of various size and complexity by computing a 
sinusoidal scalar field. The data are 3D 32-bit floating point 
values, on a cubic grid of a given number of points per side 
of the cube. In other words, 512 points per side represents 
a 512 x 512 x 512 volume. The complexity, or number of 
features per side, is how many times the sine function has a 
± 1 value along the length of one side of the volume. Figure 
5 shows examples of three levels of complexity. 

Figure 6 shows the effect of process count, data size, and 
data complexity on compute time, merge time, and output 
MS complex size. All plots are in log-log scale. Several 
interesting correlations are evident in the discussion below. 

We first examine the compute time in the upper row of 
Figure 6. This is the time to generate a discrete gradient 
field from the dataset and compute the local MS complex 
on it. It scales linearly with process count, and compute 
time increases with data size, as the individual lines in each 
panel show. In fact, the compute time shows a weak scaling 
efficiency of 1; the compute time only depends on the size 
of the blocks. As we scan horizontally across the row of 
panels, however, we note that compute time is not related 
to topological complexity. 

Next we consider the merge time in the center row 
of Figure 6. This is the time to merge the previously-
computed MS complexes down to a smaller number of 
output blocks. We performed two rounds of radix-8 merging 
for this test. Similar to compute time, merging scales linearly 
with process count. Unlike compute time, however, the lines 
within a panel reveal that merge time is unaffected by data 
size, because the individual lines within each panel coincide. 
Instead, it is a function of complexity, as a horizontal scan 
across the row of panels shows. 

The output size is shown in the lower row of Figure 6. 
Output size increases slowly with process count, because we 
performed a constant number of merges. Starting with more 
processes, therefore, results in a greater number of output 
blocks, and hence unresolved boundary artifacts that add 
to the size. This accounts for the slope within each panel. 
When the topological complexity is high (right panel), the 
output size is dominated by the nodes and arcs of the MS 
complex, and the overhead of the boundary artifacts is less 
noticeable. When the feature complexity is low (left panel), 
the output size is dominated by the geometric embedding of 
the arcs, accounting for the roughly factor of two increase 
as the number of points per side is doubled. 

C Selecting the Merge Strategy 

Scientists will have some leeway in selecting the degree 
of merging to execute when using our algorithm, even given 
constraints of file size, memory size, and run time. In this 

491 



P e r f o r m a n c e Study 

Figure 6. Compute time, merge time, and output size as a function of number of processes, data size, and data complexity are plotted in log-log scale. 

Table I 
C O S T OF MERGING 2 0 4 8 BLOCKS 

Number 
of 
Rounds 

Round 
Radices 

Total Merge 
Time (s) 

Final Round 
Merge Time (s) 

0 . 5 9 8 
1.310 
2 . 6 3 5 
9 .843 

0 . 5 9 8 
0 . 7 1 2 
1.325 
7 .208 

Table II 
M E R G E STRATEGIES FOR FULL M E R G E OF 2 5 6 BLOCKS 

Number Round Radices Compute + 
of Merge Time 
Rounds (s) 
3 4 8 8 1 4 4 . 0 4 0 
3 8 8 4 144 .528 
4 4 4 2 8 1 4 4 . 9 5 5 
4 4 4 4 4 1 4 5 . 0 1 2 
8 2 2 2 2 2 2 2 2 1 4 9 . 1 7 4 

section, we lend some guidance in making those decisions 
based on two studies of the number of rounds and the radix 
in each merge round. 

1) Cost of Each Merge Round: The cost of merging is 
one factor that influences to what extent input blocks are 
merged into a smaller number of output blocks. Table I 
contains an example of merging 2048 input blocks across 
2048 processes. In this example, a full merge consisted of 

four rounds of radices [4, 8, 8, 8], appearing in the last 
row of the table. The first row of the table assumes that we 
perform only one round of radix-4, and the following rows 
add one more round each time, so that the second round is 
two rounds of radices [4, 8], and so on. 

The third column is the total time required to perform 
this merge, and the fourth column is the time required 
by the last round, so that when read from top to bottom, 
the fourth column shows the individual round times of 
the first, second, third, and fourth rounds, respectively. As 
merging progresses, it becomes more expensive, because MS 
complex blocks grow larger, take longer to communicate, 
and gravitate toward fewer processes. This is one reason 
why the performance and scalability in Figure 9 diminishes 
when scaling to high process counts and performing full 
merging. 

2) Merge Strategy: Once a number of output blocks is 
determined, it remains to decide how many rounds to use 
and what the radix of each round should be to get there. 
We call this the merge strategy, and an example appears in 
Table II for performing a full merge from 256 input blocks 
to one output block. This result is typical of our results, and 
from it we can generalize the following merge strategy. 

A smaller number of rounds with higher radices is desired. 
We suggest using radix-8 whenever possible. When radix-
8 cannot be used for a round because the ratio of input to 
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Figure 7. The MS complex that results from a partial merge (left) and a 
full merge (right) of the jet mixture fraction data, with a volume rendering 
of a slice of the original scalar field. 

Figure 8. Volume rendering and MS complex for Rayleigh-Taylor mixing 
dataset. 

output blocks is not divisible by eight, the remaining smaller 
radices are slightly better in early rounds rather than later. 
This is evident in comparing the first and second rows of 
Table II. As the previous section showed, rounds become 
more costly as they progress, so it is better to optimize later 
rounds to radix-8 whenever possible. 

D. Run Time and Strong Scaling 

1) Jet Mixture Fraction Dataset: The JET simulation 
is a temporally-evolving turbulent CO/H 2 jet flame un
dergoing extinction and re-ignition at different Reynolds 
numbers [16]. In this simulation, structures called dissipation 
elements are correlated to flame extinction, and are centered 
around minima of mixture fraction. We find important min
ima by computing and simplifying the MS complex. We 
tested the performance of our algorithm on a single time-
step. The data size consists of 32-bit floating-point scalars 
on a 768 x 896 x 512 regular grid, 1.4 GB in size. Our 
domain decomposition consisted of one block per process. 

Figure 7 shows the result of a partial merge and a full 
merge of the jet mixture fraction MS complex. The total run 
time, component times, and scalability are shown in Figure 
9. The timing results represent a full merge down to one 
output block, using radix-8 merging whenever possible, as 
indicated by our merging guidelines presented earlier. For 
8192 processes, for example, there were 8192 input blocks 
that were merged in five rounds with radices of [ 2, 8, 8, 8, 

Total & Component Time For Jet Mixture Fraction 

32 64 128 256 512 1024 2048 4096 8192 

Number of Processes 

Figure 9. Overall time and four components: read data, compute, merge, 
and write results, plotted in log-log scale. At small numbers of processes, 
time is dominated by computing, and at higher numbers of processes by 
merging. 

8 ]. The output file size of the fully merged MS complex is 
approximately 26 MB. 

Figure 9 reveals that most of the time is spent in comput
ing the discrete gradient field and MS complex, and merging 
blocks. The total run time is 970 s. at 32 processes and 29 s. 
at 8192 process, for an end-to-end strong scaling efficiency 
of 13%. Efficiency is computed as the ratio of the factor 
decrease in time divided by the factor increase in number of 
processes, using 32 processes as the base efficiency of 1.0 
in this case. 

The efficiency at 2048 processes is 35%, and there are two 
reasons for the relatively flat scaling beyond 2048 processes. 
First, the problem size is not large enough to warrant more 
processes than that. Second, Figure 9 shows the rapidly 
increasing merge time beyond 2048 processes. While we 
could have performed less merging and thereby improved 
our scalability, the object of this test is to evaluate the worst-
case performance for this dataset. The next benchmark is a 
more realistic scenario and shows that our algorithm is more 
efficient at higher process counts, with larger data, and a 
partial degree of merging. 

2) Rayleigh-Taylor Mixing Dataset: Our largest bench
mark comes from a simulation of mixing fluids in a 
Rayleigh-Taylor instability [4]. When a heavy fluid is placed 
on top of a lighter one, vertical perturbations in the interface 
create a structure of rising bubbles and falling spikes. The 
scalar field we study is density, and here the 1-skeleton of 
the MS complex can detect when isolated bits of one fluid 
penetrate the other. Figure 8 shows a volume rendering of 
the data as well as a cut-away view of the topology extracted 
at a late time-step. 

Figure 10 shows the performance of our algorithm on this 
dataset. The data size consists of 32-bit floating-point scalars 
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Total & Compute+Merge Time For Rayleigh-Taylor Mixing 

2048 8192 16384 32768 

Number of Processes 

Figure 10. Overall time and compute+merge time, plotted in log-log scale. 
The strong scaling efficiency of the compute+merge time is 6 6 % , and it is 
3 5 % for the overall end-to-end time. 

on a 1152 x 1152 x 1152 regular grid, 5.7 GB in size. We ran 
with one block per process and performed a partial merge 
of two rounds of radix-8 merging. 

This test demonstrates scalability of our algorithm to 
32,768 nodes out of a total machine size of 40,960 nodes. 
We did not test on the entire machine because a reservation 
was not available at the time. The upper curve in Figure 10 
shows 35% efficiency in overall time to 32,768 processes. 
The output size is approximately 4 GB. Excluding the I/O 
time and measuring only the time to compute and merge the 
MS complexes results in strong scaling of 66% to 32,768 
processes. 

VII. S U M M A R Y 

A. Conclusions 

We designed and implemented, for the first time, a scal
able algorithm to compute the MS complex of a scalar 
field in parallel on a distributed-memory architecture. The 
algorithm consists of decomposing the domain, reading the 
dataset from storage, locally computing the discrete gradient 
and MS complex, simplifying the MS complex, merging 
to a smaller number of output blocks, and writing the MS 
complex blocks to storage. 

To better understand the correlation between data size, 
data complexity, process count, compute time, merge time, 
and output size, we conducted a study using synthetic data 
of varying size and complexity. We found that compute time 
decreases linearly with process count and that it increases 
with data size, independent of complexity. Merge time also 
scales linearly at small process counts, but unlike compute 
time, it is independent of data size and is linear in the data 
complexity. The output size is primarily governed by data 
complexity. 

We also presented heuristics for choosing a merge strat
egy. The cost of merging increases with each round, so 
deciding on the degree of merging ought to take this into 
consideration. For a given number of output blocks, radix-
8 or the highest radix possible should be selected in order 
to minimize the number of rounds. When the optimal radix 
cannot be used, smaller radices should be used in earlier 
rounds rather than later rounds. 

We benchmarked performance and scalability on two 
datasets from combustion and physics science domains 
out to 32,768 nodes, or 80% of the Argonne Leadership 
Facility's Blue Gene/P machine. The cost of merging and 
of output I/O were the primary limitations to scalability at 
high process counts, although we were able to achieve 35% 
strong scaling in overall end-to-end performance. 

B. Future Work 

There are several directions that we plan to explore as we 
continue this work. We will continue to improve output I/O 
performance. We have also ported our implementation to the 
Jaguar XT5 system at the Oak Ridge Leadership Computing 
Facility, and we are testing our benchmarks there as well. 
From there, we plan to embed our algorithm into the S3D 
combustion code and generate parallel MS complexes in situ 
with combustion simulations. In the longer term, we plan to 
experiment with global persistence simplification in the con
text of our parallel structure. We anticipate that this can be 
performed using a series of nearest-neighbor communication 
operations. This will allow us to further reduce the size of 
the output data and to reduce the complexity of the resulting 
MS complex. 
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