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Abstract

This dissertation dwells in the interstitial spaces between the fields of architecture, environmental
design and computation. It introduces a Generative Design System that draws on evolutionary
concepts to incorporate adaptation paradigms into the architectural design process. The initial aim
of the project focused on helping architects improving the environmental performance of buildings,
but the final conclusions of the thesis transcend this realm to question the process of incorporating
computational generative systems in the broader context of architectural design.

The Generative System [GS] uses a Genetic Algorithm as the search and optimization engine. The
evaluation of solutions in terms of environmental performance is done using DOE2.1E. The GS is
first tested within a restricted domain, where the optimal solution is previously known, to allow for
the evaluation of the system's performance in locating high quality solutions. Results are very
satisfactory and provide confidence to extend the GS to complex building layouts. Comparative
studies using other heuristic search procedures like Simulated Annealing are also performed.

The GS is then applied to an existing building by Alvaro Siza, to study the system's behavior in a
complex architectural domain, and to assess its capability for encoding language constraints, so
that solutions generated may be within certain design intentions.

An extension to multicriteria problems is presented, using a Pareto-based method. The GS
successfully finds well-defined Pareto fronts providing information on best trade-offs between
conflicting objectives. The method is open-ended, as it leaves the final decision-making to the
architect. Examples include finding best trade-offs between costs of construction materials, annual
energy consumption in buildings, and greenhouse gas emissions embedded in materials.

The GS is then used to generate whole building geometries, departing from abstract relationships
between design elements and using adaptation to evolve architectural form. The shape-generation
experiments are performed for distinct geographic locations, testing the algorithm's ability to adapt
buildings shape to different environments. Pareto methods are used to investigate what forms
respond better to conflicting objectives. New directions of research are suggested, like combining
the GS with a parametric solid modeler, or extending the investigation to the study of complex
adaptive systems in architecture.

Thesis Supervisor: Leslie K. Norford
Title: Associate Professor of Building Technology, Department of Architecture
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CHAPTER 1 Introduction

1.1 Introductory note

This thesis dwells in the interstitial spaces between the fields of architecture,

environmental design and computation. Its nature is that of an enclave, a boundary

space between areas that too often stay within the limits of their own paradigms, both in

academic and professional realms.

In this work, a method is proposed to incorporate evolutionary systems and adaptation

paradigms into the architectural design process. Departing from a description of abstract

relationships between design elements, adaptation processes are used to evolve

architectural form. During this thesis, adaptation was directed towards environmental

behavior, looking for shapes that harvest daylighting and reduce thermal exchanges with

the external environment. Many other criteria are possible to be considered, as the most

important contribution of this thesis may be the method it proposes, more than the

specificities of the particular experiments that were developed to validate that method.

Our final model for including the adaptation paradigm in architectural design can be

expressed as:

initial rules + randomness + adaptation [reaction + action I behavior] + frozen accidents

Initial rules relate to a description of the design problem that the architect formulates, in

terms of relationships between the different design elements, variables and their

constraints, compositional rules, etc. The architect can incorporate in this initial

framework many of the higher-scale issues that relate the architectural artifact with other

external forces.

Randomness is introduced as a major driving force in mechanisms of adaptation such as

those present in several natural and artificial systems (Holland, 1975). The introduction

of a randomized procedure like Genetic Algorithms [that act as the search engine for this



Generative System] aimed at introducing stochastic, nondeterministic processes into the

system, and also represented a move towards the adaptation paradigm.

Genetic algorithms [GAs] were chosen from the outset because 'adaptation' was

assumed as a central concept to the work. However, adaptation itself can be further

decomposed in two major approaches, which we called reactive and active adaptation

(Popper, 1992).

Popper describes reactive adaptation as a passive process, where there is basically a

population with multiple variants, and better-adapted individuals are selected and others

eliminated. Selection pressure is thus exerted from the exterior environment only.

Genetic Algorithms tend to dwell in this approach to adaptation. Even though Popper's

notion is a philosophical one and was not developed within the realm of artificial adaptive

systems, some useful inferences can be taken from this alternative view to inform further

interpretations of what adaptation in artificial systems can be about.

Popper's active interpretation of adaptation puts emphasis instead on individuals'

activities, as constantly active problem-solvers. Although survival is still their main

concern, they develop behaviors and means of action that help them to overcome the

problems they find, improve their adaptation to the outside environment, or even

generate their own microenvironment. They may do so individually, or act collectively

with other individuals, either in a cooperative or a confrontational way. They may look for

niches to include themselves, where their characteristics can better be taken advantage

of, and thus make their survival probabilities increase, or they may actively help

construct those niches. This view of adaptation puts an emphasis on action and behavior

instead of simple reaction to the environment.

Simply resorting to GAs will not supply all the necessary mechanisms to move towards

active adaptation. For that, one must instead rely on classifier systems or models like

'Echo,' proposed by Holland in the last chapter he added to the second edition of

'Adaptation in Natural and Artificial Systems,' published by MIT Press in 1992

[seventeen years after its first edition in 1975]. The work described in that chapter was

later further developed into the book 'Hidden Order: How Adaptation Builds Complexity,'

published in 1995. These models include behavior or actions taken by individuals over



their neighbors or over the environment itself. This allows that from simple rules and

initial order, complex patterns can emerge due to the combined action of different

individuals, leading to the emergence of what are called complex adaptive systems.

Without those mechanisms, the system is limited to reactive adaptation, as in genetic

algorithms: there are populations of solutions, based on different combinations of a

restricted and predetermined number of variables, and then some pressure exerted from

the exterior to assign a fitness to each individual, which will impinge on its ability to

survive.

Finally, the latest process we propose is the inclusion of what Gell-Mann (1995) calls

'frozen accidents'. As Gell-Mann says, "Most single accidents make very little difference

to the future, but others may have widespread ramifications, many diverse

consequences all traceable to one chance event that could have turned out differently.

Those we call frozen accidents". Those mechanisms are, both in natural and artificial

systems, related to the operation of chance, which is associated with indeterminacy.

GAs do include randomization and are not deterministic procedures. However, we would

like to propose a different formalization of the concept of 'frozen accident' within an

architectural adaptive domain. Instead of relying solely on the guided stochastic

processes of selection, recombination and mutation of GAs to introduce 'accidents,' an

external agent is allowed to interfere with the search and make it follow a different path

from what the initial adaptive processes could lead it. This external agent is the

architect's preference for some solutions [or features of a certain solution] over the

others. To achieve that, a process similar to that of Design Galleries (Marks et al., 1997)

is proposed.

Using Design Galleries, the architect can be presented with the solutions found until that

point during the course of the adaptive search process, and will manually choose the

ones that he preferred, thus changing the previous course of the adaptation system. Or

the architect's preference can be combined in some way with the fitness value of the

solutions to continue the search. Another option could be that the architect could 'freeze'

part of a solution that he finds particularly interesting, while letting the other elements of

the design free for further exploration. Conversely, he should be able to 'unfreeze' any

elements that he does not find satisfying anymore, after the solution has further evolved.



This process of combining initial rules representing a problem formulation, computational

processes of randomness and adaptation, and the architect's capability to add his

preference to the evolution progress can lead to an interesting and novel approach to

the architectural design process. If one combines such a system with a powerful CAD

modeling tool, able to generate parametric, free-form geometries, such a system could

represent a relevant new approach to the design process. A key issue involved is that of

representation of architectural solutions using symbolic languages. If a building can be

fully described using a 3D CAD model and text [like materials specifications], there is

theorethically no reason why it cannot be fully described by a single string of symbols

[numbers, mathematical operations and words], what in a GA environment would

represent a chromosome. If we add to this the concept of design variables and data

structures (Mitchell, 1977), we can have a purely symbolic representation of an entire

building that can be manipulated using a generative design system like the one

proposed here. So, departing from initial rules and abstract relationships, and by

manipulating data structures, any potential architectural shape can emerge, depending

on the initial rules and the flexibility of the CAD platform used to encode any type of

geometry. The architectural shapes created this way can then evolve through the

processes of adaptation previously described. Further theoretical implications of the

development and use of such a system in architectural design will be provided in the

conclusions.

Given the general picture of where do we consider this system and method can go, we

should now add a note about how far into its development we went in this dissertation.

The actual implementations that were performed for this work are still much behind what

our final aims may be, but many important steps were already taken.

Genetic algorithms were chosen from the beginning because 'adaptation' was assumed

as a central concept to the work. However, just including a GA as a search and

optimization procedure does not ensure by itself a real move towards including adaptive

systems in architectural design. GAs can be used just like any other reasonably reliable

heuristic method for optimization studies, with the exception that they provide

populations of solutions instead of single ones. That was what happened during most of

the initial chapters of this dissertation, since one of the important tasks we were facing

was the testing of the system, to assess its reliability and robustness. GAs were used for



improvement of solutions [a term we prefer to 'optimization,' as suggested by Holland

(1992)], but to a large extent the use of the adaptation paradigm was limited to 'reactive

adaptation'.

Towards the end of this dissertation, adaptation starts to take off, mainly in the shape

generation experiments, which helped further clarifying many of the concepts that were

in the background of this dissertation, although in a latent, implicit way. The 'conclusions

and future work' section will provide a more clear view of the work that was actually

finalized and all the new developments that remain to be done.

As Jorge Luis Borges said, Kafka created his own predecessors, as without Kafka's work

many of the endeavors from others preceding him would have had a different meaning,

or might even have been forgotten. Hopefully, this thesis and the future work attached to

it may contribute to create its own Kafka in the future.



1.2 Thesis outline

This thesis describes the conceptual development and implementation of a

computational generative design system based on evolutionary concepts. The initial aim

of the first chapters was to develop and test a system that could evolve certain aspects

of an architectural design solution so as to improve its environmental performance,

namely in terms of using natural light, reducing the subsequent need of artificial lighting,

and controlling heat gains and losses so that smaller amounts of energy were required

to keep the building's interior within a comfort range.

The Generative System [GS] is composed of two main modules: a search algorithm, that

would look for high performance solutions, and a simulation program, that would

evaluate the quality of those solutions in terms of the criteria defined by the user. For the

search algorithm, a Genetic Algorithm [GA] was chosen, for reasons that will later be

explained in the chapter that deals with the system implementation [chapter 3]. The GA

is responsible for introducing the evolutionary paradigm into the work. For the simulation

module, the choice relied on DOE2, a thermal and lighting simulation program that

combines good accuracy of results with reasonable computational times.

Subsequent chapters involve the testing and validation of the system [chapter 4], and

comparison with other search methods that could represent alternative approaches and

formalizations to the ones that constituted our choice [chapter 5]. After enough

confidence with the system was gained, several applications were proposed and

implemented. From the initial, almost schematic building layouts used for testing the

Generative System, to the application of the GS to an existing piece of architecture by

one of the most prominent contemporary architects [chapter 7], many new questions

were raised concerning the limits of the application of generative computational systems

to the architectural design process, the possibility of incorporating architectural intentions

into computational systems, and the conflicts between aesthetics [or formal] realms, and

concerns about performance measures and architecture sustainability issues.

Recognizing the limitations of using a single objective function, or figure of merit, to

evaluate the performance of such a complex artifact like a piece of architecture, the work

was further expanded to include multiple evaluation criteria [chapter 8], using a



challenging method that avoids combining multiple objective functions into a single

number, but instead provides a frontier of best trade-offs between several criteria [Pareto

fronts], ultimately leaving to the architect the decision of which factors are most relevant

to his own design evaluation.

Finally, the last piece of this work uses the methods developed to generate and evaluate

new building geometries [chapter 9]. Instead of departing from an existing building

design, and introducing performance improvements by manipulating a few variables like

dimensions of some elements, material characteristics, etc., the work expanded into the

more interesting realm of researching shape adaptation to the external environment.

Given an initial schematic layout for a building, how would its overall three-dimensional

geometry adapt to the external climatic conditions it had to deal with? To some extent, a

building is an interface between an outside environment and an inside environment,

where people will reside. Are those external forces enough to provide feedback

information that would make the building shape adapt to their influence, while

responding simultaneously to the inside requirements? That was one of the main

questions that governed the research presented in that chapter. A final extension related

the Pareto-front approach with shape adaptiveness. If the same 3D shape is

simultaneously responding to a number of different pressures and requirements, it might

be useful to look at what kind of shapes respond better to each of those molding factors,

to be able to better assess the compromises made to try to meet all of them

simultaneously.

In the conclusions section [chapter 10], it will become evident that even though many

conclusions can be drawn from the work and experiments developed, many new

questions appeared during the process. Instead of the presented applications serving as

a justification for the purpose of previously developed work, they themselves acted as

triggers for further developments and extensions of the research, pushing it to other

limits and boundaries. As Jung said, 'the work in progress becomes the artist's faith.'

The 'further work' section will thus reflect all the unanswered questions, all the new paths

of development that emerged from the experiments performed or from our initial ideas,

but that due to time limitations were not possible to be further pursued. This includes the

study of complex adaptive systems applied to urban configurations [what happens when

a number of buildings are put together and can 'act' over their neighbors to improve their



own microenvironment], the use of variable length chromosomes [that could allow for the

emergence of new elements that were not included in the initial user-defined scheme, if

that proved to improve the adaptation level of the overall system], the use of dynamic

constraints [which would improve the degree of adaptiveness and diversity in new

solutions, by removing the need for constraining from the outset all variables by

established limits], the creation of a parametric solid modeling interface to the

Generative System [which would allow a much more intuitive relation between the

architect and the GS, and permit the appearance of a new wealth of shapes and

geometries, that could probably not be initially predicted by the architect], the use of

design galleries [to include the architect's own preferences in the course of the

generative search - the 'frozen accidents'], and other developments that we envision as

paths for further exploring the issues of environmental adaptiveness in architecture.

1.3 Some background

Herbert Simon, in his book 'The Sciences of the Artificial' (1969), claims that any artifact,

or man-made object, can be seen as an interface between an inner and an outer

environment. The inner environment is the substance and organization of the artifact

itself, and the outer environment the surroundings in which it operates. If the inner

environment is appropriate to the outer environment, or vice-versa, the artifact will serve

its intended purpose and it can be said to be adapted to some situation. This also

applies to the living systems that have evolved through the forces of organic evolution.

In most large and complex systems, it is possible to use this separability of inner and

outer environments to explain the adaptation of a design object in terms of its purpose or

function. This means that we can often predict the behavior of an artifact from knowledge

of the system's goals and of its outer environment, with only minimal assumptions about

the inner environment. A corollary of this is that we can often find quite different inner

environments accomplishing identical or similar goals in identical or similar environments

(Simon, 1969).

This abstract interpretation of the process of design is also applicable to architecture.

The stated corollary implies that many different architectural designs can answer a

particular problem with similar efficacy, a fact well known to architects. For this reason,



the Generative System described in this dissertation adopts a method where the result is

not a single solution, but a number of alternative solutions that all perform reasonably

well in terms of the defined goals. Hence one of the reasons behind the choice of the

evolutionary paradigm, and particularly of genetic algorithms. GAs deal in parallel with a

population of solutions and, as a result, provide a population of solutions instead of a

single one, contrarily to many other search methods. This nicely fits with Simon's

proposition that many different individuals may be equally adapted to a given

environment, a concept that in itself draws from Darwinist theories.

One of the problems in architecture is that it is difficult to state clearly the goals that a

design has to achieve, and also what are the procedures to achieve those goals. An

architectural design problem is thus an ill-defined problem in its nature.

Most early applications of mathematical models and their respective computational

implementations to architecture problems were thus confined to limited problem settings,

where only a subset of the large complexity of issues interacting in an architecture

problem were dealt with. This related to proportion issues, floor plan layout studies,

research on urban densities, solar shading studies, etc.

Some of this work made explicit use of optimization techniques, while others just used

series of simulations to reach results. Here a distinction should be made between

simulation and optimization (Radford et al., 1978). In simulation studies, a scenario-by-

scenario method is used, where a limited number of different configurations are

generated by changing some of the parameters of interest, and then some conclusions

can be drawn from these parametric studies. It is often a manual procedure, where only

a few alternatives are evaluated because it tends to be a time consuming and tedious

process. The other option is to make formal use of optimization methods, so that the

computer performs the search according to some problem definition, choice of objective

function, determination of the solution space by placing upper and lower bounds in the

variables, and application of a search and optimization procedure to the location of high-

performance or optimal solutions in that space.



Many early studies were done where simulation was the method applied, such as the

well-known study by Leslie Martin and Lionel March (1966) that concluded that similar

densities to high-rise buildings could be achieved using low-rise construction.

Other problems, such as floor plan layout problems, where for a given initial perimeter

one wants to find the optimal spatial distribution that assigns to each space the required

area while respecting several adjacency requirements, were already making use of

optimization techniques in the 60's and 70's (Mitchell, 1974). A more extensive review on

previous work on this area will be provided in chapter 2.

One common characteristic of these approaches was that they tended to isolate a small

problem from within a larger problem set, and study it using systematic or mathematical

approaches. The relative quality of the different solutions had also to be quantifiable,

usually in the form of a figure of merit. The attempt is thus to establish a well-defined

sub-problem within a larger, ill-defined one.

1.4 Environmental issues

Energy consumption in building has also been approached as an area in which

optimization models could be used. A review of previous research done in the area will

be provided in chapter 2. Particularly, fenestration design has interested a number of

researchers, since this is an area that can have a relatively large impact on a building's

performance, and can to a certain extent be isolated from other more complex problems

in an architecture project [needless to say, this 'separation' is in itself arguable, and

many architects would disagree with such an approach]. Fenestration design also poses

a number of challenges in terms of predicting the complex interactions between

daylighting requirements, heat gains and heat losses, what makes it an interesting topic

for applying search and optimization methods.

However, a point should be raised about whether building energy efficiency can be

considered a well-defined problem. Certainly one can perform whole-building

simulations, and account for energy consumption for lighting, cooling, heating, ventilation

fans, etc., to get a final number that reflects the total consumption in the building

throughout the year. But this single number is itself plagued with complexities.



Take the example of a building located in a very cold climate. Reducing window sizes

may be an adequate energy conservation strategy. Savings in energy may offset the

increased spending in artificial lighting [daylight levels will be reduced]. However, one

should also account for the fact that people usually prefer natural light and a view out.

Those are, nevertheless, largely non-quantifiable issues to be included in the evaluation

process. On the other hand, can the architect start playing with other variables, like

materials characteristics or space layout, to overcome some of these problems? If that is

true, then the initial, 'well-defined' problem is no longer an isolated, simple and easily

quantifiable problem, but it has necessarily to interact with other factors that contribute to

the characterization of the architectural artifact.

For these reasons, we prefer not to use the concept of optimization applied to energy

efficiency in buildings. As mentioned before, many respected researchers on complex

optimization problems are starting to put forward the term 'improvement' instead of

optimization (Holland, 1992). We consider that the Generative System proposed here

should not be regarded as an 'optimization tool' but instead as a powerful design aid tool

that can lead to design improvement, and with which the architect must engage in an

interactive loop. The architect can run the Generative System, retrieve some useful

information from its results, which can also act as a diagnosis tool of existing problems in

the current building solution, make some changes to the project or to the constraints of

the GS if they fail to meet other criteria [like those related to aesthetics or user

preferences, for example], run the GS again, get new results and information, and so on.

This is not a system that aims at providing definite, 'optimal' answers, but is instead a

novel tool to help producing quality architecture that simultaneously has a sustainable

dimension to it.

It should be added that another of the driving forces behind the development of this

system was a willingness to break some prevailing prejudices among many architects

that low-energy, sustainable architecture has some particular aesthetics characteristics,

that in a way tend to 'tag' the architects that engage in this type of practice [the so-called

bioclimatic or 'green' architecture]. This misconception comes only from a lack of

understanding of the real issues involved in producing sustainable architecture. By

applying the Generative System to a building designed by a respected contemporary



architect, we also intended to demonstrate that any piece of architecture, even those

highly driven by aesthetic concerns, can have a sustainable dimension, without any

decrease in the intrinsic architectural quality of the work.

On the other hand, the attitude of somewhat unawareness of environmental-related

issues in architecture is progressively changing, as more pressure is put on architects to

deal with those issues. Buildings that are poorly adapted to their environment have to

heavily rely on mechanical and electrical system to maintain reasonably appropriate

indoor environmental conditions [the other option, of course, is to make occupants suffer

from discomfort within the spaces]. However, those artificial systems carry with them

other inconveniences apart from high energy consumption. HVAC systems can cause

poor indoor air quality by lack of appropriate air distribution or by lack of system

maintenance [like regularly replacing filters, which are often costly], can lead to problems

such as the well-known sick building syndrome, and at extreme cases can even be

sources of dangerous illnesses like legionnaires disease, which has recently plagued

Murcia, in Spain.

On the other hand, users often prefer more natural environments, where they can have

access to daylighting and open windows for ventilation, having some degree of control

over their environment. Although in many situations it may be very hard to implement

architectural solutions that rely solely on natural strategies for environmental control,

improving a building's adaptiveness to its environment may reduce the need for

mechanical systems, and during the milder seasons of the year the building may even

function on its own.

This short introduction aimed at clarifying some other dimensions of the concepts and

goals behind the development of the Generative System presented in this dissertation.

Much remains to be said, but the relevance of the work will further emerge from the

discussion of the results achieved in each of the chapters, and from the 'conclusions and

further work' section. In addition, section 1.5 will provide some larger-scale background

on the necessity to move towards a more sustainable architecture.



1.5 Research sponsors

The research presented in this dissertation was sponsored by four sources: the

Portuguese Ministry of Science of Technology [Fundagao para a Ciencia e a

Tecnologia], within the Praxis XXI program; the Fulbright program; an MIT's Rosenblith

fellowship; and the V. Kahn-Rassmussen Foundation, within the framework of the

'Sustainable Urban Housing in China' project, developed at MIT.

Much of the work presented here is applicable to the 'Sustainable Urban Housing in

China' project, as all the experiments done for Chicago are equally applicable to Beijing,

one of the cities targeted by that project. Even though a weather file for Beijing was not

available in the format required by the Generative System, Chicago's climatic conditions

are similar to those of Beijing [as will be demonstrated in chapter 8], so results can be

extrapolated with no significant errors.

In the next section, a detailed account is given of current European Union policies

regarding energy efficiency in buildings, to provide some of the background framework

within which this work was supported, and also to partly justify the relevance of the

research herein developed. The case of Portugal is reviewed in more depth, as even

though the Praxis XXI program is partially financed by the EU, this particular project

does make part of Portugal's efforts to increase its energy-efficiency standards and

contribute to the reduction of global climatic change.



1.6 Energy conservation policies in the European Union

1.6.1 General considerations

There is currently a strong commitment from the European Union to improving the

environmental performance of buildings, by reducing energy consumption levels and

subsequently greenhouse gas emissions, towards the goals set by the Kyoto protocol.

Some issues that are currently being discussed are presented below, to support the

relevance of the work presented in this dissertation.

Article 3 of the Kyoto Protocol states: "The Parties included in Annex I shall, individually

or jointly, ensure that their aggregate anthropogenic carbon dioxide equivalent emissions

of the greenhouse gases do not exceed their assigned amounts, ... with a view to

reducing their overall emissions of such gases by at least 5 per cent below 1990 levels in

the commitment period 2008 to 2012". Within this framework, the European Union has

agreed to reducing its emissions level by 8%, against, for example, 7% for the USA and

6% for Canada. To achieve this goal, it will be necessary to implement effective goals

tackling all the main sectors of energy consumption, and thus greenhouse gases

emissions. The building sector, responsible for more than 40% of the energy consumed

in the UE [1997 data], is a prioritary target.

The European Communities Commission has very recently presented, in May 11, 2001,

a proposal for new legislation from the European Parliament and Council, regarding the

energy efficiency of buildings (CCE, 2001).

In the introduction, some points mentioned in the Green Book of the Commission are

stated:

- The European Union is each time more dependent on energy imports from

outside the Union. Based on current predictions, if no active measures are taken,

the dependency from energy imports will grow from 50% in 2000 to 70% in 2030.



- There is little margin to influence this scenario from the production point of view.

The main measures have to tackle the demand side, mainly in the sectors of

energy efficiency in buildings and transportation. The EU is one of the main

energy consumption areas in the world.

- Greenhouse gases emissions are currently increasing in the EU, making it

difficult to achieve the levels predicted by the Kyoto Protocol.

Given these initial considerations, the fact that 40.7% of the energy consumed in the EU

in 1997 was in buildings, both in the residential and services sectors, makes them a

preferential target to decrease energy demand in the Union. The total energy

consumption in the EU in 1997 was 930 Mtoe. From those, about 380 where consumed

in buildings, making them the largest end-users of energy in overall terms. Heating,

lighting, and electric appliances and equipment represent the main end-use categories.

Others [ele c. e quip., etc]
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Water heating 52%
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Lighting
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Figure 1.1 Energy end-used in services buildings in the European Union. The services sector
includes office, schools, hospitals, sports buildings, hotels, restaurants, commerce,
etc. It does not include industrial buildings.

Lighting and other forms of electricity consumption are particularly relevant, because

although electricity is a clean form of energy at the end-user level, its production implies

more greenhouse gases emissions than any other form of energy, due to the low

efficiencies involved in the process.
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Figure 1.2 Energy end-used in residential buildings in the European Union

Many studies (MURE, 1998) suggest there is a larger opportunity for economically viable

energy efficiency in the building sector than in any other. However, the ongoing support

projects for the development and promotion of new technologies has not given the

expected outcome in terms of realized efficiency. For that reason, the Commission wants

now to implement more concrete measures.

The proposed measures are:

a) Establishing a common methodology in all EU countries for assessing the

integrated energy efficiency of buildings;

b) Enforcing minimum requirements for the energy efficiency of new buildings

and in retrofitting of existing large buildings [above 100m 2];

c) Establishing a certification system for new and existing buildings, based on

the requirements mentioned above. In public buildings, those certificates of

performance have to be publicly displayed;

d) Periodic inspection and evaluation of heating and cooling systems.

a) Establishing a common methodology in all EU countries for assessing the integrated

energy efficiency of buildings

The integrated assessment of building energy efficiency is being studied in countries

outside the Union [USA, Canada, Australia, New Zealand], to be included in building

codes and best practice standards. Given that most buildings in the Union [at least in the

northernmost countries] already have fabric insulation, the other factors to be assessed



include lighting, HVAC systems, ventilation energy, heat recovery, and passive

measures like building positioning and orientation, solar heat gains, and the use of

renewable energies. In Germany, France, UK, Netherlands and Italy this integrated

approach already exists to some degree, and in some countries is enforced by law. The

current directive looks at a standardization of those methods and extension to the

remaining member countries, while considering local factors like climatic characteristics.

b) Enforcing minimum requirements for the energy efficiency of new buildings and in

retrofitting of existing large buildings [above 1000m2

Due to the low rate of building renovation [the life cycle of buildings is usually between

50 and 100+ years], the new measures will have to include existing buildings to have the

desired impact. Large buildings [above 1000m 2] will have to meet minimum requirements

when undergoing retrofitting.

c) Establishing a certification system for new and existing buildings, based on the

requirements mentioned above.

One of the main imperfections in the real estate market in terms of energy efficiency is

the conflict of interests between landlord and tenant, or developer and buyer. As it is the

tenant or buyer who will have to pay the energy bill, the incentive for the landlord or

developer to invest in energy efficiency is low. To make that investment more attractive,

a system should be implemented to provide future building users with information about

its efficiency, which will then influence the rent or cost of the building. This information

will be available in the form of 'energy certificates,' both for services and residential

buildings, new or existent, and be shown at the time of a rental or sales contract, with the

maximum issuing date of 5 years before.

For public buildings, these certificates must be displayed and accessible to the general

public, as public buildings are seen as potential displays of new technologies and design

concepts, and should thus constitute examples to the public. Information must also be

available about the functioning of the HVAC systems, the range of admissible internal

temperatures, internal temperatures in the building at the moment [show through reliable

instrumentation], and other relevant indoor environment parameters like relative



humidity. This will make the performance of the building more transparent, promote

public awareness about energy efficiency and comfort standards, and in general, it is

expected, lead to energy savings.

New-building certification is currently mandatory in the UK, Germany and Denmark. In

relation to existing buildings, only Denmark has specific regulations, but voluntary

systems exist in a number of member countries. In Denmark, calculations based on data

from 3.5 years show a return on investment above 13%, a very high cost-effectiveness.

d) Periodic inspection and evaluation of heating and cooling systems.

Periodic heating systems inspection [mainly of furnaces] is already mandatory in 10

member countries. The remaining ones have voluntary programs and information

systems for owners. The goal is to have all member countries introducing mandatory

inspection. Cooling systems [air conditioning] must be submitted to similar regular

inspection measures.

1.6.2 Economic potential of energy efficiency measures in buildings in the EU

It is estimated that there is a potential to save about 22% in energy consumption in

buildings using only cost-effective measures. Cost-effectiveness is measured as having

a return period less than eight years, which compares well with other alternative

investments, including investing in energy production. This can be achieved by savings

in heating energy, water heating, air conditioning and lighting, by improving the

respective systems, and by applying energy reducing measures regarding the building

envelope, including windows. It does not include non-installed equipment in the services

sector [like office equipment], which is supposed to account for about 20% of electric

energy consumed in offices, for example.
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Figure 1.3 Energy consumption in the European Union by type of end-use fuel. Fourteen
percent of the electricity consumed is from renewable sources.

The European commission aims at achieving, in the building sector, savings above

55Mtoe in energy consumption, what is equivalent to reducing CO2 emissions by

1OOMt/year, about 20% of the EU commitment in relation to the Kyoto protocol.

a) Potential economic benefits from improving the building envelope

The last EUROSTAT inquiry (published in 1999) about energy consumption in residential

buildings shows the following results regarding building insulation measures [the

numbers correspond to the percentage of enquired participants who had a specific

measure applied in they house]:

Type of FIN S DK IRL UK D NL B F L A GR P I E
insulationI

No insulation 0 0 1 13 15 0 14 21 21 55 39 77 - - -

Roof insulation 100 100 76 72 90 42 53 43 71 35 37 16 - - -

Cavity wall 100 100 65 42 25 24 47 42 68 2 26 12 - - -

Floor insulation 100 100 63 22 4 15 27 14 24 5 11 6 - - -

Double glazing 100 100 91 33 61 88 78 62 52 20 53 8 3 - -

Note: Data for Spain and Italy are still missing, and Portuguese data are incomplete

Table 1.1 Results from EUROSTAT enquiry regarding use of insulation in buildings
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Figure 1.7 Percentage of buildings with floor insulation for each EU country
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Figure 1.8 Percentage of buildings with double-glazing for each EU country

It can be seen that there are significant differences between the several countries, which

only part can be explain by climatic characteristics. Portugal appears as the country with

the lowest percentage of installed double-glazing units, although the data are still

incomplete.

A study was made where the current Danish energy efficiency code was applied to the

other 14 members, with a correction to account for climatic differences, based on



degree-days. The results suggest that there are significant savings to be made in many

countries, with Spain, Italy and Portugal showing the highest increases.

b) Potential economic savings related to lighting

For residential buildings, lighting represents 4% of the total energy consumption [9

Mtoe]. For the services sector, lighting consumption is 18Mtoe, or 14% of the total. There

is a potential for 30%-50% savings in lighting, mainly in the services sector, by improving

the use of natural lighting in buildings, and using more efficient lighting systems and

better controls. This amount of savings [6 to 9 Mtoe] represents a significant part of the

potential energy savings in the building sector. The recently launched GreenLight

European program has shown that most lighting energy savings have a high economic

cost-effectiveness. This fact may be of significance for the development of the work

presented in this dissertation, where natural lighting use is an important factor.

c) Potential economic savings related to cooling and air conditioning

Air conditioning is an area that is rapidly increasing both in the services and the

residential sectors. Although currently it only represents about 0.7% of the total energy

consumption in buildings, the tendency is for a rapid increase if no measures are to be

taken, which may include improved efficiency for HVAC systems and building-design

related techniques. The potential for cost-effective savings is about 25%.

d) Potential economic savings related to building design and orientation

It is predicted that new buildings can have up to a quarter of the heating needs of

standard current buildings. Even the ones that already comply with high insulation

standards can reduce their energy consumption up to 60%, by resorting to bioclimatic

strategies like careful orientation, natural lighting and cooling, solar control, active and

passive solar systems, etc. Existing buildings where many key issues are already

established can still take advantage of favorable conditions in the cases where they exist

but are currently unexploited.



1.6.3 Conclusions on the current EU proposal

The conclusions of the current EU proposal are that many economical and technical

factors are involved in increasing the energy efficiency of the building sector. Some of

the member countries have opted for an integrated system to characterize the energy

performance of buildings, using simple, aggregated indicators of energy performance.

This provides the architect / designer with an enhanced degree of flexibility, since he can

decide what factors to trade-off against each other to achieve a final degree of

performance.

Currently, many member states have established minimum requisites for new buildings,

but with very different standards for distinct countries. The objective is to set a common

methodology and standards among all the countries.

Since renovation of existing buildings is seen as an important source of energy

reduction, a certification method is proposed, that may provide incentives for landlords to

invest in energy efficient retrofitting and correct some of the asymmetry of interests

between the owner and the user of the building.

1.6.4 The case of Portugal

As one of the less developed and industrialized countries in the EU, Portugal is one of

the states allowed to increase its emissions of greenhouse gases until the commitment

period of 2008-2012. Within the 'burden sharing' agreement between EU countries,

Portugal can increase its emission by 27%. Current predictions, based on an economic

growth of 3.3% a year, show Portuguese emissions increasing by 52% in 2010, vastly

above the aimed target. Transportation is the main cause of this increase, followed by

the building sector. Industry, even though the main energy consuming sector in the

country, is expected to decrease its contribution to greenhouse gases emissions (from

40% in 1990 to 37% in 2010).



The building sector is expected to increase its contribution from 17% in 1990 to 20% in

2010. To better understand these numbers, it is necessary to look at the domestic and

services sectors separately.

The domestic sector, which in 1990 contributed 10% of the total emissions, will keep this

percentage. Since the total country emissions will increase by 52%, this means the

domestic sector will also increase by 52%. The carbon intensity of the sector (emissions

per unit area) keep the same values because the decreases caused by the higher

efficiency of the installed equipment and the use of cleaner energy sources (like natural

gas), is counteracted by the predicted increase in consumption due to higher comfort

standards, and also to the 25% increase in residential units predicted for the period

under consideration.

The services sector, on the other hand, is expected to increase its contribution from 7%

to 10% of the total energy consumed in Portugal. It shows the highest increase in carbon

intensity, what clearly shows its disagreement with the overall policy of the country. It is

predicted that the total construction area in the sector will increase by 100% in the period

under study, with an increase in energy consumption of 200%.

1.6.4.1 Energy consumption patterns

a) Residential sector

In 1988, energy consumption in the residential sector accounted for 15% of the total

energy consumed in the country. During the period 1990-1995, the number of housing

units in Portugal grew from 2,937,123 to 3,140,371, a 7% increase. In the same period,

the number of housing units with heating increased from 50.6% to 72.6%. The number of

electrical appliances per household also increased. These numbers reflect the growing

economy of the country, greater economic power of the population and an increase in

comfort standards.

Table 1.2 and figure 1.9 show the evolution of energy consumption by end use in the

residential sector for the period 1990-2010. The values for 1990 and 1995 come from



inquiries to the population made by the DGE [Direcgao Geral de Energia, Portugal]. The

numbers for the remaining years are projections developed by DGE (GASA, 2000).

Heating
Cooling
Lighting and equip.

1990
13763

12287

1995
30645
65
25110

2000
33850
2350
27276

2005
38078
5375
30747

2010
38562
9444
33424
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Figure 1.9 Evolution of energy consumption by end use in the residential sector for the period
1990-2010 (TJ)

During the period 1990-2010, heating energy is expected to increase by 180%, and

electricity for lighting and appliances by 172%. Energy for cooling, which practically did

not exist in 1990, is expected to be up to almost 9500 TJ by 2020, in an explosive

growth.



As for type of energy used in the residential sector, Table 1.3 and figure 1.10 provide

information about that, in terms of site energy. The origin of the data is the same as

before (GASA, 2000)

1990
84524
17780
22769
1676
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66315
31097
32333
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66476
36065
33412
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65832
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Table1.3 Energy type for the residential sector for the period 1990-2010 (TJ)
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Figure 1.10 Energy type for the residential sector for the period 1990-2010 (TJ)

It is possible to see that wood is the main combustible used for heating, but its use will

decrease by about 26%, while LPG, also used for heating, will increase by 41 %.

Electricity use will drastically increase by 163%, both for lighting, appliances/equipment,
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cooling and also heating. New forms of energy start emerging by 2000, like natural gas

[whose contribution quickly grows] and solar energy, while previous ones like city gas

and coal tend to disappear.

b) Services sector

The energy consumption of the services sector is expected to grow by 198% from 1990

to 2010. Electricity use is the main responsible for this fact, going from 5.5 TWh to 16.8

TWh, a 204% increase. Natural gas use also grows by 154% in the period 2000-2010.

Table 1.4 and figure 1.11 Illustrate energy type for the services sector.

Electricity
LPG
Gasoil
Fueloil
Oil
Natural gas
Solar

1990
19955
2980
2030
2024
1153

1995
25412
4800
4708
1814
534

2000
39485
5443
2991
1884
1699
3894
377

2005
48276
6113
2884
1884
1638
7746
586

2010
60628
6113
2857
1759
1623
9881
796

Tablel.4 Energy type for the services sector for the period 1990-2010 (TJ)
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1.6.4.2 Greenhouse gas emissions

a) Residential sector

GGE will increase by 55% in the residential sector in the period 1990-2010, from 5863 to

9083 Kt CO2 equiv. The main contributors are electricity [72%] and natural gas. The

decrease in wood use is not enough to counteract the other sectors. Electricity has the

highest emission of GG per unit energy, which can be seen from the life cycle analysis of

the different types of energy until they reach the final user (GASA, 2000).

As for the relative contribution of end-use areas that are a GGE source, they can be

seen in figure 1.12.
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Relative contribution of end-use areas for GGE in the residential sector in Portugal

Electricity use for lighting and appliances was already the main contributor by 1990, and

is expected to increase by 81 % by 2010. Heating has the highest percentual increase

[231 %], from a quite low contribution in 1995 to becoming almost as high as hot water in

2010. Cooling, non-existent in 1990, has an extremely fast growth that shows, as

heating does, the increase in comfort standards of the population and enhanced

economic capacity.



b) Services sector

It is predicted that the Global Warming Potential [GWP] of the services sector in Portugal
will increase by about 105% until 2010. Electricity (98%), LPG (105%) and natural gas
(154% from 2000 to 2010), are the main responsible for this growth. As can be seen in
figure 1.13, electricity is by large the main contributor to the GWP of services buildings.
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Figure 1.13 Global Warming Potential [GWP] in
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the services sector, according to type of energy

Unfortunately there was no information available on GWP by end use [heating, cooling,
lighting, etc.] in the services sector. Some insight into this area may be gained by looking
at results from a GASA study [GASA, 2000], where a number of energy efficient
measures was simulated and assessed in terms of their potential for reducing GGE by
2010.

The following measures were considered for the services sector:

a) Revising the current Building Energy Code and make it 40% more restrictive, for

new constructions;

b) Retrofitting existing buildings [50% of those built until 1990], improving wall and roof

insulation and applying double glazing units;
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c) Active solar energy: installing 400,000 m2 of solar panels for water heating,

replacing gas or electricity;

d) Lighting efficiency measures: replacing incandescent bulbs for compact fluorescent

ones; using high frequency ballasters in fluorescent lamps.

Table 1.5 below shows the predicted effectiveness of each of these measures in

reducing C02 emissions until 2010.

Measures CO2 reduction potential [kt C02] % A services sector

A 142 1.6

B 31 0.36

C 99 1.14

D 347 4.0

Total 619 7.2

Table 1.5 Impact of the measures considered in reducing GGE.

It can be seen that although the impact of the measures considered is low in general, the

largest contribution comes from strategies to improve artificial lighting efficiency [4%

reduction of the expected GEE increase by 2010]. This suggests lighting plays a

significant role in the electricity consumption in the services sector. Strategies for

improving daylighting use in services buildings could thus also play an important role in

reducing electric energy consumption in services buildings and thus greenhouse gas

emissions, since they look at decreasing the need for artificial lighting instead of just

improving its efficiency.

1.6.5 Conclusions

From the analysis presented it is possible to see that both for the European Union in

general and for Portugal in particular, improving energy efficiency in buildings is a matter

of current concern. For the EU, 40.7% of the energy consumed in 1997 was in buildings.

In Portugal, current prediction place GEE increasing by 52% in the period 1990-2010,

well above the 27% determined by the 'burden sharing' agreement between EU

countries to meet the Kyoto Protocol commitment. The building sector in expected to



increase its contribution to GEE from 17% to 20% due to the services sector, where

growth in electricity consumption is the main factor.

For Portugal, energy inefficiency is also a source of economic problems. For example, in

2000 Portugal paid twice as much for its energy bill than in the previous year [including

electricity, oil and refinery products, coal and natural gas] (Martins, 2001). This was

partly due to the increase in the price of oil, but also because of the increase in energy

consumption, which grew by 8% in the first trimester of 2001, almost three times more

than the country's economic growth, which stayed below 3%. That is, to produce a unit

of wealth, the country spent three times more energy, what is a good indicator of the

existing inefficiency. That is even more significant if one considers the fact that Portugal

imports a large part of the energy it consumes, what makes it very vulnerable to

fluctuations in energy costs.

Finally, apart from Italy, Portugal has the most expensive electricity in the EU for

residential use (Dierio de Noticias, 2001). It costs almost 100% more than in the UK,

Greece or Switzerland [not an EU member], 33% more than Spain, and has a similar

value to that of Germany, where purchase power is much higher. So, for the general

population, decreasing electric energy consumption means significantly reducing energy

bills, since electricity accounts for about 59% of the utility bills paid by a Portuguese

household [GASA, 2000]1.

Given this framework, the research developed for this dissertation may be relevant in

that it helps to contribute to find new ways of improving buildings energy efficiency,

looking at strategies as daylighting use and the best balance between lighting, heat

gains and heat losses, for different building uses, layouts, and geographical locations.

1 For the industry, electricity in Portugal is 70% more expensive than in Finland or Switzerland, and about

the same as in the UK.



CHAPTER 2 Literature review

2.1 Introduction

Several of the chapters in this dissertation include their own literature review section.

Chapter 3, which describes the development of the Generative System, will mention

previous studies using optimization methods for energy-related architectural problems.

Chapter 5, where a comparison is done between Genetic Algorithms, Simulated Annealing

and Tabu Search, reviews a number of studies doing similar comparative studies. Chapter

8, on multicriteria optimization and Pareto-Based approaches, includes a quite thorough

review of the topic.

In this chapter, a review of the work that was most influential to the development of this

project will be done, together with a description of work by others that use somewhat

similar concepts and methods to those described here, or whose approximation may bring

new insights for further developments of this Generative System. Some earlier applications

of optimization techniques to architecture-related problems are also briefly reviewed.

2.2 Background

Research on decreasing energy consumption in buildings usually relies on parametric

studies, where a series of simulations are performed after manually changing the value of

some variable under study to assess its impact on overall building behavior.

Parametric studies on the use of dynamic, adaptable building envelope materials, like

electrochromic glazings, have also been quite extensively done, mainly at Lawrence

Berkeley National Laboratory [LNBL] (Sullivan et al., 1997; Moeck et al., 1998, Reilly et al.,

1991). In an unpublished Masters thesis (Caldas, 1995), I had also made extensive use of

parametric studies to study dynamic building envelopes including electrochromic glazings,

where the interest for architecture adaptation to the exterior environment was already a

main driving point in the research. After that work had been completed, the initial contact

with the Genetic Algorithms concept (Goldberg, 1989) led to new speculations about the

way the adaptation paradigm might be embedded in architecture, not only at the operation



stage, as was the case with adaptive materials, but earlier on, at design stage. Some

experimental work being developed by John Frazer at the Architectural Association in

London (Frazer, 1995) also provided some speculative background for the ideas that were

in the genesis of this dissertation. The initial idea was to use evolutionary computation, like

genetic algorithms, to explore new fagade configurations including changeable materials

that would increase the building's adaptation to the external environment. As the work

developed, the idea of including adaptive materials in the research was abandoned

[although it is still considered pertinent, and a possible path for future work], and new

concepts, such as those of geometric shape manipulation, emerged and were

investigated. More sophisticated views of adaptation mechanisms were gained from

Holland (1996) and Gell-Mann (1995), namely on the study of complex adaptive systems,

and will be later discussed in the 'further work' section, as they suggest interesting

potential expansions for the work developed in this dissertation.

Given this initial background, the literature review will first focus on Genetic Algorithms

concepts and on studies by others applying these methods to architecture related

problems. It will then expand to other heuristic methods like Simulated Annealing, and

finally will provide an overall view of some previous applications of other optimization

methods to architecture.

2.3 Genetic algorithms

A genetic algorithm is a search technique adequate for searching noisy solution spaces

with local and global minima. Because it searches from a population of points, not a single

point, the probability of the search getting trapped in a local minimum is limited. GAs start

searching by randomly sampling within the solution space, and then use stochastic

operators to direct a hill-climbing process based on objective function values (Goldberg

1989).

Under GA terminology, a solution to a problem is an individual and the group of solutions

existent at each stage is a population. Each time a new population of individuals is created

it is called a generation. In binary GAs like the one used in this study, each individual is

represented by a binary string called a chromosome, which encodes all the parameters of

interest corresponding to that individual. A chromosome is formed of aileles, the binary
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coding bits. The fitness of any particular individual corresponds to the value of the

objective function at that point.

Genetic operators control the evolution of successive generations. The three basic genetic

operators are reproduction, crossover and mutation. The probability of a given solution

being chosen for reproduction is proportional to the fitness of that solution. Crossover

implies that parts of two randomly chosen chromosomes will be swapped to create a new

individual. Mutation involves randomly changing an allele in a solution to look for new

points in the solution space. Although there are more elaborate versions of these

operators, the basic principles remain similar for most GAs.

A genetic algorithm starts by generating a number of possible solutions to a problem,

evaluates them and applies the basic genetic operators to that initial population according

to the individual fitness of each individual. This process generates a new population with

higher average fitness than the previous one, which will in turn be evaluated. The cycle will

be repeated for the number of generations set by the user, which is dependent on problem

complexity. Despite their apparent simplicity, GAs have proved to have high efficacy in

solving complex problems which other, more conventional optimization methods, may

have difficulties with, namely by being trapped in local minima.

Genetic algorithms have been used in building applications related to energy consumption,

mostly to optimize the sizing and control of HVAC [Heating, Ventilating and Air

Conditioning] systems (Huang et al. 1997, Wright 1996, Dickinson et al. 1995). At the

structural analysis level, GAs have been used for design optimization of trusses (Camp et

al. 1998, Galante 1996, Goldberg 1989), beams (Wang et al. 1996, Marcelin et al. 1995)

and columns (Ishida et al. 1995). Several applications of evolutive design to floor layout

problems have also been found (Gero et al. 1998, Jo et al. 1998, Damsky et al. 1997,

Pham et al. 1992), either using standard GAs or 'evolved genes.'

In this section we looked for examples, mostly in building applications, where a non-linear

optimization problem was approached by coupling a GA with a problem-dependent

simulation software working like a 'black box,' in much the same way as we did in our

problem.



Huang at al. (1997) used Genetic Algorithms to optimize the control parameters of an

HVAC system. The tuning of the digital controllers of the system involves the selection of

controller settings [like temperature settings] and controller sampling time. The genetic

algorithm was coupled with a HVAC simulation package, HVACSIM+ @, which was used

to perform a detailed simulation of the system for each control-parameter configuration.

The objective function to be minimized was a combination of three performance indicators

[overshot, settling time and mean squared error]. The HVACSIM+ software was treated as

a 'black-box' simulator.

Dickinson et al. (1995) used a GA combined with a hill-climbing procedure to optimize

fixed parameters in a building heating control system, and also dynamic scheduling inputs

that varied throughout the duration of the run. A building heating systems simulation

package [QUEST @] was used to calculate the fitness function in a 'black box' approach.

Wright (1996) also used Genetic Algorithms to optimize design variables in a HVAC

system. The HVAC system variables are the physical dimensions of the system

components [discrete], the operating point of the system as represented by the controller

set-points, and the fluid state parameters such as the maximum mass flow rates

[continuous]. The design constraints cover the upper limit of the fluid velocities, the control

range of the fin-tube coils, the water circuit configuration of the coils, the maximum supply

air to room temperature difference, and the failure of the simulation. Failure of the

simulation would indicate the undersizing or oversizing of one or more components. The

objective function was the capital cost of the system. Although a full HVAC simulator was

used to determine the feasibility of the system, the final fitness value was calculated as a

linear sum of the component costs of the system, so it is a different case from the two

others described above that use non-linear fitness functions.

In terms of structures, Camp et al. (1998) coupled a GA with a Finite Element Analysis

Program [FEAP] to optimize two-dimensional structures. The program allows a number of

useful features like design checking using the American Institute of Steel Construction

Allowable Stress Design specifications and a comprehensive database of available

structural steel members. The objective function is total weight of the structure, which is a

non-linear function of several outputs provided by the FEAP software.



Marcelin et al. (1995) used a GA to optimize the behavior of composite beam structures.

The aim of the research was to improve the damping ability of a composite beam structure

without significantly increasing its weight or decreasing its stiffness characteristics.

Variables were the selection of materials and combination layout of the several layers:

number and thickness of layers, and stacking sequence. The constraints were the stiffness

characteristics and weight. The fitness function was non-linear, the factor of dampness

achieved.

Wang et al. (1996) approached the problem of finding the support locations of a uniform

beam to maximize the fundamental natural frequency of the beam using a Genetic

Algorithm. The length, bending rigidity and mass density of the beam are fixed. Variables

are the types of support considered [elastic and rigid] and the location of the supports. The

fitness function is the fundamental natural frequency of the beam, calculated using the

Rayleigh-Ritz method.

Many other applications of Genetic Algorithms in the context of buildings exist, like

optimization of steel roof trusses (Koumousis et al., 1994), elevator installation design

(Yoshiaki et al., 1996) and space layout problems (Gero, 1998; Pham, 1992; Jo, 1998;

Damsky, 1997). Investigations on GA applications for floor plans layout may gain some

relevance for this work when it is expanded to include the generation of new spatial

configurations within a fixed perimeter, as will be discussed on the section on 'further

work.'

Attempts have also been made to apply GAs to the design of three-dimensional shapes, to

help designers at early stages of design mainly by proposing unexpectedly innovative

shapes. The difficulty of finding appropriate objective functions for design evaluation has

made some of these attempts remain at an experimental level, with selection and

crossover being performed manually by the designer (O'Reilly et al., 1998).

A more sophisticated surface-generation system is MoSS: Morphogenetic Surface

Structure (Testa, 2000), which uses Lindenmayer systems [not GAs] in three dimensions

to grow surfaces by recursively applying rules to a basic shape defined by the user. It

currently runs as a plug-in for AliaslMaya @, and allows the 'environment' to influence

surface growth by means of boundaries or objects that attract or repel direction of growth.



Again, MoSS has no evaluation procedure attached to it, so the user must decide which

surfaces are more adequate to his purpose.

2.4 Simulated Annealing

Simulated annealing is based on the analogy between the annealing of solids and the

problem of solving large combinatorial optimization problems. It leads a search

progression based on a type of modified descent method, where nonimproving solutions

may also be accepted with some probability. A detailed description of the simulated

annealing algorithm will be provided in chapter 5.

Not so many examples were found in the literature of applications of Simulated Annealing

to building-related problems. A particularly interesting study is presented by Monks et al.

(1998), using a combination of Simulated Annealing and steepest descent to optimize the

acoustical performance of architectural spaces such as auditoria. The variables used

relate to the physical characteristics of the space, like room geometry [for example, tilt of

reflectors and other surfaces], and materials characteristics [materials are chosen from a

given library, and can be combined to form a given component]. The objective function

used is a combination of six outcome measures, an evaluation approach developed by

Beranek, and known as the Objective Rating Method. The space performance is

calculated by an acoustical simulation software, that uses an hybrid method of simulating

the early sound with beam tracing and late sound with a statistical approximation. The

concept the authors use is that of 'goal-based' or 'inverse design,' where the desired

acoustic performance is set a priori, and the material and geometric parameters of the

environment are determined by the optimization algorithm in order to approach that goal.

This work relies on the use of computer graphics both for the user to interactively define

constraints [geometric and materials] and for visualization of results of the acoustical

simulations and of each of the outcome measures. This work is a very sophisticated and

complete piece of research, and its inclusion of surface tilts manipulation influenced our

initial steps towards shape generation experiments.

Another interesting approach is that of 'shape annealing' (Cagan and Mitchell, 1993), a

design generation technique that combines concepts from shape grammars and stochastic

optimization [usually simulated annealing] to produce optimally directed designs.



To better understand the concept of shape annealing, that of shape grammars must be

explained first. Shape Grammars [SG] (Stiny, 1980) are used to create shape designs via

iterative application of grammar rules, which act on a shape design and transform it into a

new one. A SG consists of four components: a finite set of rules that perform various

transformations on the current design, a finite set of shapes, a finite set of labels used to

attach additional information to the shapes, and an initial shape as the starting point for the

grammar, which may be the null shape.

The shape annealing method can thus be described as follows (Szykman and Cagan,

1993): given a current design stage, a valid rule [i.e., one that has its preconditions

satisfied] is selected and applied to the design. Applying a rule to the current design and

transforming it into a new design corresponds to taking a step in the simulated annealing

algorithm. If the step results in an improvement for the objective function, that step, and

thus the new design, is accepted. If it results in a worst objective function value, it can still

be accepted with some probability dictated by the cooling schedule [which will be later

explained in chapter 5]. In this method, simulated annealing is thus used to control the

design generation itself.

Szykman and Cagan (1993) proposed an extension of the shape annealing concept by

using a three-dimensional shape annealing algorithm, which implied the use of a three-

dimensional shape grammar, to generate 3D component layouts. Finding an objective

function can be one of the most complex and controversial parts of these implementations.

In this case, the objective function reflected a preference for more 'compact' designs.

Perhaps one of the most interesting researches using shape annealing is that of Kristina

Shea (Shea, 1997; Shea and Cagan, 1998), which applies it to structural optimization.

Although the concept of structural generation and optimization using shape annealing was

first introduced by Reddy and Cagan (1995, a & b), Shea further developed it, turning the

method into a more consistent and robust one. The design representation of structures is

based on an analogy with a network, where the design objects are joints and the relations

between them represent the flow of forces through the structural members. A finite-

element analysis method is then used to calculate the performance of the structure. The

grammars used are based on triangles, which can be divided, joined, etc. Shea et



al.(1997) first proposed a planar truss grammar, and Shea and Cagan (1997) proposed a

space truss grammar, which is used to generate geodesic-like domes. The selection of

rules to be applied at each step is a dynamic, probabilistic one. There are also size

modification rules, apart from shape modification ones [for example, the cross section of a

given element can be altered]. To run the system, some initial specifications are required,

such as the number and location of supports, materials properties and if symmetry is

required or not. Constraints relate to factors as structural stress, Euler buckling, geometric

obstacles, etc. The objective functions that can be included are several, relating to

efficiency [achieving minimum mass], economy [minimum number of distinct cross-

sections and distinct lengths], utility [maximum enclosure space, with minimum surface

area], and even aesthetics [achieving a uniform metric or a golden ration metric]. The final

objective function value is calculated as a weighted sum of the objective functions chosen,

plus a weighted sum of constraints violations [since the system allows for the appearance

of solutions that are not structurally viable]. For a given, user-defined loading condition, the

structure is analyzed for violation of behavioral limits [stress, buckling, displacement] and

these violations are summed resulting on the total violation of all loading conditions (Shea

and Cagan, 1998).

Sohn et al. (1999) use Simulated Annealing and steepest descent to estimate air

exchange rates and effective mixing volumes of a partitionless building with

heterogeneous spatial flow conditions. The method uses simulated tracer gas

measurements, which vary in quantity and quality, and a non-linear model (Sinden's first-

order multicompartmental conservation of mass approach) is used to estimate air change

rates based on concentrations of the tracer gas. The objective function is the difference

between measured results and those estimated by SA.

2.5 Other optimization studies and methods

2.5.1 Dynamic Programming

Gero (1978) used dynamic programming to approach an optimal lighting problem using

artificial lighting sources to light a room, while minimizing the cost of providing a minimum

desired direct illuminance. The variables under consideration are the number of light



sources, their position in the room, and their power [it is assumed that the luminous

intensity of the sources is equal in all directions]. The reflected component of illumination is

not taken into account. However, the problem under study does not meet the requirements

of separability of the optimization process in different independent stages, what is usually

necessary to apply dynamic programming methods, since a source added at a later stage

will influence the quality of a decision taken at an earlier stage, and vice-versa. The

problem has thus both feed forward and feedback interactions. To deal with this situation,

Gero introduces the concept of a delayed decision, meaning that the stage at which the

decision is taken is later than the stage for which the decision is taken. A difficulty of using

this method is that the number of states which may need to be stored between the two

stages can become very large, depending on the range of influence of each light source.

The algorithm can thus become very computationally expensive and slow, and after a

certain number of variables it may become infeasible. In the same paper, Gero also

suggests that a similar approach can be used to size and position roof lights, windows and

shading devices, although there is no actual implementation of those suggestions. This

work by Gero will be revisited in chapter 3, section 3.4. An internal report by Radford

(1978) will further develop the methods proposed by Gero to apply them to window design.

Radford and Gero (1978) had already published a paper proposing the application of

dynamic programming to window design, but the method presented was still at an initial,

embryonic level.

Later on, Radford and Gero (1985) also suggested the use of Pareto-optimality concepts

to multicriteria optimization in architectural design, a topic that will be explored in some

depth in chapter 8 of this dissertation.

2.5.2 Nonlinear programming

The use of a nonlinear optimization technique has been proposed for optimal daylighting

design by Law (1997). The study couples the Levenberg-Marquardt method, which is an

extension and improvement of Newton's method, with a ray-tracing based lighting

simulation software to achieve high quality solutions in terms of daylight use.



Nonlinear programming has also been used by Mitchell (1976) for the synthesis and

optimization of small rectangular floor plans. Given certain specified requirements about

spatial adjacencies, the algorithm exhaustively produces all topological arrangements that

satisfy those requirements. For the dimensioning step, linear programming may be used

under special conditions to find the least-cost solutions, but a more general solution

requires the use of nonlinear programming methods.

Much work had been done since the 1960's on floor-plan layout optimization. Early work,

like the CRAFT program (Armour and Buffa, 1963) used a square grid representation of a

floor plan, and employed the quadratic assignment formulation of the floor layout problem.

CRAFT used a representation of layouts based on a two-dimensional array of integers.

According to Mitchell (1974), "each integer represents a square module of space of some

defined dimensions (...). Letting S = {ii, i2,., im) be the set of modules to be located and R

= {j1, j2,. , jm) be the set of possible locations in the array, a particular map p can be

represented as":

P = 11, i2,.. -, im

J1, J2,. ,Jm

There will be m! such maps, and CRAFT searches among them to discover the ones that

possess the desired characteristics, like particular adjacencies.

Many other floor plan synthesis programs developed in the 60's and 70's used a similar

approach, with generalizations to include rectangular and other grids, and to three-

dimensions too. Nonlinear programming techniques were used for this type of problems

too. Nonlinear programming has been used together with dimensionless representations of

floor plans to generate optimum dimensioned layouts, with respect to some cost criteria

and subject to functional constraints (Mitchell, 1977). As mentioned above, floor layout

problems may be part of the future work coming from this project, bringing a renewed

interest to these earlier studies.

2.5.3 Linear programming



Linear programming has also been used for certain floor layout problems, which can be

formulated in terms of a linear objective function [like minimization of overall plan length,

width, perimeter, etc.] and subject to linear constraints. However, there are many

limitations to the applicability of such method in architecture-related problems. For

example, area constraints are already nonlinear, and thus cannot be incorporated in this

type of formulations. Objective functions that are a function of surface area, like

construction cost or heat loss, are also excluded (Mitchell, 1977).



CHAPTER 3 Development of Generative System

3.1 Introduction

This chapter describes the actual implementation of the Generative System. The system

consists of two main components, the simulation module and the search I optimization module.

The choices for each of these modules are described and discussed, as well as the method for

incorporating them in the overall system. A description of current input and output formats is

given, with some insights towards possible paths of development.

The diagram below summarizes the flow of information between the several components of the

Generative System:

fitness function

| GA | |DOE-2 |3D CAD
[ generation [ optimization] [ evaluation [ last population

I input variables | building parameters | visualization program

Figure 3.1 Flow of information across the Generative System components

The Genetic Algorithm [search and optimization module] first generates values for the input

variables, which together with the remaining building parameters are passed into DOE2

[evaluation module]. DOE2 performs the evaluation of the resulting solution, and returns its

fitness function value, which in the simplest case is just the annual energy consumption of the

building. This value is fed back to the GA, which uses it to guide the search progression. When

the GA reaches the last population [after the number of generations determined by the user],

the corresponding results can be inspected using an existing visualization program.

AMMOM



3.2 The Simulation module: DOE2.1E capabilities and limitations

DOE2 has been developed since the 1980's by Lawrence Berkeley National Laboratory [LBNL],

for the US Department of Energy. It is one of the more respected programs available for building

simulation, and has been used in the construction or renovation of several well-known buildings,

such as the Pentagon, the U.S. State Department headquarters, the U.S. Embassy in Berlin, the

Monterey Bay Aquarium, the San Francisco Airport, the Ronald Reagan Library, the Intel and

American Express corporate headquarters, numerous federal courthouses, and the Frank Lloyd

Wright Museum in Wisconsin (LBNL, 2001).

DOE2.1E (SRG, 1993) was chosen to be the simulation engine of this Generative System

because it performs both thermal and lighting calculations, and because it offers good accuracy

for reasonable computational times. It was considered that, in this type of system, accounting

for only lighting or thermal behavior without including the other aspect would be rather

incomplete. In the future it may be possible to develop similar joint analyses by coupling

programs like Computational Fluid Dynamics [CFD] and accurate lighting simulation software

like Radiance @. However, at the present time, and considering the several hundred evaluations

the Generative System performs, including this type of programs would be infeasible, for in a

standard personal computer one might have to wait unreasonable amounts of time to obtain

results for a moderately complex building.

DOE2.1E has some major drawbacks, one being that it cannot compute air flow patterns in the

spaces, thus being unable to simulate, for example, natural ventilation. For reasonably accurate

simulations of air movement, one must resort to Computational Fluid Dynamics. DOE2, being a

single-node system, does not allow the prediction of variations in air temperature in different

points of the space, or prediction of air movement patterns. Although it is possible to specify

different infiltration methods [some taking into account outside wind velocity, like the Crack

Method, others just allowing the user to input the number of air changes per hour], this

information is only used to calculate the thermal loads of the space. For the 'Residential System'

option, it is possible to set a very simplified natural ventilation schedule, either specifying

number of air changes and a possible schedule for that, or specifying the fraction of ventilation

area used, and a schedule for that too [a simulation of window opening patterns]. All these

methods are very simplified and do not model airflow inside the building.



Neither can DOE2 be used for performing thermal comfort predictions. The new software

recently released by LNBL, Energy Plus, which incorporates the main features of both DOE2

and BLAST, and some additional ones, is able to do thermal comfort modeling since it

incorporates mean radiant temperature calculations. However, at the time this Generative

System was developed, Energy Plus was not available yet. Nevertheless, the system could be

easily upgraded to include Energy Plus2 instead of DOE2, in the same way it can be upgraded

to include many other simulation programs.

DOE2.1E is mainly a thermal simulation program, although it includes lighting calculations,

based on the daylight factor method (Winkelmann, 1983, Selkowitz et al., 1982). Departing from

a weather file for the geographical location of the building, and from a detailed description of its

geometry, construction materials and mechanical systems, DOE2 performs dynamic, hour-by-

hour simulations of the building for the whole year. DOE2's accuracy in predicting thermal loads

in buildings has been tested against actual measurements in buildings. One of these studies,

comparing DOE2.1E predictions with IEA Annex 21 measurements of inside air temperature in

three unconditioned test cells located in England [U.K. Building Research Establishment and

DeMonfort Univeristy, 1993], shows that DOE2.1E predictions are in excellent agreement with

actual measurements done, despite the fact that it performs simplified calculations [like using

weighting factors instead of solving all the heat transfer calculations across the building].

Another reason DOE2 is often the choice for building simulations is its high degree of flexibility

in terms of the features that can be modeled. As for the building fabric, DOE2.1 E includes a vast

library of opaque construction materials which can be layered in any desired way, and the

possibility of adding user-defined materials. It also has a large glazing library, with photometric

results extracted from the Window4@ program [also developed by LBNL]. The user can add

new glazing materials by running first Window4, provided by LNBL for free, and then

incorporating the result file into the DOE2 library. For windows, there is the possibility of

simulating fixed shading elements like overhangs and fins, and also movable shading elements

[roller blinds, curtains, etc.], for which it is also possible to define a control strategy, dependent

2 Some of the new features of Energy Plus in relation to DOE-2 are: realistic system controls, moisture absorption
and desorption in building elements, interzone air flow, low temperature radiant heating/cooling, interior surface
convection, thermal comfort modeling options, evaporative cooler models, steam absorption chiller, air flow sizing
based on zone requirements, accurate sky illumination model for daylighting calculations, ability to read multiple
interval per hour weather data files, plenums, enhanced calculation of return air heat gain from lights, flat plate
exhaust air heat recovery, example heating, ventilating, and air-conditioning system and equipment input templates
and user-customizable reports [http://gundog.lbl.gov]



on total incident solar radiation, space load, or other factors. There is an additional module that

allows the simulation of switchable glazing [like electrochromic glass], which many researchers

with an interest in this kind of material have found difficult to module. The program can also

simulate special features like sunspaces, trombe walls, etc.

DOE2 makes use of a specific language to describe building geometry and materials, called the

Building Description Language [BDL]. Within this language, there is a palette of elements that

can be combined to define a space, and also a complex coordinate system working at three

levels: the building coordinate system, the room system, and the wall system. Maintaining the

internal coherence of these three coordinate systems in a building description is probably one of

the most difficult parts to master in terms of inputting building geometry and space layout into

DOE2. BDL is flexible enough to describe most types of building geometries, except for curved

surfaces, which have to be approximated by a number of planes. Surfaces like walls, roofs or

floors can have any orientation and be tilted in any direction. In previous versions of DOE2,

these surfaces had to be rectangles, but in the latest versions a surface can be any kind of

polygon, with the limitation of a maximum of 20 vertex points.

DOE2 also has a very extensive and detailed library of HVAC systems, heating systems,

equipment types, operation modes, control strategies, etc. This includes less common, energy

conservation systems like absorption chillers, heat pumps, and many others. Finally, DOE2

provides a large number of tabulated reports, with information ranging from the total annual

energy consumption of the building [in the Building Energy Performance Summary (BEPS)], to

very detailed information about individual spaces or environmental variables, if requested by the

user.

Overall, it was considered that DOE2 provided a good compromise between reliability of results

and computational speed, while allowing a quite high degree of flexibility in terms of building

geometries modeled and construction and operation details.



3.3 The Search module: Genetic Algorithms - description, advantages and shortfalls

The main criteria for choosing a Genetic Algorithm for the search and optimization module was

the fact that GAs provide a population of final solutions instead of a single one. This represented

a move towards the adaptation paradigm that was in the genesis of the work, and was also

considered to be an important factor in an application area like architecture. A system that

would provide a single 'optimized' solution might have poor acceptance among architects, who

might prefer to have a range of choices between different solutions, all having a high standard

of performance according to the objective functions included in the search, and from where the

architect could exert further choice, according to other criteria like personal preference, initial

design intentions, etc. It will be seen in chapter 5 that GAs differ considerably from other

methods described there, like Simulated Annealing and Tabu Search, in that it searches from a

population of points instead of a single point. Using a population of solutions is thus intrinsic to

the mechanics of the algorithm, apart from being a beneficial advantage in terms of its solutions.

The validation studies described in chapter 4 proved the use of GAs to be a good option as a

search method. Although the solution spaces do present global minima as well as local ones,

they tend to be quite flat around the global minima. Usually, the solution spaces found in an

architectural design problem are not characterized by the presence of spikes [that is, having

very good solutions surrounded by very poor ones]. This means that within some range, the

relative impact of changing some of the variables is small. Outside of this tolerance range,

however, the impact in objective function values can be quite significant. This can provide useful

information to the architect about the more sensitive points in a design, and on the

consequences of introducing certain changes in relation to the best solution found by the

algorithm. Because this system was conceived as an open-ended tool, one with which the

architect could engage in an interactive loop, by running the program, getting some results,

introducing some changes, and running the system again, this was considered to be an

important advantage towards the use of GAs.

Another criterion for using a genetic algorithm was that GAs use a coding of the variables during

the search process, not the variables themselves. This applies mainly to binary GAs, the ones

that use only binary language [0,1] in its chromosomes. The chromosomes can then be

decoded into any kind of variable, numerical or non-numerical, what provides an extra degree of

flexibility towards using the system for architecture applications. For example, part of a



chromosome can be decoded into a material name, or into any other kind of non-numerical

variable.

Before going into more details about the use of GAs in this work, a description of some

important characteristics of this search method is given below. Chapter 2 provided a quick

overview of the basic principles behind typical GAs. One of the aspects mentioned was the use

of the three basic genetic operators: reproduction, crossover and mutation. This section will

complement that initial information with a closer insight into the different operators.

The most common implementation of reproduction is that of the biased roulette wheel

(Goldberg, 1989) where each current string in the population has a roulette wheel slot sized in

proportion to its fitness. That means the probability of a given individual being selected for

reproduction is proportional to its fitness:

P(x) = f(x) / Yf (j)
j=1

where n is the number of individuals in the generation

In this way, fitter individuals have a higher probability of being selected to the next generation,

although individuals with poor fitness still have some probability of doing so. There are other

strategies such as elitism that can also be implemented in conjunction with reproduction. Elitism

implies always passing the best solution from a generation to the next generation, in order to

preserve valuable genetic information contained in that solution.

Other reproduction operators have also been proposed in the literature, such as multi-parent

reproduction (Eiben, 1995), parallel steady-state reproduction (Godart, 1996) and gradient-like

reproduction (Pham, 1995). The reader is referred to the literature for detailed information about

these alternative methods.

Roulette wheel selection is usually combined with other methods to determine which individuals

will pass to the next generation. The most common process used for this purpose is

deterministic tournament selection. In this method, two strings are randomly picked, with

probability proportional to the biased roulette wheel slot, and this pair will compete for presence



in the next generation. The one with the highest fitness is passed. These two individuals will

have the chance to be chosen again for the next tournament, that is, they are not removed from

the initial population after each tournament. For a population of size n, after performing n

tournaments [or n-1, if elitism is used, since in that case the best solution will not have to

compete for having a copy of itself in the following generation], the parent population for the

next generation is complete. After that, crossover is applied among the parent population for

generation of offspring.

Crossover is the most prominent operator in GAs, being responsible for most of the

diversification occurring during the search process. During crossover, parts of two randomly

chosen parent chromosomes will be swapped with a given probability to create a new individual.

Only the elite solution will receive an exact copy of itself without going through crossover. The

role of crossover is to interchange existing information between different solutions in order to

generate new points in the solution space, but it does not create new genetic information itself,

It is important that the genetic pool contained in the initial random population is diverse enough

to contain potential information on the entire search space. This is why the initial population

must be large enough, as will be discussed below.

There are several types of crossover operators, the most common being one-point crossover,

two-point crossover and uniform crossover. In one-point crossover, the algorithm randomly

picks two parents selected for reproduction and randomly assigns a crossover point, after which

the remaining parts of the two chromosomes will be swapped. The process for two-point

crossover is similar, with the exception that two crossover points are randomly chosen instead

of one. In uniform crossover, two strings x and y are combined into a string z as follows

(Muhlenbein, 1997):

Z = (Z1,..., zn), zi = xi or zi= yi

where xi or yi are chosen with equal probability

n is the chromosome length

Mutation involves randomly changing an allele in a solution, with a given probability, to look for

new points in the solution space. Mutation is thus an operator that acts very locally. It is

responsible for introducing new genetic information in the search that was not contained in the



initial population. A rule of thumb, based on parametric studies, says a mutation rate m=1/n,

where n is the size of the chromosome, is almost optimal (Muhlenbein, 1997).

Another central concept to Genetic Algorithms is that of building blocks. Building blocks are

short, low-order and highly fit schemata that tend to present in high-performance solutions. A

schema is a similarity template describing a subset of strings with similarities at certain string

positions (Holland, 1975). For example, over the binary alphabet {0,1}, a schema trinary

alphabet is created by appending the * or don't care symbol. This way, a schema matches a

particular string if at every location in the schema a 1 matches a 1 in the string, a 0 matches a 0,

and a * matches either. Schemata are important in GAs because they introduce a new wealth of

information into the search by looking at similarities between solutions, particularly those

similarities that lead to high performance solutions. This information will then help guide the

search process.

In general, a binary string or chromosome contains 2' schemata, where I is the length of the

chromosome. A population of size n contains between 2' and n-2' schemata, depending on the

diversity of the population (Goldberg, 1989). The phenomenon of implicit parallelism, also

described by Goldberg, states that in a population of size n, about n3 schemata are processed

by GAs. This means that the algorithm is testing in parallel hundreds of potential building blocks.

This search for particular high performance schemata is implicit in the GA mechanism, as there

is no formal mechanism that recognizes good schemata and stores them in memory.

To analyze the effect of reproduction in schemata, Goldberg uses the following reasoning:

Let m(H,t) be the number of occurrences of schema H in the population at time t. During

reproduction a string is copied with probability p(x)=f(x)/If(j). After reproduction of a population

of size n the equation for the number of schemata H is:

m(H,t+1)=m(H,t)-n-f(H)/f(j)

where f(H) is the average fitness of strings representing schema H at time t.

Since the average fitness of the total population may be expressed as favg=f(j)/n, the

reproductive schema growth equation may be rewritten as:



m(H,t+1)=m(H,t)-f(H)/ favg

This means that a particular schema will grow as the ratio of the average fitness of the schema

to the average fitness of the population, that is, schemata with fitnesses above the average of

the population will receive increasing number of copies and those with fitnesses below average

will receive a decreasing number of copies. This behavior happens in parallel with all the

schemata present in the populations.

To try to transpose this behavior to more quantitative terms, Goldberg (1989) uses the following

reasoning:

"Suppose we assume that a particular schema H remains above average an amount c-favg, with c

a constant. Under this assumption we can rewrite the schema difference equation as follows:

m(H,t+1)=m(H,t)-( favg +c-favg)/ favg = m(H,t) - (1+c)

Starting at t=O and assuming a stationary value of c, we obtain the equation

m(H,t+1)=m(H,t)-(1 +c) t

(...) The effect of reproduction is now quantitatively clear: reproduction allocates exponentially

increasing (decreasing) number of trials to above- (below-) average schemata."

This notion is of quite significance to GA theory and its an important basis for what was given

the name of Schema Theorem, which states that short, low-order, above average schemata

receive exponentially increasing trials in subsequent generations.

However, Muhlenbein (1997) points out that this theorem cannot be used to explain the search

strategy of the genetic algorithm, because there cannot be a schema remaining a constant c

above average since the average fitness of the population is steadily increasing. But although

the Schema Theorem cannot fully explain the success of genetic algorithms in finding high

performance solutions in complex problems, empirical studies have proven this to be the case.

Chapter 4 presents one empirical study done with the Generative System implemented for this



research, and shows that even in very large solution spaces the GA could consistently find

individuals with very good performance levels.

Syswerda (1989) examines three crossover operators (one-point, two-points and uniform

crossover) in terms of their effect on schema survival and on schemata combination (combining

schemata together in one genome). In terms of survival rate, both one-point and two-point

crossover are better than uniform crossover. One-point crossover is the best for schemata with

short defining length (the distance between the first and the last specific string position that

defines the schema), but two-point crossover is better for longer defining lengths. Since the

author demonstrates that most of the possible schemata in a string of a particular length are of

higher defining lengths, two-point crossover is considered to be better.

In terms of schemata combination, one- and two-point crossover have better combination rates

when the defining lengths of the schemata are low. But as explained above, most of the

possible schemata have long defining lengths, and in that region uniform crossover performs

best. Since the empirical results presented by the author suggest that a higher combination rate

is more important than a better survival rate, uniform crossover is pointed out as the best of the

three crossover operators. Following these conclusions, for this work uniform crossover was

used, although the user is given the option of choosing between it and two-point crossover.

A main alteration in relation to standard GAs used in this Generative system was the application

of a Micro-GA (Krishnakumar, 1989), which differs from a typical GA mainly in the small

population size used and the type of search progression.

Not many guidelines exist for setting population sizes for a typical GA experiment. Those are

problem dependent settings that must be fine tuned by the user. A study has suggested that

n=16 might be too small a population (Goldberg, 1989), not containing enough diversity in the

initial pool of individuals to ensure that good solutions are found by the algorithm. Large

population sizes eventually lead to better convergence due to the larger pool of schemata

available, but have an initial large inertia and so a poorer initial performance. They require a

large number of generations in order to converge to high-performance solutions, so too large

population sizes tend to slow down the algorithm. Moderate size populations may be a

reasonable compromise between finding good solutions and speed.



Typical population sizes for GAs range from 30 to 200, based on earlier studies such as those

of De Jong (1975) and Grefenstette (1986), where suggestions for optimal population choices

based on parametric studies are presented. These large populations are supposed to lead to

better schema processing, lesser chance of premature convergence and better optimal results,

by introducing from the beginning a pool of diverse genetic information into the search. Since all

the final solutions are already contained in some way in the initial population [apart from the

small changes introduced by the mutation operator], the initial population needs to be large

enough to ensure the presence of that wealth of genetic information in the process. However,

the implications of using large populations are both large inertia in search progression and high

time penalties due to the evaluation of the fitness functions for all the individuals, generation

after generation.

Micro-Gas try to address that problem by using small populations, promoting early convergence,

and then randomly generating a new population while maintaining the best individual from the

previous generation [elitism]. This process introduces high variety in the process by often

introducing new points into the search. Since many new random populations will be generated

during the search progression, it is not necessary for the initial population to contain all the

genetic information needed to reach the optimized solution, thus its size can be greatly reduced.

Also, premature convergence of the population is not a concern in this method.

Giving a more detailed description, micro-GAs start with a small population [in the case of this

study, of only five individuals], which quickly converges to an initial solution. Convergence is

measured by comparing the chromosomes of the individual solutions. If they differ by less that

5%, it is considered the population has converged. When that happens, the Micro-GA generates

a new random population while carrying over the individual with best fitness from the previous

generation. This way, new individuals are often brought into the search without loosing track of

the one that did better until that point. Another advantage of using Micro-GAs is that the

algorithm tends to perform a local search around the best solutions during the generations prior

to convergence, since at that stage solutions only differ by a few alleles. This local search is

important in finding local minima around good solutions, and is usually hard to implement in

conventional GAs.



The steps involved in the Micro-GA process are (Krishnakumar 1989):

1. Start with a small population of randomly generated individuals [for example, 5 individuals]

2. Evaluate fitness of the population, determine best solution and copy it to the next generation

[elitism].

3. Choose the remaining four strings for reproduction, with the best string also competing for

reproduction, using deterministic tournament selection [strings are grouped randomly and

adjacent pairs compete for presence in the next generation].

4. Apply crossover with probability =1. This allows high order of schema processing. Mutation

rate is kept to 0 as enough diversity is introduced after convergence by the generation of a

new random population.

5. Check for nominal convergence using bit wise convergence. If population has not

converged, go to step 2. If it has converged, start a new random population while keeping

the best string, and go to step 2.

Note: Applying crossover with probability = 1 in uniform crossover means that all alleles in all individuals,
except for one copy of the elite one, will undergo crossover.

Micro-GAs tend to quickly direct the search to optimum or near optimum solutions, but the

average performance of the final population may not be necessarily high, since it may happen

that the cut-off point of the GA [maximum number of generations being reached] happens right

after a new random population has been restarted, thus leading to a population containing one

good solution [the elite one] while the others have just been randomly generated. In this case,

one can run the program again for a few generations until convergence is reached again.

Another strategy that was implemented in this study was to add a simplified kind of 'memory' to

the GA. In a standard GA, all the individuals of any population are always evaluated. The

feature added makes the GA inspect a database of previously evaluated individuals each time it

is presented with a new solution. If the current individual already existed in a previous

generation, the GA simply retrieves from this database the fitness function value associated with

it. If it is an entirely new solution, it is evaluated and the result stored in the database for future

use. Since there is always some degree of overlapping between subsequent generations [at

least one individual, the elite one, is always repeated, but more can exist], this simple function

adds more efficiency to the algorithm, making it faster. In this study, since each building design

evaluation takes a reasonable amount of time [depending on the complexity of the building, it



can take from about 20 seconds to more than a minute], this feature provides some significant

time savings.

As a final note, it should be added that a genetic algorithm is a heuristic procedure that offers no

guarantee of finding the global optimum. This shortfall of the method was the reason behind

work presented in the next chapter [chapter 4], where the GS is tested within a domain where

the solution space is known, to assess the performance of the system in finding optimal

solutions and the degree of confidence one could have in the results, before proceeding to

solution spaces where the global optimum was not known in advance.

3.4 Previous studies applying building energy simulation softwares to optimization

Radford and Gero published in 1978 two papers addressing the problem of the optimal lighting

design using dynamic programming. One of the papers focus on the design of windows

(Radford and Gero, 1978), and begins to present a method to address the problem using

dynamic programming, but stays at an embryonic level. The other paper (Gero and Radford,

1978) presents a detailed method for applying dynamic programming to an artificial lighting

problem [although no implementation of the algorithm is mentioned], and suggests that a similar

procedure can be applied to size and position roof lights, windows and shading devices. An

internal report by Radford (1978) will further develop the methods proposed by Gero and

Radford (1978) to apply them to window design. As mentioned in chapter 2, the dynamic

programming approach presented in all these studies has a serious shortfall, since the problems

considered do not meet the requirements of separability of the optimization process in different

independent stages. The introduction of delayed decisions to address this problem causes a

high computational burden due to the need to carry information about all possible alternatives

until the stage is reached when a decision can finally been taken. This makes the method

unpractical for problems of even reduced size. In a moderately complex building, where the

interdependency of variables can be high, the applicability of this procedure is very limited.

At Lawrence Berkeley National Laboratory, some attempts where made in the past to use DOE-

2.1E to optimize design parameters of windows. One of these studies relies on the use of

indices and weighting factors (Sullivan et al. 1988) to develop a fenestration performance

design tool. Five indices were defined, which when combined with user-specified weighting

factors yield a single figure of merit that measures the window performance. Three of the



indices are related to the effects of fenestration on building energy performance [fuel and

electric use, and peak electricity demand]. The other two are related to thermal and visual

comfort. The thermal comfort calculation is very simplified, based on a correlation between the

magnitude of solar radiation coming through a window with the percentage of dissatisfied

people. The visual comfort calculation uses the Cornell method, which is integrated in the

daylighting module of DOE2, to calculate a Glare Index. This approach presents two main

problems: first, the Cornell method predictions have been proved to disagree with people's

assessment of built situations. Second, the implementation of Cornell method in DOE2 does not

provide reliable results in terms of the method itself.

Sullivan et al. (1988) derived index values and correlations to window design parameters by

creating a database consisting of a large number of building energy simulations for a

prototypical office building, using DOE2. Four glazing types and two shading devices were

combined in several ways so that a representative sampling of realistic fenestration systems

was analyzed.

The problems with this study are many. The combination of the five indices into a single figure

of merit using weighting factors is dubious as a method for multicriteria analysis [this issue will

be further discussed in chapter 8, under the topic of 'Plain aggregating approaches'].

Calculations of comfort indices seem to be oversimplified and unreliable. And the resulting data

only apply to solutions close to those simulated, what makes them of limited use in an

architectural design domain.

Sullivan et al. presented a second study in 1992, called 'A method for optimizing solar control

and daylighting performance in commercial office buildings.' Here, the two comfort indices were

abandoned, and only annual electricity use for cooling and lighting, and peak electricity demand

are considered. Heating is not included, and other energy sources apart from electricity are

excluded. Using regression analysis procedures, fenestration performance is characterized as a

function of solar aperture [defined as the product of shading coefficient and window-to-wall

ratio], and effective daylighting aperture [defined as the product of visible transmittance and

window-to-wall ratio]. Optimum performance consists of defining the solar and effective

daylighting aperture values that minimize annual electricity consumption and peak demand.



Once again, results from this study are only applicable for buildings similar to that used for the

simulation [an office building, with a large core area and individual cells along the perimeter],

and to the type of climate used in the study. It also does not account for interactions between

different daylight sources in the same space. Glazing types are limited to those included in the

study.

Both studies presented by Sullivan et al. are thus confined in their applicability, and require a

large amount of previous work to create the database of simulations from which results can be

derived. On the contrary, the Generative System presented in this dissertation aims at being a

very general method applicable to any kind of building [with limitations imposed just by the

complexity of the geometry, that is, if it can be modeled using BDL], with any type of materials

and in any climate. The time burden on the user is only that of creating the initial input file, and

of doing small modifications in the GA code. All the time consuming efforts of doing parametric

runs and regression analysis are excluded from this GS.

Other simplified procedures like the LT method (Baker and Steemers, 2000) that use energy

graphs to explore the impact of a few key building-design parameters, are unable to handle the

level of detail and complexity enabled by the system presented here. Some of the previous

studies described, such as that of Sullivan et al. (1992), also use energy graphs, although those

are derived from the specific parametric experiments done for that study, and are not as general

as those created for the LT method.

It is worth mentioning the work by Wetter (2000), which describes the use of the GenOpt

software for optimization purposes, using as a search method the Simplex method of Nelder

and Mead with an extension by O'Neill. The main drawback of this search method is that it

works well only in small problem sizes, up to about 10 variables. GenOpt is also a flexible

platform for implementing user-defined algorithms, according to the author, and can apparently

be linked to any simulation program that reads and writes text files. In this sense, GenOpt

seems to be the currently available software that is closest to the goals and methods of this

Generative System.



3.5 Building the Generative System

The Generative System was first developed on Unix platform, running remotely from a computer

based at Lawrence Berkeley National Laboratory. This implementation was rather slow, and

later a PC-based system was developed, which was about 20 times faster. As the work

progressed from simple test buildings and single objective functions towards complex

architectural designs and multi-criteria optimization, computational power and speed became a

main issue, and efforts had to be directed towards developing a faster implementation. The

'memory' function described in the previous section was developed when the algorithm was still

running on Unix platform, to try to increase its execution speed, and was later adapted to the PC

version too.

The basic method used was to create a link between the GA and DOE2.1-E, so that the GA

would make a call to DOE2 each time it was necessary to calculate the fitness of an individual.

The objective function of a solution is thus the result, in terms of annual energy consumption, of

running a DOE2 thermal and lighting simulation of the building under study, with the absent

building parameters determined by the individual chromosome of that solution.

Making the two programs communicate was not simple due to a number of data formatting

issues, but eventually a method was developed that allows the exchange of information without

errors or data corruption. Different procedures had to be used for numerical variables, like

dimensions or coordinates, and for non-numerical ones, like materials.

The process of encoding non-numerical values like materials names had to be carefully

designed so that the binary coding would relate in some way to the properties of the materials,

to allow meaningful building blocks to emerge during the search. For example, if the GS could

choose materials from a library of 16 available choices, the number of alleles necessary to code

each material was 4 [24 = 16]. So, the coding for a given material could look something like

0101. Materials were ordered in the respective library so that the presence of a 0 or a 1 in a

certain position would carry with it some information about the material. For example, a 0 at the

beginning of the code would always mean an insulation material. Then a 1 in the second

position would mean a type of insulation material with lower conductivity, while a 0 would stand

for a material with higher conductivity. This way, a material starting with 01 would always be a

good insulation material, and in cases where insulation was an issue, the '01' building block in



that particular position would be favored by the GS. The remaining alleles could code the

thickness of the material, for example.

The other main problem was how, and at what level, to incorporate architectural language

constraints into the algorithm. The Building Description Language [BDL] input format used by

DOE2 provided a useful platform for describing building geometry, but presented no formal way

to incorporate information about relations between the variables under study, which was one of

the mechanisms intended for the architects to describe and control design intentions. Given this,

it is inside the GA code that the constraints encoding architectural design intentions are

implemented, in the current version of the software.

3.5 Input and output formats

At the moment, there are no user interfaces specifically designed for the Generative System.

The input process is all text based, and consists of two main steps. The first creates a DOE2.1E

input file that completely describes the building [geometry, orientation, space layout,

construction materials, etc,] and also provides information on the electrical and mechanical

systems to be used and on building schedules. Absent from this file are the values for the

specific variables under study, and that will be created by the genetic algorithm. Each of these

variables is represented by a code that will later be replaced by a numerical value, a

construction material reference, etc.

The second step involves the adaptation of the genetic algorithm source code to the particular

problem under study, as well as the input files it reads during execution. As for the source code,

the main alterations required relate to the 'func' routine, which does the objective function

evaluation by calling DOE2. It is necessary to ensure that 'func' will pass to DOE2 the right

number of arguments and in the correct order. As mentioned above, it is also at this level that

some of the language constraints are implemented, by specifying desired relations between the

different variables. Other minor alterations relate to some format statements at other points of

the code.

Finally, the input files the GA reads need to be modified. One of these files allows the user to

specify the number of variables under study, the upper and lower bounds for each variable, the



number of intermediate steps between those limits and the number of binary bits required to

code each variable. It is also in this file that the user defines the population size for the GA and

the number of generations it will run for. The use of other strategies, such as elitism, Micro-GAs

and niching, is also specified there. Probability values for both crossover and mutation are

required too.

As for output formats, the first version of the algorithm had an AutoLisp routine that would draw

three-dimensionally in AutoCad@ the results from the GS. AutoLisp procedures allowed the

results to be visually inspected, both two- and three-dimensionally. The architect could this way

visualize the several steps of evolution of the process, as well as the final results. The

inconvenience of this method was obvious. For each building under study the user would have

to write the AutoLisp code that would represent the building. Only the values of the variables

under study would then be automatically read from the GS result file.

Since this process was quite labor intensive, a commercially available program [DrawBDL@] is

now used. This program generates a 3D model of the building from a DOE2 input file, which can

be rotated and viewed from different directions. It can thus be used to view the complete DOE2

input files after they have been modified by the GA, and thus visualize the results from the GS.

This model can be imported into AutoCad, but has the major drawback of losing three-

dimensional information during that process, meaning that the AutoCad drawings obtained this

way are only two-dimensional. If a 3D AutoCad model is required, it needs to be constructed

manually, with the help of the 2D drawings imported from DrawBDL.

If a 3D AutoCad model is constructed, it can then be imported into programs like 3DStudio

Max© for improved visualization of results, or to lighting analysis programs like Lightscape@ for

a better understanding of the GS solutions in terms of its lighting performance. In this case,

each space can be visualized individually for different times of the day and the year, to gain a

more detailed insight of the lighting patterns inside the spaces.

Much work needs to be done in terms of input and output formats if this GS is to be used by

architects and practitioners. In terms of input, a graphical interface needs to be created to help

the user insert necessary information, which would automatically upgrade the input files and the

GA code. A more ambitious project is to create a CAD interface to the GS that would allow to

extract from a 3D model of the building all the building-related information to run the program. A



crucial factor is to be able to use standard graphics formats, as the ones generally used by

architects in their practices. The GS should also be able to generate a new, modified 3D model

of the building, based on the results achieved by the software, to allow for quick visualization of

results and further development and changes from the architect.

Improving both the input and output formats of the GS would mean more than simply making it

more user-friendly and thus more prone to be used in practice. By choosing the appropriate

computer graphics paradigm for this interface, there may exist a potential for making this GS

able to handle other class of problems not explored until today. More considerations on this

issue will be provided in the 'conclusions and further work' chapter, as this represents one of the

main areas of development that we envision as relevant future work regarding this Generative

Design System.



Testing the Generative System

4.1 Introduction

This chapter describes the first testing of the Generative System using computational

experiments. The objective of the tests was to gain confidence in the system's performance

before applying it to more complex problems, so that no 'leap of faith' would have to take place.

An experimental setup was defined, with a very simplified building scheme consisting of a core

area and a number of surrounding rooms facing each of the four main cardinal orientations

[figure 4.1]. Each room had a single window so that no interactions between openings facing

different orientations could happen. This experimental building layout has been used in several

studies done at Lawrence Berkeley Lawrence Laboratory [LBNL], where the research presented

in this dissertation first started.

Figure 4.1 The schematic building setup used for the experiments

This configuration allowed the objective function to be separable, that is, the best solution for

the overall building was a combination of the solutions for each individual orientation. This way,

a very large 8-dimensional hyperspace, of more than 16 million solutions, could be generated

while knowing its global optimum. This provided an excellent test bed for the effectiveness of

the algorithm in locating high performance or near-optimal solutions in large solution spaces.

The methods and results for those tests are described below, together with some extensions

and additional experiments at the end of the chapter.

CHAPTER 4



A note must be added about the impact of this particular building layout on the results observed.

Although the test building allowed a very important factor to be present in the experiments, the

above-mentioned separability, it also had a somewhat negative factor attached. Because the

building has a very large core area (31 X 31 m), with no contact with the external envelope, the

impact on overall energy consumption of changing some envelope characteristics, like

fenestration dimensions and proportions, was relatively low. This happens because the energy

consumption of the building is highly dominated by the core area, which has to be lit, heated

and cooled always by artificial means and does not reflect the beneficial changes performed in

the envelope. It will be noticed in the results of the several experiments that energy levels

usually vary only by small amounts. This note alerts the reader to the reasons behind it. In later

chapters, different building designs will reflect a much more significant impact of envelope

modifications. From a positive side, the building used in this chapter's experiments was

beneficial in that it represented a quite demanding test environment, since the Generative

System would have to find points that represented solutions which performed only slightly better

than alternative ones, and it succeeded quite well in this task.

4.2 Simulation method

The first step was to find a representation method within a genetic algorithm framework that

would allow the encoding and manipulation of the variables we wanted to study. To make use of

a Genetic Algorithm it is necessary to provide a representation of feasible solutions in terms of a

binary string of bits, an objective function definition, and mechanisms for selection, crossover

and mutation. It is also necessary to choose a population size and decide on the maximum

number of generations the algorithm is supposed to run.

a] Representation of feasible solutions

The experimental building has four different types of windows facing different orientations, each

being characterized by two dimensions [width and height]. Each window dimension could vary

from 0.3 m to 2.4 m in discrete steps of 0.3 m, meaning it could only take 8 possible values. To

encode 8 values in a binary string, only 3 bits are necessary, since 23=8. The window

dimensions can thus be encoded the following way:



Decoded numerical value [m]

000 0.3

001 0.6

010 0.9

011 1.2

100 1.5
101 1.8

110 2.1

111 2.4

To encode a solution consisting of 8 window dimensions [width and height for north, south, east

and west orientations] it is necessary to use a binary string of 24 bits [3 bits per variable x 8

variables], what becomes the chromosome length. A valid chromosome for this problem could

look something like:

0011010001110101011011 01

b] Objective function

The objective function value is the result of running a thermal and lighting simulation with the

window parameters chosen, and expresses total annual energy consumption in the building in

MWh [megaWatthour], taken from the BEPS report [Building Energy Performance Summary] of

DOE2.1 E.

c] Selection mechanism

Proportional or biased roulette wheel selection was used.

d] Crossover mechanism

Uniform crossover was used. The probability of crossover in MicroGAs is usually set to 1, to

ensure a high recombination rate.

e] Mutation mechanism

Mutation is used in standard GAs to introduce new points into the search space. Because

MicroGAs already have a high rate of generation of new solutions, mutation becomes

unnecessary and is set to 0.

Binary code



f] Population size and number of maximum generations

Since a MicroGA was used, population size was kept small [n=5]. The number of generations

was initially set to 100, what proved to be a good choice, since extending that number to 200

and 300 generations caused no improvement in the final solutions, while implying a large time

penalty [almost doubling and tripling the simulation time, respectively].

4.3 Problem description, simulation method and test building

The particular problem used in this chapter is the sizing of windows in a building to optimize its

lighting, heating and cooling performance. The exact sizing of windows occurs typically at later

stages of design, but will have a significant effect on the environmental behavior of a building.

The optimal sizing [in energy terms] will depend on the climate the building is located in, the

glazing used, the orientation the window is facing, the type of use of the building [offices,

housing, etc.], and other factors like shading elements.

Windows display a complex environmental behavior due to different requirements often being in

conflict with each other, making the evaluation of their overall performance a complex one.

During the heating season, as window sizes increase there is an increase in daylighting

availability and thus a decrease in the need for artificial lighting, leading to less electrical energy

consumption. For some orientations, there are also more useful solar gains through the window,

which tends to reduce heating expenditure. On the other hand, there is an increase in heat loss

through the glass, which in turn requires more spending for heating. Less use of artificial lighting

will also lead to lower internal heat gains in the building, leading to an increased need of

heating.

During the cooling season, as window sizes increase there is a decrease in the need for artificial

lighting, which leads to less electrical energy consumption and also in cooling loads generated

by the lights themselves. On the other hand, there are increased solar gains through the glass,

leading to more spending for cooling.

These interactions are simulated in the following way: daylighting levels inside each of the

spaces in the building are dynamically calculated at two reference points determined by the

architect, for each hour of the year. The lighting levels achieved by using natural light only are



then compared to the required levels [in lux] also set by the architect. The artificial lighting

system, which is continuously dimmable, is set to provide just enough light to make up for the

difference between available daylighting and required light levels. The electrical energy spent by

the lights is quantified, and electrical lighting is also accounted as a heat load to the space.

The system then goes on to calculating internal temperatures inside the space by taking into

account external climatic conditions, the characteristics of the building fabric [wall, roof, floor

and window materials], solar gains through the windows, internal gains from occupants,

equipment and artificial lighting, etc. Those temperatures are compared to set-points defined by

the architect, and heating or cooling are provided if required to compensate for the difference

between calculated internal temperatures and predefined set-points. The energy spent in

heating and cooling is determined [including energy for running ventilation fans, pumps, etc.],

and added to lighting energy to determine total annual energy consumption in the building.

The building simulated is assumed to be an office building, where internal conditions are usually

controlled, and systems like dimmable artificial lighting are more likely to exist. The hypothetical

office building consists of a square core zone, 31 meters on a side, surrounded by four identical

perimeter zones, each of 31 x 4.6 m [see figure 4.1]. The module faces the four cardinal

directions. Each perimeter zone is divided into ten office spaces of equal size (3.1 x 4.6 m). One

reference point for daylighting calculation is located 1 m from the window wall, and the other one

is located 1 m away from the wall opposite to the window wall. The points are centered in the

space in the other direction, and at desk height. The required horizontal illuminance is 540 lux.

The window glazing was set as double pane with a layer of spectrally selective glass, with a

shading coefficient of 0.34 and visual transmittance of 0.41.

The problem was studied for two locations: Phoenix, Arizona, a cooling-dominated situation;

and Chicago, Illinois, a heating-dominated climate. The aim was to provide some insight on how

the optimal sizing of windows varies with different climatic conditions.



4.4 Determining solution spaces for Phoenix climate

To assess if the Generative System would actually be able to locate optimal solutions for this

problem, the algorithm was first tested against a hand-worked example of limited size, for which

the optimal solution was found by manually sampling all possible solutions. The location chosen

was Phoenix, Arizona. The solution space for each of the four cardinal directions was first

determined. Eight window widths and heights were considered, from 0.3 to 2.4m at discrete

steps of 0.3m, creating a solution space of 64 points for each orientation. While the dimensions

for an orientation were varied, the windows facing the other orientations were kept 1.2m wide

and 0.9m high. For each orientation a 100-generation GA was run.

The solution spaces for each of the four orientations are shown in figures 4.1

the solution spaces proved to have several local minima and a global

orientations but north. There are no local minima for the north orientation. The

minima makes the problem inappropriate for derivative-based search methods

reasonable approach.

- 4.4. In general,

minimum for all

presence of local

and makes GA a

Figure 4.2 shows the solution space for south-facing windows for the Phoenix climate. It can be

seen there is a relatively flat surface of configurations corresponding to low energy

consumption. Within that flat surface there are however several local minima and a global

minimum. Being stuck in a local minimum would not be too serious in this case since the

objective function difference in relation to the global minimum is small. However, we are

interested in the algorithm behavior and not only in the particular results for this example.
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Figure 4.2 Annual energy consumption [MWh] for south window dimensions



The global minimum of 116.94 MWh is located at point (2.1, 0.9), corresponding to a window

2.1m wide and 0.9m high. There were two local minima of 117 MWh for points (1.2, 1.5) and

(0.9, 2.1). The GA located the global minimum in generation 18, and the (0.9, 2.1) local

minimum in generation 21. It can be seen that the global minimum and one of the local minima

correspond to windows with the same area (1.9 M2), but with different aspect ratios, what shows

the effect of accounting for daylighting penetration in the space. The more horizontal window

corresponds to a slightly lower energy consumption. The optimal area is 5% larger than the area

of the second local minimum.

For the east orientation the global minimum was similar to the south orientation (2.1, 0.9) [see

figure 4.3], and the local minima were located in points (1.8, 0.9) and (1.2, 1.5). The GA located

point (1.8, 0.9) by generation 16, but did not manage to locate point (2.1, 0.9) in 100

generations. Point (1.8, 0.9) stands next to the global minimum, and has an objective function

value only 0.03 MWh higher. The observed behavior is a consequence of the fact that genetic

algorithms have a difficulty in succeeding in very local searches. GAs are heuristic procedures

that are often able to locate the global minimum for the problem, but give no guarantee of doing

so. The search can get very close to the global minimum without actually getting to it. It should

be noted that the actual difference in objective function values is negligible in this case.
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Figure 4.3 Annual energy consumption [MWh] for east window dimensions

For the west orientation [figure 4.4], the solution landscape proved to be flatter than for the

south and east orientations. Although solar angles are symmetrical for the east and west

orientations, temperatures and occupancies are not. The global minimum was at point (1.5, 0.9)

and local minima were found at points (0.6, 2.1), (0.9, 1.5) and (2.4, 0.6). The GA located the

global minimum by generation 10.
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Figure 4.4 Annual energy consumption [MWh] for west window dimensions

For the north orientation [figure 4.5], there was only a global minimum at point (2.1, 2.1), with no

other local minima. The GA located that global minimum very quickly, at generation 7. This good

performance of the GA is thought to be due to the smooth configuration of the solution space in

this case. Apart from the minimum, the GA located a series of high-performance solutions in its

vicinity, all by the end of generation 8.
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Figure 4.5 Annual energy consumption [MWh] for north window dimensions

4.5 Assessing GS performance in locating the global minimum in a larger solution space

The resort to a hand-worked example proved the GS succeeded in most cases in finding a

global minimum for the problem. In the cases it did not reach the actual minimum it located

points very closed to it, what provides enough confidence in the results to extend the method to

larger problems for which it is not possible to calculate manually the solution space, given their

dimension.



The GS was thus used to search a hyperspace of 8 dimensions for the optimal size of windows
to all orientations simultaneously, resulting in a solution space of more than 16 million points
[88]. It was only possible to know the global minimum for the eight-dimensional space by
combining the individual minima for each orientation due to the above-mentioned separability,

with no interactions between the different orientations either in terms of spaces, windows or

building systems. However, buildings are not typically designed this way and thus it is usually

not possible to optimize for each orientation and then combine the individual results. From the

hand-worked example it is known that for the Phoenix climate the best result corresponds to the

point (2.1, 2.1, 2.1, 0.9, 2.1, 0.9, 1.5, 0.9) [north window dimensions - width, height - then south,

east and west], corresponding to an annual electrical energy consumption of 114.53 MWh. The

worst point in the hyperspace is (0.3, 0.3, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4), with an annual electrical

energy consumption of 131.4 MWh, about 15% higher than the best possible result.

Figures 4.6 and 4.7 show the evolution for one experiment from the initial solutions to the final

generation of improved performance designs. It can be seen that initially there is a high variance

in the design patterns, which progressively converge into the optimized solutions.
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Figure 4.6 Initial solutions for Phoenix climate, experiment 3 [see table 4.1 for experiments numbering].

Each row represents a solution. The numbers on the right show its annual energy
consumption in MWh.
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Figure 4.7 Final solutions for Phoenix climate, experiment 3 [see table 4.1 for experiments numbering].
Each row represents a solution. The numbers on the right show its annual energy
consumption in MWh.

Figure 4.8 shows the evolution of design generations to the Phoenix climate for another

experiment. Only every tenth generation in shown here, until generation 80, when the solution

has converged. It can be seen that although many different configurations are tested along the

search, the design steadily tends to the final optimized solution: large windows for north

orientation (2.1 x 2.1 m), where available daylighting can be maximized without incurring on

high solar heat gains in the summer. Due to the mild winter temperatures in Phoenix and to the

use of double pane windows, heat losses through this large glazing area are not enough to

penalize this solution when overall energy consumption is calculated.

Average size windows (1.2 x 1.5 m) are chosen for east and south orientations, showing a

balance between admitting useful daylighting and winter solar gains and preventing too much

solar gain in the summer. Smaller windows (1.2 x 0.9 m) are chosen for west since that is the

worst orientation in terms of summer overheating: the building is already warm at the end of the

afternoon and excessive west solar gains will lead to internal overheating. It must be added that

east west

to,",



these solutions are dependent on the type of glazing used: a different glazing option would lead

to different optimum window sizes, as will be seen later in the chapter.
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Figure 4.8 Generations 1-80 for Phoenix climate, experiment 1

In total, five experimental runs were made for the Phoenix climate, to compare results from

different trials. A maximum number of 100 generations was used for each experiment. The

results are summarized in table 4.1. In general, the GA performed very well, being able to find

high performance solutions close to the global minimum [the highest error margin in table 4.1 is

0.03%]. The results are even more satisfactory considering that 100 generations is a relatively

low number for GAs, and a population size of 5 is very small. The maximum of 500 different

solutions evaluated by the GA corresponds to only 0.00003% of the solution space dimension.



Experiment Best solution found Objective Percentage
function value above minimum
(MWh) (%)

1 2.1 / 2.1 / 1.2 / 1.5 / 1.2 / 1.5 / 1.2 / 0.9 114.74 0.018

2 2.4 / 2.1 / 2.1 / 0.9 / 2.1 / 0.9 / 0.9 / 1.5 114.65 0.01
3 2.1 / 2.1 / 1.2 / 1.5 / 2.1 / 0.9 / 1.5 / 0.9 114.60 0.006

4 1.8 / 2.1 / 1.2 / 1.8 / 0.9 / 1.5 / 1.2 / 0.9 114.89 0.03

5 2.4 / 2.1 / 2.1 / 0.9 / 1.2 / 1.5 / 1.5 / 0.9 114.65 0.01
Table 4.1 Solutions for the Phoenix climate

Results from these experiments are displayed graphically in figure 4.9. It can be seen that

although total energy consumption is very similar, design solutions are somewhat different. The

fact that different runs of the Generative System may lead to different solutions with similar

performance may be of interest to architects, who may try more than one run of the GS to get a

sense of available alternatives, and to try to understand which main features of a design

contribute to a successful behavior.

4.6 Testing for Chicago climate

Five similar experiments were also done for the Chicago climate, a heating dominated situation,

to assess to what extent optimum window designs may be sensitive to climatic conditions. In

this case the global minimum was not known in advance and so it was not possible to determine

the error margins. Results are summarized in table 4.2.

Experiment Best solution found Objective function
value (MWh)

1 0.3 /0.3 /1.8 /1.5 /1.2 /1.5 /2.4 /0.3 133.03

2 0.3 /0.3 /1.5 /1.5 /0.9 /1.5 /1.5 /0.9 132.97
3 0.6 /0.3 /1.5 /1.5 /1.2 /0.9 /0.3 /0.9 133.15
4 0.3 /0.3 /1.8 /1.5 /1.8 /0.9 /0.9 /0.6 133.00

5 0.3 /0.3 /1.5 /2.4 /1.8 /1.2 /0.6 /0.3 133.03

Table 4.2 Solutions for the Chicago climate

Figure 4.9 also depicts the solutions obtained for Chicago climate, which vary in significant ways

from Phoenix solutions. Analyzing the results of the first experiment shows that due to the



extreme winter conditions, north window dimensions were reduced to the minimum allowed by

the constraints (0.3 x 0.3 m), since north openings are, in this cold climate, a large source of

heat losses and provide little solar gains in winter. South window size increased in relation to

the Phoenix solutions, to allow for more solar gains in winter (1.8 x 1.5 m), and because

overheating is no longer a problem. East window size remained basically similar (1.2 x 1.5 m),

and west was reduced to a horizontal strip (2.4 x 0.3 m) that allows for some daylighting but

prevents excessive heat loss.

The significant differences between solutions found for each climate, and also between

orientations within the same climate, suggests the use of a Generative System like the one

proposed here may not only provide increased energy savings but also introduce a positive

degree of diversity in the design. It also suggests that unexpected solutions that might not be

obvious to the architect may be pointed out by the GS, such as the very large north-facing

windows for Phoenix, or the horizontal strip windows facing west for Chicago.
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Figure 4.9 Comparative results for
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Solutions optimized for environmental performance may not always represent a good behavior

in terms of other criteria. Actually, that is one of the main problems of using optimization

methods in architecture. For example, the north-facing windows for the Chicago climate may be

too small to provide occupants with an adequate view out. In those cases, the architect may

modify the results provided by the GS while making use of knowledge gained during the

optimization process, such as knowing that north-facing windows should be kept as small as

possible. A simple computer simulation can then be performed to determine to what extent the

modified design's energy consumption differs from the optimized solution.



4.7 Testing different types of glazing

It was mentioned before that the characteristics of the glazing used would also influence the

design of the windows. If a highly insulating glazing system is used in a cold climate, larger

glazing areas are possible by allowing a better balance between daylighting and heat loss. To

test this hypothesis an experiment was done for the Phoenix climate, where instead of the

double selective glass, a single clear glass was used. Table 4.3 summarizes the characteristics

of the two glazing systems:

Glazing type Layers [mm] Shading coefficient Visual transmittance U-value

Double selective 3 / 12 / 3 0.34 0.41 2.73

Single clear 3 1 0.898 6.31

Table 4.3 Characteristics of the two glazing types used

The results from the experiments are shown in figure 4.10. The most immediate perception is

that window sizes decreased in general, for all orientations. That confirms the hypothesis that if

a lower quality glazing solution is used, windows will represent more environmental problems to

the interior of the building, and will thus be reduced. Energy values corresponding to all

solutions will be shown in figure 4.11.
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Figure 4.10 Results from experiments using different glazing types

North window sizes have been significantly reduced. Several factors may contribute to that.

First, because the single glass has a much higher U-value, the window becomes a more

important source of heat loss. Heat loss is not too prevalent in a climate like Phoenix, but is still



a factor to consider during winter. Second, the single glass has a much higher shading

coefficient, meaning it allows more solar gains into the space. Again, solar gains are not very

significant in the north fagade, but between the March and September equinoxes, north fagades

still receive some amount of direct solar incidence in early morning and late afternoon. Apart

from that, there are the reflected and diffuse components of solar radiation that may reach the

glazing. Finally, because the visual transmittance of the single glazing more than doubles that of

the selective one, it is not necessary to have such large windows to admit into the space the

same amount of daylighting. All these factors probably come together to cause the decrease in

north window dimensions that can be seen in the figure.

For the other orientations, reducing solar heat gain was probably the main cause for

considerably decreasing window sizes. Again, penalties in terms of daylighting admission are

not so high because the visual transmittance of single clear glass is very high. West orientation

seems to be the more problematic in terms of heat gains, showing the smallest fenestrations.

This simple example aimed at demonstrating that a given fagade configuration suggested by the

GS may be significantly influenced by the materials chosen. Here only glass type was used as a

variable, but construction materials for walls and roofs may play an important role too. Given

that, the architect may chose to run the system several times, changing the type of materials

used, or may also turn the materials into variables themselves, used by the GS in search for a

good solution. An extension of this latter possibility will be presented in chapter 8, where choice

of construction materials is presented as a problem to the generative system.

4.8 Using shading as a variable

Even though the GS manipulated window sizes to overcome some of the environmental

problems created by using a lower quality glazing, the energy consumption of the experiments

using single glass was always higher than those using the double selective glazing. The next

question posed was: if the GS was allowed to use fixed shading systems [overhangs and

vertical fins] as complementary control strategies, could it find solutions that would be as good

as those using the better glass, in terms of energy use?

The new experimental setup implied that, apart from varying fenestration dimensions, an

overhang would exist in the south fagade, with width equal to the width of the window, and



variable depth determined by the GS. In the east window, along with the overhang, a vertical fin

also exists, with height equal to the height of the window and depth equal to the overhang, and

located on the left side of the window, since that is the direction from where most of the direct

sun comes. The west window follows similar rules, with the exception that the fin is located on

the right side. No overhangs or fins are predicted in the north fagade, since direct sun is not too

important there.

The results are depicted in figure 4.11. The energy levels shown in the figure very closely

approximate those where double selective glazing is used, suggesting that by properly sizing

fenestrations and adding shading elements, it is possible to achieve similar levels of

performance even if using lower quality glazing.

Figure 4.11 Using variable-depth fixed shading systems with single clear glazing. Figures in the right
show annual energy consumption in MWh.



In the best solution [last row], south shading has moderate depth, east shading is the deepest,
with moderate window sizes associated with it, and west windows are also larger and have

deeper shading devices than any of the previous four experiments. In most results, west

windows are small horizontal slots with shallow shading, but in the best solution, shading

becomes deeper and window sizes increase.

Figure 4.11 shows the elevations and energy results for the three situations studied: double

selective glazing, single clear glazing, and single clear glazing with shading, all for Phoenix.
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Figure 4.11 Results for the three
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cases, Phoenix. Figures in the right show energy consumption in MWh.

A manual experiment was performed, removing from all solutions above the east and west

vertical fins. The result was that the energy performance of the building slightly decreased [see

table 4.4]. This suggests that the vertical fins are more detrimental than helpful, probably

because they block daylighting while providing little protection against the direct sun. Horizontal

overhangs, on the other hand, proved to be good additions to the designs.

experiment with vertical fins without vertical fins

1 115.91 115.82

2 115.64 115.52

115.55

116.26

115.29

115.73average

115.44

116.11

115.08

115.59

Table 4.4 Results with and without vertical fins. Figures in the right show annual energy consumption
in MWh. Vertical fins slightly increase energy levels.

...............



4.9 Testing crossover and mutation probabilities

The values used for crossover and mutation probabilities throughout these experiments were

taken from the literature, and are based on results from parametric studies done by others to

determine values that would provide high quality results. However, and just for the sake of

completeness, some parametric studies with different crossover and mutation values were

performed here too.

MicroGAs usually use 1 as the value for crossover probability. Some experiments were done

where this probability was reduced to 0.5 and to 0.1. The results corroborate the information

found in the literature, as reducing crossover probability decreases the quality of results [table

4.5]. With the small population sizes used in MicroGAs, a high genetic combination rate favors

the appearance of better results.

experiment probability probability probability
crossover = 0 1 crossover = 0 5 crossover 1 0

1 114.77 114.74 114.80

2 114.88 114.65 114.56

3 114.83 114.60 114.59

4 115.21 114.89 114.53

5 114.53 114.65 114.77

average 114 84 114 70 114,65

Table 4.5 Results for different crossover probabilities. Figures show annual energy consumption in
MWh.

The impact of changing mutation probability was assessed for a standard GA, with a population

size of 30 individuals. The literature mentions that a mutation rate of 1/n, where n is the length

of the chromosomes, is almost optimal (Goldberg, 1989). In this case, n=24, so 1/n=0.04. When

mutation rate was increased to 0.1, and results were slightly worse, confirming the information

found in the literature [table 4.6].



experiment
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Table 4.6 Results
MWh.

probability
mutation = 0 04

114.74

114-65

114.60

114.89

114.65

114 70

probability
mutation = 0.1

115.06

114.65

114.80

114.88

114.68

114 81

for different mutation probabilities. Figures show annual energy consumption in

These experiments were not intended to be exhaustive, since others have done similar tests

that are documented in the literature. They simply aimed at providing some evidence that the

results achieved by others were also applicable to this problem setup. As mentioned in the

introduction to the chapter, variations in objective function values are usually small, mainly due

to the fact that the specific building layout used in these experiments is not too sensitive to

changes in fenestration dimensions.

4.10 Conclusions of the chapter

The Generative System was first validated in relation to a hand-worked example for which the

optimal solution could be manually calculated. Results proved highly satisfactory and provided

enough confidence for the process to be extended to a larger solution space for which there

would be no practical way of calculating the optimized solutions if the building would not have

been designed with separable objective functions in mind. The GS was thus applied to a

hyperspace of eight dimensions, corresponding to simultaneously sizing eight window

dimensions in the building.

The results obtained showed that from random initial populations with high diversity the

algorithm slowly converged to populations consisting of optimal or near-optimal solutions. For

different runs of the problem the best solution obtained did show some particularities and



variations, what demonstrates, even in this very limited and confined case, that different

configurations may correspond to similar standards of environmental performance. This may

constitute valuable information to the architect, who is provided with a number of alternative

solutions over which he can further overlap other design criteria not included in the optimization

process. This was one of the initial goals of this project, and these initial experiments are

starting to confirm it.

It was also observed that for different orientations the solutions obtained varied substantially, as

expected from the different requirements the glazing elements have to respond to. Also, for

different climates the design solutions proposed by the algorithm differed considerably too. The

same building layout needs to have different design components according to the climate it is

located in order to improve its environmental performance.

Finally, the GS proved to be rather efficient and reliable in locating high performance solutions,

even in the 16 million+ solution space, what provided enough confidence to pursue the

experiments towards more complex designs, resembling more an actual piece of architecture

than the schematic building layout used in this chapter. However, before that next step is taken,

another test will still be made, comparing Genetic Algorithms to other existing search procedure

for complex solution spaces, Simulated Annealing. That work will be described in the next

chapter.



Comparing GAs with Simulated Annealing and Tabu Search

5.1 Introduction

Many large-scale optimization problems cannot be solved to optimality using standard

optimization techniques. For this type of problems one is forced to use approximation

algorithms or heuristics, for which there is no guarantee that the solution found by the

algorithm is optimal. In this chapter we present and compare three of those heuristic

methods: Genetic Algorithms [GA], Simulated Annealing [SA] and Tabu Search [TS]. GA

mechanisms have already been described in previous chapters. Here, SA and TS

techniques are briefly described in their approaches to optimization and methods of

search. Some comparative studies from the literature on the performance of the three

different methods are presented. Hybrid implementations that combine features drawn

from more than one technique are also described.

An implementation of Simulated Annealing working together with DOE2 was completed,

and some results of computational experiments comparing the two techniques [SA and

GA] are presented. Finally, there is a brief discussion of the relative merits of each of the

methods and of potential applications of Tabu Search to architecture-related problems.

5.2 Description of two heuristic techniques [Simulated Annealing and Tabu Search]

5.2.1 Simulated Annealing

Simulated Annealing is a general optimization technique for solving combinatorial

optimization problems. It is called a metaheuristic because it guides another heuristic

technique, the descent method. It also incorporates randomization techniques.

The descent method is first described, to understand the role it plays in simulated

annealing. For a minimization problem, the descent method needs a definition of feasible

solutions, a cost function and a way to generate a transition from a solution to another. A

neighborhood N(i) is defined for each solution i, consisting of all the solutions k that can be

reached from i in one single transition. Starting at a given solution, the algorithm generates
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a possible transition from there to a neighbor j of it. If that neighbor has a lower cost, the

current solution is replaced by it, otherwise another neighbor is selected and evaluated.

The algorithm terminates when a configuration is obtained whose cost is no worse than

any of its neighbors (van Laarhoven, 1987).

The descent method has the disadvantage being easily trapped in a local minimum, for

which there is no information on how much it deviates from the global minimum. The local

minimum location depends on the initial configuration, for which choice there are no

guidelines. One of the possible ways to help prevent iterative improvement searches like

this from being locally trapped is to promote a process where transitions which correspond

to an increase in the cost function are also acceptable in a limited way. This is contrary to

the descent method where only transitions corresponding to a decrease in the cost

function are accepted, and is used by the simulated annealing algorithm.

Simulated annealing is based on the analogy between the annealing of solids and the

problem of solving large combinatorial optimization problems. In condensed matter

physics, annealing is a process in which a metal solid is heated up in a heat bath to a

maximum temperature where it is melted, at which all the particles randomly arrange

themselves in the liquid phase. This is followed by slowly lowering the temperature of the

heat bath in a cooling process, during which the particles arrange themselves in the

lowest-energy ground state of the corresponding lattice. The solid will achieve this lowest

energy state provided the initial temperature is sufficiently high and the cooling is carried

out slowly enough. If the cooling is too rapid, that is, if the solid is not allowed to reach

thermal equilibrium for each temperature value, defects can get frozen into the solid and

metastable amorphous structures may be reached rather than the low energy crystalline

lattice structure (van Laarhoven, 1987). To avoid this, at each temperature level the crystal

should be kept long enough to reach thermal equilibrium at that temperature.

Metropolis et al. (1953, quoted by van Laarhoven et al., 1987) used a Monte-Carlo method

to simulate the evolution to thermal equilibrium of a crystal for a fixed value of the

temperature T. It is called the Metropolis algorithm and works in the following way: Given

the current state, S, of the crystal, a small displacement of a randomly chosen molecule is

applied. If the new state corresponds to a lower energy level, that is, the difference in the

energy level, A, between the current configuration S and the newly generated configuration



S' is negative, S' is accepted with probability 1. On the other hand, if A > 0, that is, the new

configuration corresponds to a higher energy state, S' can still be accepted with

probability:

e-A/kBT

where kB is known as the Boltzmann constant. This acceptance rule is referred to as the

Metropolis criterion.

At each temperature value T the solid is allowed to reach thermal equilibrium,

characterized by a probability of being in a state i with energy E; given by the Boltzmann

distribution:

P{X=i} = exp(-E, / kBT)
(exp(-E /kBT)

As the temperature decreases, the Boltzmann distribution concentrates on the states with

lowest energy and finally, when the temperature approaches zero, only the minimum

energy states have a non-zero probability of occurrence [figure 5.1].

The Metropolis algorithm can also be used to generate sequences of solutions in a

combinatorial optimization problem. For that we use an objective function C, the analogue

of energy E, whose minimization is the goal of the procedure; and a control parameter c,

the analogue of temperature T, which controls the radius of neighborhood and influences

the probability of a non-improving solution being chosen.

The simulated annealing algorithm works like a series of Metropolis algorithms performed

at decreasing values of the control parameter. It starts with a high value of the control

parameter, corresponding to the state of high temperature mentioned for actual annealing.

Given an initial solution i, a generation mechanism obtains another solution j by choosing

at random an element from the neighborhood of i. This corresponds to the small

displacement of a randomly chosen molecule in real annealing. The new solution j is
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Figure 5.1 The graph shows that for decreasing temperature values, the probability of
occurrence of lower-energy states increases, and it approaches 1 as the
temperature control parameter approaches 0

accepted as the next configuration with probability 1 if ACi1 = Cj)-C(i) is negative or zero. If

AC1 > 0, j can still be accepted with probability exp(-ACi; /c). At each value of the control

parameter this process is continued until equilibrium is reached, that is, until the probability

distribution approaches the equivalent of the Boltzmann distribution.

In simulated annealing two types of algorithms can be used, homogeneous and

inhomogeneous. For the homogeneous algorithm, the value of c does not vary with the

iteration k. A sequence of homogeneous Markov chains of finite length is generated at

decreasing values of the control parameter. For the inhomogeneous algorithm the value of

c is changed between subsequent transitions.

For a homogeneous model it can be proven that the equivalent of the Boltzmann

distribution for reaching thermal equilibrium is given by a stationary distribution q(c) whose

components are given by (Aarts et al, 1997):



q (c) - exp(-C(i) / c)
Iexp(-C(j)/ c)

It can be proven that for the homogeneous model the simulated annealing algorithm

asymptotically finds an optimal solution if we first take the limit of the homogeneous

Markov chain for an infinite number of trials, and then take the limit for the control

parameter to 0 (Aarts et al., 1997):

limlimPf{X(k)e S*}=1
cLO k->oo

where S* denotes the set of optimal solutions

This is a basic property of the simulated annealing algorithm, that it asymptotically

converges to the optimum. But in any implementation of the algorithm, asymptotic

convergence can only be approximated. The number of trials for each value of ck (the

control parameter) is a finite number, and limk, ck=O can only be approximated by a finite

number of values for ck.

Usually one resorts to an implementation where a sequence of homogeneous Markov

chains of finite length is generated at decreasing values of the control parameter, as

mentioned above. The following elements must then be specified to make use of the

Simulated Annealing algorithm (van Laarhoven, 1987):

1. A description of feasible system configurations

2. A generator of random changes in the configurations

3. An objective function C (analog of energy) whose minimization is the goal of the

procedure

4. A control parameter ck (analog of temperature) and a cooling schedule which tells how

the temperature is to be lowered from high to low values. This includes after how many

random changes in configuration is a downward step in c taken, and how large is that

step.



For the cooling schedule the following parameters should be specified:

1. Initial values of the control parameter, co

2. Final value of the control parameter, cf [stop criterion]

3. Length of Markov chains [after how many random changes in configuration is a

downward step in c taken]

4. A rule for changing the current value of the control parameter, ck, into the next one ck.1

[how large is the downward step in c]

There are two possible types of heuristic cooling schedules, static and dynamic (Aarts et

al., 1997). In a static cooling schedule the parameters do not change during the execution

of the algorithm. In a dynamic cooling schedule the parameters are adaptively changed

during the execution of the algorithm.

A common example of a static cooling schedule is the geometric schedule, which is further

described in section 5.4.1 and will be used in the simulated annealing implementation

described there.

Aarts et al. (1997) also describe ways to implement a dynamic schedule. For example, a

sufficiently large vale of co may be achieved by forcing the initial acceptance ratio (number

of accepted transitions at co) to be close to 1, typically between 0.9 and 0.99. The

acceptance ratio can be calculated from a number of generated transitions, and the value

of co adjusted accordingly. The final value of the control parameter may be calculated

adaptively by terminating the execution of the algorithm if the value of the objective

function remains unchanged for a number of consecutive trials. The length of the Markov

chain may be determined so that at each value of ck a minimum number of trials is

accepted. Since transitions are accepted with decreasing probability for smaller values of

the control parameter, it is advisable to put an upper bound on the maximum number of

trials for small values of ck.

5.2.2 Tabu Search

Tabu Search is a metaheuristic that searches local neighborhoods for the best possible

path to progress (Hertz et al., 1997). Contrarily to hill-climbing or steepest descent



methods, which as mentioned before can be easily trapped in local minima, TS continues

exploration without becoming confounded by an absence of improving moves, by always

picking the best available move at each step even if it is a non-improving one. That is,

lacking the possibility of improvement, TS will choose the least disimprovement.

However, when moves that imply a worse objective function value are allowed there is the

risk of visiting again a solution that has already been evaluated and of generating cycles

within the search. To help preventing falling back into a local minimum from which it has

previously emerged, Tabu Search includes a form of short-term memory that keeps

information on the itinerary through the last solutions visited. This information is kept on a

list of size T called a tabu list and will prevent the occurrence of cycles of at most size T.

The structure of the neighborhood N(i) will thus depend on the itinerary followed until i and

thus on the iteration k. So, the neighborhood N(i,k) = N(i) - T(k).

In many cases using a list of solutions may be impractical if the solution description

requires too much memory use. For considerations of memory conservation, Tabu Search

uses instead a list of tabu moves, and often records less than the full range of attributes

required to characterize a move or the solution to which it is applied (Glover, 1989). A

partial range of attributes is recorded instead, which potentially may be shared by other

moves or solutions. This implies that we may be giving a tabu status to solutions that were

not yet visited, if moves leading to those solutions are covered by the attributes present in

the tabu list.

To explain it better, in the simplest case, if move s is performed, move s- (the inverse

move) is added to the tabu list to prevent cycling. Thus the list T is given by:

T = { s-1 : S = sh for h > k - t}

where k is the iteration index and t is the size of the tabu list

T is thus the set of moves that would reverse (or 'undo') one of the moves made in the t

most recent iterations of the search process.

After each iteration k the tabu list is updated by setting T = T - sk-41 + sk-1



However, when moves are not completely characterized but instead only a partial range of

attributes is used to describe them, the tabu list does not consist simply of the moves s-1

for h>k-t, but of collections Ch of moves where each Ch defines its membership by certain

attributes (Glover, 1989). This cause the list T to contain sh-1 and other moves that likewise

satisfy these conditions, and thus a tabu status may be given to moves leading to solutions

that were not already visited. To help improve on this situation, we may accept a tabu

move in spite of its tabu status if it leads to a solution better than the best found so far.

This means the solution passed an aspiration level, that is, it is better than a certain

threshold value, in this case the best objective function value found so far.

One aspect that is evident about Tabu Search is that it is a quite greedy algorithm. This

aggressive orientation relies on two considerations, according to Glover (1989): first, that

many optimization problems can be solved optimally by making the best available move at

each step; second, that local optimality does not represent a barrier to TS due to its

procedural organization and its use of short-term memory and thus there are less

compelling reasons to delay the approach to a local optimum.

Apart from short-term memory, TS also makes use of intermediate and long-term memory

functions. Intermediate memory is used to implement temporary intensification of the

search, what means searching more deeply around some area of the solution space

because it contains some interesting solutions. Intensification is thus implemented by

giving higher priority to solutions similar to the current solution. It operates by recording

and comparing features from a number of best trial solutions generated during a particular

period of the search. Features that are common to a majority of those solutions, such as

values attributed to certain variables, are taken to be an attribute of good solutions. TS

then seeks new solutions containing those features by restricting or penalizing other types

of solutions during that period of regional search intensification.

Long-term memory is used to implement diversification of the search. Its principles are

roughly the reverse of those for intensification, since diversification guides the process to

regions that markedly contrast with those examined thus far by penalizing features that are

found to be prevalent in previous executions of the search process (Glover, 1989). This

process differs considerably from those methods that seek diversity by randomly



generating new random points in the search, because it provides the opportunity to learn

from previous steps in the search. Both intensification and diversification can be

periodically introduced in the TS process and represent an important use of memory

structure in Tabu Search.

5.3 Comparative studies between GAs, SA, TS and hybrid approaches

Many studies exist in the literature comparing GAs, SA and TS performance for a variety

of problems. Other studies propose hybrid approaches where features from different

techniques are incorporated into a new hybrid method in order to improve the overall

behavior of the search. In this section some of those studies are presented.

Gallego et al. (1998) compared SA, TS and GA in terms of memory use, intensification,

diversification, and problem modeling issues like neighborhood structures. Table 5.1

summarizes the key issues pointed out in the paper, which are further developed in the

text.

In relation to short-term and long-term memory, Simulated Annealing is based on a

statistical process (the Boltzmann distribution) and hence makes little use of memory.

Configurations may be visited repeatedly during the search as a consequence of that. The

only use of memory in SA is that the best solution found so far is stored, but this is usually

not used to guide the search. A way to guide the search based on that information is to

start searching from the best solution each time a temperature reduction is performed.

Genetic algorithms make explicit use of memory when elitism is used (always copying the

best solution of a generation to the next generation), in order to preserve valuable genetic

information. They also make implicit use of memory by keeping track of high-performance

building blocks, thought the process of selection. The fact that the algorithm is based on

sequences of generations also implies an implicit use of memory.

The strategy that makes more use of memory is Tabu Search. Here different types of

memory structures are used to guide the search. Four types of memory structures are

used: Recency-based memory is a type of short-term memory that keeps track of the most

recent moves done by the algorithm and labels the reverse moves as tabu active to



prevent revisiting solutions already tested in the recent past. Tabu lists are used to

manage this type of memory.

Memory Intensification Diversification Neighborhoods

SA Almost no use of Search moves less At early stages of the Requires a definition
memory freely as it progresses, search, probability of of neighborhoods.

with lower probability of accepting solutions that
Only if best solution accepting very different significantly decrease Size of neighborhood
found so far is used to solutions from the performance is higher, is not too important, as
restart search after each current one meaning that new not all of neighborhood
temperature reduction regions of the search is explored [at each

Neighborhood radius space are explored step, a single solution
can also decrease is picked for

evaluation]

GA Some use of memory Non-systematic Crossover: new points in No definition of
the solution space are neighborhood

Explicit - elitism Mutation: introduces a created by combining
small change to an existing solutions New solutions are

Implicit - keeps track of existing solution, found by the process
high-performance meaning it is searching MicroGAs have high of crossover between

building blocks; in its vicinity diversification by often two existing solutions
sequence of generations starting new random
propagates useful populations
genetic information

TS Extensive use of Systematic Systematic Requires a definition
memory of neighborhoods.

Recency-based: keeps Stores good Temporary change of Neighborhood size is

configuratonssandttenooulesocntpenliz

track of recent moves to exofgrstersltions an hn rl similaretolhe more critical, since it is
prevent reverse ones eigornhd a greedy algorithm

imore current one. that explores all of a

Frequency-based: thoroughly Can be implemented by single neighborhood
keeps track of frequency Path relinking: building removing some feature for best path.
of certain features in blocks from elite of the current solution
solutions already visited, solutions stored in that temporarily become May include some
Used for diversification memory can be used to tabu-active, thus forcing method to explore only

produce new attractive the search to visit most attractive areas

Quality memory: stores solutions previously unexplored of the neighborhood,
which building blocks regions. like first randomly
lead to high quality sampling
solutions. Used for path neighborhood and

relinking then exploring only the
best solution areas

Influence memory:
records impact of certain
moves and makes bad
moves tabu active for
some period of time

Table 5.1 Comparison of characteristics of the 3
al.(1998).

heuristics methods, adapted from Gallego et



Frequency-based memory is a type of long-term memory that can keep track of the

frequencies with which certain features of a solution appeared in the solutions already

visited by the algorithm. This information can then be used in the diversification phase so

that configurations containing unused features are preferred. There is also a quality

dimension to memory use in Tabu Search in a way that building blocks that lead to high-

quality solutions can be stored in long-term memory in elite configurations. These building

blocks are then used in the creation of new configurations using a path relinking strategy.

Finally, there is influence memory, which accounts for the impact of performing a certain

move on the quality of the solution. Moves that considerably worsen the solution

performance will remain tabu-active for as long as possible.

In terms of intensification, Simulated Annealing implements it by allowing the search to

move more freely only at the early stages of the process when the temperature control

parameter is higher. As the temperature lowers down the algorithm is hopefully closer to

the optimal solution and has a lower probability of accepting non-improving solutions, thus

meaning it would not accept points too far from the current solution. Also, the radius of the

neighborhood can be decreased during the search so that at later stages only the

immediate neighborhood of solutions is sampled.

In GAs, intensification is carried out in a non-systematic way by the mechanism of

mutation, which performs small changes in candidate solutions in a way that corresponds

to searching its immediate neighborhood.

TS performs intensification in a systematic way, by storing good configurations found

along the search and later exploring their neighborhoods more thoroughly to find local

optimal solutions near those configurations. Intensification can also be performed using

the mechanism of path relinking, where building blocks from elite solutions stored in

memory can be used to produce new attractive solutions.

For diversification, Simulated Annealing uses the fact that at early stages of the search the

probability acceptance test is more likely to accept solutions implying a significant

decrease in objective function values, thus meaning new regions of the search space are

being explored.



In typical GAs, diversification is mainly introduced by the crossover mechanism, where two

high-performance solutions swap portions of their chromosomes to generate new

configurations. This usually implies exploring new regions of the search space. The

process of randomly choosing pairs of individuals for crossover, and randomly generating

crossover points further ensures introduction of diversification. In Micro-GAs [previously

described in chapter 3], diversification is much enhanced by the fact that new points are

introduced in the search each time a new micro-population is generated.

Again in TS diversification is used in a more systematic way, by penalizing solutions

similar to the current one. This can be implemented by temporarily changing the rules for

finding new solutions, for example, removing some feature of the current solution that

temporarily becomes tabu-active, thus changing the construction of the solution and

forcing the search to visit previously unexplored regions.

In terms of problem modeling, the main issue apart from defining the structure of feasible

configurations and an objective function is the definition of neighborhood structures. In

Simulated Annealing the size of a neighborhood is usually large, but this does not

represent a problem since a single solution is picked from the neighborhood for evaluation.

In GAs there is no actual definition of a neighborhood since new solutions are found by the

process of crossover between two existing solutions.

In TS the definition of neighborhoods is more critical since the algorithm is more greedy

and tends to look at the entire neighborhood to find the best path to follow. If the size of

the neighborhood is too large to be computationally practical to evaluate all of it, there

could be a way to explore only the most attractive areas of the neighborhood, like first

randomly sampling the neighborhood and then exploring around better solution areas.

Gallego et al. (1998) then describe an hybrid approach between Tabu Search and Genetic

Algorithms. The main algorithm is of TS type, but it incorporates GA concepts, namely

using a population of solutions instead of a single one. The TS search is carried out for

each solution independently. After a certain number of iterations, a new generation of

configurations is formed from the current one, as in GAs. Two main mechanisms are
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applied to form the new generation: guided crossover and path relinking, both of which

operate on high-quality building blocks. Guided crossover is used as the main mechanism

for diversification, instead of the more conventional frequency-based memory applied in

TS. Path relinking takes two solutions, one a current solution and other belonging to the

list of elite configurations kept by the algorithm. It adds attributes of the elite solution to the

current one, assuming that the elite configuration will have elements that can improve the

other. In the experiments described by the author it was shown that the hybrid algorithm

performed better than either standard SA or GA. GA results were nevertheless better that

SA results.

Josefowska et al (1998) compared three metaheuristics (Genetic Algorithms, Simulated

Annealing and Tabu Search) for problems of scheduling nonpreemtable jobs that require

simultaneously a machine from a set of parallel, identical machines and a continuous,

renewable resource. The optimization criterion is the schedule length. The problem is to

find a sequence of jobs on machines and simultaneously to find a continuous resource

allocation that minimizes the schedule length. For each feasible sequence visited in the

solution space the corresponding schedule length is then calculated, and the optimal

resource allocation among jobs sequences is found by solving a convex mathematical

programming problem.

The three heuristics were compared by setting the stop criterion as the number of

solutions visited (2000 solutions). This ensures a comparable computational effort devoted

to each method. The first experiment was carried out for 2 machines and 10, 15 and 20

jobs. For n=10 and n=15 jobs, the experiments were done for 100 instances. For n=20

only 60 instances were generated due to large computational demand. The second

experiment was carried out for 10 jobs and number of machines m=2, 3 and 4. For all

groups 100 instances were generated.

It was observed that TS was able to find optimal solutions most often, followed by GA and

finally SA. Furthermore, it was observed that the growth of the number of jobs caused a

larger deterioration in the performance of SA and GA than it did for Tabu Search.

Increasing the number of machines has no negative effect on TS, with the number of

optimal solutions actually increasing. The performance for SA was the most affected, and

that of GA was also affected although not as much as SA. In general the Genetic
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Algorithm behaved better than Simulated Annealing, but was still outperformed by the

Tabu Search strategy.

Chiang et al. (1998) propose an hybrid tabu search approach that combines tabu search

with simulated annealing. It is basically a tabu search mechanism with a revision on the

acceptance or rejection rules for candidate solutions. Consider a move (u,v) with

difference in objective function from the initial solution AC(u,v). Move (u,v) can be

classified as tabu or non-tabu. This fact is used to accept or reject the solution, according

to the following rules: In the case move (u,v) is not on the tabu list, the candidate solution

is accepted with probability 1 if AC 0. In case AC>0, the candidate solution is accepted

following the Metropolis criterion (Paccept = exp (-AC/T)), where T is a control parameter like

the temperature in SA. If move (u,v) is in the tabu list, ACKO, and the current cost of the

solution is lower than the best cost so far (Curcost < Mincost), the solution is accepted due

to the aspiration criterion. If move (u,v) is in the tabu list, ACO, and Curcost > Mincost,

the solution is accepted with probability exp (-AC/T). If move (u,v) is in the tabu list and

AC>0, the solution is accepted with a further reduced Metropolis probability exp (-AC/T)[(1-

kuv)], where kuv is set in the range (0.5,0.9). Fine tuning is required to obtain the best

value for kuv, and from the authors' experiments it seems to be 0.7. The hybrid tabu

search approach proved to outperform both typical TS and SA in those experiments. Table

5.2 summarizes the several strategies used by Chiang et al. to calculate the probability of

accepting a given move.

Almeida et al. (1998) propose a composite heuristic where different strategies are used at

different phases of the search. The problem under study is that of generating the schedule

that minimizes the weighted sum of total earliness and total tardiness of a set of jobs n to

be processed in a single machine. The different types of neighborhoods used are:

N1(S) = {S': S' is obtained by swapping a pair of adjacent jobs in S}

N2(S) = {S': S' is obtained by swapping a pair of jobs that are sequenced at most q1

positions apart in S}

where q1 is an integer parameter set to a small positive value

N3(S) = (S': S' is obtained by reinserting one job at least q2 positions apart from its position

in S}

where q2 is an integer parameter
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AC 0 1
Move is not in Tabu list

AC > 0 exp (-AC/T)

AC 0 and Curcost < Mincost 1

and Curcost > Mincost exp (-AC/T)
Move is in Tabu list

AC > 0 exp (-AC/T) [1-kuv]

kuv e [0.5, 0.9]
fine tuning required by user

Table 5.2 Strategies used by Chiang et al. (1998) to calculate the probability of accepting a given
move.

At the first phase of the process a tabu search method is applied, using neighborhood N1.

This corresponds to a short-range search. The second phase uses a simulated annealing

method corresponding to a medium-range search, with neighborhood N2. If the SA search

yields a new best solution, a search for a local optimum around that solution is done using

steepest descent, a short-range method [phase 3]. If it does not, the search moves on to

phase 4, where random selection is performed in a long-range approach.

Performing a simulated annealing search at a medium-range after completing an intensive

tabu search allows for a wider knowledge over the sub-region under examination before it

is abandoned in phase 4. If the medium-range flexible search does not lead to a new best

solution the decision to move the search to a new sub-region is taken immediately. If it

does, the sub-region is not left before looking for a local optimum.

The overall design of the composite heuristic is based on the assumption that alternating

the search range and strategies would yield a better coverage of the set of feasible

solutions than just performing an intensive search at short range around solutions selected

during a diversification step. When compared with both Tabu Search and Simulated

Annealing, the composite heuristic performed better than any of those, being able to find

Tabu condition Change in objective function [AC] Probability of accepting move



optimum solutions more often, and also being more efficient in terms of reducing CPU

time.

Mantawy et al. (1997) propose a combination of simulated annealing and tabu search that

basically consists of a SA algorithm with a TS algorithm used as a filter to prevent cycling

of accepted solutions. Because SA is a memoryless technique, the use of short-term

memory is supposed to improve its performance. This is achieved by applying the TS test

to all trial solutions. The accepted solution by the tabu test is then tested by the SA. The

TS test is mainly used to reject repeated solutions before they are tried by the SA method.

The results obtained were again better than those of simple SA and TS. The basic

advantages of the proposed algorithm were higher speed of convergence and higher

quality of solutions.

5.4 Application of SA and TS to the test building used in chapter 4

5.4.1 Simulated Annealing

For this experiment, the same building as in chapter 4 was used. To apply the Simulated

Annealing algorithm to that problem, the following approach is proposed:

1. Description of feasible configurations

A configuration is an array of eight numbers corresponding to window width and height for

north, south, east and west orientations. Those dimensions have to be between 0.3 m and

2.4 m, at discrete steps of 0.3 m.

k1= north window width

k2= north window height

k3 = south window width

k4= south window height

k5= east window width

k6= east window height

k7= west window width

k8= west window height
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So, a description of a solution is:

(k1, k2, k3, k4, k5 , k6, k7, k8)

subject to 0.3 kn 2.4, n=1,2,..,8

2. A generator of random changes in the configurations

A neighbor of a given configuration may be found by adding or subtracting the value of 0.3

m from one of the eight window dimensions forming a solution. To randomly generate a

neighbor, the following procedure can be used: randomly choose between the values 0.3

or -0.3 (increasing or decreasing the window dimension); randomly pick one window

dimension to be changed; add either 0.3 or -0.3 to the window dimension chosen; verify if

the resulting solution is feasible.

Let r1 = random (0.3 or -0.3)

Let r2 = random (k1, k8)

Set r2 = r1 + r2

Subject to 0.3 r2  2.4

3. Objective function (analogue of energy)

The objective function value is the result of running a DOE2 simulation with the window

parameters chosen, and expresses annual energy consumption in the building in MWh.

4. Cooling schedule

For this problem a static cooling schedule is applied. An example of a static cooling

schedule is the geometric schedule proposed by Kirkpatrick et al (1983), and described by

Aarts et al. (1997), which works the following way:

a] Initial values of the control parameter, co

A proposed value for co is the maximum difference in objective function values between

any two neighboring solutions. This is supposed to ensure a sufficiently large initial value

for the control parameter. For the hand-worked example done for the Phoenix climate, it is

possible to determine that the maximum difference in objective function values from two
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neighbor solutions is 1.2 MWh. Thus, 1.2 could be a possible value for the initial value of c

for the Phoenix climate.

b] Final value for the control parameter, cf [stop criterion]

It is proposed that the final value for the control parameter is fixed at some small value that

may be related to the smallest possible difference in cost between two neighboring

solutions. For the hand-worked Phoenix example, the minimum objective function

difference between two neighbors is 0.006 MWh, what could thus become the final value

for the control parameter.

c] Number of trials after which a downward step in c taken

The number of trials after which a downward step in c is taken is set at some number that

may be related to the size of the neighborhood. In this case, the maximum size of the

neighborhood is 16 (although this may include infeasible solutions in situations where one

or more parameters are already at their upper or lower bounds). A number like 32 could

thus be proposed.

d] A rule for changing the current value of the control parameter, ck, into the next one ck+1

[how large is the downward step in c]

A possible rule for decrementing the control parameter is

ck+1 =c- Ck, k=0,1.

where c is a positive constant smaller than but close to 1. Typical values are between 0.8

and 0.99.

The graph in figure 5.2 shows the probability of accepting a non-improving solution for

decreasing values of the control parameter, as it is lowered from a maximum value of 4.1

to a minimum of 0.19 [Note: These values are in MBTU, Million British Thermal Units, and

correspond to the maximum and minimum differences in objective function values from

two neighbor solutions, respectively 1.2 and 0.006, in MWh]. The constant by which the

control parameter is decreased is a=0.9. The plots were done for three different values of

cost difference: 4, 2 and 1 MBTU. It can be seen that when the cost difference is high (4

MBTU), the probability of accepting a non-improving solution is low, with a maximum value



of 0.37 at the maximum value of the control parameter (4.1) and quickly tending to 0 as the

control parameter value decreases. When the cost difference is small (1 MBTU), the

probability of accepting that non-improving solution is quite high (0.78) at maximum values

of the control parameter and slowly tends to 0 as the control parameter decreases.

1

0.6

C. 0.5
- exp(-4/c)

-- exp(-2/c)
-- exp(-1/c)

Control paramneter

Figure 5.2 Probability of accepting a non-improving solution for decreasing values of the control
parameters

5.4.2 Tabu search

To apply Tabu search to the problem under study we need a definition of feasible

solutions, a definition of moves, size of the Tabu list, definition of an aspiration level,

definition of the objective function, and ways to perform intensification and diversification of

the search.

1. Description of feasible solutions

As in simulated annealing, a solution is an array of eight numbers corresponding to

window width and height for north, south, east and west orientations. Those dimensions

are between 0.3m and 2.4m feet, at discrete steps of 0.3m.
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k1= north window width

k2= north window height

k3= south window width

k4= south window height

k5 = east window width

k6= east window height

k7= west window width

k8= west window height

So, a description of a solution is:

(k1, k2, k3, k4, k5 , k6, k7, k8)

subject to 0.3 kn 2.4, n=1,2,..,8

2. A definition of moves

A move may be performed by adding or subtracting the value of 0.3 m from one of the

eight window dimensions forming a solution. The TS algorithm will explore the entire

neighborhood, that is, consider all possible moves at a certain point, and then chose the

one that offers the best improvement [or the least disimprovement].

Set r1 = r1 + 0.3 or r1 = r1 -0.3

Subject to 0.3 r1  2.4

3. Tabu list

If a move of adding 0.3 to a dimension is performed, the move of subtracting 0.3 from that

same dimension becomes tabu. The size of the list is related to its main function of

preventing cycling. If the list is too short it may not prevent cycling. But if the list is too long

it will create excessive restrictions and increase the mean value of visited solutions, thus

slowing down the algorithm. A way of overcoming the difficulty of sizing the Tabu list is to

vary its size during the search from a maximum to a minimum value (Hertz et al., 1997).

4. Aspiration level

The aspiration level most commonly used is if the Tabu move leads to a solution that is

better than the best solution found so far.
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5. Objective function

The objective function value is the result of running a DOE2 thermal and lighting simulation

with the window parameters chosen, and expresses annual energy consumption in the

building in MWh.

6. Intensification of search

To intensify the search in regions that seem to hold good solutions, the algorithm goes

back to the best solutions found so far. The size of the Tabu list is then decreased for a

certain number of iterations. Other way of performing intensification is to use 'long-term

memory', where the components of good moves or solutions are memorized as building

blocks. During the intensification phase, the moves or solutions are evaluated taking into

account the building blocks they include, and moves that tend to destroy those building

blocks are penalized in terms of objective function values, while those that generate them

are favored. Path relinking can also be applied, making use of those building blocks.

7. Diversification of search

A possible way to diversify the search is to perform several random restarts in order to

assure that all areas of the solution space are sampled. Another way is to penalize moves

frequently performed and solutions visited too often or too similar to the current ones

(Hertz et al, 1997), in terms of the objective function. This penalty should be set large

enough to allow the search to escape from the current region. The modified objective

function is then used for a certain number of iterations. Another alternative to using

penalties applied to the objective function is to turn some characteristics of the solution

tabu-active, so that the search would have to move away from solutions containing those

characteristics.

5.5 Test procedures

The two optimization techniques tested were Genetic Algorithms and Simulated Annealing,

which were compared in terms of results achieved during a limited number of function

evaluations [500]. Results were analyzed in terms of proximity to the global minimum and

number of evaluations necessary to achieve that result.
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5.5.1 Genetic Algorithm

For the Genetic Algorithm, a MicroGA was applied as in the previous experiments, which

was also was given the additional property of restricted 'memory' [automatically retrieve

from memory the fitness of solutions already evaluated]. Because experiments were done

in terms of number of function evaluations performed, this gave an additional edge to the

GA with respect to Simulated Annealing, since it reduced the number of evaluations

performed by the GA.

5.5.2 Simulated Annealing

The base code for the Simulated Annealing implementation was developed by William

Goffe and is described by Goffe (Goffe et al.,1994) and Corana (Corana et al., 1987).

Some modifications to the existing code were performed in order to adapt it from

continuous to discrete variables, and to introduce problem-dependent neighborhood

structures.

The Simulated Annealing experiments were somewhat modified in relation to what had

been proposed as a cooling schedule in section 5.4.1, due to computational time

constraints. The initial temperature of 1.2 was still used as the maximum possible objective

function difference between two neighboring solutions, but the temperature decrease

parameter was set to 0.8 to let the temperature lower sufficiently in the limit of 500

evaluations. The number of trials after which a temperature reduction was performed was

32. The stopping criterion was the maximum number of function evaluations [500].

After several experiments, the neighborhood radius chosen for the tests was 0.3, that is, a

neighbor was generated by either decreasing or increasing one of the variables by the

value of 0.3 [as previously described]. For out-of-bounds trials, the solution found was to

move a step in the opposite direction from that causing the variable to get out of bounds.

The initial points for SA search were always points that were contained in the GA initial

population. That was considered to give a fair basis for comparing the two methods, since

initial points were identical. After each temperature reduction in SA, the search was

restarted from the best point found so far, in order to include some memory use in the SA

algorithm too.



5.6 Results from computational experiments

The results of the computational experiments are summarized in tables 5.3 and 5.4. For

each method [GA and SA] only ten experiments were performed due to computational time

constraints [at the time these experiments were carried out, each objective function

evaluation took about 3 minutes and 20 seconds, since the program was still running on

Unix platform, and remotely from LNBL]. The tables list, for each experiment, the minimum

objective function value found, the difference of that value to the minimum [known to be

144.53 MWh], and the number of function evaluations after which that value was found.

In general the two algorithms performed quite well, being able to find results very close to

the global minimum. The Genetic Algorithm performed somehow better than the Simulated

Annealing algorithm, finding on average slightly lower results, although the differences are

very small. The GA needed fewer evaluations than the SA to achieve similar results [about

5% less evaluations]. The GA was also able to locate the global minimum in one of the

experiments, what did not happen with Simulated Annealing.

Table 5.3 Results from experiments using a Genetic Algorithm
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Genetic Algorithm

Experiment Result [MWh] Difference to minimum Number of evaluations

1 114.82 0.29 399

2 114.85 0.32 456

3 114.53 0 383

4 114.67 0.14 426

5 114.64 0.11 418

6 114.74 0.21 289

7 114.65 0.12 376

8 114.60 0.07 438

9 114.89 0.36 351

10 114.65 0.12 476

Average 114.704 0.174 401



Simulated Annealing

Experiment Result [MWh] Difference to minimum Number of evaluations

1 114.97 0.44 439
2 114.78 0.25 478
3 114.68 0.15 423
4 114.66 0.13 393
5 114.73 0.20 406

6 114.68 0.15 483

7 114.71 0.18 264

8 114.67 0.14 474

9 114.66 0.13 387

10 114.86 0.33 452

Average 114.74 0.21 420

Table 5.4 Results from experiments using Simulated Annealing

Figures 5.3 and 5.4 show the search progression for both the MicroGA and SA. The

graphs clearly illustrate the differences in the corresponding search processes.

MicroGA - progression of search

91 96 -mrimnn
-aveage

generation - maimum

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86

Figure 5.3 Search progression for one experiment using a MicroGA
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Because the GA searches a population of individuals in parallel, three types of information

are displayed: the minimum objective function value, the average objective function value

of the population, and the worst individual. It is possible to gain more insight into the

mechanics of the algorithm's search by looking simultaneously at all this information. From

the graph it can be seen that the minimum objective function value quickly decreases

during the first 30 something generations, and after that stabilizes and suffers only minor

improvements. The valleys in the average fitness show points of convergence of the

population, after which a peak always exists, illustrating the effect of a new random

population being generated, causing the average fitness to suddenly go up. The

succession of peaks and valleys is a consequence of the dynamics of the algorithm. The

worst individual's performance shows that very bad solutions can be introduced by the

new random generation, but those are quickly excluded and replaced by high-performance

ones, although in that process they may still exchange useful genetic information with the

more fit individuals.

Simulated Annealing - Progression of Search

. 119.0

118.0 -

117.0 -

116.0-

115.0-

114.0
1 33 65 97 129 161 193 225 257 289 321 353 385 417 449 481

trial number

Figure 5.4 Search progression for one experiment using Simulated Annealing

Simulated Annealing, on the other hand, searches from a single point and so its

progression is simply illustrated by a single line. In general terms, the search progression

for SA is slower and more gradual than the MicroGA. The first few trials led to a steep

decrease in the objective function value, but then the search drifts to poor performance
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areas. The 'memory' implementation makes the search restart from the best solution found

so far each time the control parameter value is decreased, what causes the consecutive

appearance of similar 'valleys' in the search. This forces the search to abandon areas of

little interest and go back to the neighborhood of the best performance solution so far.

Improvements on the best solution can occur right after the restart point, or after the

search has been in more unpromising areas, showing that in just a few moves the

objective function can steeply decrease, what suggests the presence of a few variables

that may strongly condition the solution [such as north window dimensions, for example].

However, the sudden presence of a valley after a peak is often due to the restart of the

search from the best solution. An interesting extension of this experiment could be to

analyze the SA search progression with no memory implementation and see how it

differed from this one.

As for the results, the literature review had already suggested that GAs usually outperform

SA, what was confirmed by these experiments. In any case, comparing GA and SA

performance for the particular problem of improving buildings environmental performance

further increased our confidence in the Generative System results, since SA is another

well established heuristic method for optimization problems, and the code used for this

implementation had been previously tested by its author, with published results (Goffe et

al.,1994). More extensive tests and fine tuning of the SA algorithm [studying different

cooling schedules, for example] could be done, but the main objectives of these

experiments were to provide a basis for comparing our GS results with other methods, and

were considered to be achieved here.

5.7 Conclusions of the chapter

Three heuristic techniques [Genetic Algorithms, Simulated Annealing and Tabu Search]

were described, and some studies presented from the literature where those methods are

compared or combined into hybrid approaches. Both GA and SA where then applied to the

same problem that was described in chapter 4.

Apart from the performance results, already analyzed, some considerations can be made

about the application of the three search methods to architecture-related problems. Even

though Simulated Annealing seemed to perform slightly worse than the GA in finding good
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performance solutions, that difference would not be significant enough to exclude it as the

choice for the Generative System search module. However, other factors that differentiate

SA from GAs are also to be considered.

One such factor is that Simulated Annealing searches for a single solution, while GAs use

populations of solutions. From an architectural design point of view, the latter has the

advantage of providing alternative solutions to the architect. That could also be achieved

by doing more than one run of a SA-based system, but if alternative solutions are an issue,

GAs seem more appropriate from the outset.

In later chapters of this thesis, work will be presented that heavily relies on the existence of

a population of solutions. That work relates to the search of Pareto fronts for multicriteria

problems, where a frontier of solutions that represent the best trade-offs between

conflicting objective functions is sought for, instead of the best performance for a single

objective function. Having that extension in mind, GAs seem again a more appropriate

solution.

A word remains to be said about Tabu Search. From the literature review, TS

outperformed both GAs and SA in some problems such as those studied by Josefowska.

Although it can be argued that the way the problem itself was structured may have

influenced the results, Tabu Search seems to be a more sophisticated algorithm than

either SA or GAs, mainly due to its use of different types of 'memory,' and to its adaptive

changes in search strategy along the process. No implementation of TS was carried out or

adapted for the work presented in this chapter, because it is a complex algorithm to write,

and the number of researchers using TS and willing to share existing implementations is

reduced. Nevertheless, it remains as further work that may be explored in the future to

study the adaptation of TS to architecture-related problems. If some speculations based on

Josefowska's results are permitted, TS seems not to degrade its performance with very

large problem sizes. This may be a quite useful feature for the type of complex problems

that will be presented as future work to follow from this dissertation, in the conclusions

chapter. Hybrid implementations, such as those presented in the literature review, taking

advantage of the best characteristics of each search method, may also be a path for

further exploration.
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CHAPTER 6 Including a Formal Balance Algorithm

6.1 Introduction

To this point, the Generative System was used with only one kind of objective function [annual

energy consumption] to assess the quality of solutions and guide the search process. In this

chapter, the GS is combined with another algorithm, which looks at aspects such as order and

diversity present in a fagade's composition (Duarte, 1997). The quantification of these attributes

allows the development of other types of evaluation criteria for the fagade-level problems we

have been studying until now. The two criteria [energy performance and compositional balance]

are combined into a single number by a linear function. Linear combination is a plain

aggregation approach, often making use of weighting factors. The shortfalls of such simplified

methods will be later discussed in chapter 8, where several multicriteria optimization methods

are reviewed. However, for the very simplified work presented in this chapter, it was considered

that a plain aggregating method was suitable enough.

The work presented in this chapter is somewhat restricted to the simplest cases. More

appealing developments are possible, and will be considered in the conclusions of the chapter.

However, some interesting results are still observable, like analyzing the different strategies the

GS used for solving conflicts between the two evaluation criteria according to the geographical

location of the building.

6.2 Experimental setup

The fagade balance algorithm described by Duarte (1997) has two basic components: vertical

balance and horizontal balance. In this study only vertical balance was considered, which is

based on an analogy between vertical balance in a composition and gravity balance.

A fagade can belong to a single building or to a group of buildings, such as a street fagade. In

this case, we used a single building, so that it could be simulated using only one DOE2 model.

Nevertheless, that building was given enough volumetric diversity, in terms of the height, width

and length of the spaces, so that a variety of solutions could emerge. Figure 6.1 shows the

basic geometry of the building. Note that room depths also vary, so some of the spaces may be
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more difficult to side-light from the fagade openings than others. Room depth becomes this way

another factor to promote diversity.

Figure 6.1 Volumetry of the building

To determine a fagade's degree of unbalance, three vertical compositional axes are used. The

first one, named the 'symmetry axis', is positioned at the mid point of the fagade length, and is

shown in figure 6.2 in blue. Its x coordinate value is equal to half of the fagade length.

Aii a2 I a4 1

symmetry axis

facade balance axis a1.x1 + a2.x2 + a3.x3 + a4x4
al + a2 + a3 + a4

Figure 6.2 Fagade profile, showing location of symmetry and fagade balance axes. From left to right, we
can see modules 1,2,3 and 4
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The second one, named the 'fagade balance axis', and shown in red in figure 6.2, has its x

coordinate calculated using the formula illustrated in the picture. That formula relates the areas

of each fagade component [a1, a2, a3, and a4 ] with the x coordinate of the middle point of that

component [ x1 , x 2, x3, and x4; the x coordinate origin is the left lower corner of the fagade]. A

fagade profile will be in perfect balance if the two axes precisely coincide. In the case presented

in the figure, the fagade layout is only slightly unbalanced towards the right. The intention was to

depart from a mostly balanced fagade, and then move to further experiments where the fagade

would be more out of balance.

Finally, the last axis relates to window balance. It is calculated in much the same way as the

fagade balance axis, but with the difference that window areas and window mid-point x

coordinates are used. If the profile of the fagade is already in balance, the objective is to make

the window balance axis coincide with the other two. If the fagade profile is unbalanced, the

windows axis should be used to restore the balance of the whole composition. So, if the fagade

axis is displaced to the right, as in this case, the window axis should be displaced by an equal

amount to the left, so that the sum of the two errors equals to zero. Because windows are

centered in the walls, their x value is fixed. So, the mechanism for creating window balance is

by manipulating window area. In very general terms, to displace the window axis to the left,

larger windows would have to exist towards the left side of the fagade. Also, according to Duarte

[1997], distance from the symmetry axis increases the weight of a certain mass, a conclusion

that can be extracted from the formula used. This means the same window area will have more

'weight' the further away it is from the center of the fagade.

This mechanism of using window area to create or restore a fagade's compositional balance

may generate possible conflicts between the two objective functions. The balance algorithm

may push a solution towards a larger window area in some specific location, for compositional

purposes. However, that increase in window area may be detrimental in terms of environmental

performance. Or the opposite may also be true. The objective of these experiments was thus to

test to what degree the two evaluation functions would be in conflict with each other, or if

instead it was possible to find satisfactory compromises between the two.

A note about the number of windows the algorithm can manipulate to achieve better

performance levels: module 1 has four floors and thus four windows. Module 2 has two floors

and two windows. Module 3 has in the ground level a double-height space, but with a single
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window, and two more floors, totaling three windows. Module 4 has three floors and three

windows. All the twelve windows are centered in the respective walls.

As a final modeling issue, all the perimeter walls apart from the fagade ones were modeled as

adiabatic surfaces, so that heat loss or gain through those walls would not influence the fagade

design.

The combined objective function or fitness of the solution was obtained by linear combination of

the two objective functions, giving equal weights to each of them. For a minimization problem,

the applied formula was:

Fitness = (energy consumption) + (degree of unbalance)

A standard GA implementation was used in these experiments, as one of the aims was to gain a

sense for a large number of design alternatives. MicroGAs also provide several design

alternatives via successive generations or consecutive runs. However, a standard GA gives a

more immediate sense of many different solutions by looking only at the final population. A

population size of 30 individuals was used. Elitism was also included in this standard GA.

6.3 Experiments with a balanced fagade profile

Experiments were carried out for facades facing south and west, for a hot climate [Phoenix].

Figure 6.3 shows the final population of a 100-generations run, for south orientation. The best

solution found is in the extreme right of the middle row.

A large variety of solutions can be observed in this final population. However, not all of them

represent high-performance solutions. For example, one can predict from the problem setup

that the bottom window in the third module should be reasonably large: the space is double

height, it is quite deep in relation to the other spaces, and since the fagade is facing south, heat

gain is not so much a problem as it could be for a west-facing elevation. Nevertheless, we can

see that several solutions present very small openings at this particular location. That fact

suggests the population has not yet converged to a group of good solutions.

Plotting the search progression of this standard GA confirms this hypothesis [figure 6.4]. The

population is not converging, even though the best solution in progressively improving due to
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the elitism strategy. This lack of convergence may be promoted by the fact that the fitness

evaluation is based on a linear combination of two quite different measures, which might

confound the search mechanism, as solutions that have a good performance in terms of one of

the objective functions may have a poor performance when considered from the viewpoint of the

other evaluation criterion. Since genetic algorithms use building blocks as a way to collect

meaningful information to guide the search, the fact that the same building blocks may imply

significant variations in performance according to each objective function may be detrimental to

the effectiveness of the search. Another factor may be that the larger population size brings an

extra inertia to the search, so a larger number of generations may be required to achieve better

convergence.

A related information display is shown in figure 6.5, which plots all the individual points tested by

the GS during the course of the search, totalizing 3000 different solutions. In that image is also

evident that although the best solutions are saved from generation to generation by elitism, and

further improved through crossover with other individuals and mutation, the majority of the

remaining points seem to be detached from this minimum trend line.
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Figure 6.5 All points tested by the GS during the search [3000]
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Figure 6.6 shows the results from the experiments done for south orientation. The following

procedure was used: first, the system was run using energy consumption as the only objective

function [for easier reference, this was called the 'functional' algorithm, and is represented in the

images by the letter F]. Then, the degree of unbalanced was calculated using the formula

provided in figure 6.2 plus the formula for the window compositional balance, and the resulting

F+B value calculated [B refers to the balance algorithm]. Those results are shown in the first

column of figure 6.6. The numbers in red always represents the values used as objective

functions in that experiment, and the numbers in black represent values manually calculated.

DD 0C
0 a E- , - O3

F trst F+B over results of F F+B lrst F over results of F+B

F: FUNCTIONAL 27.85 28.06 28.13 27.90

B: BALANCE 1.66 0.42 0.11 0.05

F + B 29.51 28.48 28.24 27.95

MAXIMUM 42.19 41.28 44.15 42.09

%>MINIMUM 51% 47% 57% 51%

Figure 6.6 South experiments, showing different sequences of F and F+B experiments.

The GS, using energy consumption alone, generated a solution that had a relatively high degree

of unbalance, 1.66 feet, corresponding in meters to 0.5m, in a fagade about 20m long. The

numbers on the bottom show the maximum function value using energy alone, showing that in

this case there is a high variability of objective function values with fagade design, since no core

areas exist. The worst solution between all those searched had an energy consumption about

51 % higher than the best found.

The second column shows the results of running the combined objective function algorithm

[F+B] over the results obtained by F only. This was done by using as the initial population for

the second experiment the final population from the first experiment. The combined results

improved over the previous one, mostly by lowering the degree of unbalance, even though
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energy performance became slightly higher. The more successful strategy seemed to be to run

first F+B, and then F only to further improve on the energy performance aspects. This yielded

the best results of these first experiments, with a result that has low consumption and is almost

in perfect balance.

In order to assess to what degree could the two objective functions actually be in conflict, a

linear programming solver was used to find the design solution that would produce the largest

degree of unbalance. The balance objective function is linear, since the x values are fixed, so it

was possible to use linear programming [Excel@ solver] to get this information. The

corresponding fagade design solution was then fed into DOE2, to determine its energy

performance. Figure 6.7 shows that although the energy performance of the worst balance

solution is high, it is by no means the worst possible case. Interestingly, the worst energy-wise

result found by the GS is actually almost in balance, only slightly worst than the result from the

first experiment. This shows there is no direct relation between good energy performance and a

balanced fagade design, what makes the results found by the GS more interesting, since it was

able to find good compromises between the two objective functions.

comparative results of funcional and balance algorithm - south [1]

F first F+B over results of F F+B first F over results of F+B B - worst result F - worst result

contsumption

-degree
o lance

Figure 6.7 Comparing energy consumption and degree of unbalance to several south fagade solutions,
including worst-case scenarios [F is the functional algorithm, B is the balance algorithm].
Y axis coordinates are dimensionless, since they combine different units.
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Figures 6.8 and 6.9 show a second, similar experiment done for the south orientation. Here, the

results from the first experiment about the best sequence of objective function to use are

inverted, which leads to the conclusion that the order used to run the algorithms seems to be

unimportant, and probably just running the two objective functions simultaneously is satisfactory

enough.

F first F+B over results of F F+B lirst F over results of F+B

F: FUNCTIONAL 28.13 28.11 28.11

B: BALANCE 1.74 0.56 0.62

F + B 29.87 28.67 28.73

MAXIMUM 43.53 42.19 43.73

%) 'MIM MUM 55% 50% 56%

Figure 6.8 South experiments [2], showing different sequences of F and F+B experiments.

comparative results of functional and balance algorithms -south 12)
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F first F+8 over results of F F+B first F over results of F+B B - worst result F - worst result

27.99
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30.49

41.37

48%

energ
corn pfion
aoyaw
degree
oM aalnce

Figure 6.9 Comparing energy consumption and degree of unbalance to several south fagade solutions,
including worst-case scenarios [F is the functional algorithm, B is the balance algorithm].
Y axis coordinates are dimensionless, since they combine different units.
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Finally, figures 6.10 and 6.11 show similar experiments but now for west orientation. The main

difference to be noted is that, in general, window sizes are all smaller, as expected in such a

rigorous climate in summer. Energy consumption levels are also higher than for south, as

expected. Finally, a fagade with the lowest energy performance and perfect balance was found

during the F+B run. In general, the overall degree of unbalance is close to zero.

F+B over results of F F+B first F over results of F+B

F: FUNCTIONAL 31.24 31.24 31.39

B: BALANCE 0.00 0.00 0.06

F + B 31.24 31.24 31.45

MAXIMUM 46.74 49.30 49.15

%> MINIIMUM 49% 58% 56%

Figure 6.10 West experiments, showing different sequences of F and F+B experiments.

comparative results of functional and balance algorithm - west

80 - -- - - --

70

60

50

40

30

20

10

-- - energy
carns" pion

- -degree
owenkS~a

F first F+B over results of F F+B first F over results of F+B B - worst result F - worst result

Figure 6.11 Comparing energy consumption and degree of unbalance to several west fagade solutions,
including worst-case scenarios [F is the functional algorithm, B is the balance algorithm].
Y axis coordinates are dimensionless, since they combine different units.
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6.4 Experiments with an unbalanced fagade profile

An unbalanced fagade was created by removing the two top floors from module 4. The fagade

surface area toward the right side of the symmetry axis was thus reduced, and the fagade

balance axis moved towards the left of the symmetry axis. To solve that unbalance in the

composition, the GS would have to place larger window areas toward the right side of the

central axis, so that the larger windows would counteract the reduced fagade area.

This situation was tested for two climates, Phoenix and Chicago [figure 6.12]. As expected, the

GS did use larger window sizes towards the right side of the symmetry axis. However, for the

hot climate the strategy seems to be to use smaller window sizes, making those on the left side

of the building much smaller than in the previous experiments [which were also done for

Phoenix]. The window sizes to the right of the building closely resemble those of the balanced

fagade experiments, which suggests that the GS did not increase window sizes towards the

right but instead decreased them on the left side, probably due to the large heat gain penalties

incurred if large openings were used.

Figure 6.12 Unbalanced fagade results, Phoenix [right] and Chicago [left]

On the contrary, for Chicago the GS did use quite large fenestration sizes towards the right side

of the building, since in this geographical location south-facing windows mainly represent useful

solar gains during the winter. Left-side openings are smaller but still generously sized.
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6.5 Possible extensions of the work

Some potentially interesting extensions of this work have been identified. One would be having

the GS generate fagade profiles instead of generating only the fenestration elements for a

previously defined fagade. Fagade balance could be one of the objective functions given to the

algorithm. Other possibility would be that the GS would generate random unbalanced profiles,

and would then need to use window area as a posterior mechanism to achieve balance.

Another possible extension would be the generation of windows that are not centered in the

walls. However, this would require the use of dynamic constraints, which have not yet been

implemented in the GS. A detailed discussion of the implications of using dynamic constraints

will be provided in chapter 9, which deals with shape generation.

Finally, Duarte's work [1997] describes the inclusion of color as an additional element to take

into account when predicting fagade compositional balance. This is achieved by including a

Color Weight Index in the original vertical balance equation, which would then read:

x = ax + a2..x 2.w2 + ... +an.xn.wn

a1.w1 + a2.w2 + ... + an. wn

where

x is the x coordinate of the compositional axis

an is the area of shape n

xn is the distance of shape n to the origin of the fagade [left lower corner of fagade]

wn is the Color Weight Index

The Color Weight Index measures the visual weight of shape n's color against the color of its

background, and is the difference between the weight index of both colors against white. The

Color Weight Index of a color against white is given by:

Wb= 65535 -

65535
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where y is obtained from an equation (Pennebaker, 1993) that transforms colors into a grey

tone by calculating their degrees of whiteness according to their RGB values:

y = 0.299 R + 0.587 G + 0.114 B

This framework for including color into the balance algorithm was developed by Duarte, and

since no experiments have yet been performed, we cannot ensure the meaningfulness of any

outcomes resulting from its application. Nevertheless, it is suggested as a potentially interesting

extension because fagade color would also have an impact on the wall's solar absorptivity, and

subsequently on the building's energy consumption. It represents thus another variable that

would be meaningful in terms of the two objective functions dealt with in this chapter, and could

add another appealing dimension to the work.
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CHAPTER 7 Generative System applied to Siza's School of Architecture at Oporto

7.1 Introduction and objectives

This chapter approaches the integration of architectural design intentions into the

Generative System. In previous chapters, the GS was tested and run in very simple

building layouts, almost schematic, so that results could be easily interpreted. In this

chapter, the aim was to place the GS in the realm of an actual piece of high-quality

architecture, with all its complexities and interaction of elements. Alvaro Siza's School of

Architecture at Oporto was used as a test bed, since its clear but complex composition

rules provided an excellent framework to work upon, in order to achieve the proposed

objectives. However, due to the large dimension of the project, the study focused solely on

one of the studio towers [tower H, see figures 7.1 and 7.2], which proved nonetheless to

be diverse and rich enough to pose challenging problems to the GS and to provide

interesting results from an architectural perspective.

The objectives of this chapter are thus twofold: first, to study the incorporation of language

constraints into the generative design system, so that solutions generated are within

certain design intentions. Second, to examine the generative system results from the

perspective of the existing design by Alvaro Siza, an architect well known for his control of

daylight, and to analyze to what extent the inclusion of factors other than light [like the

thermal behavior of the building] could make solutions follow a different path.

Some further experiments were also performed, placing the existing building in different

geographical locations, to test the GS capability to adapt solutions to distinct climatic

conditions, within similar language constraints. A note should be added that the exercise of

placing the building in different locations is purely academic, since Alvaro Siza would

never use the same approach for designing a building in such different geographical and

cultural environments. While the experiments for Oporto illustrate a process that could

have taken place in Siza's design, the other examples are a test of the generative system

but do not represent an appropriate architectural design process.
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7.2 Description of the existing buildings

The School of Architecture at Oporto, Portugal, designed and constructed from 1984 to

1996 by Alvaro Siza, encompasses a period of time when the project faced several

changes in programmatic needs due to the establishment of a new curriculum at the

school. During this period, Siza's sketches and concepts evolved in order to create a

diversity of spatial configurations. These architectural relations can be seen in the final

organization of the buildings, such as long corridors that unite, under the entrance level,

the four towers where the architecture studios are housed, or the exterior communal space

that visually and physically relates the towers with the auditorium, library and

administrative services.

Besides these major architectural intentions that are clearly expressed in the overall plan

of the school, other elements acted as anchor or seed points to the development of the

project. These include the extremely rich morphological condition of the site, the southern

part of the Quinta da P6voa, with a steep slope facing the Douro River and the delicate

landscape of Porto's neighboring town, Vila Nova de Gaia; and the necessity of connecting

the new complex with a former building also designed by Siza, the Carlos Ramos Pavilion,

situated northeast of the new agora. These factors, together with the distribution of

academic activities among different architectural units [studios and faculty rooms in towers

E, F, G and H; and the library, auditoriums and administrative services in the northernmost

buildings] informed a cultural process that enabled Siza to create of a unique piece of

architecture. For a more detailed analysis, see Testa (1994, 1999).

Figure 7.1 School of Architecture plan. Tower H is on the right lower corner [orientation: 80 east of
north]
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Southeast view of the four studio towers. Tower H is on the foreground

Figure 7.3 Northwest view of towers H and G. Tower H is in the background. Tower G is in the
foreground, showing the large vertical fins that protect the west-facing studio
windows from direct sun.

7.3 Analysis of studio rooms orientations

It is interesting to note that although Siza had a similar program to the 4 studio towers

[towers H, G and F all have the same dimensions in plan, 10.88 x 17.88 m], their internal

spaces diverge and give rise to rich and unexpected spatial configurations.
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A preliminary analysis integrates the four towers in terms of their spatial distribution,

mainly of the studio teaching rooms. As an initial synthesis of the programmatic

distributions within all the towers, the majority of studio rooms are oriented towards east

[14 studios rooms]. Seven studios are oriented towards north, six to south and only three

face west. Figures 7.4 and 7.5 show this spatial distribution analysis, both by building and

by orientation.

Except for Tower G, there are no studio rooms facing west, an orientation that in all towers

has very short fagade openings and mainly houses functional spaces such as stairs,

elevators, and services. In tower G, Siza used large vertical fins that effectively block direct

sun into the studios [see figure 7.3] but have the disadvantage of blocking the view out too.

Tower H Tower G Tower F

Figure 7.4 Studio rooms orientations according to building

Tower E

*North
MWest
O East
OSouth

7.4 Justification of the choice of tower H for this study

Tower H was chosen for its rich spatial configurations and use of a variety of architectural

light sources: fenestrations of different proportions and sizes facing distinct orientations

[some including overhangs], zenithal light as roof monitors in the top floor, and a loggia in

the south fagade.
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Distribution of studio teaching rooms
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Figure 7.5 Distribution of studio rooms according to orientation. East clearly predominates.

From a computational perspective, tower H also presents some challenging features. The

internal relations between the different spaces and their light sources give rise to a

multiplicity of interactions that are hard to predict and make the resort to computational

analysis an interesting option. Some examples are the interactions between the roof

monitors and the loggia in the 6th floor, or cases where studio rooms have more than a

window, facing different orientations.

The fact that Tower H mainly houses studio teaching rooms makes a strong case for the

careful control of natural light in order to maintain adequate daylighting levels for drawing

and model making tasks while precluding direct sun over the drafting tables and excessive

solar gains in the rooms

Figure 7.6 shows several floor plans of tower H. Studio rooms face south, east or north,

and vary their spatial disposition from floor to floor. Services are on the west side of the

building. Two aspects are worthwhile noticing in these plans. One is the recurrent use of

an uncommon detail, where internal walls perpendicularly hit an external window. This can

be seen in the 1St floor plan, towards the east, where an apparently continuous large strip

window is interiorly divided between two different rooms. The same detail occurs in the 4 th

floor, in the south fagade, and in the 5th floor in the south loggia window. It also happens in

other less relevant situations, like restrooms.
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This particular architectural detail will prove to be important at later stages of the work, when the

compositional rules and constraints for the facades are investigated. Some windows that appear

to be a single, continuous element when viewed from the outside, are actually two different

openings when viewed from the inside. This introduces new constraints into the design that

have to be considered when encoding the existing rules.
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Figure 7.6 Some of the floor plans of Tower H [from left to right, floors number 1, 3, 4, 5, and 6 (top)]

The other important point to notice is that the top floor [6th floor] has a very different

configuration in relation to all the others. It is basically a single space that occupies the entire

floor, which has blank walls towards all orientations but south, where it is lit by the loggia only

[even though the loggia itself has both south, east and west openings]. Daylight enters this

space mainly through roof-top monitors that take advantage of the tilted, sawtooth roofs, to

create top-level, north-facing openings. The roof has different inclinations, so the size of the

openings is variable too. The larger roof-top monitor is closer to the south fagade, and the small

one is placed towards the north end of the space [see figures 7.2 and 7.3 for a visualization of

the roof configurations].

7.5 Simulation method for tower H

For this study, building geometry, space layout and construction materials were left as in Siza's

original project, and the algorithm acted solely upon the elevations design. For the existing

building layout, the software generates a population of fagade solutions that take into account

the use of daylighting in the space, the subsequent use of artificial lighting, and the energy

consumed to heat and cool the building. Solutions that make maximum use of natural lighting
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are preferred, but the control of heat gains and losses introduces a balance point to be

achieved. If maximum amounts of daylighting were the single criterion, maximum opening sizes

allowed within language constraints would always be the best solution. However, above a

certain level more natural light will bring no benefits and will carry with it disadvantages such as

high thermal gains or losses that will need to be offset by mechanical systems. It is this elusive

balance point that the Generative System tries to locate.

For each individual space in Tower H, virtual photocells were placed at chosen locations

[typically the furthest points from the windows where a certain light level is to be achieved] and

desired illuminances values were specified according to the type of occupation and tasks

performed. Generally, 500 lux were used for studios and other working spaces and 300 or 150

lux for service areas. The remaining steps are as described in previous chapters.

7.6 Description of existing design I encoding rules

Due to the need of finding elements that would lead to the development of a method to

understand and encode Siza's design intentions [rules], a visit to the School of Architecture took

place in January 2000. The analysis of the drawings and the visit to the building allowed

inferring design rules that we consider to be applicable to the existing elevations. Those rules

relate both to compositional axes of the facades and to general proportions of the openings. In

tower H, different rules seem to apply to each elevation, while maintaining a strong coherence in

the overall design of the building and in the relations with internal spaces [for example, long

horizontal windows are always used in the architecture studios].

For each of the existing elevations, a brief description of its main elements and rules of

composition is provided below, together with the existing elevation drawings.

7.6.1 South elevation

The south fagade is dominated by a vertical symmetry axis. It is blank in the first floor, and has

long strip horizontal windows shaded by 2 meter deep overhangs in floors 2 and 3, where south-

facing studios exist. Although in the first floor there is also a south-facing room behind the

fagade, it is only illuminated by east and west facing openings in its ends. The 4 th floor exhibits
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very small windows, the right side one working as a top-end opening to a east facing studio
illuminated mainly through the east, and the other, symmetrical to this one, being the only

opening in a small meeting room [see plan in figure 7.6]. This symmetry is based on the fact that

an internal wall divides internally the window, as described in the previous section. The 5*" and

6* floors contain a double-height loggia recessed into the fagade plane. In the 5h floor, there are

glass doors in all three sides of the loggia, all with the same height, but varying in width. The

south door is again divided internally by a wall, which separates the studio from the circulation

corridor. In the 6th floor there are only regular windows, vertically aligned with those in the 5th

floor [that is, width is constrained to be the same], and all with the same height.

Figure 7.7 Existing south elevation

7.6.2 East elevation

The east fagade has two main vertical composition axes. The first axis constitutes the vertical

alignment of the right ends of the windows from floors 1 to 5. The second axis is the vertical

alignment of windows in floors 1 and 2 on their leftmost ends. While windows in floors 2, 3, 4

and 5 are long strip windows, the windows in the first floor are taller and with a less elongated

proportion that relates to the stone embasement. The sixth floor fagade is blank.

Some points worth noticing are that the blue vertical lines on some of the fenestration elements

represent internal walls that hit them internally. The two windows in the 2"d floor belong to a

studio, which is the only one that does not have a single, horizontal strip window. This room is

the only east-facing studio that is lit solely from the east. The long strip windows in the 4* and
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5th floors are part of studio rooms too, but which have the particularity of also being lit from other

directions. Thus, the 4th floor room has also a south facing window, which is 'shared' with the
adjoining small meeting room. The 5th floor room has also some loggia windows, which are in

this case subject to all the compositional rules of the loggia. This analysis starts to show a

complex architectural scheme, where elements cannot viewed as independent entities, but

instead they are related by a complex set of rules that relate both to elevation design and also to

the floor plans and to the relations between the different spaces, shedding some light into the

sophisticated architecture design process created by Siza. The apparent simplicity of the final

building hides in it a complex network of interactions that need to be understood so that they

can eventually be successfully encoded into the Generative System. The vertical compositional

axes and window proportion rules by themselves would be unable to account for all these other

interactions present in Siza's design.

Figure 7.8 Existing east elevation

7.6.3 North elevation

The north fagade is again dominated by a vertical symmetry axis. It is the only elevation with

just five floors, since it starts in the second floor due to the connecting tunnel between the

several studio towers. It has an attached module that constitutes the entrance to the building at

the second floor. The only asymmetric element in the composition is a small window in the

second floor that illuminates a small corner room nest to the entrance. The other windows are

long strips that illuminate the studios. The two roof monitors can also be seen in the north
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elevation drawing below. The taller roof monitor, in the southern end on the roof, appears in the

drawing behind the smaller one.

The north elevation does not establish direct interactions with the other elevations. All the

studios facing north are absolutely similar in size and have only a north-facing opening.

However, and probably to generate some diversity in the elevation, Siza created a melodic

variation in the height of the three north studio openings, as can be seen in figure 7.9. The roof

monitors, on the contrary, already establish relations to other elements of the fagade design, not

explicitly by composition axes or alignments, but implicitly, by interacting with the loggia

openings in attempting to provide adequate daylight to the top floor. Since the design of the

loggias' 6* floor has an impact on the loggias' 5 * floor, and that an impact on the 5 th floor east

fagade, and that an impact of the 4th floor east fagade, and that an impact of the 4th floor south

fagade, etc., this forms a long stream of interactions where the design solution for one specific

element is not autonomous, but instead impinges on a large number of other elements.

Figure 7.9 Existing north elevation

7.6.4 West orientation

The west fagade is mostly blank and has small openings from the second to the fifth floor. The

square windows illuminate the stairs, and horizontal ones the restrooms. The two are placed at

different levels, due to the stair footing. The first floor has larger windows that open to different

types of spaces, like meeting rooms and model-making spaces, and that follow the proportions

of the 1st floor windows in the east fagade.
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Figure 7.10 Existing west elevation

7.7 Generation of constraints

This interpretation of existing design rules was followed by the determination of areas of search
for the generative system, implemented both as constraints to the algorithm and as prescriptive

relations between different types of variables. The search areas are bounded by maximum and

minimum dimensions the openings can assume, and those limits were made distant enough to
allow for a significant search space that could promote the emergence of a rich variety of
solutions. Other constraints implement the compositional axes determined during the analysis

stage.

In figures 7.11, 7.12, 7.13 and 7.14, the left image represents the constraints applied, and the
right image the existing design. Compositional axes are represented by the red lines on the
constraints image. For each opening, the smaller area represents the lower bounds to the
algorithm, and the larger area the upper bounds. These set of constraints are proposed as
being able to control the generation of solutions within certain architectural intentions that we
relate to Siza's design. It should be noted that the constraints were always applied in a way that

the existing design was included in their search space. That is, in all the cases, Siza's design

could emerge from the GS solutions.
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7.7.1 South elevation constraints

For the south fagade, the basic symmetry axis was respected. For the strip windows in the 2nd

and 3rd floor, the windows were constrained to be centered in the wall, and the maximum

window height was set equal to the minimum window width, so that the appearance of vertical

windows would be excluded, as that was considered not to comply with Siza's design intentions.

This way only horizontal windows are allowed, with the extreme solution being a square. The

maximum window width is equal to the wall width, minus the thickness of the exterior walls.

Finally, The 2nd and 3rd floor windows are constrained to be similar.

fB

constraints oporto_existent

Figure 7.11 Constraints for south elevation

For the 4 th floor, an extra requirement had to be dealt with. Since the window is shared by two

adjacent rooms, and separated by an internal wall as explained before, the constraints impose

that the two halves of the window are exactly the same, even if they serve quite different spaces

[see plans in figure 7.6]. The windows insertion points [their left lower corner] would also have to

be calculated in such a way that the two halves would meet at the central symmetry axis. The

overall dimensions are similar to those in the lower floors.

For the loggia, a different set of constraints is used. The 5 th floor opening are doors, so

minimum constraints are defined by functional requirements, that is, minimum height and width

for a door. The height of all openings was constrained to be the same, following the existing

design, and the width of the east and west openings was also the same, as they mirror each

other. Maximum dimensions are constrained by the respective wall sizes. The y coordinate is

always 0, so that the openings always start at ground level. As an internal wall also exists

behind the south wall, the same case as exists in the forth floor, in terms of correctly calculating
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the x coordinate. The 6th floor loggia windows were constrained to have the same width as

those of the 5th floor, again following Siza's existing design. Their height could vary within the

constraints set, but had to be similar for all the three windows.

It should be noted that these constraints that make some variables dependent on the

characteristics of other elements do not imply any kind of explicitly hierarchy. Since the GS

performs a whole building simulation for each configuration, what happens is that all these

dependencies are being dynamically and simultaneously evaluated, and the most favorable

combination of variables will emerge from this dynamic process. Any type of dominance of one

element over the other will only appear if that causes a better overall performance in terms of

whole building appraisal. We will see during results analysis that some variables do indeed

'dominate' others, but that is not enforced by the constraints described here.

7.7.2 East elevation constraints

For the east fagade, other aspects were included in addition to the two compositional axes

mentioned before. In the first floor, some doubts arose about the rules that should apply to the

middle window. Its right end is conditioned to align by the vertical axis of the fagade. However,

its left end was originally also conditioned, since it should meet the internal wall that separates it

from the 1st window on the right, as when viewed from the outside the two windows appear as a

single one. This would make the length of this windows fixed in advance, and thus it could only

vary in height. It was decided that a larger degree of freedom was important for this element, so

one of the constraints was relaxed, the one that forced the window to meet the internal wall. So,

the prevalent rule became the maintenance of the vertical axis, and the first window from the left

in the existing design could actually be split in two. However, to ensure that Siza's solution

would also be encoded in these rules, the first window from the left has to start at the internal

wall that separates it from the second window. Constraints drawn in figure 7.12 can make this

explanation more clear.

Although the first two windows from the 1st floor were constrained to have the same height, all

the other pairs of windows [the ones that were side by side in the elevation] could have different

heights.
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Figure 7.12 Constraints for east elevation

The 4th and 5 h floor openings were constrained to be similar, as that was considered to be part

of Siza's intentions. However, since the spaces they serve are slightly different, in terms of

south elevation openings, that introduced another level of interactions the GS would have to

account for. Finally, in the 3rd floor there is a very small space [probably a storage room] that is

served by a small window whose width is constrained by the vertical compositional axis on the

right, and an intemal wall in the left. That width was thus kept as a constant, and only the height

could vary, even though it had to be similar to the adjacent window's height.

7.7.3 North elevation constraints

Constraints for the north studio windows were similar to those set to the south fagade. As for the

asymmetrical element close to the entrance, it did not follow a 'centered window' logic. Instead,

its left side had to be adjacent to the entrance module, and its top level was also conditioned to

align with the entrance door top, as in Siza's design.

As for the roof monitors, their maximum height was conditioned by the tilt of the roof, and the

minimum height was 30 cm. They also had to be centered in the respective wall, and the

appearance of vertical openings was prevented using a previously described rule.
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constraints oporto existent

Figure 7.13 Constraints for north elevation

7.7.4 West elevation constraints

The west elevation obeys quite different rules from the other ones. From the 2nd floor to the 5 ,

the similar pairs of windows correspond to restrooms [on the left] and stairs [on the right]. The

small distance between the two windows is basically the width of the concrete wall separating

the two spaces. Those vertical axes were taken as the main compositional forces. The restroom

windows were constrained to have a minimum sill height, similar to that used by Siza, for

functional reasons. The windows could then grow up from there. On the contrary, the stairs

openings were restricted in the maximum top height by the intermediate stair footing above

them. The windows could then grow down from there. The windows were constrained to be

similar for all four floors.

In the first floor, maximum heights were similar to those used in the east fagade, and widths

corresponded to either centered windows [as the one in the right], or windows growing from the

meeting point with an interior wall [notice that in the left 1st floor window, there is also an internal

breaking up the window in two, with part of it belonging to the adjacent restroom].
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constraints oporto existent

Figure 7.14 Constraints for west elevation

These are thus the constraints and compositional rules used for the GS to generate new
elevation solutions for the existing building. Changing the constraints would allow for the

exploration of many different design solutions, a path that was not pursued in this chapter's
work. If the entire external wall area in each room was given to the algorithm as the search

space for each opening, any type of openings with any type of proportions, located at any place

in the fagade could emerge, if that was a good solution both in terms of daylighting and thermal

performance. However, there would be a total lack of control over architectural intentions. In this

chapter, one of the specific objectives was to research the encoding of architectural design

intentions, so using 'maximum freedom' constraints was not an option followed at this stage.

7.8 Climatic characterization of the three locations studied

The algorithm was run for three climates with distinct characteristics, to test its capability of
adapting architectural design solutions to different environmental requirements while subject to
the same language constraints. Apart from Oporto, Portugal, where the existing building is
located, the other climates chosen were Phoenix [Arizona] and Chicago [Illinois], both in the

USA, representing respectively a very hot and a very cold climate.

Oporto's climate is mild, with average monthly temperatures in the coldest months [December

and January] around 1 0*C. The warmest months [July and August] have average monthly

temperatures of 200C. The lowest temperature registered in the weather file used was 2.8*C in

December, and the highest was 30.40C in August.
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Average monthly temperatures for the three climates

Phoenix's climate is much hotter and dryer, with temperatures peaking at 44.40C in June.

Average monthly temperatures in July reach almost 34*C. Average monthly temperatures in the

coldest months [December and January] are similar to Oporto's case, around 11*C. In this case,

we used a WYEC weather file.

Chicago's climate is characterized by extremely low temperatures in the winter. The minimum

temperature registered in the file used [TMY type] was -22.84C in January. Average monthly

temperatures are -2.2*C in December and -3.3*C in January and February. In summer [July]

they are situated around 24*C.

7.9 Results

7.9.1 Oporto

Results from the generative system [GS] ranged from an almost exact coincidence with Siza's

solutions to some radical departures from the existing design. In figure 7.16, three-dimensional

models of both Siza's and GS solutions are displayed. The two images on the left show east

and north elevations, with Siza's on the left and GS on the right. The two images on the right

show west and south elevations, now with Siza's on the right and GS on the left; when the

camera moved around the 3D models, their relative position was changed.
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In the north fagade [figure 7.17], the large horizontal stripes generated by the GS very

approximately resemble those created by Siza [except for the melodic variations in height in the

original design], denoting that in Oporto's mild climate the use of natural light in the studios

clearly offsets the heat losses through the large glazing areas, as Siza may have predicted.

Heat gains are not a significant issue in this orientation. It can be observed in fig. 7.17 that as

the quality of solutions decreases [oporto best, oporto average, oporto worst], window sizes

decrease too. This may contradict the common supposition that reduced glazing areas should

be used in north facades, at least in climates that are not too severe in winter. But it is also very

interesting to observe that the GS best solution does not maximize window areas within

constraint limits, instead it keeps them at an intermediate size that almost exactly coincides with

Siza's design. Larger windows would probably already cause too much heat losses, disrupting

the previous balance point.

constraints oportoexistent oportobest oportoaverage oportoworst

Figure 7.17 North elevation results



Towards the west [figure 7.18], the algorithm used small window sizes as Siza did, even further

reducing them. This was due to the lower illuminance levels that the service areas [stairs and

restrooms] require and to the reduced size of the spaces. It can be observed in figure 7.18 that

as the openings get larger, the quality of the solutions decrease. The west orientation is

particularly dangerous regarding heat gains, thus Siza never placed studios facing west except

in tower G, where he used large vertical fins to protect the openings from the sun [see figure

7.3].
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Figure 7.18 West elevation results

In the south orientation [figure 7.19] the generative system solutions present more significant

modifications in relation to the existent. In Siza's design, the 2nd and 3rd floors have south-facing

studios with long horizontal windows shaded by 2-meter deep overhangs. The algorithm

solutions tend to suggest these overhangs may be too deep. When the overhang depth is kept

as 2 meters [oportobest], window sizes assume the largest dimensions allowed by the

constraints. The deep overhangs block the admittance of daylight into the room, and to

counteract that effect the algorithm increases the opening size. It will be seen later that when

overhang depth is a variable [oporto shading], results differ quite considerably from these.

constraints oporto-existert opor1D_best

_ LJ

oporto_average
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Figure 7.19 South elevation results
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In the 6th floor, the solution from the GS for the south-facing loggia has to be understood in

conjunction with the roof monitors solutions [which can be seen in figure 7.17 or in the 3-D

images of figure 7.16]. As mentioned before, the 6th floor is basically occupied by a single

space, lit from above by two roof monitors, from the south by a loggia window, and with blank

walls in all other directions. The larger rooftop monitor is positioned in such at way that it lights

the same area of the space as the loggia does [see figures 7.20 and 7.21]. On the other hand,

the back of the room [north end] has as its only light source the smaller roof monitor, and

becomes a much darker area [figure 7.21].

Figure 7.20 Section through tower H. The top floor section shows the loggia and the larger roof
monitor light the same area of the room.

Figure 7.21 The photo on the left shows the loggia window, and the differences in light levels between
the front and the back of the room. The photo on the right shows the two roof monitors.

The GS increases the south-facing loggia window to the maximum allowed by the constraints,

and reduces the glazed area of the roof monitor that lights the space closer to the loggia [figure

7.22]. The roof monitor faces north and is a large source of heat losses in winter, particularly
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because warm air rises to the glazed areas. Increasing the south opening is a good option

because it faces a favorable orientation and is shaded, since it is recessed into the fagade, and

permits reducing the roof monitor without losing too much daylight in the studios. On the other

hand, the second roof monitor assumes the largest dimensions possible in the GS solution [as

in Siza's design], since the back of the room has no other light source. This result suggests the

tilt of the roof could be varied to allow for a larger roof monitor in that location.

Figure 7.22 The rendering on the left shows the roof monitors proposed by the GS. The photo on the
right is repeated for comparison purposes.

A final note should be added about the GS proposal for the loggia's openings, as they reflect the

relative dominance of some variables over others, as mentioned earlier on the chapter. The

south-facing windows in the loggia are driven to the maximum dimensions allowed by the

constraints, because they allow good daylight throughout the day and the year and are also

shaded against excessive solar gains. The east and west loggia windows are constrained by the

rules implemented to have the same height as the south ones, which makes them become quite

high. Because large east and west windows are detrimental, as can be seen from other results,

their width is made the minimum possible. One can imagine that probably the east/west opening

were attempting to drive the window height to a small value too, while the south opening was

pushing it towards larger dimensions. The south influence seems to have prevailed, and the

resulting loggia design can be seen in figure 7.23, where the 6 th floor openings become closer to

doors than to windows, due to the play of forces described here.

The 4 1h and 5 th floor south solutions have to be analyzed together with east results [figure 7.20],

since in those floors the studios share both south and east openings. The GS increases south-
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facing windows in relation to the existing design, and simultaneously reduces east-facing ones.

The east orientation is unfavorable due to high solar gains during the morning in summer

months, and to reduced daylighting levels during the afternoon for most of the year. South-

facing openings perform better both in terms of natural light admission and control of heat gains.

When the GS has the possibility of trading between the two options, it consistently favors south.

Figure 7.23 The loggia design proposed by the GS [left] and the existing one by Siza [right]. Increasing
the south openings lead to the overall configuration seen on the left.

This happens because the GS dynamically evaluates for each hour of the year the interactions

between the several elements of the solution, like east- and south-facing windows in the same

room. To gain a better insight on the reasons behind the GS solution, we exported the three

dimensional models of both Siza's and GS solutions to a detailed lighting simulation program

that combines radiosity and ray-tracing methods to achieve a good degree of accuracy in

daylighting predictions. The 4 th floor studio room was chosen for these simulations, since it has

both south and east-facing openings and thus generates trade-offs between the two openings.

Figure 7.24 shows the daylight patterns in the room during the morning for the summer solstice

[June 21]. From left to right, there is Siza's solution at 9am, the GS solution at 9am, then Siza's

solution at 10am and finally the GS solution at 10am. In Siza's design, it can be seen that during

morning hours the low sun enters deeply into the studio space. This is a source of overheating

in the room, and also generates problems in terms of visual and thermal comfort in the studio,

as it could be observed during the visit to the building. Students using this room had taped large

pieces of paper into the east-facing window to try to overcome these problems.



The GS proposes instead a large south-facing window that causes little direct solar penetration

into the room, even without using overhangs. The east side window is made just large enough

to illuminate the far end of the studio, which would otherwise become too dark. The comfort-

related problems of direct sun penetration are thus reduced to this area of the space, and the

amount of solar heat gain also greatly reduced.

Figure 7.24 Existing and GS results for 4 th floor studio with both east and south windows. The long side
of the room is oriented towards east. From left to right, [Siza 9am], [GS 9am], [Siza 10am],
[GS 10am].

Figure 7.25 shows the daylight patterns in the room during the afternoon for the summer

solstice [June 21]. From left to right, there is Siza's solution at 12pm, the GS solution at 12pm,

then Siza's solution at 3pm and finally the GS solution at 3pm. In Siza's design, there is still

some direct sun entering the room at noon, because the building is oriented 8 degrees east of

north, and thus the east fagade is not yet in shade at noon. In the GS solution, there is little sun

penetration through the south-facing window, because the sun is quite high in the sky.

Finally, at 3pm, the existing design becomes rather dark, because the east fagade is in the

shade, and the south opening is too small to lit such a large space. The light levels in the GS

solution seem to be much higher, even though direct sun remains not a problem.
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Figure 7.25 Existing and GS results for 4th floor studio with both east and south windows. The long side
of the room is oriented towards east. From left to right, [Siza 12pm], [GS 12pm], [Siza
3pm], [GS 3pm].

To further investigate daylight patterns in the space during the afternoon [3pm, summer

solstice], images showing illuminance level contours [in lux] were produced, and are shown in

figure 7.26. In Siza's solution, the daylighting levels never achieve the specified setpoint of 500

lux. In the furthest comer from the windows, the light levels are around 200 lux only. The same

location, in the GS solution, has a daylight illuminance level about 4 times higher. In general, the

GS solution achieves quite high luminance levels throughout the space. Close to the south-

facing windows, illuminance levels may be too high, but this could be solved by placing a

shallow overhang over the south window. Placement and sizing of overhang elements will be

dealt with in a later section of this chapter.

Figure 7.26 Comparison of existing [left] and GS [right] daylighting levels in 4 floor studio at 3pm,
June 21.
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An additional experiment was carried out [not shown in the images], where the algorithm could

not change the south window from the existing design, but could use an overhang in the east

window. It was very interesting to observe that, in that situation, the GS proposed a large east-

facing window very similar to that used by Siza, but with a deep overhang over it to preclude

direct solar gains.

Figure 7.27 shows, for the GS solution, the pattern of solar penetration into the studio for

different times of the year. Apart from the summer solstice, which was already discussed above,

it shows that in winter the south-facing window allows for useful solar gains throughout most of

the day, although in the morning the east window receives almost no sun. In the equinoxes,
there is direct sun through both of the windows, but as temperatures at that time of the year are

not too high, that does not represent a serious disadvantage.

Figure 7.27 GS results for the 4 floor studio room. Top row is for the window solstice. Bottom row is
for the equinoxes

East fagade results [figure 7.28] have already been partially analyzed in conjunction with south

results. In general, all openings decreased their dimensions in relation to the existing design,

due to the problems associated with this orientation. The figure shows that as the size of east

facing windows increase, the quality of solutions decrease. The studios that have only east

facing fenestration maintained average sized openings, as a compromise between good

daylighting and thermal control. The studios where east openings could be traded against south

ones [4 th and 5th floors], favored south. The 5 th floor opening was not only constrained to be

equal to the 4 th floor [explicit interaction], but it has implicit interactions with the loggia solutions,
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since they both coexist in the same space. The 5 th floor loggia is related to the 6 h floor loggia,
and that to the roof monitors, etc, creating the long chain of implicit, performance-based

interactions that take place in the design, and are concomitant with those explicit enforced by
the rules and constraints applied.
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Figure 7.28 East elevation results

Finally, figure 7.29 shows a series of renders of the 3D models of both Siza's and GS solutions.

Figure 7.29 Siza's [top row] and C
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7.9.2 Using shading as a variable in Oporto

The shading studies implied using overhang presence and depth as variables too, together with

fenestration sizes. It will be seen that overhang dimensions will affect the sizing of openings, as

expected. The overhang is always positioned directly on top of the window, with no distance

between the two elements. Shading studies were only performed for south and east

orientations, since towards the north direct sun does not play an important role in the

performance of the glazing elements, and towards the west opening sizes were generally so

small [due to the small service areas they serve] that it was considered it would not be a

particularly interesting exercise to play with shading elements in this orientation.

Towards the south, when overhang depth is a variable [portoshading], the GS reduces it from

the original 2m depth to 0.5m, and also reduces window sizes to a dimension closer to that used

by Siza, a departure from the large window sizes generated in oporto best. The shallower

overhangs allow more daylighting into the studios while still blocking direct sun and high solar

gains, since in the hottest months the sun is high in the south quadrant and can be controlled

with shallow overhangs. On cold winter months, when the sun is lower in the sky, useful solar

gains are still admitted into the rooms, reducing the need for heating. This type of shallow

overhangs the GS suggested could also control the potential glare problems identified in the

previous section.

constraints oportoeistert oporto_best opoto-shading

Figure 7.30 South elevations, including shading results

When the algorithm was allowed to place overhangs in the east fagade too, it significantly

increased window sizes in the 2nd floor, while placing quite deep overhangs to shade the low

morning sun. It should be noted that the studio in the 2nd floor has only east facing windows. For
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the studios on the 4th and 5th floors, which have both east and south facing windows, the GS

kept east openings small [although slightly larger than in the unshaded case] with shallow

overhangs, and privileged south facing openings again. Overhangs were not allowed by the

constraints on the 1st floor, since it was considered it would be out of Siza's language [in all of

the four studio towers, Siza never used overhangs in the 1st floor].

constraints oportoexistent oporto-best oporto shading

Figure 7.31 East elevation results, including shading

7.9.3 Phoenix

For both Phoenix and Chicago only the best solution found by the GS is shown. Under the hot

Phoenix climate, the main differences in GS solutions relatively to Oporto were [figure 7.32]: in

the south, unshaded windows [4 th floor] were significantly reduced, even though shaded ones

remained quite large. East windows were made much smaller too. This reflects the effect of high

heat gains in that geographical location, and suggests shading could be a useful design addition

in this case too. West windows remained small, as they did for Oporto, to avoid heat gains too.

The north fagade suffered almost no alteration, since it is only marginally affected by direct solar

gains.
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Figure 7.32 Phoenix results are in the bottom row

7.9.4 Chicago

The extremely cold Chicago climate originated some interesting changes in relation to Oporto
and Phoenix solutions [figure 7.33]. For north-facing studios, the windows were reduced to the
minimum dimensions allowed by the constraints, due to high heat losses through the glazing
and to the absence of solar gains, which would be beneficial in Chicago's cold climate. This
fagade-level solution may allow for an extrapolation in terms of spatial organization, suggesting
that north-facing studios should be avoided in this type of climate, since obviously the reduced
window sizes suggested by the GS are not acceptable from a users point of view, for whom
factors as a view out and natural lighting will certainly be primordial. It is also interesting to
observe that the best solution for Chicago is very similar to the worst solution for Oporto.
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Towards the south, unshaded windows were made quite large since they couple daylight

admission with useful solar gains. However, shaded windows were reduced to the minimum

dimensions possible, as both natural light and solar gains are blocked, and heat losses prevail.

When overhang depth was used as a variable, the algorithm reduced it to the minimum allowed,

and simultaneously increased window sizes [this result is not shown in the images]. It might be

concluded that south shading may be undesirable in this climate.

Towards the east, rooms that have only east-facing windows received average-sized openings

[1" and 2nd floors], a compromise between positive factors like daylight admission and morning

solar gains, and negative ones like high heat losses through the glazing. For studios with both

east and south facing windows, east ones were made quite small since once again south was

preferred. The west fenestration received minimum dimensions allowed.
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Figure 7.33 Chicago results are in the bottom row
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7.10 Annual energy consumption results

7.10.1 Oporto

Annual energy consumption for the different Oporto solutions is:

Solution
oporto-shading
oporto best
oporto average
oporto existent
oporto-worst

MWh
87.58
89.99
96.22
96.45

110.55

Table 7.1 Annual energy consumption for Oporto solutions

For Oporto's climate, the worst solution found by the GS has about 26% higher energy

consumption than the best solution with shading as a variable. Oporto-shading has a slightly

lower energy consumption than oportobest. Siza's design consumes about 10% more energy

than the best GS solution.

The graph in figure 7.34 shows annual energy consumption for Oporto solutions.

Figure 7.34 Annual energy consumption for Oporto solutions
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Examining results broken down by energy end-use [figures 7.35 and 7.36], it is possible to see
that the existing solution by Siza performs almost as well as the best solution from the GS in
terms of natural lighting use [meaning that artificial light consumption is low]. From the previous
description of results, we could see that the main differences between the two solutions were in
south and east facades, as well as the roof monitors. Although the GS performed many
changes in the individual spaces, which may therefore have a more balanced use of daylighting,

the overall artificial lighting consumption of the building did not change much, showing that

Siza's control of daylighting is actually very sophisticated.

best_shading best average existent

Figure 7.35 Energy end use for Oporto solutions

oportbest-shading oporto best oportoaverage oporto-existent oporto worst

Figure 7.36 Energy end use for Oporto solutions [aggregated]
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Artificial-lighting consumption levels increased about 22% from the best solution with shading to

the worst solution. This number could probably be higher if some of the lighting reference points

were not placed so deep into the room [about 1.5 m from the wall most distant from a window].

The increase in space cooling in the worst solution is probably due to the large east- and west-

facing windows. The existing solution does not differ much from the best one with shading.

Even though some east windows decreased in size, others increased but had overhangs added.

South windows had their overhang depth reduced for increased natural light, but that increased

heat gains, too. For space heating, the best GS solution performs considerably better than the

existing solution, as it allows more useful south solar gains in the winter, and reduces heat loss

through the north-facing monitor and west and east openings.

7.10.2 Phoenix

Annual energy consumption for the Phoenix solutions is:

Solution MWh
phoenixbest 119.02
phoenix-existent 131.09
phoenix-worst 162.74

Table 7.2 Annual energy consumption for Phoenix solutions

In terms of energy end-use, the main differences between the several solutions occur, as

expected, in space-cooling energy and associated ventilation-fan energy [figures 7.37 and 7.38].

If the existing design would theoretically be placed in Phoenix, it would consume about 20%

more energy in space cooling and fans than the best solution the GS found [without using

shading as a variable]. This happens because in the GS solution all unshaded east, south and

west windows were greatly reduced, while shaded windows and north-facing ones were kept

large for increasing daylighting use. Once again, the differences in artificial lighting use are not

as significant as it might be expected, probably due to the extreme location of the lighting

reference points.

The worst solution the GS found for Phoenix consumes about 38% more energy in space

cooling and ventilation fans than the best one, within the same language constraints.
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Figure 7.38 Energy end use for Phoenix solutions [aggregated]

7.10.3 Chicago

Annual energy consumption for Chicago solutions is:

Solution MWh
chicago best 268.72
chicago existent 287.36
chicago _worst 312.24

Table 7.3 Annual energy consumption for Chicago solutions
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In terms of energy end use, space heat dominates Chicago solutions, as expected [figures 7.39

and 7.40]. The high energy-consumption levels could be reduced using such strategies as

properly insulating the building and using better glazing types, which are not variables

considered in this study. But even using only opening sizes as variables, the existing design

consumes about 14% more heating energy than the best GS solution, and the worst solution

consumes 23% more heating energy. Because those savings in heating energy imply reducing

opening size and thus reducing natural light availability, the overall performance between the

different solutions is that the existing design consumes about 7% more energy than the best GS

solution, and the worst design consumes about 16% more energy annually.
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Figure 7.39 Energy end use for Chicago solutions
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Figure 7.40 Energy end use for Chicago solutions [aggregated]

164

250

300|



7.11 Genetic Algorithm search progression

A MicroGA was used in this study too. The search points tested during the execution of the

program are displayed in figure 7.41. The use of elitism allowed for the maintenance of the best

individual at all stages of the search, while the GA kept looking for new solutions. It can be seen

that individuals tend to concentrate towards lower energy consumption levels, but

simultaneously new areas of the search space are always being considered.

The minimum energy solution steeply decreases during the first generations, and then tends to

stabilize. Further progress is then achieved in small steps and requires several generations. The

maximum number of generations used was 100.
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Figure 7.41 Each point in the graph represents a solution tested by the algorithm

Figure 7.42 represents a number of random individuals picked during the search process, and

illustrates the intermediate, hybrid solutions the algorithm goes through during its search for

high performance individuals.
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Finally, figure 7.33 illustrates the progression of the average fitness of the population during the

100 generations, together with the fitness values of the best and worst individual at each step.
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Figure 7.43 Progression of GA search for 100 generations

7.12 3D-Shape manipulation

A first attempt to introduce shape manipulation into the generative system is described in this
section. Following the results analysis from the previous sections, it was considered that varying
the tilt of the different roof sections could improve daylighting admission into the top floor, by
permitting a more flexible sizing of the roof monitors. The GS was allowed to vary the tilt of the
roofs and thus control the size of the roof monitors. Our guess was that the larger roof monitor

should probably not be the one closer to the loggia, in the south side, but the one in the northern

part of the room, since that area had no other light sources. To simplify the experiments, it was

assumed that the rooftop monitors would always cover the entire width of the building, as in

Siza's original design. The height would be determined by the tilt of the corresponding roof, as

the glazed opening would have the same height as the wall it was located on, which would be a

consequence of the roof inclination. Roof tilt was allowed to vary between 100 and 45*. The
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northernmost rooftop had to be at least 2 meters set back from the north fagade so that it could

not be read as part of the elevation, for compositional purposes.

Figure 7.44 represents some random solutions arbitrarily extracted from those first generated by

the GS. It is possible to observe a wide variety of possible solutions, even within these

apparently limiting constraints.

Figure 7.44 Random roof tilt solutions generated by the GS.

Figure 7.45 shows the best solution found by the GS on the left, and also our guess about what

could be the best solution for the roof monitors [on the right]. The difference between that guess

and the actual solution shows how difficult it is to predict the interaction of all variables without

the use of computer simulations, even using information available from previous results.

Figure 7.45 Best roof tilt solution generated by the GA [left] and initial guess of what might be the best
solution [right].
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Our guess performed slightly better in terms of lighting, but the heating and cooling loads were

higher than for the GS solution, due to the larger roof monitor on the south, so the overall

energy consumption of the latter was lower. It should be said, however, that the differences are

negligible.

7.13 Rapid Prototyping

Rapid Prototyping [RP] technologies were used at the final stages of this study to allow for a

more detailed observation of the GS solution. Architectural models have always been one of the

best ways for architects to assess and relate all the components of a design. Using physical

models permitted an in-depth understanding of all the design changes proposed by the GS,

particularly in more intricate spaces as the ones containing the loggia and the zenithal light

sources. The models allowed an immediate assessment of the relation between fenestration

solutions and the spaces where they were located. It also made possible a more immediate

comparison between the existing design by Siza and the GS solution.

For that purpose, a 3D physical model of each level was built [figure 7.46]. The 6 levels could be

all put together to form the complete building model [figure 7.47]. A two-axes Stratasys FDM

[Fuse Deposition Modeling] 3D Modeler was used, which deposits high-resolution lines of

plastic to form the physical model, based on a 3D CAD model.

Figure 7.46 FDM models of several floors of tower H [from left to right, floors 1, 2, 3 and 6].

The impact of using RP technologies coupled with a generative system like the one presented in

this chapter becomes more obvious when one considers that the GS generates not only a single

'best' solution, but an entire population of high performance solutions. The relative merit of

those solutions from an aesthetics point of view can better be evaluated by the architect with the
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help of fast production of the several models. Introducing other variables in the GS like

overhangs and shape manipulation [like the roof tilts] makes the different solutions harder to

compare just with the help of computer generated images. Using RP, it is possible to produce

quick models of the generated designs as a visual help to the evaluation process.

Figure 7.47 FDM model of the complete building

Apart from the RP method used in this study, other rapid fabrication technologies can be

applied. Two axis laser-cutters enable the cutting of material such as wood, cardboard, or

plastic, that can then be assembled into the final 3D form; water jet cutters are mainly used to

cut wood, rubber or metal pieces under high pressure of water jets. This technique enables the

unfolding or flattening of the individuals pieces that are water jet cut, which can later be bent to

achieve the original shape. 3D Sterolithographic laser printing eliminates layers of a resin block,

allowing fast execution of 3D models. Computer Numerically Controlled [CNC] machines, with

multi-axis milling capabilities, can translate three-dimensional data into construction models,
and constitute technological facilities that could also be used to create formwork for casting of

final design solutions, in more complex design solutions.

Fabrication and concept in this case can be seen as a holistic paradigm, where theoretical

premises are embedded in the genesis of the object as much as in the technical apparatus that

permits its creation. By relating this new Generative System to Rapid Prototyping techniques it

is not only possible to generate and evaluate computationally generated forms, but also to

evaluate spatially qualities of the several GA solutions, enabling thus a full integration of

technologic processes in the search of an appropriate architectural solution.
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7.14 Conclusions of the chapter

The Generative System proved to be flexible enough to incorporate constraints that allow the

user to manipulate certain architectural design intentions. The close coincidence between GS

and Siza's solutions in some situations was of particular interest. On the other hand, the

departures from the existing design proposed by the GS suggests that this generative system

may be a useful tool in exploring multiple paths during the design process.

Another interesting dimension of the GS is its capability to account for interactions between

different elements of the building, and to make the design for each specific element dependent

on its integrated role on the architectural whole. The relations between the solutions for the

loggia and the roof monitors, or between south and east facing windows in some of the studios,

are a demonstration of that capability. The possibility of extrapolating from the algorithm's

results to other dimensions like building geometry or spatial organization suggested new

directions for further work where these aspects may also be manipulated by the GS.

The GS was able to generate, within language constraints, solutions that have low energy

consumption levels. Results suggest this GS may be a useful tool to architects during the

design process, by identifying potentially problematic areas and suggesting ways to approach

them. It can act both as a generative tool and simultaneously as a diagnosis mechanism for

problems occurring in a design that is being considered by the architect. The range of solutions

the GS offered to the different geographical locations showed that the system is able to adapt

the architectural design to the climate where it is located, even within the same language

constraints.

The first attempts to perform shape manipulation using this GS proved that it is possible to use

the system to alter building geometry in order to make it more adapted to its environment.

Further work was developed to expand this interesting area of research, and will be presented

in chapter 9.

Finally, in relation to RP applications, different kinds of technologies are constantly shaping the

relationships between design concepts and decision-making. CAD/CAM technologies can play a

major role in the evaluation steps of the design process, especially when the latter makes use of

generative systems, where many solutions are developed at the design stage.
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Multicriteria Optimization using a Pareto-Front Method

8.1 Introduction

This chapter will be devoted to the study of multicriteria optimization methods using

Genetic Algorithms, including applications to architecture-related problems. Most real

world problems, and in fact most architecture design problems, are multicriteria in nature,

in that there is often more than one objective the architect is trying to achieve while

creating a particular solution. Even more, those objectives are often in conflict with each

other, as a design feature that may increase the solution's quality from one point of view

may have a detrimental effect on other performance criteria. This is particularly true for

environmental problems, as we have discusses in previous chapters.

As a consequence, there is often no 'best' solution to be found that will simultaneously

satisfy all the criteria. Instead, there will be solutions that perform well in some aspects, but

worse in others. There will also be some middling solutions, that perform reasonably well

in terms of several criteria, although they are not particularly good in any of them. So,

when speaking of multiple criteria, we are often talking about compromises, trade-offs, and

decision-making.

Multicriteria approaches are included in this chapter because they are seen as a major

problem that decision-makers often face. Until now, the work presented remained in the

realm of single-criteria studies, aggregating several factors into a single number that

'quantifies' the quality of a solution. In this chapter, we will further zoom into the several

interacting factors, for example, decomposing a solution's behavior in terms of daylighting

and of space conditioning [heating and cooling], and seeing which solutions perform better

for each criteria. Other factors will also be introduced, such as the construction costs of a

particular solution versus the energy savings achieved over the year, or the greenhouse

gases emissions [GGE] embedded in the construction materials used versus the reduction

in GGE due to less energy spent in the building. These are all trade-offs that designers

often do not have enough information to deal with in an objective fashion.

In the first part of this chapter, several multicriteria methods described in the literature are
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reviewed. The most common methods are plain aggregating approaches, where the user

defines weighting factors to attribute to the different criteria, achieving again a single figure

of merit attached to the solution. Those methods are quite unsatisfactory, for reasons that

will be discussed later in the chapter.

Instead, we propose another type of approach, where the search mechanism looks for the

best possible trade-offs between the several criteria the designer has included in the

Generative System, and the final decision is left for the architect to make. What the GS

does is providing the architect with valuable and hard-to-find information on what solutions

would provide the best trade-offs, but the GS will not automatically 'decide' on a solution.

These frontiers of best trade-offs are called Pareto frontiers, and will be thoroughly

discussed in this chapter.

Before the Pareto approaches, we will also discuss other population-based methods made

possible by the use of GAs, but that do not formally use the concept of Pareto optimality.

As previously discussed in chapter 5, when GAs were compared to other methods like

Simulated Annealing, the fact that GAs use a population of solutions simultaneously

makes them a particularly suitable method for multiobjective studies. Multiobjective GAs

are usually known as MOGAs.

In this chapter we will also implement a Pareto GA, and will perform several experiments

using different objective functions. In the next chapter, that deals with shape generation,

the Pareto front concept will be pushed even further towards deeper insights into what

factors play an important role in shaping different aspects of the environmental

performance of buildings.

8.2 The concept of Pareto optimality

Genetic Algorithms are methods for approximate optimization which have been

successfully applied to several problems difficult to solve exactly by conventional

optimization methods. Although GA's have been commonly used in single-criterion

optimization problems, a large number of real world problems are multi-criteria in nature,

and these multiple criteria should be optimized simultaneously. In certain cases, objective

functions may be optimized separately from each other to gain insight into each

performance objective. However, suitable solutions to the overall problem can seldom be
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found in this way. Optimal performance according to one objective often implies

unacceptably low performance in one or more of the other objective dimensions, creating

the need for a compromise to be reached.

The Multi-objective optimization problem seeks to find the point x = (x1, ... xn) which

minimizes [or maximizes, as the problem setting may be] the values of a set of objective

functions f = (f1,... fn) within the feasible region S. Unlike single objective optimization

problems, the optimal solution to this problem may not exist because of trade-off

characteristics among the objectives. Hence the concept of the Pareto-optimal set, a

family of points which is optimal in the sense that no improvement can be achieved in any

objective without degradation in others, is introduced as solutions to Multiobjective

Optimization Problems [MOP].

Pareto optimality makes use of the concept of dominated and non-dominated solutions. To

explain the idea of a dominated solution, x dominates y if x is better than y for at least one

objective function, and at least as good on all the others (Tamaki, 1996). A solution is

Pareto optimal if it is not dominated by any other solution.

More formally, Pareto optimality can be written as follows:

In a maximization problem, given two solutions x,y e S, x dominates y if Ei e {1,2,3,....z}

such that fi (x) > fi (y) and that

Vj e {1,2,3,.....z}, fj (x) fj (y).

Figure 8.1 graphically illustrates the concept of a dominated solution.

5

4 .............. B (2,4)

3

2 - ..................... ...................... A = (4 ,2 )

........... ... :....... C (3 ,1)

1 2 3 4 5

Dominated and non-dominated [Pareto] solutions for a maximization problem. C is dominated by A.
Both A and B are non-dominated or Pareto solutions
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The points represent feasible solutions to a multi-objective maximization problem, where

each x and y value corresponds to the solutions to each individual objective function.

Point A (4,2) dominates point C (3,1) since it has both higher x and y values. An

hypothetical point D (4,1) would also be dominated by point A, since D would be as good

as A in the x value, and worst than A is the y value. Points A (4,2) and B (2,4) are not

dominated. They represent good trade-offs between the 2 objective functions. Point A

performs better than B in terms of the x values, but the inverse is true for y values. This

means no point dominates the other, and they are both Pareto-optimal [or non-dominated]

solutions.

Stated more formally:

xO is Pareto-optimal if there doesn't exist any x e F such that x dominates xo.

Another way of understanding the concept of Pareto optimality is, in simple terms, that

Pareto optimality describes a solution for multiple objectives where no part of the solution

can be improved without making some other part worse. This concept has been

graphically depicted by Petrie et al., (1995) and is shown in the figure below. The circles

represent objectives that are best satisfied when the area of the circle is maximized. The

triangle represents the feasible region and the constraints require that the circles cannot

overlap and must remain within the triangle.

B B

A C A C

Not Pareto Optimal Pareto Optimal

C can increase without C cannot increase without

reducing A or B reducing A or B

Figure 8.2 Another illustration of Pareto optimal solutions

The left triangle represents a solution which is not Pareto optimal. That is, the area of

circle C can increase without reducing the area of circles A or B. Conversely, the right
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triangle illustrates a Pareto optimal solution, where the area of circle C cannot increase

without reducing the area of circles A or B.

Since any Pareto-optimal solution is a rational solution to a MOP, it can be said that the

goal of solving a MOP is to obtain the Pareto-optimal set, or at least to sample solutions

from that set as uniformly as possible, a goal that may be achieved by the use of Genetic

Algorithms. This chapter reviews current Genetic Algorithm-based approaches to solving

multiobjective problems, by discussing their similarities and differences.

8.2 GAs in multiobjective optimization problems [MOPs]

The search process of GA's uses a population of solutions in parallel instead of searching

from a single point, as most optimization procedures do. This makes them particularly

suitable for application to multi-objective problems using Pareto optimal sets, since in this

approach the user requires as a final output a number of solutions [Pareto-optimal front]

instead of a single solution. A GA can search for these solutions in parallel, and present to

the decision-maker a set of solutions that represent the best trade-offs between the

several objective functions. As it was mentioned before, in this type of MOPs there is

usually not an absolute optimum, since most of the times the different objectives are in

conflict with each other. It is up to the decision-maker to determine where in the Pareto set

frontier the chosen solution is to be located, that is, what trade-offs is the decision-maker

willing to make. The search procedure will only provide valuable information about the best

trade-offs, but will not substitute the decision- maker.

There are, however, several approaches in the literature for applying GAs to MOPs. In the

simplest case, a GA can be applied to a MOP by simply transforming it into a single

objective optimization problem. This is done by combining the several objective functions

using weighting factors, based on some knowledge of the problem, and eventually

reaching a single figure of merit that supposedly reflects the overall performance of the

solution according to all the different objectives [plain aggregation methods]. Then GA's

can be applied repetitively, if necessary, changing the values of the weighting factors at

each run, to gain some insight into the relative importance of each of the objectives. This

approach, however, does not reveal the attractive properties of GA's for MOP, which are

exactly their capacity to simultaneously search a population of solutions.
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Apart from these plain aggregation methods, this chapter will review population-based

approaches using GAs to generate solutions for MOPs but without explicitly using Pareto

optimization methods, and finally the different methods described in the literature for using

GAs in Pareto optimization.

One of the main factors that distinguishes these different approaches is the way

preference is incorporated into the decision process. According to how much preference

information is incorporated in the fitness function, approaches range from complete

preference information given [plain aggregating approaches], to no preference information

given, as with Pareto-based ranking approaches.

8.3 Various MOGA approaches

8.3.1 Plain Aggregating Methods

In these techniques, typically the objective functions are combined into a 'weighted sum' to

use conventional GA techniques to solve the combined function. This is done by applying

user-defined weighting factors to each of the objective functions under consideration.

After the assignment of weighting factors, no further interaction with the analyst is required

for the GA to look for the 'optimal' answer.

The main problem with this approach is that the final solution is heavily dependent on the

weighting factors used, thus changing the weighting factors can lead to dramatically

different solutions. Also, because all the performance objectives are mixed together into a

single 'figure-of-merit,' it is hard for the analyst to understand in what aspects does a

certain solution perform better than another, and what are its main advantages and

weaknesses. Another handicap related to this approach is that for the analyst to define the

weighting factors he must have a very good insight into all the factors involved in decision-

making, what may represent a serious problem since many times the analyst is not the

decision-maker. A possible approach to overcome this problem is to run the optimization

program several times using different weighting factors. This turns the analysis into

another kind of parametric study, where the parameters are not only the variables of the

problem but also the values of the weighing factors. As typically decision-makers want a



range of solutions to choose from and some understanding of alternative solutions, the

analyst must resort to this approach to provide different alternatives. Nevertheless, this is

never an exhaustive procedure, with only a few cases being evaluated, what brings into

the realm of an optimization process [GAs] some of the disadvantages related to

simulation methods that were stated before.

There are a number of techniques cited as alternative plain aggregating approaches to the

weighted sum discussed above. These include:

target vector optimization [a minimization of distance in objective space]

goal attainment [minimization of the weighted difference between goals]

An example of a study where weighting factors are combined with a GA is by Syswerda

(1997), who applies genetic algorithms to resource scheduling, specifically to resources

assigned to use flight simulator equipment for development support of the F14 jet fighter.

The implementation of a scheduling method isolated the GA from all problem specific

details; the GA only had to work with permutations of a list of things. This isolation was

due to a 'front-end' schedule builder and schedule evaluator, that worked as 'black boxes'

in relation to the GA. The builder created valid but not optimized schedules from a list of

tasks initially assigned on a first input, first scheduled basis. The built schedule is then

evaluated by the schedule evaluator. The evaluator only has to consider preference

information input [weighting factors] by the user or constraints associated with the site [an

example of a site constraint is the maintenance of the equipment]. The task of the GA was

to optimize the final schedule.

8.3.2 Population-Based Non-Pareto Approaches

Another class of multiobjective genetic algorithms is referred to as non-Pareto approaches.

These methods, according to Fonseca (1995), attempt to "promote the generation of

multiple nondominated solutions, a goal at which they reportedly achieved a reasonable

degree of success. However, none make direct use of the actual definition of Pareto

optimality." The definition of Pareto optimality was discussed in section 8.2. While in

Pareto approaches these techniques monitor for nondominated solutions, in population-

based approaches the GA operates on the solution set without the Pareto ranking and

assignment of "Pareto fitness" used by the Pareto techniques.
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The first pioneering technique of this type was developed by Schaffer (1985) and is

referred to as VEGA (Vector Evaluated Genetic Algorithm). Schaffer characterizes VEGA

as being capable of handling vector, not scalar solutions. He specifically distinguishes his

technique from the plain aggregating approaches cited in section 8.3.1, as being able to

handle dimensions that are not commensurable.

In general, the algorithm cycles in a two step process. The first step is a selection or

survival-of-the-fiftest step and the second is a mating or recombination step. Tamaki

(1996) indicates that "sub-populations of the next generation are reproduced from the

current population according to each of the objectives, separately (in a parallel selection

method)." This first step results in a set of solutions that tends to be very strong in one

objective and relatively weak with respect to other objectives. In the second step,

crossover occurs between solutions favoring different objectives via a shuffle step as

shown in figure 8.3 [adapted from Schaffer (1985)].

Where:

Generation

Generato() Parents (t+1)

Sup-Population
1

Sub-Population

Step 1 )Step 2 )Step 3
Population

Sub-Population
3

Sub-Population
N

Step 1 is select n subgroups using each dimension of performance in turn
Step 2 is shuffle.
Step 3 is apply genetic operators

Figure 8.3 Schematic process of VEGA
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The "shuffle" step is a critical one and it is where most of the discussion about the

technique appears to reside. Fonseca (1995) indicates that "Schaffer used proportional

fitness assignments, in turn, proportional to the objectives themselves. The resulting

overall fitness corresponded, therefore, to a linear function of the objectives where the

weights depended on the distribution of the population at each generation. [...] As a

consequence, different non-dominated individuals were generally assigned different fitness

values, in contrast with what the definition of nondominance would suggest." This means

that the fitness value was a function of not only its relative fitness but also the distribution

of the subpopulation at the time it was generated. This might be clearer if shown

algebraically as:

Fitness = Objectivel (weight) + Objective 2 (weight) + ....

where: weight is a function of the distribution

Because of this, and the linear combination of the objectives implicit to VEGA, the

population tends to split into species particularly strong in each of the objective, particularly

in the case of concave trade-off surfaces. Concerns about the concave shape of the edge

of a feasible region were expressed by Schaffer (1985), due to the effect of pressure

favoring extreme performance on at least one dimension. The result of VEGA is that when

determining the population of solutions on the edge of a feasible region, the technique will

tend to find solutions at extremes of performance for given objectives. This is because of

the linear combination of results associated with each of these objectives individually.

Schaffer was thus concerned about missing what he calls the "middling" performance or

compromise solutions. He was aware that VEGA tended to emphasize solutions towards

the extremes, what was most problematic in the case of concave situations where the

middling solution may not be close to the solutions at the extremes. This can be

visualized in figure 8.4 below.

3 Subsequent work by Fleming and Pahkevich (1985) cited by Fonseca (1995) demonstrated that points in concave

regions of a trade-off surface couldn't be found by optimizing a linear combinations of the objectives, for any set of

weights.
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Figure 8.4 Convex (left) and Concave (right) Pareto Optimal Front

While VEGA may miss the middling solution for both convex and concave solutions

spaces, the damage is more severe for concave solution spaces. VEGA will result in

finding solutions A and C while the middling B is left out. In the convex case, that problem

is relatively small compared to the concave case, as B still results in performance relatively

close to A and C. However, in the concave case this is not true. In a maximization

problem, point B may be very attractive and VEGA will miss it altogether.

In order to preserve more middling performers Schaffer tried to implement two heuristics to

improve performance. The first of these was to give an extra selection preference to locally

non-dominated individuals. However, this accelerated solutions to premature convergence

because if there were too non-dominated solutions other individuals died off quickly and

the solution converged prematurely. This is because there was not enough genetic

diversity to continue to generate alternative solutions. A second heuristic Schaffer tried

was to randomly select the first parent and then the second parent that was at maximum

"distance" from the first parent. In test conditions, Schaffer cited that this proved no better

than random mating.

A second non-Pareto technique was cited by Fourman (1985). Selection was performed by

comparing pairs of individuals, each pair according to one of the objectives. Fourman tried

two implementations of this. The first was having user-defined priorities on the objectives

and comparisons were made based on the objective with the highest priority. The second

implementation consisted of randomly selecting the objective to be used in each



comparison. This is similar to VEGA, in weighting the probability of each objective chosen

to decide the comparison. However, the pair wise comparisons prevent linear

combinations of the objectives, because scale information is ignored.

The differences between VEGA and Forman's implementation can be highlighted using an

example adapted from Fonseca (1995), who also provides a more complete description of

these functions and figures. Two functions, representing objective value functions to be

minimized, can be represented by:
F1(x 1, x2) = 1 -exp (-(x 1 - 1 )2 -( x 2 + 1)2)

F1(x1, x2) = 1 - exp (-(X1 + 1 )2 - (X2 -1)2)

A graph of function F1 space is shown in figure 8.5 (the inverse of the function is plotted

for ease of viewing).

Figure 8.5 Function F1

A view of the search space as seen by VEGA can then be created by summing the

solution to the functions and then ranking each solution of x1 and x2 relative to each other.

The result is referred to as a cost space and is shown in figure 8.6, and that has two

peaks. These peaks will be identified by VEGA and the answers given by VEGA will reside

on these peaks resulting in "speciation" or convergence on 'best' by objective function

solutions. This "speciation" develops as VEGA attempts to distribute itself on these peaks

in a balanced way.

182



Cosi Landscape
V EGA Rincs6~pace:

SuyexiCdes1 Landscape)

ME
.r

U.'

A m ade id

Figure 8.6 Cost function of VEGA with functions F1 and F2

Cast Landcape
Fou mhan Spenc: Awaragd Ranhs

%WM'iIMd RIhk 5

OA.

03.

02

0.t

1?9 '. . Tr-hI4

Figure 8.7 Cost function using Fourman's implementation

Similarly, Fourman's implementation can be plotted by averaging the ranks of the solutions

for F, and F2 for each x, and x2. This cost function is shown Figure 8.7. This cost function

is quite different, with a single peak between the two peaks in the VEGA space. The

concavity of the trade-off surface is no longer apparent and there is a single peak near the

Pareto optimal set.
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8.3.3 Pareto-Based approaches using Genetic Algorithms

One of the ways to extend GAs to multiobjective optimization has been to try to overcome

the limitations imposed by the single figure-of-merit objective function. The main question

then becomes what happens when there are different objectives that need to be somehow

compared. Several approaches have been developed which base selection and

reproduction of individuals on both the objective values themselves and their

corresponding dominance property. These are known as Pareto-based approaches. In

Pareto-based approaches, no preference information is given. Search results provide the

best possible trade-offs or compromises between the different and often conflicting

objective functions by establishing the rank of any given solution in relation to other

feasible alternatives. This provides a relative versus an absolute measure of how 'fit' a

solution is.

The first Pareto-based approach, developed by Goldberg (1989), provides a method of

ranking and fitness assignment based on the Pareto optimality of an individual in the

population. A rank of 1 is assigned to non-dominated individuals in the population and

these individuals are subsequently removed from the current population. A new set of

non-dominated individuals is identified in the modified population (i.e. the original

population without the rank 1 individuals), assigned a rank of 2, and then removed from

the population. This process continues until all individuals in the population have been

ranked. Using this method, individuals with rank 1 are considered most 'fit' and are

selected for survival.

A second approach, developed by Fonseca and Fleming (1993), uses a different method

for ranking individuals in the current population. In their proposed method, the rank of an

individual corresponds to the number of individuals in the current population by which it is

dominated. Consider an individual xi at generation t which is dominated by pi(t) individuals

in the current population. The rank of the individual can be defined by the following

equation:

rank (xi, t) = 1 + pi(t)
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Using the above equation, a rank of 1 is assigned to the non-dominated (i.e. pi(t) = 0)

individuals in a population and all non-dominated individuals in a population will be

assigned the same rank. Dominated individuals in the population are penalized based on

the number of individuals in the population which dominate them. The algorithm then sorts

the population according to the multi-objective ranks previously determined. A fitness

value is assigned to individuals in the population and represents a measure of

performance of a member of the population. The fitness of an individual is a single number

in a given scale and within certain boundaries to provide an absolute measure which the

genetic algorithm uses to cull the population in a certain generation to allow more fit

members of the population to remain and produce offspring. Fitness is assigned to

individuals by interpolating from the best rank to the worst using a linear function, in most

cases. The fitness values of individuals with the same rank are averaged, meaning that

these individuals will be sampled from the population at the same rate. Figure 8.8, adapted

from Tamaki et al. (1996), illustrates differences in rank for a population of individuals (A-

H) using the Pareto-based ranking methods proposed by Goldberg versus Fonseca and

Fleming. The x and y axes represent two separate objective functions, f1 and f2,

respectively.

A (1) - - A (1)
*H (3) --3) H (6)

*B F (2) . B(1) F (3)

*G(2) G (2)
0e
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Goldberg Ranking Fonseca and Fleming
Method Ranking Method

Figure 8.8 Goldberg's and Fonseca's ranking methods

A third Pareto-based approach, developed by Horn, Nafpliotis, and Goldberg (1994), is

known as tournament selection and uses dominance properties of individuals in the

population as the criteria for selection. This is one of the most widely used selection

techniques for genetic algorithms. In tournament selection, a set of individuals is randomly

chosen from the current population and the best of this subset is placed in the next
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population. By adjusting the size of the tournament, selection (or domination) pressure can

be increased or decreased and speed of convergence of the model can be controlled. The

tournament selection method described here maintains multiple Pareto-optimal solutions

and avoids convergence to a uniform solution. Tournament selection consists of randomly

selecting two candidates from the population which compete with each other in a

'tournament.' A comparison set of individuals is also randomly selected from the

population and is used to increase domination pressure. Each of the candidates selected

for the tournament is then compared against each individual in the comparison set. If the

first competitor in the tournament dominates all individuals in the comparison set and the

other competitor is dominated by at least one individual in the comparison set, the first

competitor wins the tournament and is selected for survival and reproduction. Figure 8.9 is

a graphical illustration of Pareto-based tournament selection, adapted from Tamaki et al.

(1996):

A 0 Comparison

* 00

A e

f2 * B
* 0

Competitors

fi
Figure 8.9 Pareto-based tournament selection

Referring to figure 8.9, f1 and f2 represent two different objective functions being

minimized. Two individuals, A and B, have been selected to compete in the tournament.

Individual A is not dominated by any individuals in the comparison set. Conversely,

individual B is dominated by some of the individuals in the comparison set. Therefore,

individual A will be selected for survival.

In the case where both competitors are either dominated or non-dominated, the outcome

of the tournament is determined using a fitness-sharing technique. The goal of fitness

sharing is to degrade an individual's objective fitness (fi) if too many other individuals are in

the same niche [that is, are similar solutions], in order to promote diversity in the final

population. This is done using a niche count (mi) calculated for that individual. The

186



degradation in the individual's objective fitness value is obtained by dividing the objective

fitness by the niche count to obtain shared fitness as follows:

Shared fitness = fi/mi

The niche count (mi) is an estimate of how crowded the neighborhood of individual i is and

is calculated over all individuals in the population, using the following formula:

mi = I Sh[d[i,j]]

je Population

where: d[ij] = distance between individuals i and j

Sh[d] = Sharing function; a decreasing function of d[ij] such that Sh[O]=1 and Sh[d cshare] = 0.

The quantity ashare is known as the niche radius, which is fixed by the user and is an

estimate of minimum separation desired or expected between the goal solutions. Stated

differently, the niche radius is the biggest distance at which two individuals in the

population will be considered to be within the same niche. Individuals within ashare distance

of each other, where d[i,j] ashare, will degrade each other's fitness since they are in the

same niche. Individuals spaced further apart than ashare, where d[i,j] Eashare, will not

degrade each other's fitness since Sh[d ashare] equals zero. The fitness-sharing

technique creates a condition where convergence will occur within a niche, but

convergence of the full population is avoided. As one niche becomes full, the niche count

value will increase resulting in a lower shared fitness value in comparison to other niches.

This way, it is expected that the final population will sample individuals all across the

Pareto frontier, as it will be better discussed in section 8.4.

A fourth Pareto-based approach, proposed by Tamaki, Mori and Araki (1995), is known as

the Pareto reservation strategy. Using this method, non-dominated individuals in a

population at each generation are all reserved for the next generation. If the number of

non-dominated individuals in the current population is less than the population size of the

next generation, the remaining individuals in the next generation are selected using the

parallel selection method of the Vector Evaluated Genetic Algorithm (VEGA). Later

revisions of the Pareto reservation strategy incorporate fitness sharing techniques for



selection of individuals for the next generation from the set of non-dominated individuals.

In VEGA, separate sub-populations (1,2,3,.. .n) are reproduced from the current population

according to each of the objectives. This is commonly referred to as the parallel-selection

method. Figure 8.10 below, adapted from Tamaki et al. (1996), is a schematic

representation illustrating the Pareto reservation strategy.

Generation t Generation t+1

Non-

Dominated y

Population - Population

Sub-population 2 Crossover

Mutation
Sub-population n

Figure 8.10 Pareto reservation strategy

A fifth Pareto-based approach, proposed by Tanaka, Yamakura and Kobayashi (1996 b),

is known as the Pareto-optimal selection method. Using this method, all non-dominated

individuals in a given population are retained and all dominated individuals are discarded.

Duplication of individuals is not allowed to make the search process more efficient. The

process consists of applying the selection operator after many individuals have been

produced using mutation and recombination operators. After these operators are applied,

non-dominated individuals are selected for survival from the population. Both parent

individuals and individuals produced by recombination and mutation can be included in the

next generation. Application of mutation and recombination operators will result in

variation in population size over generations. In some cases, a "combined" selection

method is applied, where non-dominated individuals and also individuals with a favorable

Pareto-based rank are selected for survival. Figure 8.11, adapted from Tamaki et al.

(1996), graphically illustrates the Pareto-optimal selection method.
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Figure 8.11 Outline of Pareto-optimal selection

8.4 Niche induction strategies in Pareto optimality

Niche induction techniques, modeled after the biological idea of niching, represent yet one

more way that Genetic Algorithms have been manipulated to address different problems

encountered in solving complex multiobjective systems.

"In nature, a niche is viewed as an organism's task in the environment, and a species is a

collection of organisms with similar features. The subdivision of the environment on the

basis of an organism's role reduces inter-species competition for environmental resources,

and this reduction in competition helps stable subpopulations to form around different

niches in the environment" (Deb et al., 1989).

Niche induction techniques are used for several reasons. First, while Pareto-based

ranking correctly assigns all non-dominated individuals the same fitness, it does not

guarantee that the Pareto set will be uniformly sampled. When multiple equivalent optima

are present, finite populations tend to converge to only one of these solutions, due to

stochastic errors in the selection process. Once the algorithm has converged to this

solution, the size of the gene pool is reduced to the size of the solution(s) gene pool. This

phenomenon, known as genetic drift, has been observed in natural as well as in artificial

evolution, and can also occur in Pareto-based evolutionary optimization. Additionally,

recombination and mutation may be less likely to produce individuals in certain regions of



the trade-off surface [for example, the extremes] than in others, causing the population to

cover only a small part of the surface. The concept of niching [reducing competition to

promote stable subpopulations], prevents the GA from converging to a single point on the

non-dominated frontier. Using niching induction techniques to solve multiobjective GA

improves over the previous methods by promoting the sampling of the entire Pareto set by

the population.

Niching techniques are also used to find and maintain a diverse 'Pareto optimal population'

(Horn 1994). Niching mechanisms, such as sharing and crowding, allow the GA to

maintain individuals all along the non-dominated frontier. The maintenance of diversity is

important since diversity along the non-dominated frontier helps in the search for new and

improved trade-offs, thus extending the frontier. The fact that most crosses of parents on

or near the front yield offspring also on or near the front, is evidence that "Pareto diversity

helps Pareto search", and thus diversity is an important quality in a method of solving GAs

(Horn et al.,1994).

Niche induction techniques find the Pareto optimal set and then apply a niching pressure

to spread the population of the optimal set out along the Pareto optimal trade-off surface.

Niched GAs have the ability to both find and maintain a diverse "Pareto optimal population"

(Horn et al., 1994). Two main techniques using this niching idea have been implemented

on GAs.

The first, crowding, was first developed in 1975. Crowding reduces the number of solutions

in a "crowded" area by dictating that only a certain proportion of the population be

permitted to reproduce each generation and removing similar solutions with matching

alleles. A small set of parents is selected from the population, with each child replacing an

individual from this set which is most similar to itself. In this method, however, stochastic

replacement errors prevent the algorithm from finding all niches since all parents do not

participate.

In applying crowding as a niche induction technique, two new parameters are needed.

These are the Generation gap (G) and the Crowding Factor (CF). The Generation gap (G),

"dictates the use of an overlapping population model in which only a proportion G of the

population is permitted to reproduce each generation. To induce niching in the population,

190



the following approach is adopted. When selecting an individual to die, CF individuals are

picked at random from the population, and the one which is most similar to the new

individual is chosen to be replaced, where similarity is defined in terms of the number of

matching alleles. The new individual [chosen by usual selection methods] then replaces

this chosen individual in the population" (Deb et al., 1989).

The second technique involves the use of a sharing scheme. A sharing parameter, ashare,

is introduced to control the extent of sharing by limiting the distance between solutions.

Here share is the niche radius, which is fixed by the user at some estimate of the minimal

separation desired or expected between the goal solutions. "The parameter ashare depends

on the number of peaks and the upper and lower bounds of the solution space" (Deb et al.,

1989). Sharing is generally used for maintaining stable subpopulations when the solution

includes multiple niches and has been shown to be more effective at maintaining diversity

than the crowding technique described above. As figure 8.12 indicates, a GA with sharing

is able to converge and distribute trials at all the peaks of the functions by dividing the

population into different niches, while a GA with crowding is unable to maintain

subpopulations at all the peaks.

rMEI3TYPIC
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Figure 8.12 GAs with sharing distribute trials to all five peaks in this function, while a GA with
crowding converges only to two peaks. (Deb et al., 1989).



Three methods of sharing will be discussed, including fitness sharing and phenotypic and

genotypic sharing, as well as a means to improve on these methods, by implementing a

mating restriction.

The first method, fitness sharing, aims to maintain the genetic diversity in multiobjective

optimization. The goal of fitness sharing is to "distribute the population over a number of

different peaks in the search space, with each peak receiving a fraction of the population in

proportion to the height of that peak" (Horn et al., 1994). In this method, the fitness value

of each individual is reduced if other individuals exist in its neighborhood. Individuals within

Qshare distance of each other degrade each other's fitness, since they are in the same

niche. As one niche 'fills up,' its niche count increases to the point that its shared fitness is

lower than that of other niches. Therefore, convergence will occur within a niche, but the

entire population will not converge. An individual located in a more crowded area will

produce less offspring, and we will obtain a population distributed more uniformly over the

Pareto-optimal set.

In phenotypic sharing, the parameter ashare is used to set the distance between strings in

the niche space. To better understand this parameter, "imagine that each niche is

enclosed in a p-dimensional hyperspace of radius asare such that each sphere encloses

1/q of the volume of the space, where q is the number of peaks in the solution space" (Deb

et al., 1989). This allows the optimization to perform sharing in a phenotypic environment

[along the phenotypic Pareto optimal front], that is, the decoded parameter space.

Genotypic sharing, the use of sharing based on genetic proximity, or the genetic closeness

of two individuals, uses a different solution space, and so the parameter ashare must be

defined slightly differently. It is defined as "the maximum number of different bits allowed

between the strings to form separate niches in the population" (Deb et al., 1989). This

different definition allows the GA to optimize using the entire genotype.

There are, however, drawbacks to using genotypic sharing. Unfortunately, this method is

sometimes unable to maintain stable subpopulations at the peaks of relatively low value,

especially in those functions with peaks of unequal value. This is shown in figure 8.13

(adapted from Deb et al., 1989).
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Figure 8.13 A GA with phenotypic sharing distributes trials to all five peaks, a GA with genotypic
sharing to three peaks, and a GA with crowding to a single peak.

Adding a mating restriction, or biasing the way in which individuals are paired for

combination, can greatly improve the performance of most of the sharing techniques

previously discussed. "Once the sharing scheme clusters subpopulations of trials at the

peaks, crossover between strings on different peaks may produce new strings that do not

represent any peak. The presence of these lethal strings in the population degrades the

on-line performance of the process. Therefore, to achieve better performance on

multimodal functions, crossover between strings of different peaks must be reduced. In

nature, this is achieved by creating separate species (or subpopulations) corresponding to

each niche (or peak) in the solution space and restricting the mating between species. It

has been shown above that a population can be divided into as many subpopulations as

there are peaks by suitably selecting a parameter a5share. A similar parameter can also be

defined to create subpopulations that constitute a species. When the distance metric

considered in both these cases is measured in the decoded parameter space, the so-

called phenotypic mating restriction, the individuals with the corresponding distance metric

less than a7share are shared and the individuals with distance metric less than amating are

mated. To keep the analysis simple, the parameters ashare and Gmating are set equal. The

mating restriction method imposed on the individuals is as follows: To find a mating

companion of an individual, if an individual within a distance of amating is found, mating is

performed, otherwise another individual is tried. If no such individual is found in the

population, a random individual is chosen" (Deb et al., 1989).
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From figures 8.14 and 8.15 below, also adapted from Deb (1989) it is clear that phenotypic

sharing is much more effective when a mating restriction is used. The distribution of

offspring among the various peaks is more uniform and the quality of the offspring is

consistently higher.
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RESTRICTION

MITMWT MTINB
RESIRICTIOi

Figure 8.14 Distribution of trials on function F1 with phenotypic sharing alone and phenotypic
sharing with mating restriction. Sharing with mating restriction reduces the number
of lethal trials.
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A final method incorporating the niche induction technique is known as Nondominated

Sorting Genetic Algorithms (NSGA). "The idea behind the nondominated sorting procedure

is that a ranking selection method is used to emphasize good points and a niche method is

used to maintain stable subpopulations of good points. (...) The ranking classification is

performed according to the nondominance of the individuals in the population, and a



distribution of the nondominated points is maintained using a niche formation technique.

Both aspects cause the distinct nondominated points to be found in the population"

(Srinivas 1995).

This method is able to solve any number of objectives and has been shown to outperform

several MOGAs [Multi-Objective GAs] and VEGA (Srinivas et al., 1995). The flow chart

shown in figure 8.16, adapted from Srinivas et al. (1995), illustrates the process of using a

nondominated sorting genetic algorithm.

Figure 8.16 Flow chart of Non-Dominated Sorting Genetic Algorithm [NSGA]

The niche induction techniques described above are more complicated to implement than

other strategies. However, these methods overcome the drawbacks of the previous ones

by effectively finding the optimal solution along the Pareto front while maintaining the most

diversity in the population.
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8.5 Case studies and applications found in the literature

Few real world applications of MOGAs have been found in the literature, probably due to

the fact this is a recent field of research. Pareto GAs are the most commonly found

approaches, usually combined with some sharing/crowding strategy to ensure that most of

the Pareto front will be sampled.

Tamaki et al. (1996) apply the Pareto reservation strategy [discussed in section 8.3.3] to a

scheduling problem in a hot rolling process of a steel factory. The process contained three

furnaces and one rolling unit, with slabs being provided from the preceding process. Each

slab needed to be heated to a certain temperature in one of the furnaces, and then

pressed in the rolling unit.

The scheduling problem was defined as to find the assignment of slabs to the furnaces

and the pressing order of the slabs in the rolling mill.

The objectives to minimize were:

- the total quantity of fuel required for heating all slabs at all furnaces

- the total time for heating all slabs

- a complexity index determined by the difference of width, thickness and hardness

between each pair of subsequently pressed slabs [related to changes required in

the equipment when different slabs are processed after each other].

The existing constraints related to the quantity of fuel supply per unit time, and constrains

both on the absolute position of the order in pressing for each slab, and on the relative

order in pressing for each pair of slabs.

The chromosomes representing a solution for the problem were designed in the following

way: the initial problem was divided into two sub-problems: an assignment problem

(assigning slabs to furnaces) and an ordering problem (determining the pressing order). A

chromosome was then formed by putting together two sub-strings a and P, each of length

equal to the number of slabs.

Each sub-string was formed as follows:
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ai - the i-th position in string cc - represented the index of the furnace to which the i-th slab

was assigned [could be either 1, 2 or 3]

i - the i-th position in string P - represented the index of the slab that would be pressed in

the i-th position [could vary between 1 and the total number of slabs]

The crossover operator used was a ten-point crossover. The mutation operator used was

quite sophisticated and problem-specific: within the sub-string x, a randomly chosen allele,

i.e., an index of a furnace, would be mutated with a prescribed probability. Within sub-

string P, the order of two slabs selected randomly would be exchanged with a certain

probability, as long as the resultant order would satisfy both the absolute and the relative

constraints in the ordering problem.

This problem also used a local search method (hill-climbing) to improve the search results

of GAs. If a better schedule was obtained by the local search method, it would substitute

the original genotype. The local search was also defined differently for the assignment and

the ordering problems, using different ways of determining neighborhoods in both cases:

1 - The neighborhood of the furnace assignment was defined as the set of schedules

whose assignment was different in one slab

2 - The neighborhood of the pressing order was defined as the set of schedules whose

pressing order is different in two positions, i.e., one pair of slabs.

This is a case where three different objectives, not easily comparable, were chosen:

minimizing quantity of fuel, heating time for the slabs, and a complexity index. Although

there is no way to know whether an absolute optimal solution was achieved, or if the entire

Pareto front was sampled [since GAs are heuristic methods], search results were quite

positive according to the authors, who reported that "all objectives have been improved

almost uniformly."

Weile et al. (1996) compared three types of Pareto GAs applied to the study of trade-offs

in the design of microwave absorbers. Multilayer microwave absorptive coatings are used

for reducing the radar cross section of objects in a variety of applications ranging from

stealth to anechoic chambers. The coatings are applied in several layers over a specific

backing, and must not only suppress reflection over a wide band of frequencies, but also
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need to be thin to be practical and economical (Weile et al., 96). These two goals -

thinness and high absorptance - are very often in conflict, in the sense that the 'optimal'

design with respect to absorption may be too thick and expensive to be practical. In this

paper, Pareto GAs are used to choose the material for each layer from a database of

available materials and their respective thickness.

The objectives here are to minimize thickness of the overall coating, and reflectance at the

frequencies across which the absorber is to operate. The constraints are the availability of

materials [can only pick materials from an existing database], the band of frequencies

under which the absorber will be evaluated, and the number of incident angles where

reflection is to be suppressed. Because the materials have arbitrarily frequency dependent

properties, the Pareto surface is unlikely to be continuous, so the search procedure will

generate a discrete approximation to the Pareto set.

The three MOGA compared in this study are:

CTPGA - Crowded Tournament Pareto GA, using nondomination ranking, crowding, and

tournament selection. The nondomination ranking as proposed by Goldberg is described in

section 8.3.3 as the first Pareto approach. Crowding is described in section 8.4

NPGA - Niched Pareto GA, described in section 8.3.3 as the third Pareto approach.

NSGA - Nondominated Sorting GA, which combine nondomination ranking and sharing.

In the NSGA, the solutions ranked 1 are given an initial fitness value FRI, and then their

niche counts ni are calculated. Their shared fitness is then calculated in the usual way

Fsharedi = FRI/ ni.

The solutions ranked 2 are then assigned an initial fitness value FR2, less than the lowest

shared objective function value of those ranked 1, and then undergo sharing themselves.

This process is repeated until all members of the population are assigned a fitness value,

and then roulette wheel selection is used to create the next population.

This study shows that the best performing method was the NSGA, followed by the

CTPGA, and last by the NPGA. The CTPGA was able to keep diversity over the Pareto

curve, as well as a relatively dense curve, while the NPGA was unable to keep such

compromise. The NSGA clearly outperformed the two other approaches [using the same
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niche radius as the NPGA], and after only 10 generations was able to locate most of the

Pareto front, while in the final generations the curve only becomes more well-defined and

slightly more diverse (Weile, 96).

This last point is important because although the NSGA performed the best, it is also the

most computationally intensive approach of the three, followed by the CTPGA. This is

easy to conclude when one looks at the algorithms themselves. Both NSGA and CTPGA

involve the ranking of the entire population, while the NPGA does not [individuals are only

compared with a random subset of the population]. Additionally, sharing is more

computationally expensive than crowding, as it was shown in section 8.4, what makes

NSGA the most expensive algorithm of the three. However, since it has been shown that

the NSGA quickly locates most of the Pareto front in the first generations, and then spends

most of its computational effort making it more dense and only slightly more diverse, it is

possible to significantly reduce the computational time of NSGA.

A third example described application of a Pareto genetic algorithms to an object

recognition system (Aherne et al, 1997). In most cases, the parameters used for object

recognition have to be specified by the user, based on rules-of-thumb and trial-and-error

procedures. Using a Pareto genetic algorithm, it was possible to have the system

automatically determine the parameters of importance for recognition of a certain object in

a large database. This represents a significant advancement in automating object

recognition systems.

Finally, a multi-objective genetic algorithm was applied to the design of the control system

for a gas turbine engine [an Advanced Short Take-Off, Vertical Landing aero-engine]

(Chipperfield et al., 1996). In this case, a number of design parameters had to be

optimized so that the system could respond to very stringent time-response design

specifications while minimizing the complex interactions between the system loops.

199



8.6 Implementation and initial experiments

For the work described in the remaining of this chapter, a Nondominated Sorting Genetic

Algorithm [NSGA] was implemented, since from the literature review it was suggested this was

the best approach to MOGA applications. However, not only is NSGA a computationally

expensive algorithm, the coding for implementation is not simple to develop.

The first experiments using an initial implementation [figure 8.17 ] demonstrated that even

though the population of solutions were slightly increasing their performance levels, as shown

by the trend lines in the graph, an actual front of Pareto points was not discernible. In the graph,

blue represents the initial population, red an intermediate one, and green the final population.
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Figure 8.17 Experiments with the initial NSGA implementation showed solutions were not converging
to a Pareto front, even though they were improving the overall population performance.
Further code refinements were necessary.

After further code refinements, another experiment was performed, this time using the building

by Alvaro Siza presented in chapter 7. Two objective functions were used to create a Pareto

front, namely energy spent for lighting, and energy spent for space conditioning. This separation

came from the concept that lighting and thermal issues have different qualitative impacts on the

indoor environment. Daylighting is more related to the spatial quality of the architecture itself.

Furthermore, building occupants usually prefer daylit spaces to artificially lit ones. There is also
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research being done trying to relate daylight to productivity (Norris et al, 1997). On the other

hand, a comfortable thermal environment can be successfully delivered by mechanical means,

as long as the system is designed and operated according to best practice standards. For that

reason, it was considered that it might be pertinent to separate the annual energy consumption

of the building in two components, energy used for lighting [which reflects daylighting quality]

and energy use for heating and cooling, since they reflected different qualitative measures, not

only quantitative ones.

Figure 8.18 shows a graph plotting the last population of a Pareto run with 20 individuals.

Although many points are still not in the frontier, it is already possible to determine some kind of

Pareto front, which is made more explicit in figure 8.19, where only the best Pareto solutions are

represented. A trend line was added, that further helps visualizing the shape of the frontier.
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2,9 0,6 1,8
6,5 0,6 4,C
3,8 0,6 2,3
3,8 0,6 2,3
2,9 0,6 1,8
2,4 0,6 1,5
2,4 0,6 1,5
3,3 0,6 2,0
3,3 0,6 2,0
3,3 1,2 4,0
2,9 0,6 1,8
5,1 0,6 3,1
6,0 0,6 3,7

4 1
4 1
4 1
4 3
4 1
4 1
4 1
4 3
4 1
4 1
4 1
4 1
4 1
4 1
4 1
4 2
4 1
4 1
4 2
4 1
4 1
4 2
4 2
4 1
4 1
4 1
4 2

2,4 0,6 1,51 7,51 4 1

Figure 8.18 Last population of a Pareto run with 20 individuals, applied to Siza's School of Architecture,
using energy spent for lighting and space conditioning as objective functions.

In figure 8.20, the top row shows the solution that performs better in terms of space conditioning

[heating and cooling, represented in the legend as hic ], and performs worst in terms of lighting.

The bottom row represents the best solution for lighting and worst for space conditioning.
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22,5 2617
22,5 2072
22,8 1564
23,0 155C
23,1 1405
23,2 1373
23,3 1332
23,6 1233
23,8 1193
23,8 1157
23,8 1132
24,0 1085
24,0 1064
24,3 1018
24,3 997
24,6 977
24,6 974
24,6 921
24,8 893
24,8 879
24,9 872
25,7 757
25,7 738
25,8 689
26,2 648
26,9 594
26,9 570
27,0 547
27,4 520
27,9 436
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Figure 8.19 Five points in the Pareto front from figure 8.18, with trend line added. The fagade solutions
corresponding to those points are visualized in figure 8.20

Fagade designs follow a somehow expected pattern, in that the best solutions for space

conditioning have smaller fenestration sizes, and the best ones for lighting have larger

openings. However, some points are interesting to observe. For example, in the west fagade, for

the best lighting solutions windows do not assume large dimensions, staying much smaller than

what the constraints allow. This suggests that these window dimensions are enough to provide

the lighting levels set for those spaces [which are lower than for the studio rooms], so increasing

window size would bring no benefits in terms of lighting and would cause poorer thermal

performance. The best trade-off seems to be close to the one depicted in the image. For the

best lighting solution, east facing windows in the 4 th and 5 th floors are also not driven to very

large dimensions, suggesting again that the combination of larger south facing openings and

smaller east facing ones provides enough daylighting to satisfy the spaces requirements.

The third row in figure 8.20 represents the 'intermediate' or middling solution, where more

compromises are made between lighting and thermal requirements. It resembles in many

aspects the oportobest solution from chapter 7, but has an overall higher energy consumption

than the one found in that chapter's experiments. For that reason, and also due to the fact that
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Figure 8.20 Five fagade solutions corresponding to the Pareto front from figure 8.19.
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the Pareto front was still not well defined in figure 8.18, it could be concluded at this stage that

the Pareto code still required some improvements to provide more reliable solutions, and to be

able to better define the Pareto frontier, thus offering the user more information about possible

trade-offs.

Improvements to the code implied the refinement of the ranking method, changing of the elitism

strategies, and upgrading the niching procedures so that the points would spread along the

Pareto front instead of staying in clusters. The next experiments show that the resulting version

of the NSGA code quite successfully locates Pareto fronts, spreading most of the individuals

among the frontier. Few points are left in regions of poorer performance. This implementation

was the basis for all the remaining experiments presented in this chapter.

8.7 Experiments relating building energy consumption with construction materials costs

The experiments descried in this section are based on Pareto search methods, and look for the

best trade-offs between reductions in energy consumption during building operation, and initial

costs due to construction materials. A simple, schematic building layout was created for these

experiments, with independent rooms facing each cardinal direction, with just one window per

room [in the longest exterior wall], but avoiding the large core area that existed in the building

scheme used in chapter 4. Figure 8.21 shows the building layout.

Figure 8.21 Schematic building layout for Pareto experiments

Apart from varying the window dimensions, as in chapter 4, the GS could also manipulate the

construction materials used for the external walls. All walls were supposed to be built in a similar

way, regardless of their orientation. The interior finish was gypsum board, and the outside had a

2.5 cm mortar layer. What the GS could manipulate were the interior materials only. Three
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internal layers were predicted. Material 1 represented the material used for the layer closest to

the external wall surface. Material 2 was the innermost layer, and material 3 the one closest to

the inside surface. The GS was allowed to choose from a list of 16 possible materials, which are

listed in Table 8.1. Since some of those options are air layers, there was an additional constraint

that prevented materials 1 and 3 to be air layers, due to buildability issues. Materials were

selected from the DOE2 materials library, as well as their respective physical properties. It

should be added that DOE2 allows the user to create new materials and insert them in the

existing library.

# DOE2 code Name Thickness [cm] Density Conductivity
[kg/m3] [W/m.k]

1 AL11 Air layer 1.9 or less - R=0.1586

2 AL21 Air layer 1.9 to 10.2 - R=0.1568

3 AL31 Air layer 10.2 or more - R=0.1621

4 IN33 Expanded Polystyrene 2.54 28.83 0.0346

5 IN35 Expanded Polystyrene 5.08 28.83 0.0346

6 IN36 Expanded Polystyrene 7.62 28.83 0.0346

7 IN43 Expanded Polyurethane 2.54 24.03 0.023

8 IN45 Expanded Polyurethane 5.08 24.03 0.023

9 CB21 Concrete block, medium 10.2 1217.41 0.5197
weight, hollow

10 CB23 Concrete block, medium 10.2 1249.44 0.2617
weight, perlite filled

11 CB26 Concrete block, medium 15.2 1041.2 0.618
weight, hollow

12 CB28 Concrete block, medium 15.2 1073.24 0.2018
weight, perlite filled

13 CB41 Concrete block, light weight, 10.2 1041.2 0.3846
hollow

14 CB43 Concrete block, light weight, 10.2 1073.24 0.22
perlite filled

15 CB46 Concrete block, light weight, 15.2 881.02 0.4806
hollow

16 CB48 Concrete block, light weight, 15.2 913.05 0.1705
perlite filled

Table 8.1 Construction materials and their properties, for the Pareto experiments
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The glass used was fixed for all the experiments, and was double clear glazing [DOE2 code

2003], with the following properties:

Glazing type Layers [mm] Shading coefficient Visual transmittance U-value

Double clear 6/6/6 0.81 0.781 3.16

Table 8.2 Glazing properties used for the Pareto experiments

Costs for the different materials were obtained by telephoning several retailers in the US, and

averaging the different prices provided by distinct retailers. Those values are not to be

considered too accurate, but they give a relative measure of the comparative costs of the

different materials. In a real world application, care should be taken in obtaining accurate

values. If quantity discounts exist, they can be handled by if-then type of rules, of the kind 'if

material x area is greater than y, then cost of material x equals z, else if ... '.

In general, costs per unit area of insulation materials were lower than those for concrete block.

Expanded polyurethane was more expensive than expanded polystyrene. Air layer costs were

set to zero. Window costs were much higher per unit area than any of the other materials.

8.7.2 Results

Some results of experiments using this setup are now presented. Experiments were done both

for Phoenix and Chicago climates.

8.7.2.1 Phoenix

Figure 8.22 shows the progression of the search for the Pareto front for the Phoenix climate,

from the initial random population [gen 1, in white], to generation 100 [in blue], where the Pareto

front is already clearly visible. Running another 100 generations [gen 200, in red] made some

small improvements in the front, but also implied the loss of some previously found points.

Figure 8.23 shows the progression of the search from generation 1 to generation 100, in steps

of 10 generations. It can be seen that by generation 10 solutions have started to move towards

the Pareto front, and by generation 20, most of the front is already defined. The subsequent
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generations work mostly in refining and making small improvements in the front, what confirms

the information found in the literature.

Phoenix Pareto front Energy consumption versus materials costs

28
MWh

Pareto front for Phoenix climate

--

0e 0

0a
a0

0 a 0a

Sa 0

a V&

21 22 23 24 25 26 27 28

MWh

Figure 8.23 Search progression for the Pareto front for Phoenix climate
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The following step was to analyze what design configurations and combinations of construction

materials led to the appearance of this frontier of best trade-offs. Table 8.3 shows the initial

random values given to each variable by the GS in the first generation, and Table 8.4 shows the

variable values of the solutions belonging to the Pareto front.

For each window orientation, its width and height are given [for example, South-W is south

window width in meters]. The area of each window [shown in blue] and the total window area for

the building [in red], all in square meters, were calculated afterwards for the purpose of results

interpretation.

The materials chosen for each wall layer are also shown, using the codes from the left column

of Table 8.1. Mat1 corresponds to the outermost layer, Mat2 to the intermediate layer, and Mat

3 to the layer closer to the building's interior. Both tables are displayed in ascending order

according to energy consumption [MWh column], with the lowest energy levels showing first.

South-W South-H South-A
7,4 1,8 13
6,9 2,4 17

East-W East-H East-A
5,1 1,2 6
3,3 1,8 6
5,6 0,6 3
2,0 1,8 4
1,5 1,8 3
6,0 0,6 4

North-W North-H North-A IWest-W West-H West-A ITotal-A I
5,1 5,1 26
3,3 3,3 11

6,0 1,2
1,5 0,6

Mat I Mat 2 Mat 3
16 6 10
8 7 6
6 12 7

10 12 16
16 2 16
16 13 8
15 1 12
8 7 15

13 9 15
12 14 4
12 3 5
13 5 16
6 2 5
8 10 8

11 1 14
16 5 12
5 10 9

10 10 10
6 11 7

12 10 9
13 6 12
12 16 15
16 9 6
11 3 13
16 2 16
16 2 12
16 1 16
16 1 15
16 3 16
5 3 14

Table 8.3 Initial random values given to each variable by the GS in generation 1
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MWh Cost [$]
21,8 10762
22,3 8607
22,9 10405
23,0 9970
23,1 7375
23,2 9836
23,6 8151
23,7 6903
23,9 8813
24,0 7675
24,1 5572
24,1 7724
24,1 6995
24,2 6566
24,3 7622
24,4 12008
24,5 7050
24,8 9149
24,9 6464
25,2 8494
25,2 9396
25,5 11106
25,6 7389
25,8 6746
25,9 8862
26,0 10524
26,6 8241
26,9 7635
27,0 9437
27,4 7550



# South-W South-H South-A East-W East-H East-A North-W North-H North-A West-W West-H West-A Total-A Mat 1 Mat 2 Mat 3 MWh Cost [$]

1 4,7 1,8 8 7,4 0,6 5 6,0 1,2 7 4,2 0,6 3 23 8 6 6 21,7 7276

2 7,4 1,8 13 7,4 0,6 5 4,2 1,2 5 5,1 0,6 3 26 8 6 6 21,8 7917

3 6,5 1,8 12 7,4 0,6 5 6,5 1,2 8 4,2 0,6 3 27 8 3 6 21,8 7286
4 4,7 1,8 8 5,6 0,6 3 6,0 1,2 7 5,1 0,6 3 22 8 4 6 21,8 6653

5 6,0 1,8 11 5,1 0,6 3 4,2 1,2 5 3,3 0,6 2 21 4 6 6 22,0 6331

6 6,0 1,8 11 6,5 0,6 4 2,9 1,2 3 4,2 0,6 3 21 5 5 6 22,1 6294

7 6,5 1,8 12 5,6 0,6 3 6,5 0,6 4 3,8 0,6 2 21 4 5 6 22,2 6127

8 4,2 1,8 8 5,1 0,6 3 2,4 1,2 3 5,1 0,6 3 17 8 6 6 22,2 6093

9 4,2 1,8 8 4,2 1,2 5 2,9 1,2 3 5,6 0,6 3 20 4 6 6 22,2 6019

10 6,5 1,8 12 4,7 0,6 3 6,0 0,6 4 2,0 1,2 2 21 4 5 6 22,2 5971

11 6,0 1,8 11 5,6 0,6 3 4,7 0,6 3 3,8 0,6 2 19 4 5 6 22,3 5736

12 6,0 1,8 11 5,6 0,6 3 0,6 1,2 1 4,2 0,6 3 18 4 6 6 22,4 5619

13 4,2 1,8 8 4,7 0,6 3 0,6 1,2 1 5,1 0,6 3 14 6 6 6 22,5 5507

14 4,2 1,8 8 6,9 0,6 4 0,6 2,4 1 5,1 0,6 3 16 6 5 7 22,5 5388

15 4,2 1,8 8 6,9 0,6 4 0,6 2,4 1 4,7 0,6 3 16 6 7 7 22,6 5318

16 6,0 1,8 11 2,0 1,2 2 2,4 1,2 3 1,5 0,6 1 17 4 5 6 23 5256

17 4,2 1,8 8 5,6 0,6 3 2,0 0,6 1 5,6 0,6 3 16 4 5 6 22,6 4962

18 4,2 1,8 8 5,6 0,6 3 1,1 0,6 1 3,3 0,6 2 14 4 6 6 22,6 4834

19 4,2 1,8 8 4,2 0,6 3 2,4 1,2 3 5,6 0,6 3 16 4 5 4 22,8 4606

20 4,2 1,8 8 2,0 1,2 2 1,1 1,2 1 3,8 0,6 2 14 4 7 6 22,8 4527

21 4,2 1,8 8 3,8 0,6 2 0,6 2,4 1 1,5 0,6 1 12 4 5 6 22,9 4284

22 4,2 1,8 8 4,2 0,6 3 1,1 1,2 1 3,8 0,6 2 14 4 3 6 23,0 4038

23 2,4 2,4 6 2,0 0,6 1 0,6 0,6 0 2,0 0,6 1 9 4 7 6 23,7 3509

24 2,4 1,8 4 5,6 0,6 3 0,6 1,2 1 1,1 1,2 1 10 8 3 4 23,9 3315

25 2,4 1,8 4 2,0 0,6 1 0,6 0,6 0 1,1 1,2 1 7 6 5 4 24,0 3248

26 2,4 2,4 6 2,0 0,6 1 0,6 0,6 0 1,1 0,6 1 8 4 7 4 24,3 2829

27 0,6 1,8 1 5,6 0,6 3 1,1 1,2 1 1,1 0,6 1 6 6 1 4 25,4 2517

28 0,6 1,8 1 2,0 0,6 1 0,6 1,2 1 2,0 0,6 1 4 8 3 6 25,4 2752

29 0,6 1,8 1 1,5 0,6 1 0,6 1,2 1 5,6 0,6 3 6 4 3 6 25,6 2461

30 0,6 1,8 1 1,5 0,6 1 1,5 1,2 2 4,7 0,6 3 7 4 3 7 25,9 2278

Table 8.4 Final values given to each variable by the GS in generation 100 [most points are Pareto-
optimal]

One important feature about this problem is that window costs dominate the overall cost of the

building. For that reason, one of the main strategies the GS would use for reducing materials

costs would be to decrease window sizes. This is illustrated in figure 8.24, where the green bar

lengths are proportional to the overall window area in the building. It is apparent that the highest

cost solutions [cost is represented in the x axis] have larger window areas. However, those

solutions also correspond to the ones showing better energy performance [solutions are ranked

in the y axis, I being the best].

With this information in mind, it may become easier to interpret the numerical information

present in Table 8.4. In general, larger window sizes, particularly towards the south and north,

lead to better performance solutions, but imply higher costs too. There seems to be a stong

correlation between reducing fenestration sizes and a decrease of the building's performance.

West seems to be an exception, since even in the best solutions the window sizes are rather

small. East windows are somewhat larger, showing that west orientation is indeed the most

problematic regarding glazing areas.
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Figure 8.24 Generation 100: Relation of overall window area [green bars] with materials cost in dollars

[x axis] and energy performance [best solution is ranked 1 in the y axis].

In terms of wall materials, which are the main difference introduced in these experiments, it is

interesting to note that even though in the first random solutions many instances of

heavyweight, masonry elements appear, in the final Pareto solutions only lightweight, insulation

materials are used. Recalling from Table 8.1, material numbers 1 to 3 are air layers, 4 to 8 are

insulation materials, and 9 to 16 are different types of concrete blocks, some filled with perlite,

which is a type of insulation too.

Looking at Table 8.4, it is possible to see that all material numbers are smaller or equal to eight,

meaning that only insulation materials and air layers are applied. This may be due to several

facts. One is that the cost per unit area of insulation materials is lower. The other is that the GS

may be using the thermal mass from the concrete floors and roofs to dampen internal

temperatures, as heat storage during the day to avoid large peak loads. It was predicted that in

a hot climate like Phoenix some thermal mass would be applied in the walls. However, the

massive floors and ceilings seem to be able to take that role, and the walls can become

lightweight, highly insulated elements. Finally, it is possible to see that the lowest energy
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solutions make use of better insulation materials, like #6 [7.6 cm expanded polystyrene, the

thickest allowed], and #8 [5cm expanded polyurethane, also the thickest]. To reduce

construction costs, the GS starts using large air layers and lower quality insulation materials,

combining that with a reduction in window sizes.

It is interesting to note that in generation 1, one of the randomly generated solutions already

performed almost as well as the best Pareto solution in terms of energy, but its construction

costs were about 33% higher. This demonstrates the usefulness of applying a method like the

Pareto front search. This way, it was possible to achieve a similar performance solution while

saving about 33% in the costs. In terms of the average performance of the populations, the

energy level reduction from gen 1 to gen 100 was only 6% on average [from 24.7 MWh to 23

MWh], but reduction in costs were about 41 % [from $8,434 to $4,965], a much more significant

figure, suggesting that including materials costs in the Pareto front studies may be an effective

measure for achieving similar performance levels at lower costs.

Finally, we include in figure 8.25 a combination of the best Pareto solutions found at generation

100 and 200. The above analysis was only performed for results up to generation 100, but we

Phoenix Pareto front [combining best results from generations 100 and 200]

6000

500

4000

3000

2000

1000

0
26,5

MWh

Figure 8.25 Combined Pareto front points of generations 100 and 200
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could see from previous figures that running the algorithm for another 100 generations brought

new points into the frontier, which are plotted, together with the corresponding energy values, in

figure 8.25.

8.7.2.2 Chicago

A similar set of experiments was done for Chicago. Figure 8.26 shows the first random points,

and generation 100. No further runs were made for this climate. The Pareto frontier is not as

well defined as for Phoenix, but is still quite satisfactory. The few outliers that can be observed

(like solution 28 in Table 8.5, which shows the Chicago results for generation 100] are also

informative about unsuccessful features of a solution. In general, we can observe that solution

costs for Chicago are lower than those for Phoenix. This happens even for the best energy

performing solutions, mainly because window sizes were reduced to minimum dimensions, with

the exception of south openings, and windows dominate cost. The smaller openings are usually

those facing north. Questions can be raised about this small sized openings in terms of user

satisfaction, so may be other runs should be done using glazing type as a variable, to consider

better performance glazing for getting larger window sizes. For the best energy solutions, the

GS could still choose the best insulation materials while keeping solutions at very reasonable

costs, due to reduced spending in windows.

Finally, we call the attention for solution 22 in Table 8.5. It achieves extremely low costs with not

too much energy penalties by radically reducing all windows [only the south one remains at

reasonable size], and thus it can still use low quality, cheap insulation materials by creating this

'bunker' type of building.
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8.8 Experiments using materials greenhouse gas emissions as objective function

In this section, we expand the work on Parteo frontiers to include greenhouse gases emissions

into the search for best trade-offs. Two objective functions are considered: annual energy spent

for building operation [MWh], and GGE emissions to extract, produce and transport the

materials used in the building [kg C02 eq.]. GGE's emissions are also an indicator of the

embodied energy in the material. This section relates to the issues described in the introduction

on reducing GGE at European and world scale. Finding the best compromise between using

energy locally [in the building] or at a larger scale [in terms of industrial or transportation

systems] is also a complex issue, to which Pareto methods could be successfully applied.

The data used for GGE emissions were supplied by Ospelt [2001], and were appropriate for

Switzerland. It was considered acceptable to apply these data in the context of this thesis. In

terms of the materials considered, those are mostly the same as for the previous experiments

with costs, with a significant difference, though. Material #4 was changed, from 2.54 cm

expanded polystyrene to 8.9 cm cellulose fill. This change was due to the fact that cellulose fill

is considered to be an environmental-friendly insulation material, so including it in this

experiment could possibly yield interesting results.

For the concrete blocks, only the GGE associated with cement were included. We assumed that

for the lightweight blocks, the ratio of cement-to-concrete would be 0.042kg cement/kg concrete,

and for the medium-weight block, that ration would increase to 0.0625 kg cement/kg concrete.

These assumptions may be conservative, but they allowed the use of the data available for

Switzerland. As for the perlite-filled blocks, our calculation from the DOE2 materials library was

that perlite's density was 32.03 kg / m3, and we calculated for each block type the volume of

perlite necessary to fill it. The modified materials properties table used for this experiment is

shown in Table 8.6.

Finally, the glass used was the same type as in the previous experiments [DOE2 code 2003].

Glass GGE emissions were taken as 1.3 kg C02 eq. / kg glass, and glass density was taken as

2500 kg / m3 (Incropera, 1996).

Experiments were done for the same test building, for Oporto, Phoenix and Chicago cases.
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Table 8.6 Construction materials and their properties used fo
emissions [Global Warming Potential in 100 years].

r the Pareto experiments, including GGE

8.8.1 Results

Oporto

It can be seen from figure 8.27 that the emissions associated with materials used in the Pareto-

front solutions are very low. Looking at Table 8.7, it is possible to understand why. The GS uses

mainly cellulose insulation as the construction material for the external walls, due to its very low

GGE rate. The two solutions with lower energy levels use other materials, as lightweight

concrete blocks and expanded polystyrene, but the corresponding decrease in energy use is so
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# DOE2 Name Thickness [cm] Density GGE
code [kg/m3] [Kg C02 eq.]

1 AL11 Air layer 1.9 or less - 0

2 AL21 Air layer 1.9 to 10.2 - 0

3 AL31 Air layer 10.2 or more - 0

4 IN13 Cellulose Fill 8.9 48.06 0.113

5 IN35 Expanded Polystyrene 5.08 28.83 2.31

6 IN36 Expanded Polystyrene 7.62 28.83 2.31

7 IN43 Expanded Polyurethane 2.54 24.03 13.75

8 1N45 Expanded Polyurethane 5.08 24.03 13.75

9 CB21 Concrete block, medium weight, 10.2 1217.41 Cement 0.0737
hollow

10 CB23 Concrete block, medium weight, 10.2 1249.44 Cement 0.0737
perlite filled Perlite 0.67

11 CB26 Concrete block, medium weight, 15.2 1041.2 Cement 0.0737
hollow

12 CB28 Concrete block, medium weight, 15.2 1073.24 Cement 0.0737
perlite filled Perlite 0.67

13 CB41 Concrete block, light weight, 10.2 1041.2 Cement 0.053
hollow

14 CB43 Concrete block, lightweight, perlite 10.2 1073.24 Cement 0.053
filled Perlite 0.67

15 CB46 Concrete block, light weight, 15.2 881.02 Cement 0.053
hollow

16 CB48 Concrete block, lightweight, perlite 15.2 913.05 Cement 0.053
____ __filled I Perlite 0.67



small it becomes negligible. The GS usually applies 2 layers of cellulose fill on the outside with

an inner air layer, which could pose some buildability problems in a actual building construction.

In fact, most wall configurations the GS proposed might have structural problems. The all-

insulation walls could probably be built as a kind of 'box,' with rigid panes to the inside and the

outside. However, even if they are not load bearing walls, they would need some kind of internal

supporting structure, whose cost should probably be added to the insulation cost for a more fair

comparison with the masonry walls, which are self-supporting.
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Figure 8.27 Pareto front for Oporto climate, relating energy consumption with materials GGE
emissions

As for window areas, and because glass has a quite high GGE level, the strategy adopted by

the GS is illustrated in figure 8.28. The GS privileges south windows [white bars in the image] to

achieve low energy consumption levels. Its initial strategy to reduce GGE is to cut on the other

window areas. Only when minimum areas are reached toward the other directions does the GS

make a reduction in south openings, shown as the first 'step' down in image 8.28. This strategy

is repeated until minimum areas are reached in all orientations simultaneously.
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South-W South-H South-A
7,4 2,4 17,7

East-W East-H East-A
4,7 1,8 8,4
4,7 1,8 8,4
5,1 1,8 9,2

North-W North-H North-A
4,7 1,2 5,6
5,6 1,2 6.7
5,6 0,6 3.4
5,1 0,6 3,1

West-W West-H West-A Total-A Mat 1 Mat 2 Mat 3
3,8 1,8 6,81 38,5 13 6 4

Table 8.6 Pareto solutions for Oporto, including GGE as an objective function

10
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 8.28 Reducing window area as a strategy to cut GGE levels, Oporto

The experiments for Phoenix [figure 8.19] and Chicago [figure 8.30] show similar results, with

Chicago again showing the lowest GGE emissions due to very reduced window areas, even

though it uses three layers of cellulose fill, in a total of about 27cm of cellulose for the lowest

energy solutions. In Phoenix, as in Oporto, the GS cuts east and west facing windows, but tries

to keep other directions larger, mainly south. In Phoenix, larger air layers [#3] are also applied

between the cellulose ones.
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MWh Kg C02 eq
22,5 2617
22,5 2072
22,8 1564
23,0 1550
23,1 1405
23,2 1373
23,3 1332
23,6 1233
23,8 1193
23,8 1157
23.8 1132
24,0 1085
24,0 1064
24.3 1018
24,3 997
24,6 977
24,6 974
24,6 921
24,8 893
24,8 879
24,9 872
25,7 757
25,7 738
25.8 689
26,2 648
26,9 594
26,9 570
27,0 547
27,4 520
27,9 436
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Figure 8.19 Pareto front for Phoenix climate, relating energy consumption with materials GGE

5WO 40

30000

0 0

0

1WO

1000

Es a O gen 1

a gen 2
0

64 66 68 70 72 74 76 78

Figure 8.20 Pareto front for Chicago climate, relating energy consumption with materials GGE
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8.9 Including wall solar absorptivity and glazing types

The last set of experiments relate to a simple test box, 10 x 7 x 3 m, that was used to

represent a hypothetical apartment in Beijing. The shorter sides of the apartment were

exposed to the exterior, and faced south and north. The other walls, floor and ceiling were

modeled as adiabatic surfaces, assuming the apartment was part of a larger building.

Because there was not an available weather file for Beijing in a format that could be used

by the Generative System, Chicago climate was used once again. As it was mentioned

before, the two climates are very similar, what can be demonstrated by observing figure

8.21.

Comparision of Beijing and Chicago average monthly temperatures

30,00
as

25,00

20,00

1500

10,00 - - -

5,00

0,00
1 2 3 4 5 6 7 8 9 10 11 2

-5.00

-- chicago (C)
beijing (C)

-10,00

Month

Figure 8.21 Comparison of Chicago and Beijing's monthly average temperatures

In this problem, other variables were introduced, such as wall solar absorptivity and

different glazing types. The construction materials for south and north facing walls were

also allowed to be different, to test if that would have an impact on the overall energy

performance of the building. The two objective functions used were annual energy

consumption and materials costs [including windows].
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The materials used for this study are those presented in Table 8.3. Wall absorptivity could

vary between 0.2 and 0.8, in 0.2 step sizes. The glazing options are described below:

Glazing types

1 - DOE2 code: 1000

2 - DOE2 code: 2001

Single clear, 3mm

Shading coefficient = 1

Lighting transmission = 0.898

U-Value = 6.31

Double clear IG, 3/12/3 mm

Shading coefficient = 0.89

Lighting transmission = 0.812

U-Value = 2.79

8.9.1 Results, South I North facing case

Figure 8.22 shows the first initial random generation, and the final Pareto front.

Beijing - Pareto front [First and last generations]
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Figure 8.22 Pareto front for south I north apartment [1st and last generations]
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Figure 8.23 shows the progression of generations, from generation 1 to generation 100, in
steps of 10 generations. By generation 30, most of the front had been located.

Beijing [Pareto front] - Progression of Generations
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Figure 8.23 Progression of generations, from generation 1 to generation 100

Table 8.7 shows the results for each of the variables under study, for the first random

generation and Table 8.8 shows the final, Pareto-front solutions. The average energy

consumption of the random population is 6.5 MWh, and the average cost is about $3500.

South-W South-H South-A
4,1 1,5 6,2
5,8 1,2 7,1
0,6 0,6 0,4
4,1 0,6 2,5
4,1 2,4 10,0
5,0 1,5 7,6
0,6 1,5 0,9
4,1 1,2 5,0
4,1 1,8 7.5
4,1 1,2 5,0
5,0 2,4 12,1
2,4 1,5 3,6
4,1 1,5 6,2
4,1 0,6 2,5
5,0 1,2 6,1
5,0 2,7 13,6
0,6 1,2 0,7
0,6 2,4 1,5
5,0 1,2 6,1
4,1 1,2 5,0

North-W North-H North-A
0,6 2.7 1,7
0,6 0,6 0,4
5,0 2,1 10,6
3,2 1.8 5,9
2,4 0,6 1,4
6.7 2,1 14,3
1,5 0,6 0,9
4,1 1,8 7,5
5,8 2,1 12,4
4,1 1,8 7,5
5,0 0,6 3,0
1,5 2,7 4,1
6,7 1,8 12,3
5,0 2,4 12,1
5,8 2,1 12,4
6,7 1,5 10,2
0,6 1,8 1,1
6,7 2,7 18.4
3,2 1,8 5,9
3,2 1,8 5,9

Total-A
7,9
7,5

11,0
8,4

11,4
21,9

1,8
12,5
19,9
12,5
15,1
7.6

18,5
14,6
18,5
23,8

1,9
19,9
11,9
10,9

Glass

2
1

2

21

2

2

1

21

2
1
2

1

S.Absor. N.Absor.
0,4 0,6
0,2 0,6
0,6 0,6
0,2 0,6
0.2 0,8
0,4 0,6
0,2 0,2
0,8 0,6
0,2 0,2
0,2 0,6
0,2 0,6
0,2 0,2
0,6 0,2
0,2 0,2
0,8 0,6
0,2 0,2
0,2 0,6
0,8 0,2
0,4 0,6
0,2 0,8

S-mati S-mat2 S-mat3
16 5 8
6 10 4

14 11 8
6 9 6

13 3 5
8 3 16
4 9 5

15 5 12
8 2 9

16 1 12
8 11 9

13 11 13
15 10 4
6 11 16

13 3 8
16 10 13
14 11 4
9 9 16
7 10 4

15 11 6

N-matl N-mat2 N-mat3
12 2 14
12 6 13
8 5 4

12 4 7
6 7 12
4 12 9

16 7 5
4 12 16

10 5 13
13 10 5
14 10 16
12 14 15
11 10 16
13 1 6
13 6 9
10 6 16
6 1 14
6 13 7

16 4 13
16 11 5

Table 8.7 Values assigned to variables for the 1st random population
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+ K

+ x

0

0XO

MWh Cost
6,9 2973
5,1 2244
8,2 3328
6,6 2489
5,7 2893
5,9 5140
5.7 1010
5,0 3668
5,7 4696
7,5 3323
4,2 4018
5,5 2847
9.4 4598
5,9 3684
9,1 4361
5,3 5685
5,9 1510

11,1 5053
4,9 3061
6,9 3351

... ...........
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In Table 8.7, it is possible to see all types of different materials, glazing types, window

dimensions and wall absorptivity values. On the contrary, the Pareto solutions shown in

Table 8.8 show a much greater convergence of variables values. Solutions are sorted in

ascending order, according to energy use.

South-W South-H South-A
3,2 2,4 7,9
5,8 1,2 7.1
2,4 2,4 5,7
2,4 2,4 5,7
3,2 1,2 3,9
3,2 1,2 3,9
3,2 1,2 3,9
2,4 1,2 2,9
2,4 1,2 2,9
2,4 1,2 2,9
2,4 1.2 2,9
2,4 1,2 2,9
1,5 1,2 1,8
1,5 1,2 1,8
1,5 1,2 1,8
1,5 1,2 1,8
1,5 1,2 1,8
1,5 1,2 1,8
0,6 1,2 0,7
0.6 1.2 0,7

North-W North-H North-A
0,6 1,2 0,7
0,6 0,6 0,4
0,6 1,2 0,7
0,6 1,2 0,7
0.6 1,2 0,7
0.6 0,6 0,4
0,6 0,6 0,4
0,6 1,2 0,7
0,6 0,6 0,4
0,6 0,9 0,6
0,6 0,6 0,4
0,6 0,6 0,4
0,6 0,6 0,4
1,5 0,6 0,9
0,6 1,2 0,7
0,6 0,6 0,4
0,6 0,6 0,4
0,6 0,9 0,6
0,6 0,6 0.4
0,6 0,6 0,4

Total-A
8,6
7,5
6,5
6.5
4,7
4,3
4,3
3,6
3,2
3,4
3,2
3,2
2,2
2,7
2,5
2,2
2,2
2,4
1,1
1,1

Glass
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

S.Absor. N.Absor.
0,8 0,6
0,6 0,6
0,8 0,6
0,6 0.6
0,8 0.6
0,8 0,8
0,6 0,6
0,6 0,6
0.6 0,8
0,6 0,6
0,6 0,6
0,6 0,4
0,6 0,8
0,8 0,2
0,8 0,2
0,8 0,6
0,6 0,6
0,8 0,6
0,8 0,2
0,6 0,4

S-matl S-mat2 S-mat3
4 5 8
6 7 8
4 7 8
6 3 6
6 1 8
7 3 6
4 3 6
6 3 6
7 3 6
4 3 6
6 3 4
7 3 7
5 3 8
4 3 6
4 1 6
4 3 8
5 3 7
4 3 4
5 3 7
7 3 4

N-matl N-mat2 N-mat3
6 6 6
7 5 8
5 5 6
5 7 8
6 6 4
6 8 8
7 8 8
5 16 8
7 8 8
7 8 8
7 8 8
6 8 8
7 8 8
6 7 8
6 8 4
6 6 4
6 8 8
6 6 8
6 8 4
4 8 81

Table 8.8 Values assigned to variables for the final Pareto solutions

All windows are double glazed. North window dimensions are in general very small. South

window dimensions are average sized for the best energy performance solutions [still quite

smaller than the maximum constrains allow], and quickly decrease for the worst

performance solutions. Decreasing south window size is the best strategy to reduce

construction costs, but has detrimental effects both in terms of daylighting and useful solar

gains. The south wall absorptivity in always at high values, either 0.8 or 0.6. North window

absorptivity has more random values, since solar gains are not too significant in that

direction so benefits from increasing its absorptivity are not too evident, but values tend in

any case toward the higher bounds.

Finally, in terms of wall materials, north walls are basically all filled with insulation, while in

the south walls insulation exists in the outer layers, but inner layers tend to become air

spaces in the more cost-savings solutions [with a subsequent decrease in energy

performance]. Remembering that air layers have code numbers from 1 to 3, and insulation

from 4 to 8 [with those values closer to 8 representing better insulation materials], it is

apparent that in order to save costs, worst insulation materials are used in the south wall,

together with the introduction of air layers, but the north wall remain highly insulated for

most cases, only decreasing towards the worst performance solutions.
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MWh Cost
3.7 2223
3,7 2115
3,8 1788
3,8 1768
4,0 1425
4,0 1255
4,1 1190
4,2 1183
4,3 1037
4,3 1008
4,3 970
4,4 966
4,6 849
4,6 859
4,7 826
4,7 776
4,7 749
4,9 646
5,2 529
5.4 454



The average energy consumption level of the population decreased by 33% in relation to

the initial random population, while the costs were reduced by 68%, a very significant

value. Masonry use was completely excluded, since insulation materials are less

expensive and thermal mass is not an issue in this cold climate. In any case, the floor

slabs can serve as thermal mass to store the heat entering through the south facing

windows.

8.9.2 Results, East I West facing case

Another set of experiments was done rotating the building by 90*, so that it would face E/W

instead. Figure 8.24 shows the Pareto front results.

Beijing EastlWest case- Pareto front [1st and last generations}
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Figure 8.24 Pareto front results, East / West case

From figure 8.24, one can see that the energy consumption levels are always higher for

this orientation than for SAN, as expected, since E/W is a more unfavorable orientation.
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However, costs remain lower than for S/N. To try to understand why, one must look at

Table 8.9, with the values for the Pareto front points.

West-W West-H West-A
3,2 0,6 2,0
3,2 0,6 2,0
3,2 0,9 2,9
1,5 0,6 0,9
2,4 0,6 1,4
2,4 0,9 2,1
2,4 0,6 1,4
1,5 0,6 0,9
2,4 0,6 1,4
1,5 0,6 0,9
2,4 0,6 1,4
3,2 0,6 2,0
0,6 0,6 0,4
0,6 0,9 0,6
2,4 0,6 1,4
2,4 0,6 1,4
0,6 0,9 0,6
0,6 0,9 0,6
0,6 0,6 0,4
0,6 0,6 0,4

East-W East-H East-A
1,5 1,2 1,8
1,5 0,9 1,4
1,5 0,9 1,4
1,5 1,2 1,8
1,5 0,6 0,9
1,5 0,6 0,9
0,6 0,6 0,4
1,5 1,2 1,8
1,5 0,6 0,9
1,5 0,6 0,9
0,6 0.6 0,4
1,5 0,6 0,9
1,5 0,6 0,9
1,5 0,6 0.9
1,5 0,6 0,9
0,6 0,6 0,4
1,5 0,6 0,9
0,6 0.6 0,4
0,6 0,6 0,4
0,6 0,6 0,4

Total -A
3,8
3,3
4,3
2,7
2,3
3,1
1,8
2,7
2,3
1,8
1,8
2,9
1,3
1,5
2,3
1,8
1,5
0,9
0,7
0,7

W-absorp E-aborp
0,2 0,6
0,6 0,6
0,4 0,6
0,2 0,6
0,6 0,6
0,4 0,6
0,6 0,6
0,2 0,6
0,2 0,6
0,6 0,6
0,6 0,6
0,2 0,8
0,8 0,6
0,2 0,6
0,2 0,8
0,8 0,6
0,8 0,6
0,4 0,6
0,6 0,6
0,8 0,6

W-matl W-mat2 W-mat3
5 8 6
4 7 7
4 7 7
4 5 6
8 1 7
5 3 4
6 3 6
4 7 7
4 5 6
4 7 7
4 3 6
4 15 6
4 7 7
4 7 7
4 13 4
4 1 4
4 3 7
4 3 5
6 3 4
4 3 4

E-matl E-mat2 E-mat3
8 8 8
8 8 8

12 7 8
8 7 16
8 8 16
4 8 8
8 4 8
8 11 8
8 3 16
8 4 8
8 7 16

16 3 16
8 7 8
8 3 8
8 7 16
8 8 16
8 7 12
8 11 8
8 15 16
8 7 16

Table 8.9 Pareto front results, East / West case

In general, the reason for the lower costs is that window sizes are very reduced, even in

the best energy performance cases. On average, west windows are still a bit larger than

east ones, what could be a possible explanation of the appearance of concrete block in the

innermost layer of some of the east walls. The low afternoon sun entering through the west

windows may hit the east walls, and so having some mass there would help energy

storage. The other possible explanation for the use of masonry in this E/W is that the GS

can assign a little higher 'budget' to the construction on the walls because window cost is

so small.

Finally, all windows are double glazed, and east-wall absorption values tend to be higher

than west ones, suggesting that east orientation may suffer from very cold early morning

temperatures, and thus the improved wall construction, including thermal mass, might help

to counteract that.

8.10 Conclusions of the chapter

Results from the Pareto based studies proved in general to be rather interesting, as

understanding the trade-offs between conflicting objectives added another dimension

towards our ability to interpret results.
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MWh Cost ($)
4,5 1377
4,7 1050
4,8 1252
4,9 999
4,9 878
5,0 863
5,0 816
5,0 924
5,0 924
5,1 738
5,2 672
5.2 1455
5,3 629
5,3 667
5,3 1077
5,4 528
5,5 526
5,5 418
5,5 451
5.8 304
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The final algorithm implementation was quite successful in locating spread-out, well-

defined Pareto fronts, what provided enough confidence on the results obtained. The

Pareto front was usually quickly found by the GS [a similar behavior to that documented in

the literature about NSGAs], and most of the computational effort was spent in small

refinements to the front. This suggests computational time could be reduced if the

algorithm was run for less generations, without significant loss of quality of solutions.

The materials studies were valuable in suggesting that using highly insulated walls and

leaving thermal mass for floors and roofs slabs may be a cheaper and more efficient

means of construction. The experiments using GGE as an objective function proved

cellulose insulation to be an excellent alternative to conventional insulation, both in terms

of environmental impact and to achieve good thermal resistance. Obviously, wall

thicknesses become much higher when cellulose fill is used, but that can be used to

architectural benefit too, for example, by having recessed windows in deeper facades,

which would provide some 'free' shading.

Finally, the expansion of the method to include more than two objective functions could

lead to other interesting results, and should be another of the future work developments

that we would like to implement.
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CHAPTER 9 Shape Generation

9.1 Introduction

The work described in chapter 7 had suggested the possibility of including shape

manipulation in the realm of this dissertation, as a more encompassing approach towards

understanding architectural adaptation to the exterior physical environment. The

preliminary experiments with roof geometries described towards the end of that chapter

gave rise to posterior speculations on the limits of the applicability of geometric variation to

environmental performance studies. This chapter further develops that topic, not only by

formalizing and implementing some experiments, but also by speculating about many

other possibly interesting applications that may be pursued in the future.

We also combined in one of the experiments the concept of Pareto fronts with that of

shape generation. The aim was to generate 'frontiers' of alternative shapes that would

represent trade-offs between different evaluation criteria, and see how those conflicting

objectives affected the three-dimensional molding of the building shape. Detailed analysis

of physical phenomena happening in each space, like daylight-level fluctuations across the

year, can also be made possible by the Generative System, as will be seen later in the

chapter.

9.2 Initial experiments: Varying external wall tilts

A number of experiments using shape generation are described in this chapter. In the first

experiment, the overall shape of the building was fixed, and the GS was allowed to play

only with the tilt of the exterior wall surfaces. The initial, schematic building shape from

which the GS departed can be seen in figure 9.1.
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Figure 9.1 Initial building shape

The building has five identical floors, with the narrower sides facing South I North, and the

longer sides East I West. Each floor has four rooms, identical in their dimensions.

Windows are only allowed to exist in the longest wall in each space [only one window per

space], even though the south and north rooms have also exposed exterior walls in their

ends, so that results would be easier to interpret.

The parameters used in these experiments were: wall tilts, which could vary from 60* to

140* [a vertical wall having a 900 tilt, a smaller value representing a tilt inwards, and a

larger value a tilt outwards], and window dimensions. The location chosen for the

experiments was Oporto, representing a mild climate.

Results are shown in figure 9.2. The generated building shapes are formally complex and

interesting, especially considering the very simple initial shape from where they originated.

In general, the walls tended to tilt away from the sun, especially for the east and west

facades. For these orientations, window size tended to increase with the tilt of the wall, as

the less exposed windows would allow less heat gain into the building but admit natural

light. The north and south walls tend to be less tilted. North windows are quite large, as

already happened in the example of the building by Siza. Towards the south, windows in

walls that remained vertical are smaller than those carved in the tilted walls. Towards the

top floors, where more tilted surfaces emerge, larger openings appear in the facades,

since they are less exposed to the sun.
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Figure 9.2 Results for Oporto. From left to right, three views of the same building: northwest,
northeast and southeast.

These results suggested that from a simple initial layout, and through the application of

very simple rules, or parametric deformations, it was possible to generate shapes with a

high degree of complexity, that would be hard to predict from the outset and that were

trying to use the simple mechanisms at their disposal to enhance the building's adaptation

to the environment.

This seemed quite close to the original concerns that had led to the development of this

project, and thus a path worth further exploration, both in terms of actual implementation

and performance of experiments, and in terms of speculation about possible directions for

future work and further experimentation.

The next section will describe the work developed in the context of these parametric shape

manipulation experiments.

9.3 Parametric shape manipulation

In this section we researched the question of finding initial layouts that could allow for the

emergence of a rich variety of formal solutions when manipulated by the Generative

System. Determining adjacencies was perceived as a major problem, so a very simple

experimental layout was chosen where all adjacencies between spaces were

predetermined. Later in the chapter we speculate about other examples and interesting

areas for pushing forward the limits of this research area.
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9.3.1 Description of experimental setup

The basic layout from where the new solutions could emerge was very simple: in plan, it

was a square divided in four similar squares. In the 1st floor, this corresponded to four

rooms [R1, R2, R3 and R4, as can be seen in figure 9.3], which could vary in their length

and width, but had a fixed, similar height. In the 2nd floor, there were four other rooms [R5,

R6, R7, and R8], but instead of only varying in length and width, they could vary in height

too. Moreover, the tilt of the roof could vary from a flat roof to a maximum of 454. The

azimuth of the tilt could either be 0* or 90*, as can be seen in figure 9.3. Whenever there

was a tilted roof, a roof monitor was also generated.

This very simple problem setup, which has only 44 independent variables, generates

however about 350 dependent variables that must all be correctly coded for the program to

run without mistakes. Some of the possible mistakes would make the program crash, but

others would still allow the program to run while providing adulterated results, which

makes them more problematic than the ones that simply prevent the program from running

and thus force the user to identify and correct them.

By looking at the specificities of

simulation program that calculates

why so many dependent variables

discussed later.

1st loor

transferring building geometrical information into a

heat transfer, it is possible to understand the reason

are generated from such a simple layout, as will be

TrN2nd floor

Figure 9.3 Basic layout for 1st and 2nd floor variations. The red arrows show the roof tilt
direction. For example, it Room 6 roof azimuth is 0*, the roof will be tilted with its
higher end towards the right, and a roof monitor would appear on the right side of
the room.
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As it was mentioned before, BDL has three coordinate systems, namely the building, room

and wall systems. To locate a new space in the overall building layout, it is necessary to

correctly determine its coordinates in the building coordinate system. The building

coordinate system origin (0,0,0) was determined to be the intersection point of the 2 axes

defining the 4 squares. From that reference point, it is possible to correctly locate each of

the spaces, even though their dimensions are variables generated by the genetic

algorithm. By using the insertion point of each room as its lower left corner, and

considering the room's azimuth [ North = 0, East = 90, South = 180, West = 270], it is

possible to encode the insertion point of each space as shown in figure 9.4 and in table

9.1.

d 4
(M-d 4, len 4)

len 4

v'(id 1 /

Figure 9.4

Room Az

27

18

Table 9.1

len 3
(Ien 3, vMd 3)

/ vid 3

len 2

( v 2, -len 2)
Mi 2

1st floor with room azimuths and coordinate systems. The arrows indicate the
direction of the room's azimuth.

imuth Insertion point

(- len 1, - wid 1)

0 (wid 2, - len 2)

0 (len 3, wid 3)

(- wid 4, len 4)

1st floor room azimuths and insertion point coordinates
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As for the Z coordinate, which controls the height at which each room is inserted, it was

assumed that for the 1st floor that value would be always 0. Later in the chapter, some

considerations will be made about this assumption.

A similar procedure was used to locate the 2nd floor spaces, with the difference that the Z

coordinate was not 0 as in the 1't floor, but it was set as the height of the 1st floor rooms

[2.8 m]. Since the height of the 2nd floor spaces was allowed to vary, the Z coordinate for

the roofs was variable too, and equal to the height of the space.

Because the roof azimuths could vary, the roof insertion point [ X and Y coordinates ]

would differ if the roof azimuth was set by the GA to 00 or 904. This was solved with a

number of simple if-then rules, of the type:

if

roof5-azimuth = 0*

then

roof5-Xcoordinate =

roof5-Ycoordinate =

else

roof5-Xcoordinate =

roof5-Ycoordinate =

Until now, a description for the correct handling of a variable building geometry has been

presented. However, this represents only one of the simplest parts of the problem setup.

When a building geometry is fed into a thermal simulation program like DOE2, other layers

of information apart from the purely geometrical ones become crucial. Topological

information is one example. Adjacencies between spaces are important pieces of

information for a program that calculates heat transfer across surfaces. In the specific

example used in this section, that problem was simplified by the overall layout chosen,

where space adjacencies are fixed. Room 1 is always adjacent to Room 2 towards the

east, to Room 4 towards the north, and has external walls facing south and west. The floor

is always adjacent to the ground, and the ceiling to Room 5. However, adjacencies to the

external environment are not entirely described using this layout, once the spaces start to

dynamically parameterized by the GA.
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Figure 9.5 illustrates the simplest example of altering just one room's dimension. While in

the first case, there is only an internal wall between Room 1 and Room 2, in the second

case a previously nonexistent exterior wall has appeared in Room 1. In the third case, a

new exterior wall also appears, but this time belonging to Room 2. Within BDL, the interior

wall must be declared for both Room 1 and Room 2, but the new exterior wall should be

declared specifically for the room it belongs to.

R4 R3 R4 R3 R4 R3

nW 1W 1W

R1 R2 R2 R1

R1 EW EW R2

Figure 9.5 - Example of external walls appearing due to parametric variation of room dimensions

While in geometrical terms the interior and exterior walls might be similar [it is the same

vertical plane], in construction terms those entities might already be different, since usually

exterior walls are built with different materials than interior ones. In terms of heat transfer,

they are even further different. An interior wall is just a boundary between two indoor

environments that in most buildings are usually not too different, and thus heat transfer

across the wall is small. In contrast, an exterior wall is a boundary between indoor and

outdoor environments that can be very different, and thus the wall would have significant

heat transfer across it. Furthermore, for the exterior wall the azimuth it faces is important,

due to its relation to sun position [a south-facing wall behaves differently from a north-

facing one]. Another important characteristic of exterior walls are that they may have

windows, which are determinant factors in the environmental performance of the building.

In the 2nd floor, the generation of new external walls becomes more complex, since the

rooms are also allowed to vary in height. For each adjacency situation, four different

possibilities have to be predicted, which are depicted in figure 9.6. In the first case, no new

external wall is created for Room 1. In the second case, a vertical external wall appears

[El]. In the third case, a horizontal one [E2] appears. In the forth case, an L shaped
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external wall emerges, which has to be decomposed in two pieces [El and E2], as shown

in the figure, due to BDL format specificities.

These four possibilities, that in geometric terms are rather simple, pose nevertheless a

data representation problem for the generative system. Because the GS does not have a

CAD interface, from which it might be able to read information on building geometry and

generate the respective BDL file, the system needs to work with a fixed-format BDL file.

This file must include from the beginning all the possible geometric occurrences within the

RI

E1

Figure 9.6 - Emergence of new external walls in Room1, according to Room2 dimensions
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problem setup. In this example, the most complex case would be the L shaped wall, with

occurrence of both El and E2 components. Given this, all rooms must predict the possible

existence of El and E2 entities. If a given entity does not occur when the genetic algorithm

generates a new individual, that entity parameters and coordinates must be driven to zero.

If that entity does exist in the current geometric formulation, its parameter values [like

width and height, for example, and other possible information about construction materials,

wall solar absorptivity, internal light reflection values, etc.] must be calculated from the

independent variables values, and its insertion point coordinates determined for correct

positioning in relation to the space, using the room coordinate system [not the building

coordinate system as before]. For simplicity, the code prevents the appearance of

windows in these external walls, whose existence is uncertain, as this would add another

layer of complexity to the problem. However, in a more complex problem formulation it

would also be possible to predict the appearance of openings in the new facades created.

Finally, it should be added that once an entity is declared in BDL, its dimensions [length,

width, height] are not allowed to be zero. When that entity does not exist, its value cannot

be driven to zero, but to a very small value close to it [like 0.001], which makes its

existence negligible. If a zero value is given, the program will crash during execution.

A similar procedure to that of 2nd floor external walls had to be used for roofs of 1st floor

spaces, and exterior floors slabs of 2nd floor rooms. In all of those, the most complex case

is the existence of an L shaped element, and thus all rooms must incorporate the

possibility of this occurrence. If any elements do not exist in a given solution, the program

must drive their values to a very small number close to 0. Forgetting to include any of

these potential surfaces can introduce significant errors into the search procedure, as they

represent important heat transfer areas in the building. Finally, the interior wall areas

between each adjacent space must also be calculated.

As for window size and positioning, a number of new issues emerged within this new

problem formulation of variable building shape. When building shape is fixed, it is possible

to easily determine the upper bounds for the window size constraints, as those are limited

by the size of the wall in which the window is located. However, if the wall size is not

known in advance, since it is a variable for the GA, it is not possible to determine that

upper bound in advance. This represents a major drawback in terms of the standard

genetic algorithm functioning. In common GA implantations, the constraints for each

234



variable are determined in advance, prior to running the program. To overcome the fact

that constraint bounds are not known in advance, the constraints would have to change

dynamically during the course of the program. This way, the value for a given constraint

would be dependent from the value of a variable generated by the GA. This would imply a

several-steps procedure. First, the upper and lower bounds for wall size are given. Then,

the GA generates a valid variable value within those constraints, for both wall width and

height. Those values are then used as the constraints for window sizes, again for both

width and height. This way, it would be possible to assure that a given window would

always fit in the corresponding wall.

Another possible complication emerges if the windows are not centered in the wall. If the

windows are centered, determining the coordinates for the window insertion point [which is

always its lowest left corner] can be done after knowing both the wall and window

dimensions, using simple rules. However, if the insertion point coordinates are themselves

variables [meaning that the window can be at any position in the wall], another problem

appears. A valid window dimension for a centered window may not be valid for an off-

centered one, since the window may not fit in the wall any longer. This would imply

another revision of the GA code, introducing another steps into the algorithm. In this case,

first the constraints for wall dimensions would be input by the user. The GA would

generate valid wall instances within those bounds. The wall dimension values would then

be used as constraints for the generation of insertion point coordinates (x, y) in the wall

coordinate system, to make sure those insertion points would be inside the wall. Then, the

window dimensions constraints would be calculated as the difference between the wall

dimension and the insertion point coordinates, to ensure that valid window sizes were

generated. Only then could the window dimensions be generated by the GA. This process

is illustrated in figure 9.7.

The dynamic constraints algorithm described above has not yet been implemented, and

constitutes one of the future developments mentioned in the 'conclusions and future work'

section. Given that, it was necessary to find a simplified solution to allow for the initial

running and testing of the variable-shape experiments described in this chapter. The

simplest solution was to make the window width equal to wall width [thus becoming a

dependent variable instead of an independent one], and that was the path followed here.

In terms of height, the 1st floor windows posed no problems, as wall height was fixed and
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thus constraints could be determined in advance. For the 2nd floor, the maximum window

height was set equal to the minimum wall height, to ensure windows would always fit into

the respective wall, no matter what their height may be.

Case 1: Wal dimensions fixed, window centered

X window -< X wall (or other smaller value, depending on architectural intentions)

ii
X wai2

Case 2: Wall dimensions are variables, window centered

X window valid for X wall may not be valid for X wall2

X window upper bound has to be dependent on X wal value

User defines constraintsforX wall - GA generatesX wall

X wal becomes upper bound for X window -> GA generates X window

Case 3: Wall dimensions are variables, window not centered

X window that could be valid for centered window is not valid for new X coordnate

X coori

X "'AlI

Complete procedure:

User defines constraintsforX wall -> GA generatesX wal-

X wai becomes upper bound forX coordinate -> GA generates X coordinate -

(X wall - X coord.) becomes upper bound for X window -> GA generates X window

Xcoord

X vell - X coord.

Figure 9.7 Rules for window generation and insertion, for a standard GA environment [case 1] and
a dynamic constraints environment [cases 2 and 3]. Y coordinates obey similar rules.
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These simplified rules have the drawback of allowing little variation in fagade design.

Windows always stretch from wall to wall, and can only vary in height. This led to a certain

standardization of the window solutions generated, which is nevertheless counteracted by

the great variety of shapes that are generated by the GS. To introduce more diversity into

the experiments, and also as an useful environmental analysis strategy, the window height

can be driven to a very small value close to 0, meaning that if the GA finds that reducing a

window area introduces benefits in terms of overall building performance, it is allowed to

make it disappear.

The location of daylighting reference points has to be calculated by the program for each

particular space geometry. The rule for placing the sensors were: one sensor in the center

of the space, and the other 2 meters away from the innermost walls, that is, the walls that

have no windows. This tries to ensure that natural light is used throughout the space, and

that it penetrates into the deeper areas of the rooms. The Z coordinate of the sensors is

0.75 m, approximately desktop height. Figure 9.8 shows sensors locations for a randomly

generated shape. Sensors for 1st floor spaces are in red, and for 2nd floor are in yellow.

Figure 9.8 Automatic daylight sensors placement in a randomly generated building configuration.
Sensors in red are for the 1st floor, in yellow for the 2 floor.
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Other parameters, like space area and volume, have to be calculated after the

independent variable values are generated. In calculating the volume, it should not be

forgotten that when a tilted roof exists, the corresponding volume under it must be added

to the basic parallelepiped volume.

A remark should be added about self-shading calculations. DOE-2 will not calculate

building self-shading unless appropriate surfaces are explicitly declared as shading

surfaces. Since from the outset it is unknown what surfaces will be shading others, all
exterior planes [wall, exterior floors, roofs] should be declared as shading surfaces so that

they are considered as such. This can be particularly important in cases where a 2nd floor

space projects over a 1st floor one, and acts as an overhang for it, influencing both solar

gains and daylighting levels, or for rooms with different heights, tilted roofs, and recessed

external walls in relation to adjacent ones.

9.3.2 Experiments

Some initial random configurations generated by the GS within the above described

framework are shown in figure 9.9.

Figure 9.9 Some initial random configurations generated by the GS using the previously described
layout
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A major concern in these experiments that related shape manipulation and space layout to

environmental performance and energy use was that the main strategy the Generative

System would use to reduce building energy consumption would be to reduce building

area. No matter how efficient and adapted to the outdoor environment it is, a much larger

building will always consume more energy than a very small building. So, the predicted

outcome from experiments using annual energy consumption as the objective function

would be a population of minimum possible dimensions buildings, with some variation in

fagade design that would generate some differences between them.

It was thus evident from the outset that building area would have to be included in the

fitness function somehow. This was implemented in two different ways. One implied the

use of penalty functions, and the other used Energy Use Intensity [EUI] as the objective

function, which translates energy use per unit area.

9.3.2.1 Penalty functions

The use of penalty functions was first experimented. The main idea was that each of the

building's floors should have a certain area, hypothetically related to functional and

programmatic requirements. The GS could assign different areas to each of the four

spaces in that floor, in the way that it found to be better in terms of environmental

performance, but the total area of the floor would have to equal a predetermined number

of square meters. The penalties were then calculated according to the amount by which

that area requirement had been violated by that solution. The absolute value of the

difference between the required area and the actual one was used, so penalties would be

applied both for too small and too large spaces. A similar method was applied to calculate

the penalty for violation of 2nd floor area requirements. These penalties would then be

added to the original fitness value of the solution [annual energy consumption], and would

degrade that individual's fitness according to the extent of its violation of the area

requirements.

This method intended to ensure that if the GS tried to reduce floor area to a minimum so

that the energy consumption would be low, a high penalty function would degrade that

solution's performance and make the GS move away from it. The penalty values could

vary by a large extent, since they are based on floor area calculations, and floor area is
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allowed to vary significantly in this problem set. Each room dimension can vary between

3m and 15m, what means that each room area can go from 9m2 to 225m2. This represents

already a large variation, but if we aggregate those areas into total floor area, each floor

plan can vary from 36 m2 to 900 M2 , a very significant range. For this reason, penalty

values for solutions that seriously violated area requirements could be quite high.

Penalties were based on a required area for each floor of approximately 470 M2 , which is

about half of the permissible range. So, the penalty for the 1st floor area violation was

calculated as:

penaltyl = (abs (470-floorarea1) / 470) * 70

The factor of 70 at the end was adopted after experiments using other factors, as it was

found that too small penalty factors would still make area reduction the best strategy for

energy savings.

The penalty function method was developed because there is no formal way in genetic

algorithms to constraint the outcome from a combination of variables. For example, it is

possible to place upper and lower bounds in a room's length and width, but not in a room's

area, since that is the result of a multiplication of two independent variables.

Figures 9.10 and 9.11 show results for experiments using penalty functions, for Oporto's

climate. A typical GA implementation was used here, with total population size equal to 30

individuals, from which only 9 are represented here. Figure 9.10 shows six good results,

and figure 9.11 shows three poor-performance ones. The GS was run for 200 generations.
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145 245 345

1225 2225 3225

445 545 645

4225 5225 6225

Figure 9.10 Best solutions for Oporto using penalties method. The numbers show solution
fitness in ascending order [1 being the best solution]. For each building there is a
SW view [45*] and a NE view [225]. The darker areas in the walls represent
windows. Drawings are not to scale.
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Solution # Fitness without Penalty for area Final fitness
penalty [MWh] violation value

1 96 1 97

2 82 26 108

3 98 11 109

4 92 19 111

5 105 9 114

6 85 30 115

Table 9.2 Initial fitness values in MWh of the best solutions [solution numbers correspond to
those in image 9.10], penalty size for area constraints violation, and final fitness
values of the solutions

From figure 9.10 and table 9.2, some conclusions can be drawn. Observing the values in

the table, it is possible to see that the best solutions in the population use different

strategies to achieve small fitness values. While some stay closer to the required areas,

increasing energy consumption but decreasing penalty values, others reduce their energy

consumption levels by cutting to some extent on floor area, but still achieving a good final

fitness value.

Solution 1 is the best. Even though it complies with area requirements, it manages to do

so without greatly increasing energy consumption values, what reveals a good degree of

adaptiveness to the environment. It chose to create elongated spaces facing south, with

generous opening sizes to south, but reducing them toward the west. In general, east /

west facades are smaller that south/north ones. Toward the northern side on the building,

it avoided the northeast orientation, which is always unfavorable due to reduced lighting

levels for most of the day, placing in that corner very small spaces that could be used as

service areas. To the northwest, it used larger volumes [even if smaller than those towards

the south], and used the 2nd floor volume to shade the 1st floor west-facing opening, to

control solar gains, such as it had done with the southwest room. In the overall, this seems

a balanced and reasonable solution, and demonstrates the GS is able to create

appropriate geometries for a given problem.

Solution 2 is not very dissimilar to 1 towards the south side, but towards the north it

substantially reduced the areas of the rooms. This generated a substantial energy
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reduction, but also a quite large area penalty, which lead to a solution more than 10%

worse that 1.

Solution 3 is again not too dissimilar to 1, but has higher energy consumption levels, even

though its area has been reduced [as shown by the penalty function value], probably

because of the exposed south-facing 1st floor roofs, since the 2nd floor is recessed into

some kind of terrace. It also has quite larger west-facing openings.

Solution 4 is interesting in that it plays with the tilts of the roofs to generate south and north

lighting sources, and uses projected volumes again to shade the 1st floor west facing

windows. However, it reduces too much the north side volumes, and is thus penalized in

terms of areas.

Solutions 5 and 6 start to be more hybrid. Solution 5 stays close to the area requirements,

but has high energy consumption levels, probably due to the large glazing areas towards

east and west, namely due to roof tilts facing those orientations. Solution 6 has a very high

area penalty, and probably too big east-facing windows.

Solution 1 seems to be a quite adapted solution to Oporto's mild climate. One can argue

that some of the other solutions may be more appealing in aesthetics terms. This brings

back the issue of the interactivity between the architect's intentions and the GS. After

being presented with this initial solutions, it is then up to the architect to decide what paths

of exploration he is willing to take to achieve solutions closer to his intentions. He can

decide to change some constraints, run a MicroGA to explore the neighborhood of good

solutions like 1, or manually perform same changes and simply do a DOE2 simulation of

the modified design to assess the impact of those changes.

Looking at some poor-performance solutions may also be a useful exercise, to assess

which design features may have a more negative impact on a solutions' performance. In

figure 9.11 and table 9.3 we present some of the worst solutions found in the final

population.
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Figure 9.11 Worst solutions present in the last generation for Oporto, using penalties method.
The numbers show the solution fitness in descending order [1 being the worst
solution]. For each building there is a SW view [450] and a NE view [2250]. The
darker areas in the walls represent windows. Drawings are not to scale.

Fitness without
penalty [MWh]

109

113

119

Penalty for area
violation

Table 9.3 Initial fitness values in MWh of the best solutions [solution numbers correspond to
those in image 9.11], penalty size for area constraints violation, and final fitness value
of the solutions

In general, these solutions not only have high penalty functions, but they also have high

energy consumption levels. This is due mainly to large west- and east-facing glazing areas

from roof monitors generated by steep roofs, and deep overhangs shading south and north

openings, thus blocking daylight and useful solar gains. It should be added that the

external floors were modeled with no insulation [they are just concrete slabs with some
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interior finish] so in general the appearance of large projected volumes is not encouraged.

This could be changed in subsequent experiments by improving floor insulation levels.

The use of penalty functions introduced another level of complexity in the interpretation of

results. The two factors [energy use and floor area violation] are somehow difficult to

isolate for result analysis. For this reason, it was decided to do another set of experiments

where floor area would also be included in the final evaluation, but using a different

method. We used Energy Use Intensity [EUI], that is, energy consumption for unit of floor

area. This way, it was easier to evaluate the relative environmental performance of

different solutions, independently of the overall floor area.

9.3.2.2 Energy Use Intensity [EUI] for Oporto experiments

Figure 9.12 shows results for the Oporto climate using EUI as the final objective function.

The best individual is solution 1, which is somehow different from that found using penalty

functions. Since in this case the GS is not asked to assign a given total area to the

building, it sizes and distributes spaces in a different way. Very slim and shallow, all glazed

elements are used towards the south, in a configuration that resembles some kind of

sunspace. Larger spaces, of more bulky proportions, are used towards the north of the

building. Those spaces have lower surface-to-volume ratio, and thus have less heat

transfer surfaces to lose energy through. However, they may be more difficult to bring

daylight into, since they are deeper. For that reason, the GS generates quite large

openings in these rooms, mainly facing north [including roof monitors too in that direction],

but also towards east and west, as those large spaces require large glazing areas for

appropriate daylighting. In general, the proportions of the building tend to orient the longest

facades to south and north, and the shorter ones to east and west, as expected. The best

performing shapes are in general quite compact, with reduced roof areas in the first floors

and few overhangs or projecting elements.

This overall layout is kept in solutions 2 and 3, with some variations, but starts to suffer

more significant changes as the fitness of the solutions decreases, with results becoming

more difficult to interpret for these intermediate solutions.
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Table 9.4 shows the fitness function values for each of the solutions shown in figure 9.10,

in terms of EUI [kWh per square foot]. Among the six best solutions, there is already more

than 10% variation in energy use intensity.

Solution # Final fitness
value [EUI]

1 9.02

2 9.57

3 9.69

4 9.79

5 9.88

6 10.04

Table 9.4 Fitness values in EUI of the best solutions [solution numbers correspond to those in
figure 9.12]. EUI is in kWh per square foot.

Finally, we look at the worst performing solutions to try to find patterns of elements leading

to poor behavior. Figure 9.13 shows three of the worst individuals, with the worst one on

the left [W1]. The main characteristics of these solutions are: high surface-to-volume

ratios, caused by a large number of slim, elongated shapes; a large number of exposed

external surfaces, like external walls, 1st floor roofs and exposed floors from projected 2nd

floor elements [with the aggravation that exposed floors have no insulation]; and large

glazing areas facing unfavorable orientations like east and west.

Knowing that these configurations lead to lower performance solutions can either make the

designer move away from them, or if the type of architectural language the architect is

looking for somehow matches these configurations, they should be counteracted by

properly insulated external surfaces, carefully chosen wall and roof solar absorptivity, more

sophisticated glazing systems [double clear glass is used in these examples], and

appropriate use of shading systems. Nonetheless, these solutions will usually imply higher

construction costs, so if low-cost construction is an issue, the architect may try to infer from

the GS results the type of building shapes and layouts that would lead to better

performance by adaptation to the environment.
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Figure 9.12 Best solutions for Oporto using EUI as fitness function. The numbers show solution
fitness in ascending order [1 being the best solution]. For each building there is a
SW and a NE view. The darker areas in the walls represent windows. Drawings are
not to scale.
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Figure 9.13 Worst solutions present in the last generation for Oporto, using Energy Use
Intensity [EUI]. The numbers show the solution fitness in descending order [1 being
the worst solution]. For each building there is a SW and a NE view. The darker
areas in the walls represent windows. Drawings are not to scale.

Fitness value
[EUI]

13.18

11.85

11.79

Table 9.5 Worst solutions for Oporto using Energy
correspond to those in image 9.13.

Use Intensity [EUI]. Solution numbers

Finally, to further illustrate the effect of exposed external surfaces on the overall

performance of the building, an image is included that shows some results obtained when

an error was by mistake introduced into the GS. In some of the preliminary experiments for
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this chapter on shape generation, it was forgotten to account for the appearance of

external exposed floors when rooms from the 2nd floor were larger than the 1 st floor ones

below then. The results from running the GS with that error are illustrated in figure 9.14.

What happened in this case was that the 2nd floor rooms all projected above the i st floor

ones, which remained very small. This was because the GS found it could generate extra

area without extra heat transfer surfaces attached to it, so it explored that opportunity. The

1st floor rooms, which had uninsulated ground floors that lost heat to the ground, remained

very small, and the 2nd floor rooms grew equally in all directions, creating the squares that

can be seen in the images on the left on figure 9.14, which correspond to the best solution.

Those squares project deeply in relation to the 1St floor rooms, but have no external floor

attached to them, because they would only be generated if they were declared in BDL. No

feature is automatically created by BDL from a certain geometry, and an important source

of errors is that the files can still run without some existing features being declared. The

example presented here serves thus as an illustration of the extent to which results can be

jeopardized by the introduction of such errors.

1 SW 2 SW 3 SW 4 SW

1 NE 2 NE 3_NE 4_NE

Figure 9.14 Solutions for Oporto using Energy Use lntensity [EUI], but forgetting to account for
the external floors that would appear when 2"n floor rooms projected over 1st floor
ones. The 'best' solution is on the left. For each building there is a SW and a NE
view. The darker areas in the walls represent windows. Drawings are not to scale.
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9.3.2.3 Energy Use Intensity [EUI] for Chicago experiments

EUI experiments were also done for Chicago, mainly due to its similarity to Beijing's

climate. Results are shown in figure 9.15 and in table 9.6.

Solution # Final fitness
value [EUI]

1 26.27

2 27.60

3 28.79

4 28.88

5 30.18

6 30.27

Table 9.6 Fitness values in EUI of the best solutions [solution numbers correspond to those in
figure 9.15]. EUI is in kWh per square foot.

The first observation from table 9.6 is that energy use intensity is much higher in Chicago

than in Oporto, as expected from the extreme winter conditions. The other observation is

that the performance among these six best solutions degrades faster than for the Oporto

case. While for Oporto there was a decrease of 10% among the 6 best solutions, here the

decrease is more than 15%, showing that the design conditions may have a larger impact

in the overall performance of the building.

The best solution for Chicago [1] is a very compact shape, with minimum exposed roofs

and floors. It has three bulky, deep spaces in each floor, plus a sunspace-type of room

towards the south, very slim and all glazed. Some manual experiments were performed,

assessing the consequences of reducing the glazing area of these 'sunspaces' [both

towards south and west], and the building's performance actually decreased. In the other

'deep' spaces, glazing areas are also quite high, for daylighting purposes, and because

window surface area is not too significant in relation to the whole volume of the space.

Again, as the building shape starts being more fragmented and more exposed areas

appear, including new exterior walls, the building performance degrades, suggesting that

for a cold climate like Chicago, compact shapes perform better. Small wall-to-volume

ratios work better. Sunspaces can be beneficial too. It is interesting to note that in the large

volumes, due to the depth of the rooms, small window sizes usually correspond to a

decrease in performance, due to a lack of daylighting.
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Figure 9.15 Best solutions for Chicago using EUI as fitness function. The numbers show
solution fitness in ascending order [1 being the best solution]. For each building
there is a SW and a NE view. The darker areas in the walls represent windows.
Drawings are not to scale.
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WiSW W2_SW W3_SW

WiNE W2_NE W3_NE

Figure 9.16 Worst solutions present in the last population for Chicago, using Energy Use
Intensity [EUI]. The numbers show the solutions in descending order [1 being the
worst solution]. For each building there is a SW and a NE view. The darker areas in
the walls represent windows. Drawings are not to scale.

In relation to the worst performing solutions [figure 9.16] it seems that the most prominent

characteristic is the presence of largely tilted roofs, which are associated with large glazing

areas by the rules controlling solutions generation. The worst solution [W1] has both east

and west facing roof monitors. The solutions that have south facing ones are also bad, but

not as much as the first one. The overall geometry of the buildings is also quite

fragmented, the spaces small, the roofs exposed, and there are several overhangs, which

represent large sources of heat losses.

Recalling once again what has been mentioned before, this GS is not regarded as an

'optimization' tool, but instead it may be used as a generative mechanism whose goals are

not only to reduce energy consumption in buildings, but also to suggest alternative building

configurations. However, at this stage of results analysis, it is pertinent to analyze results

from the perspective of energy efficiency, because that was the objective function used to

guide the search. Other more abstract or formalistic interpretations may potentially find
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some of the poor-performance results more appealing in some other aspects, but that is

not the path we pursued in this chapter.

9.4 Combining Pareto fronts with shape generation

Chicago solutions presented some challenges in terms of interpretation of the results from

the Generative System, since the requirements for heating and lighting are quite

conflicting. For that reason, the idea emerged of combining the concept of Pareto fronts

with that of shape generation. The problem the GS had to solve was to find the best trade-

offs between solutions that provided adequate daylighting and minimized the need for

heating. One must keep in mind that the objective of finding a good Pareto front is not only

to achieve solutions that perform well either in terms of heating or lighting, but to find the

solutions that, while having a good performance in terms of heating, also have the best

possible performance in terms of lighting given the priority given to heating, and vice-

versa. Middling solutions that perform reasonably well in terms of the two conflicting

criteria are usually located towards the center of the front.

A Pareto run was thus performed having as the two objective functions both minimizing

energy spent in lighting [corresponding to maximizing use of daylighting], and minimizing

energy for heating. The progression of the search is shown in figure 9.17. Because the

problem was quite complex, due to the large number of variables in the problem [44

independent variables] and the use of two objective functions, the GS was run for 400

generations. The population size was 30 individuals.
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Figure 9.17 Progression of Pareto front search, from generation 1 to 400. The shaded squares
indicate the points which have been visualized in the following images, both for good
[red squares] and bad [white squares] solutions.

It can be seen that from the initial random population [white squares in the image], the

points moved towards the regions of lower objective function values and by generation 100

[in blue] the points were starting to define an initial boundary. By generation 400 [in red],

that boundary was much more clearly defined, and been further pushed towards the lower

regions of the solution space. It might be the case that running the GS for more

generations would further increase the definition of this boundary, since some of the points

of the final generation are not yet at the Pareto front, but for the demonstration purposes of

this exercise that definition level is close enough. We chose to visualize only some of the

most significant points of the front, which are highlighted by the larger blue squares in

figure 9.17. The three blue squares towards the top left of the graph highlight the poor-

performance solutions also chosen to be visualized, for comparison purposes. Figure 9.18

illustrates the good-performance points, together with the building shapes that they

represent.
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Figure 9.18 Pareto front points visualized in the following images. Larger versions of the images
can be seen in figure 9.19

The building shapes can be better visualized at a larger scale in figure 9.19. The best

solution in terms of heating basically constitutes a single, compact, large space facing

northeast, with thin, sunspace-like, all glazed south and west elements surrounding it. This

happens both in the 1st and 2nd floors. The best solution in terms of lighting is formed by

small spaces, where daylight can easily penetrate. The south-facing large glazing areas

still exist in this solution, in long and thin rooms facing south. The intermediate solutions

show basically a morphosis transformation from one solution to the other. Solutions #4 and

#5 are also interesting ones, showing very long and thin south-facing elements, and then a

number of smaller, north-facing spaces.

Finally, figure 9.20 illustrates some of the poor examples also identified in figure 9.17.

Solution W1 performs quite poorly in terms of lighting mainly because many of the spaces

have small or nonexistent windows. One might think this could lead to a good performance

in terms of heating, but the fragmented distribution of spaces creates many external

surfaces that represent high wall-to-area ratios, and many exposed roofs and floors too.

Solution W3 is reasonably good in terms of lighting, but quite poor for heating, mainly due

to large roof tilts and glazing surfaces, and to the use of overhangs and small volumes.
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Pareto front points. Solution 1 represents the best building shape in terms of heating.
Solution 6 is the best building shape in terms of lighting. The other images represent
intermediate solutions [see figure 9.18 for comparison]
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Some poor performance solutions from the initial generation. See text for analysis.

The last step of this section involves some 'zooming' into solution 1 from figure 9.19. This

building configuration has the best heating performance found. However, it shows some

intriguing features, like very large north- and east-facing windows in some of the spaces,

what might not be expected in such a cold climate. Our hypothesis was that the

configuration of having a very compact space, with a small wall-to-surface area ratio, could

make the use of very large openings not too detrimental in terms of heating, while allowing

for adequate daylighting of the space. Using DOE2-generated lighting reports, the

percentage of artificial lighting savings due to daylighting use was plotted for both room 3

[the large, bulky space in the ground floor] and for room 7 [the similar space located above

room 3, in the 2nd floor]. Results are shown in figures 9.21 and 9.22.
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Figure 9.21 Plotting percentage of artificial lighting savings due to
solution 1
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Figure 9.22 Plotting percentage of artificial lighting savings due to daylighting use for Room 7 of
solution 1
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From figure 9.21 it is possible to conclude that by using large north facing windows, room

3 achieves a 70% artificial lighting reduction for most of the year, except for months like

January and February [70% reduction is the maximum allowed, since it is assumed that

there will always be some lights on, like task lighting at individual workplaces]. So, even

though the space is quite deep, the combination of east- and north-facing windows is very

successful in providing good daylighting to the space.

Room 7, on the contrary, uses mostly east-facing openings [both a window and a

clerestory type of opening, due to the slightly tilted roof], with a very reduced north-facing

window. This causes a substantial change in the profile for artificial lighting savings, as can

be observed in figure 9.22. In this room, savings are more reduced, happen mostly during

the morning hours, and only reach the 70% level in the peak summer months.

The analysis of these graphs helped thus to shed some light on the reasons behind the

use of such large north facing windows in a climate like Chicago, what could not be

obvious from the outset. Even though solution 1 is not the best one for lighting, for it to be

in the Pareto frontier it should be able to perform reasonably well in terms of lighting too.

However, in the same building, other spaces exist that have very poor daylighting use,

such as room 4 [in the northwest corner, 1 t floor], whose graph is plotted in figure 9.23
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Figure 9.23 Plotting percentage of artificial lighting savings due to daylighting use for Room 4 of
solution 1
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Room 4 has only a north-facing window, of relatively reduced dimensions, and has no

openings to the west. This causes that the daylighting use profile is quite poor, with

percentage of artificial lighting savings being quite low for most of the year, and only

reaching the 40-50% range in July and August. However, since this is a rather small

space, its impact on overall daylighting use on the building is not too significant.

Many other types of reports can be requested to the Generative System, which allow the

user to look at the physical phenomena happening in each particular space of the building

in extreme detail [at the limit, hourly reports can be generated, showing the variables

evolution for each hour of the year]. This includes not only lighting information, of which

only one type was shown here, but also information about cooling and heating loads in

each space, what elements [walls, roofs, underground floors, windows, etc.] are causing

more energy loss / gain during which time of the year, etc.

The intention here is to demonstrate that the architect does not have to rely on a single

measure, like annual building energy consumption, to assess the relative quality of a

solution in environmental terms. He can ask for solutions in terms of Pareto fronts,

considering multiple criteria simultaneously, and can also get very detailed information

about what is happening in each of the spaces generated by the GS. In many situations,

users may only be interested in high-level, general information. But in cases where

detailed information is required, it can be easily made available by the GS. Also, in

educational terms, for students to experiment with shape generation with the GS, this type

of detailed report can help them to more deeply understand all the complex interaction of

variables happening in a particular architectural design.

9.5 Further experiments

The schematic setup defined for the shape-generation experiments described in the

previous section is only one of an almost limitless number of possibilities. In this section,

some speculations are made about other potentially interesting experiments that could be

carried out.

Studying alternative courtyard house layouts could be an easy to implement experiment,

which could potentially lead to interesting results. The proportions of the courtyards could
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be made to vary, as would the proportions of the rooms surrounding it. Different widths,

lengths and heights for the several elements could make very different courtyard-type

configurations emerge, which could be quite different for distinct climates.

Other experiments could imply a fixed building perimeter, and having the GS change only

the disposition of internal walls. This could become some sort of floor plan assignment

problem, as exemplified in figure 9.24. Penalty functions could be used to achieve spaces

with dimensions close to those intended by the architect. The interior space layout would

have consequences for the fagade solutions, and the use of dynamic constraints would

probably be necessary in this case.

Figure 9.24 From a hypothetical initial schematic layout like the one on the left, new spatial
solutions could emerge.

Another possibility would be to use wall width and height as the independent variables,

instead of room dimensions. Using room dimensions assumes that the rooms have

rectangular or, at the most, quadrangular shapes. If wall dimensions were used, the room

plans could have any kind of trapezoidal shape [if only four walls are used], or even

become triangular if the width of a wall would become zero. Figure 9.25 illustrates this

concept. The varying wall widths would make the resulting wall azimuths to change in

relation to those usually present in a rectangular room, and its calculation would have to

be carried out, along with each walls insertion point, which would depend on the previous

wall end point. Some mechanism would have to be implemented to ensure the walls would

eventually define an enclosed space. The image on the left illustrates the case where a

west facing wall width is tending to zero, what could be a possible occurrence in a hot

climate, where west orientation is highly unfavorable. The resulting configuration would

then be close to a triangle. Finally, the dependencies of some variable values on previous

ones might make the use of dynamic constraints necessary in this type of problem too.
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Figure 9.25 Illustrating the possible evolution of a rectangular plan if wall widths are used as
variables. In the left image, one of the walls is tending to zero, turning the plan into
a triangle.

Another potential extension would be towards a procedure closer to a rule-based system.

Figure 9.26 illustrates one possible formalization of this method. The GS could be made to

generate a first shape [ shape 1 in the images], with any type of proportions. Then it could

randomly select a point in one of the fagades [in this case, the pink dot in the south fagade]

as the insertion point for shape 2. Shape 2 could also have any dimensions within the

user-defined constraints. Then the lower left corner of shape 2 could become the insertion

point for another randomly generated shape 3. And so on. Again, dynamic constraints

might be needed for this type of problem.

10

.2 3. 2

3 * 2

Figure 9.26 Possible implementation of a rule-based type of system.

Investigating the possible relations between the rule-based approach proposed here and

Shape Grammar methods [mentioned in the literature review in chapter 2] could potentially

be a very interesting path of research. The shape grammar paradigm has been very

thoroughly researched, both in theoretical terms (Stiny, 1980), and through practical

implementations. Recent work by Duarte (2000, 2001), implementing a shape grammar

that encodes Siza's Malagueira housing project rules, is an example of that. Combining

this well-established approach to shape generation with the evolutionary Generative

System proposed here could open new paths of exploration leading to innovative methods

and results.
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Urban scale applications would also be possible to pursue, by studying the impact of the

position of buildings in relation to each other. Since This GS does not include CFD

simulations, those studies would have to relate more to shading patterns and light

reflectance from one building's fagade to other buildings' interiors, but could still represent

an interesting study. In the near future, a combined CFD/energy simulation software may

make this type of study even more appealing. Nevertheless, a more ambitious proposal

regarding urban scale applications will be presented in the 'further work' section.

Another possible extension would be to consider buildings that are standing in sloped

sites, instead of flat ones. Constraining all the Z coordinates of the ground floor insertion

points to zero, as we did in the first exercise, implies that the building would be standing on

a flat terrain. If the building was standing on a sloped surface, different ground floor rooms

would have different Z coordinates for their insertion points, which would have to be

determined by the terrain characteristics. In the case the terrain was sloped but the ground

floor Z coordinates were all set as similar, the possibility that part of the building was below

ground level would have to be considered, what could be important both to determine

minimum window sill height constraints, and to allow that part of the wall could be an

underground wall. An underground wall could have different construction materials than an

above-ground exterior wall, and would also behave differently in terms of heat transfer with

the external environment.

As a final note, it is important to mention that in all these potential problem settings, other

variables can be included, like wall tilts, construction materials, glazing types, shading

elements, and even adaptive materials like electrochromics, which would push the

adaptation paradigm to the building operation level too. One must keep in mind that the

more variables are included into a problem, the larger the solution space becomes and the

more difficult it is for the GS to find good performance solutions. On the other hand, it may

introduce a new wealth of ideas and combination of elements that can be very interesting

to observe and act as potential triggers for future project developments. It is always

possible, at a later stage, to isolate smaller sections of the building to perform a more

detailed performance improvement for that particular area, while using the overall, large

combination of variables as a source of potentially new ideas during the initial stages of

the design process.
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These are just some speculations about possible new applications for the Generative

System presented here. It is considered that this system could be an excellent teaching

tool to use in architecture studios at schools of architecture, combining architectural design

problems with low-energy, sustainable approaches. Each student or group of students

could design their own problem framework and schematics [like some of those proposed

above], run the GS, try to interpret the results in terms of which variables are having the

most impact of the buildings performance, make modifications into the design, assess their

impact, etc. Apart from overall annual energy consumption, DOE2 can generate a large

variety of detailed reports that would allow the students to 'zoom' into specific parts of the

design, and try to understand the processes going on in that space, both in terms of

lighting, cooling and heating loads. This way they could gain more insight into the

interaction of those different aspects, and also how they change across the day and the

year. DOE2 also allows that the GS may be run for only part of the year, so it would be

possible to see what solutions would be more adapted if only the summer season was

considered, for example, or only the winter season. All these possibilities also represent

rich opportunities outside the teaching rooms, both in academic research projects and

actual architectural practice.
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Conclusions and further work

10.1 Review of the conclusions from each chapter

Many conclusions from the work developed for this dissertation were already included at the

end of each chapter. Those conclusions will be shortly reviewed here, and some higher level,

more general conclusions will be added in the next section.

In chapter 4 the Generative System was validated against an example for which the optimal

solution was known. Results proved highly satisfactory and provided enough confidence for the

process to be extended to other solution spaces for which the best solutions could not be known

in advance.

In these initial experiments, building geometry and space layout were fixed, and only alternative

fagade solutions were assessed. It was observed that for different climates and different building

orientations within that climate, solutions obtained varied substantially, but the introduction of

other variables like different glazing types or shading systems also had a large impact on the

final solutions. This proves that the dynamics involved in whole-building performance are

complex, hard to predict, and the use of a Generative System like the one proposed here can

provide useful insight into them.

Solutions also showed that different configurations may correspond to similar standards of

environmental performance. This may constitute valuable information to the architect, who is

provided with a number of alternative solutions over which he can further overlap other design

criteria not included in the search process. Also, by choosing the type of variables that are

manipulated by the GS, the architect is also to a large extent exerting control and manipulating

the final outcome.

In chapter 5, three heuristic techniques [Genetic Algorithms, Simulated Annealing and Tabu

Search] were described and compared, partially using results from the literature, and partially by

computational experiments performed for that effect. The computational experiments proved

Simulated Annealing to perform almost as well as GAs in terms of finding good performance
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solutions in reasonable computational time, but other factors influenced our choice for GAs,

mainly that SA searches for a single solution, while GAs use populations of individuals. From an

architectural design point of view, the latter has the advantage of providing alternative solutions

to the architect. That could also be achieved by doing more than one run of an SA-based

system, but if alternative solutions are an issue, GAs seemed more appropriate from the outset.

Also, GAs represented from the beginning a move towards the adaptation paradigm, as

mentioned in the introduction.

The possibility of using Tabu Search for architecture-related problems was kept as a possible

future extension, due to some interesting features associated with TS, like extensive use of

memory, use of path-relinking strategies to create new solutions from building blocks associated

with high-performance individuals [some kind of 'learning' process], and the possibility of

performing local search [intensification] in the neighborhood of good solutions to get alternative

options. Hybrid implementations, taking advantage of the best characteristics of different search

methods, may also be a path for further exploration.

In chapter 7, the possibility of incorporating architectural-design intentions into the GS, and

encoding 'language' constraints, was researched by applying the system to an existing building

by Alvaro Siza. The Generative System proved to be flexible enough to incorporate constraints

that allow the user to manipulate certain architectural design intentions. The close coincidence

between GS and Siza's solutions in some situations was of particular interest. On the other

hand, the departures from the existing design proposed by the algorithm suggests that this GS

may be a useful tool in exploring multiple paths during the design process, which can lead to

lower energy designs while not necessarily degrading the initial aesthetic intentions of the

architect. Also, the range of solutions the GS offered for different geographical locations showed

that the system is able to adapt the architectural design to the climate where it is located, even

within the same language constraints.

Another interesting dimension the GS showed in this more complex architectural test

environment was is its capability to account for interactions between different elements of the

building, and to make the design for each specific element dependent on its integrated role on

the architectural whole. These interactions happen not only due to explicit relations caused by

constraints, compositional axis, rules for repetition of elements, etc., but also from implicit
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relations created by design occurrences such as the same space having more than one light

source.

The possibility of extrapolating from the fagade-level results to other dimensions like building

geometry or spatial organization suggested new directions for further work where those aspects

might also be manipulated by the generative system. The first attempts of shape manipulation

using the GS, while confined to just varying roof tilts, proved that it was possible to use the

system to alter building geometry in order to make it more adapted to its environment. This was

the seed for much of the work later developed in chapter 9.

Chapter 8 introduced a major change in relation to the previous chapters, in that multiple

evaluation criteria were considered simultaneously for assessing the quality of solutions, instead

of the single objective function used until then. These multicriteria studies used Pareto front-

based methods, with a NSGA being chosen as a result of an extensive literature review. The

final algorithm implementation was quite successful in locating well-defined Pareto fronts, what

provided a good degree of confidence in the results obtained.

Results proved in general to be quite satisfactory. Understanding the trade-offs between

conflicting objectives enhanced our ability to interpret results. The materials studies [for wall

construction materials, using initial costs and building energy consumption as objective

functions] were quite valuable in suggesting that using highly insulated, lightweight walls and

leaving thermal mass for floors and roofs slabs may be a cheaper and more efficient means of

construction than building heavy walls, even for hot climates. The experiments also suggested

that walls facing different orientations be constructed with different materials, and that

considering wall solar absorptivity was also important, what may have an architectural impact

not only on the type of cladding materials adopted, but also on the use of different colors in

different facades.

Using greenhouse gas emissions [GGE] from building materials as an objective function added

yet another dimension to the GS, relating it at a deeper level with the concerns mentioned in the

introduction on reducing GGE emissions, which have been an issue of concern for the

European Union [including Portugal], and for most of the industrialized world, as shown by the

Kyoto protocol targets [despite that fact that there are currently many uncertainties surrounding

the future of such protocol]. Following the previous results that lightweight, highly insulating
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materials seemed to be a good option for wall construction, those extra experiments showed

that less conventional insulation materials, like cellulose fill, could be a good alternative to

conventional insulation [often based in polymeric materials, thus with higher levels of embodied

energy and GGE emissions], both in terms of environmental impact and by achieving good

degrees of wall insulation.

Experiments in chapter 8 were done using only two objective functions, but the method could be

expanded to include a larger number of criteria, knowing however that result interpretation and

decision making will become harder as the number of objective functions increases. One

interesting experiment would be to combine building energy consumption, materials first costs,

and GGE to create a three-dimensional Pareto front that could show best trade-offs between

these three criteria.

Finally, chapter 9 introduced the concept of shape generation, where the GS is no longer

dealing with a previously specified building geometry and manipulating mainly the building

envelope characteristics, but is instead manipulating the building shape itself. Experiments for

different climates showed that the GS was able to generate distinct architectural shapes

adapted to a particular climate. Results become somewhat harder to interpret when so many

variables are under play, and further 'zooming' into the performance of each solution may be

necessary to understand the GS output.

Another possibility that was explored to deal with this extra level of complexity was to combine

Pareto methods with shape generation. That way, it was possible to see what shapes were

better adapted to different and conflicting performance criteria [like lighting and heating, for

example], and from there be able to draw further conclusions. The problem size becomes quite

large at this level, so it was found that the GS had to run for a much larger number of

generations to generate results that provided enough confidence to the user, by clearly defining

an output Pareto front.

Several further extensions to the shape generation experiments were suggested at the end of

chapter 9. The main idea behind those extensions is that the architect can exert a high degree

of control over the solutions by properly formulating a problem layout that represents his design

intentions, by manipulating the constraints placed on each variable, and by using methods such

as penalty functions to try to ensure that solutions stay within some target goals for the design.
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However, within that universe of constraints, the GS will still be able to generate a remarkable

variety of solutions, a fact which the architect can take advantage of, both as an aid in

understanding the interplay of forces in shaping a certain form to respond to a certain

environment [climate], and also as a platform of creative suggestion of many different

possibilities and variations within a specific framework [augmented design], from which the

architect can chose those that are more aesthetically appealing to him.

10.2 Overall conclusions

In general, we consider that the initial statements from the introduction, which place this

Generative System within a triangle whose vertices are architectural design, environmental

performance, and computational methods, were given substantial support from the experiments

and conclusions of the different chapters.

We would like to expand our analysis in terms of the 'environmental performance' vertex, since

it relates to a complex issue in the realm of architecture, that of 'evaluation.' From the thesis

results, we could see that the GS could improve a building's environmental performance, mostly

by reducing its energy consumption levels [the work on GGE embedded in construction

materials was less developed during the course of this dissertation]. The relevance of these

results is twofold. First, reducing energy consumption adds to a building's sustainability, an

issue of current concern to the architecture discipline, and also at a more global level to society

in general, due to both economic and environmental reasons. Secondly, high consumption

levels work as indicators of problems in the architecture of the building. In cases where

mechanical systems are not installed to offset those deficiencies [and thus

no energy consumption will result from the design deficiencies], users will

eventually suffer from discomfort inside the building, bringing the human factor into the problem.

Thus, reducing energy consumption in buildings seems to have a relevance in itself.

However, from the literature review we could see that other, similar studies were being done

using other evaluation measures. Monk's work aims at improving the acoustical quality of

spaces. Shea's work looks at buildings' structural performance. Testa's and O'Reilly's work had

more subjective, aesthetics-related evaluation forms. A pattern is thus present in the research in

this area, where computational methods are incorporated into the architectural design process

to help designers to improve the final architectural artifact. It represents thus a new approach to
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the architectural design process, where many evaluation measures are valid. The question if

there should be an effort to integrate all these measures into a single system, that would look for

the 'optimal' performance in terms of all these [and possibly other] evaluation criteria, remains

an open one, but in our opinion, that might not be a desirable goal, as the concept of an

'optimal' solution may not be applicable to a complex domain like architecture, where so may

factors are always interplaying. It may be better to get some insight into each of these

evaluation criteria separately, and then leave to the architect the role of the final decision-maker.

In terms of environmental performance, results suggest this GS may be a useful tool to

architects during the design process, with potential for applications at many different levels. The

architect can apply the Generative System to a building geometry and layout he has mostly

predefined, and use it to study more particular problems such as building envelope design. He

can use the GS as a diagnosis tool for his proposed layout, by identifying potentially problematic

areas and suggesting ways to approach them.

On the other hand, the GS can act itself as a shape-generation tool, where the architect

provides the basic framework for the problem mostly in terms of abstract relationships, and the

GS generates a population of solutions that comply with the rules established by the architect

[the 'initial rules' stated in the introduction], while simultaneously displaying improved

performance in environmental terms, and providing a large number of possible choices for

future exploration. Once an overall shape has been found that in general terms complies with

the architect's intentions, some variables can become fixed, such as space dimensions, and the

GS can run on a more restricted solution space, looking only at fagade design or construction

materials, for example. This way, different degrees of freedom could be included in the search,

and local searches could be implemented to investigate progressively more specific problems.

This variability on problem dimension/domain could be a useful method to explore. Another

option is to include from the outset all the variables in the search, and although this could

provide very interesting and challenging solutions, results may become quite difficult to interpret.

Also, because the solution space would become extremely large, the GS would have to be run

for a very large number of generations, to ensure that high performance solutions are being

found. However, if one excludes the idea of 'optimization,' [trying to find the best possible

solution], and instead is looking at improvement, the GS could become a very powerful

conceptual tool in providing many different, unexpected options, which might not be 'optimal' but
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would nevertheless have a good environmental performance and be architecturally interesting

at the same time.

One might argue that even used in that way, this GS would always be a limited, restricted

design tool, because some of the most important issues in architecture are not quantifiable and

thus not prone to be approached using computational processes. We propose two levels of

argumentation to deal with that possible critique. One is that the higher-scale issues that relate

the architectural artifact with the social, economic and political issues that have a crucial role in

shaping architecture, are to be analyzed by the architect, not by the computer. The result from

this analysis, however, can be conveyed in a specific representation of the design problem that

the architect feeds to the Generative System. This would represent a different way of thinking

and producing architecture, in relation to what is the standard practice for most architects. It

would require the ability to distill a complex problem, where many higher scale variables exert

their forces, into an overall framework on which the Generative System could work. The

interactive loop between architect and GS that we have been advocating throughout this

dissertation could then begin at this higher, conceptual level. The GS would be acting as an

augmented design tool.

The 'representation of a design problem' we have referred to somewhat resembles the concept

of a diagram that Alexander emphasizes in his preface to 'Notes on the Synthesis of Form'

(1971). Alexander says: "The idea of a diagram, or pattern, is very simple. It is an abstract

pattern of physical relationships which resolves a small system of interacting and conflicting

forces, and is independent on all other forces, and of all other possible diagrams". It also draws,

to some extent, on Mitchell's ideas (1977) of dimensionless representations of shapes, more in

terms of their 'building blocks' and relations than in terms of their actual dimensions and final

configurations.

The other argument is more radical, and relates to the modes of representation in architecture

that were mentioned in the introduction. At the limit, any architectural artifact can be fully

represented using a symbolic language, be it numeric [computer graphics also work on numeric

representations] or written [like materials specifications, etc]. Since computers use symbolic

language systems, there is theoretically no reason why a piece of architecture cannot be fully

manipulated by a computer. At the very limit, we could entirely describe a piece of architecture
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through a long, unique chromosome, just like nature encodes 3D shape in DNA [what

represents a fascinating field of research for biologist studying morphogenesis].

Mitchell (1977) distinguishes between three levels of representation that can be used in

generative systems in architectural design: analogue, which imply operations that change the

state of the system (based on mechanics, like Gaudi's wire-frame suspended structures); iconic,

which represents design in a literal way; and finally, symbolic generative systems that represent

potential solutions by means of symbols such as words, numbers, and mathematical operations,

and where the concepts of design variables and data structures emerge. The necessity of

working with representations of reality emerged from the realization that a representation was

quicker, easier and cheaper to manipulate than reality itself. The combinatorial possibilities of

the symbolic systems used for those representations have long been explored in several fields

(literature, music, science, engineering, architecture). An excellent review on the topic is

provided by Mitchell (1977). Adding 'evaluation' to those combinatorial mechanisms lead to the

application of quantifiable, numerical methods to many of these areas, and in some way to the

emergence of the field of optimization, mainly drawing from operations research theories. The

development of heuristic procedures to explore the huge combinatorial spaces that quickly grow

with the number of variables involved was based on the need to search those spaces in a non-

exhaustive, guided way.

Our aim is to explore mechanisms of adaptation by moving away from the 'optimization'

paradigm, and instead focus on the idea that many different solutions can be equally well

adapted to a given environment, by using different strategies both in terms of active and

reactive adaptation. Also, because we believe architecture design in not about finding 'optimal'

solutions in terms of a set of criteria, but is also to a great extent an aesthetic endeavor, there is

the need to let the architect interfere with his preferences in the adaptation process [the frozen

accidents]. Drawing from Whitehead's ideas (1933), 'beauty is left as the only aim which is by its

very nature self-justifying'. He continues: 'a truth-relation is not necessarily beautiful. It may not

even be neutral. It may be evil.' So we saw from our experiments that sometimes the most

'optimized solutions' (maybe those that expressed a truth-relation to some design objectives)

were not necessarily the most interesting in aesthetics terms.

A question may then be asked, why use generative systems that are evolutive, randomized and

adaptive, instead of relying on the architect's intuition, knowledge and creativity. The answers
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may be manifold, but two possible arguments are: First, that the computer works as a way of

augmenting the architect's capabilities and creativity, such as the machine did before it,

entailing a first 'loss of innocence' (Alexander, 1964), from what many architects of the time

retracted. The introduction of computation in the design process corresponds to a second 'loss

of innocence,' according to Alexander too, this time an intellectual rather than mechanical one,

that many architects may not be willing to accept either. Second, that the idea that an

architectural design must be totally intentional, in the sense that all decisions have been made

by the architect in response to a program and a site, may be passive of reflection. Programs

change [a building is designed to be occupied in some way and it is later adapted for some

other use]; sites change, and a building's response to a site may become just a trace after time

has passed by. So one may question if the design shape does indeed need to be fully

responsive and intentional in relation to its time/place contingencies. Alvaro Siza, who has

always taken the 'site' as a main departing point for a design development, has recently put

forward the idea of 'a shape looking for a site.'

Despite the fact one cannot incorporate in the symbolic representation provided to the

generative system all the network of relations that the architectural artifact establishes with the

above-mentioned higher-level forces that surround it [social, economic, political], or other

subjective processes [metaphorical, imagetic, conceptual] that lead to a certain design, those

can to some large extent be embedded in the framework the architect establishes for the GS.

This is obviously a matter of great complexity and sensitivity to the discipline of architecture, that

relates to the limits of the application of computational generative systems to architectural

design, and would in itself represent an excellent topic for a dissertation, so we shall no further

pursue this argument.

10.3 Further work

Many further extensions have already been suggested in the course of this dissertation, related

to the contents of the different chapters. Among those, some of the most interesting could be

those suggested in the 'shape generation' chapter. In this section we propose other possible

directions for future work, extending it to new directions like parametric solid modeling, variable-

length chromosomes and complex adaptive systems.
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One of the most immediate needs in terms of further work is to develop interfaces for the

Generative System, so that it can become more easily usable by other people, be they

architects, researchers or students. Those interfaces should be developed at two levels. One is

a simple user interface, that allows the input of variable values, like constraints bounds,

maximum number of generations, strategies to apply, etc.

Another, much more important and also much harder to develop, is a graphical CAD interface.

The relevance of this development is that it would allow the architect to run the Generative

System from a 3D model of the building, and have the results from the GS drawn back

automatically, in a modified 3D model of the same building. This would be a procedure that any

architect that usually constructs 3D CAD models of his projects could easily use, to study

specific questions such as fagade design or choice of construction materials [and possibly to

make extrapolations to other aspects like space layout or even building geometry].

The CAD interface would promote the emergence of the previously advocated interactive loop

between architect and GS, because it would provide the results in a graphic format, very easy to

read and much more intuitive for the user than a large number of values in an output file. The

architect should also be able to draw the constraint areas in the model, graphically visualizing

the solution space that he is defining, instead of just inputting numbers as upper and lower

bounds for each variable.

The impact of the CAD interface would be much more evident if we consider the case where the

architect is using the Generative System for shape generation. In this case, the CAD system

does not only represent enhanced user interface, but it would actually add new possibilities and

capabilities to the GS. In chapter 9, on shape generation, it was mentioned that because of BDL

specificities, it is necessary to predict all possible occurrences of new entities when doing a

shape generation experiment, and then drive to zero the values of the variables that did not

occur in a given solution generated by the GS. This process is not only tedious, hard to

implement, and a potential source of serious errors in the program, but it somewhat limits from

the beginning the possible solutions created by the GS.

On the contrary, if a properly designed CAD interface existed, the GS could generate any type

of solutions, and the corresponding BDL file would be created by reading from that CAD model

all the entities that exist in it, in BDL format. There would be no longer the need to predict all
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possible occurrences, because the BDL file would not have a fixed format; instead its format

would dynamically change according to the CAD model generated by the GS.

Two main issues are crucial in developing such a system. One is to use the appropriate

computer graphics paradigm that would allow a BDL format to be created out of a 3D CAD

model4. Because DOE2 models heat transfer across surfaces, adjacency information must be

included in the BDL file. That is, DOE2 needs to know that a certain surface is adjacent to other

space in the building, or that other surface is adjacent to the outside environment. This seems

relatively simple information, but it is actually information that is not possible to be retrieved from

a 3D CAD model made using a common modeling package such as Autocad. This happens

because there is no such entity as a 'space' in Autocad. There are surfaces, or volumes, but

those are just geometric entities, that do not 'know' that they define a space, that to one side

there is another space, that to the other side there is the exterior environment, etc. To have both

geometric and topological information, one must resort to other computer graphics paradigms,

such as Parametric Solid Modeling [PSM] (Hoffman et al., 2001). In PSM, topological

information exists along with geometric information. Furthermore, entities are solids that are

parametric, what makes their manipulation extremely easy for the GS, giving rise to a wealth of

possible shape combinations that can be unexpected from the outset. Even if one departs from

a simplified PSM program, where the user can only chose from a limited palette of forms, the

possibilities are almost endless. The possible link to commercially available, powerful PSM

programs [such as CATIA@] could make this graphically-based Generative System an

extraordinarily powerful tool, with almost limitless possibilities.

The other implementation issue that we envision as a difficulty if such a PSM interface is

developed for the GS is that since all possible occurrences in the generated designs are not

predicted, and new, unexpected forms and entities can emerge, the length of the chromosomes

used to encode those designs has to be variable too. Until now, we have always worked with

fixed-length chromosomes, with a specific number of bits assigned to encode each variable. If

new variables are allowed to emerge, or existing ones are allowed to disappear, the length of

the chromosome must also be adaptive and dynamically change as the GS is running. Although

this does not seem too hard to implement, another issue emerges: how does one perform

crossover between two chromosomes that have different lengths. Moreover, how does one

perform this crossover without destroying meaningful building blocks? In fixed-length
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chromosomes, we know that an allele at a particular position always relates to a certain

variable. In variable length ones, that information is no longer available, because it changes all

the time.

To deal with this problem, we intend to use a method proposed by Holland (1992), where a

punctuation notation is added to the chromosomes. Using this additional notation, it is possible

to know that after some punctuation element, some particular bit of information starts, and

another one ends. Using a similar method, we could probably do crossover between variable-

length chromosomes without incurring the risk of crossing over alleles coding different variables,

like alleles coding a room's dimension crossing with those for a construction material, for

example. That would be completely unmeaningfull, destroy building blocks and jeopardize the

search process.

Finally, due to the almost endless wealth of possible shapes that could be generated by such a

system, the application of Rapid Prototyping technologies could become very helpful in such a

system for the designer to quickly construct small 3D models of the shapes generated by the

GS, to better visualize and evaluate them.

The other process we envision to cope with the high diversity of solutions that would emerge

from such a Generative System would be to make use of Design Galleries (Marks et al., 1997),

where the user himself would participate in guiding the search progression. Using design

galleries, the architect could be presented, at the end of each 10 generations or so, with all the

shapes generated by the GS in the computer screen, in some kind of tiled format, together with

their performance values, and would manually choose the ones that he preferred, by assigning

them some fitness value that could then be combined with the performance-based fitness value

[maybe using Pareto approaches] to continue to guide the search. This would include the user's

preference in the search, and could act as an extra mechanism to give the architect further

control over the final solutions. In any case, this mechanism would not exclude the careful

design of the problem layout and of the variables under study and their constraints, as a way to

encode the architect's design intentions into the Generative System. The use of Design

Galleries would represent a nice method to incorporate what we previously called 'frozen

accidents,' that is, the intervention of the architect and his personal preferences into the search,

possibly changing its course from more predictable paths. Using design galleries the architect

4 Some work is currently being developed at LNBL to create a link between CAD programs and DOE2.
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could also 'freeze' some part of a solution, while letting other elements free for further

exploration.

Another possible dimension to incorporate in this GS would be studies of modularity to pre-

fabricated, pre-assembled units. The GS could, for example, study modular fagade systems

where the objectives would be not only to achieve fenestration schemes that would allow an

appropriate indoor environment, but also to simultaneously minimize the number of different

modules [opaque and glazed] present in a given solution, to decrease costs and construction

complexity.

Finally, we would like to add a final remark about handling complex geometries. There is

currently a significant interest in the architecture discipline in the used of curved, free-form and

complex geometries. The application of sophisticated CAD modeling software and the links to

CAD/CAM technologies have made possible the construction of many free-forms that were

previously extremely hard to build (as the example of Utzon's Sydney Opera House tells us).

Until now, the main technical concerns regarding these new possible geometries have been

buildability issues. However, we would like to argue that architects should also be showing a

concomitant concern about what kind of internal environment is being created inside those

structures, both in terms of daylighting, solar control, heat losses, etc. It has been mentioned

before that a program like DOE2 has a difficulty in handling complex curved geometries.

However, the use of tessellation techniques applied to complex curved surfaces could transform

free-form curved surfaces into panels, which would be important to deal with the buildability

aspects of those geometries. Simultaneously, those tessellated geometries could then be

included in a DOE2 model, which could read them as a series of planar modules. The choice of

different materials for those modules could then include criteria like daylighting admission and

other environmental control aspects. Again, we would like to push forward the integration of

architecture, environmental control and structural engineering, while always grounded on sound

architecture theory.
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10.3.1 Extending the research to Complex Adaptive Systems

In earlier work, Holland [1975] describes adaptation as a process whereby a structure is

progressively modified to give better performance in its environment. Three majors components

are required for an adaptation process to occur:

1) the environment of the system undergoing adaptation

2) the adaptive plan, whereby the system's structure is modified to effect improvements

3) a measure of performance, i.e., the fitness of the structures in the environment

The generative system initially has incomplete information about which structures are most fit.

To reduce this uncertainty, the system must test the performance of different structures in the

environment, and start 'learning' which features make a structure successful [building blocks].

The 'adaptiveness' of the plan enters when different environments cause different sequences of

structures to be generated and tested, and different final outcomes are created with similar

levels of performance.

This view of adaptation reflects what was called 'reactive' adaptation in the introduction, where

the individuals are mainly reacting to the exterior environment. Another adaptation paradigm

was proposed by Popper (1992), which we called 'active' adaptation in the introduction.

Popper's 'active' view of adaptation nicely matches John Holland's latest work on complex

adaptive systems (Holland, 1995), which departs from his previous work on classifier systems,

and from the 'Echo' model [see section 1.1] (Holland, 1992). The remaining of this section will

look at possible means through which a model like 'Echo' could be adapted to the study of

spatial relations between buildings, and of the interstitial spaces and urban configurations

generated by those buildings.

The classifier system concept enhances an individual's connection to the external environment

by introducing a number of detectors in each individual, which check for the occurrence of

certain events or characteristics in the environment. If those exist, an input message is sent to

the individual. That message is compared to the individuals' message list, and if it matches any

message in its list, a certain action is taken. There can also be messages that act in groups, that

is, only if two or more messages are matched at the same time is a certain action taken. The
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outputs from that process are directed to the system's effectors, which cause some action to

take place either in the environment or over other individuals. The effectiveness of that action is

then reflected on the fitness of that individual.

Classifier systems have other components, such as the 'bucket brigade,' that are not going to

be reviewed here. The basic mechanisms previously described are enough to set the framework

for understanding the next model, the Echo system.

In the Echo system, a number of individuals exist in an environment where space layout, or

geometry, plays an important role. Each individual is tagged to perform certain actions once

another individual gets close enough to it. The tags allow for three kinds of actions: combat,

trading, and mating. Combat implies a kind of tournament between the two individuals, and can

be initiated unilaterally, that is, if the combat tag of one individual matches another one, that

individual can start the tournament by itself. Trading represents some kind of cooperation

between individuals, and can only be triggered bilaterally, that is, it can only happen if the two

individual's trading tags agree. Mating is also bilateral, and is very much like crossover in

genetic algorithms.

Echo behaves like a complex adaptive system in that it is a multiagent system that takes only a

few primitive activities to generate an amazing array of structures and behaviors [Holland,

1992]. Individuals can organize themselves in clusters of cooperation, create 'war' focus, isolate

themselves, etc. This is a basic characteristic of complex adaptive systems, that from simple

initial rules complex behaviors can emerge, which themselves generate new rules or patterns of

behavior that could not be predicted from the initial ones, due to all the non-linearities of the

model.

We propose that a model based in Echo could be applied to the generation of urban patterns, or

spatial relations between buildings, which could have a significant interest for experiments in the

discipline. Each individual would be an autonomous building, which would interact with the other

buildings around it by, for example, depriving them from valuable daylight, or by usefully

shading them from direct solar gains in hot climates, or perniciously shading them in cold

climates. Such a model would be possible to implement in DOE-2, simulating each building as a

three dimensional entity as it happened in the other experiments described in previous chapters.

A more sophisticated model, which would also account for air flow patterns between the several
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buildings, would have to include Computational Fluid Dynamics and would probably have to wait

for the development of more efficient CFD algorithms and more powerful computers than those

we have at our disposal today.

There are two important differences between the previous experiments and the model that is

proposed here. First, there would be a number of different buildings, not a single one as until

here; and second, what would be encoded in the chromosome of each building would be not its

shape, geometry, dimensions and construction materials, but instead what kind of actions that

building could perform in relation to its neighbors. The chromosomes would thus be composed

of tags only, one for each fagade of the building, which would specify what kind of action that

building would trigger towards its neighbor facing that fagade. The shape of the buildings, and

all its other characteristics, would be fixed [at least during the initial experiments], and could not

be varied by the generative system anymore, so that results from actions taken would be easier

to interpret. This model would thus exclude reactive adaptation, and would allow for active

adaptation only. That means the buildings could improve its environmental performance only by

acting over the buildings around them, and not by changing their own characteristics.

Each building would be able to detect the position of its neighbors in space, and could have tags

for several possible actions, like repel, attract, couple, make rotate or mate. 'Repel' would mean

the building would make the other building move further away from it in some direction, for

example to prevent the other building from shading it. 'Attract' would have the opposite effect,

making the other building move closer. Repel and attract could both be triggered unilaterally.

'Couple' would turn the other building adjacent to the original one, that is, they would be joined

from one facade. This would mean that both buildings would lose their windows on the adjoined

fagade, losing daylight but at the same time getting rid of a significant heat transfer area with the

outer environment, both in terms of heat gain and loss. This could start to generate some urban

configurations like rows of buildings, possible streets, etc. 'Couple' would have to be bilaterally

agreed. 'Make rotate' would mean the other building would have to rotate by a certain number of

degrees in relation to the original one. Finally, 'mate' would mean the two buildings would

perform crossover, just like in regular GAs, but what would be crossed over are action tags, not

geometrical or materials characteristics. These are just some initial examples for possible

actions the buildings generate between they and their neighbors. Other possible interactions

could be proposed, causing different types of behavior to appear. Developing and testing this

type of actions could be an important part of the research.
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Our prediction is that this simple set of actions could make very interesting spatial relations and

interstitial spaces between buildings start to emerge, with some buildings starting to form

clusters like streets or other urban configurations where several buildings are joined together,

others keeping a larger distance between each other if that would allow for more beneficial

interactions, some buildings being twisted and rotated in plan in relation to others, other

buildings isolating themselves from any neighbors, etc. These 'urban configurations' would also

very likely be different for different types of climates. Factors like minimum regulatory distances

between buildings that are not adjoined could also be included in the model.

In terms of implementation, because each building would have to correspond to a different

DOE2 model, the program would have to run in parallel in several computers, or in a parallel

processor computer. Even though the overall system would be quite computationally intensive,

using parallel computation could keep simulation times close to that experienced at the moment,

or even faster if more powerful computers are used. The same experiments could probably be

done using a series of DOE2 runs in a single computer, but with the corresponding time

penalties.

In more complex experiments, reactive and active adaptation could coexist in the model. The

building could not only act on its neighbors to create itself a more favorable microenvironment

[active adaptation], but it could undergo changes in its own configuration [reactive adaptation],

as it has happened until now in the experiments described in this dissertation. Only actual

implementation and testing of such a system could tell us which type of experiments would be

more useful in providing information about urban patterns that are more adapted to a given

external environment.

Nevertheless, drawing from experiences in other areas where complex adaptive systems are

simulated using computers, simplified, stripped-down models can often be more useful than

detailed and complex ones (Gell-Mann, 1995). It is probable that, at least during a first stage,

keeping the building layout simple, unchanged, and with the possibility of only a few actions

over adjacent buildings, can tell more about the dynamics of complex urban patterns than using

a model where the buildings themselves can also vary in their geometry, space layout, fagade

design and materials, etc.
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According to Gell-Mann (1995), if the model is crowded with too many variables, two main

problems can occur: First, the model would become too difficult to handle mathematically, and

second, once the model is run it would be difficult to understand the results. But it may be a

useful extension that, after the model is run with only a few variables and possible actions, and

the emergent patterns and behaviors start to be understood, more detail and further actions

[including 'reaction'] can be added to further explore emergent spatial relations.

However, it can be predicted from the outset that allowing for building geometry to change

during the course of the process could have a significant effect on the effectiveness of certain

tags. An 'attract' tag that might work well if the adjacent building was 3 floors high could turn to

be a very unsuccessful action if the same building suddenly became much taller, for example.

So, the effect of tags would be difficult to isolate from the effect of geometric changes, and it is

thus recommendable that at least some initial experiments would be done with fixed geometries

and no reactive adaptation. Of course it would be possible to include all types of variables used

until now, including building materials [which could affect factors like wall solar absorptivity and

light reflectance, apart from insulation values for the walls], window dimensions, etc. However,

the solution space could become extremely large, and results could become very difficult to

interpret.

Even considering only the stripped-down, simplified version, DOE2 seems to be a particularly

suitable simulation program for this application. To study the interaction between different

buildings in an urban pattern, both lighting and thermal impacts have to be considered [air flow

problems have been mentioned above]. While having reasonable computing times, DOE2 can

account for shading between buildings, daylight reflected from a building's fagade into another

building's interior, and a number of other interactions that can make the results meaningful. The

impact of those interactions can then be expressed in terms of the individual performance of

each building. Using a simulation program that could not do these kind of calculations would not

ensure that any emergent pattern at urban scale would indeed prove beneficial for the

performance of each individual building, which is what we would like to achieve.

Implementing such a system would certainly pose new computational challenges, but could give

rise to a very interesting research tool, to explore novel spatial relations between buildings that

would be more environmentally responsive and potentially previously unthought of. It could also

be a powerful teaching tool, by making students trying to understand the dynamics of the self-
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organizing urban relations that could emerge from such an approach. In more complex

problems, other evaluation measures could be included in the model by using Pareto-front

methods, to study the possible trade-offs between environmental factors and other criteria

pertinent to urban configuration studies.

Other interesting possible outcomes from experiments with such a system would be to shed

new light on the interactions between architectural shape and its spatial relations with other

buildings. What was described in here is a very general framework that would allow each

researcher or student to generate their own research questions and investigate them, by

specifying particular building shapes, materials, etc., and also the type of relations I actions the

buildings could perform.

Finally, this notion of adaptive behavior in architecture could be taken to the realm of a single

building, where the different individuals, competing or collaborating, could be the individual

spaces inside the building. Somewhat different rules and actions to those proposed for an urban

scale would have to be designed. For example, a space could collect information about the

lighting conditions and internal loads of an adjacent space. If the adjacent space was better than

itself, it could 'donate' some of its space to its neighbor, by moving an internal wall, for example.

If the adjacent space was to some extent similar to itself, it could try to 'copy' some of the

adjacent space characteristics. Individual spaces could also have information on the best

orientations for views out, and could try to actively search for forms that would maximize their

exposure to good views, while considering other factors simultaneously. Many other possibilities

exist, as these are only preliminary suggestions for domains of research and do not intend to be

detailed methodological proposals.

10.4 Final remark

All the future work hinted at in this chapter is a demonstration that, even though many

conclusions could be drawn from the work presented in this dissertation, a wealth of further

explorations and new paths of research remains unvisited. However, this may be one of the

best final conclusions for one to draw from a dissertation. Challenging and promising inquiries

wait for our time and commitment to bring them to light.
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Appendix 1 Illustrations in black and white
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Figure 3.1 Flow of information across the Generative System components

MicroGA - progression of search
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Figure 5.3 Search progression for one experiment using a MicroGA
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Figure 6.2 Fagade profile, showing location of symmetry and fagade balance axes. From left to right,
we can see modules 1,2,3 and 4
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Typical GA -progression of search
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Figure 6.5 All points tested by the GS during the search [3000]
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Figure 7.2 Southeast view of the four studio towers. Tower H is on the foreground

41111

Figure 7.3 Northwest view of towers H and G. Tower H is in the background. Tower G is in the
foreground, showing the large vertical fins that protect the west-facing studio windows
from direct sun.
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Average monthly temperatures for the 3 climates
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Figure 7.15 Average monthly temperatures for the three climates

Figure 7.26 Comparison of existing [left] and GS [right] daylighting levels in 4th

June 21.
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Figure 7.41 Each point in the graph represents a solution tested by the algorithm
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Figure 7.43 Progression of GA search for 100 generations
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Figure 8.6 Cost Function of VEGA with Functions Fl and F2
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Cost Function using Fourman's implementation
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Figure 8.17 Experiments with the initial NSGA implementation showed solutions were not converging
to a Pareto front, even though they were improving the overall population performance.
Further code refinements were necessary.
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Figure 8.23 Search progression for the Pareto front for Phoenix climate
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Figure 8.26 Pareto front for Chicago climate
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Figure 8.21 Comparison of Chicago and Beijing's monthly average temperatures
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Beijing shoebox - Progression of generations
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Figure 8.23 Progression of generations, from gen 1 to gen 100

Figure 9.8 Automatic daylight sensors placement in a randomly generated building configuration.
Sensors in gray are for the 1t floor, in white for the 2 floor.

299


