3,164 research outputs found

    Path finding on a spherical self-organizing map using distance transformations

    Get PDF
    Spatialization methods create visualizations that allow users to analyze high-dimensional data in an intuitive manner and facilitates the extraction of meaningful information. Just as geographic maps are simpli ed representations of geographic spaces, these visualizations are esssentially maps of abstract data spaces that are created through dimensionality reduction. While we are familiar with geographic maps for path planning/ nding applications, research into using maps of high-dimensional spaces for such purposes has been largely ignored. However, literature has shown that it is possible to use these maps to track temporal and state changes within a high-dimensional space. A popular dimensionality reduction method that produces a mapping for these purposes is the Self-Organizing Map. By using its topology preserving capabilities with a colour-based visualization method known as the U-Matrix, state transitions can be visualized as trajectories on the resulting mapping. Through these trajectories, one can gather information on the transition path between two points in the original high-dimensional state space. This raises the interesting question of whether or not the Self-Organizing Map can be used to discover the transition path between two points in an n-dimensional space. In this thesis, we use a spherically structured Self-Organizing Map called the Geodesic Self-Organizing Map for dimensionality reduction and the creation of a topological mapping that approximates the n-dimensional space. We rst present an intuitive method for a user to navigate the surface of the Geodesic SOM. A new application of the distance transformation algorithm is then proposed to compute the path between two points on the surface of the SOM, which corresponds to two points in the data space. Discussions will then follow on how this application could be improved using some form of surface shape analysis. The new approach presented in this thesis would then be evaluated by analyzing the results of using the Geodesic SOM for manifold embedding and by carrying out data analyses using carbon dioxide emissions data

    Path finding on a spherical self-organizing map using distance transformations

    Get PDF
    Spatialization methods create visualizations that allow users to analyze high-dimensional data in an intuitive manner and facilitates the extraction of meaningful information. Just as geographic maps are simpli ed representations of geographic spaces, these visualizations are esssentially maps of abstract data spaces that are created through dimensionality reduction. While we are familiar with geographic maps for path planning/ nding applications, research into using maps of high-dimensional spaces for such purposes has been largely ignored. However, literature has shown that it is possible to use these maps to track temporal and state changes within a high-dimensional space. A popular dimensionality reduction method that produces a mapping for these purposes is the Self-Organizing Map. By using its topology preserving capabilities with a colour-based visualization method known as the U-Matrix, state transitions can be visualized as trajectories on the resulting mapping. Through these trajectories, one can gather information on the transition path between two points in the original high-dimensional state space. This raises the interesting question of whether or not the Self-Organizing Map can be used to discover the transition path between two points in an n-dimensional space. In this thesis, we use a spherically structured Self-Organizing Map called the Geodesic Self-Organizing Map for dimensionality reduction and the creation of a topological mapping that approximates the n-dimensional space. We rst present an intuitive method for a user to navigate the surface of the Geodesic SOM. A new application of the distance transformation algorithm is then proposed to compute the path between two points on the surface of the SOM, which corresponds to two points in the data space. Discussions will then follow on how this application could be improved using some form of surface shape analysis. The new approach presented in this thesis would then be evaluated by analyzing the results of using the Geodesic SOM for manifold embedding and by carrying out data analyses using carbon dioxide emissions data

    Long-term impacts of tropical storms and earthquakes on human population growth in Haiti and the Dominican Republic

    Get PDF
    Since the 18th century, Haiti and the Dominican Republic have experienced similar natural forces, including earthquakes and tropical storms. These countries are two of the most prone of all Latin American and Caribbean countries to natural hazards events, while Haiti seems to be more vulnerable to natural forces. This article discusses to what extent geohazards have shaped both nation's demographic developments. The data show that neither atmospheric nor seismic forces that directly hit the territory of Haiti have significantly affected the country's population growth rates and spatial population densities. Conversely, since the 1950s more people were exposed to atmospheric hazards, in particular, in regions which historically experienced higher storm frequencies

    Contextual contact tracing based spatio enhanced compartment modelling & spatial risk assessment

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesThe current situation of COVID-19 appears as a paradigm shift that seems to have farreaching impacts on the way humans will now continue with their daily routine. The overall scenario highlights the paramount importance of infectious disease surveillance, which necessitates immediate monitoring for effective preparedness and efficient response. Policymakers are interested in data insights identifying high-risk areas as well as individuals to be quarantined, especially as the public gets back to their normal routine. This thesis research investigates both requirements in a hybrid approach by the implementation of disease outbreak modelling and exploring its induced dynamic spatial risk in the form of Risk Assessment, along with its real-time integration back into the disease model. The study implements human mobility based contact tracing in the form of an event-based stochastic SIR model as a baseline and further modifies the existing setup to be inclusive of the spatial risk. This modification of each individual-level contact’s intensity to be dependent on its spatial location has been termed as Contextual Contact Tracing. The results suggest that the Spatio-SIR model tends to perform more meaningful events concerned with the Susceptible population rather than events to the Infected or Quarantined. With an example of a real-world scenario of induced spatial high-risk, it is highlighted that the new Spatio-SIR model can empower the analyst with a capability to explore disease dynamics from an additional perspective. The study concludes that even if this domain is hindered due to lack of data availability, the investigation process related to it should keep on exploring methods to effectively understand the disease dynamics

    Decision Model for Predicting Social Vulnerability Using Artificial Intelligence

    Get PDF
    The APC was funded by their authors.Social vulnerability, from a socio-environmental point of view, focuses on the identification of disadvantaged or vulnerable groups and the conditions and dynamics of the environments in which they live. To understand this issue, it is important to identify the factors that explain the difficulty of facing situations with a social disadvantage. Due to its complexity and multidimensionality, it is not always easy to point out the social groups and urban areas affected. This research aimed to assess the connection between certain dimensions of social vulnerability and its urban and dwelling context as a fundamental framework in which it occurs using a decision model useful for the planning of social and urban actions. For this purpose, a holistic approximation was carried out on the census and demographic data commonly used in this type of study, proposing the construction of (i) a knowledge model based on Artificial Neural Networks (Self-Organizing Map), with which a demographic profile is identified and characterized whose indicators point to a presence of social vulnerability, and (ii) a predictive model of such a profile based on rules from dwelling variables constructed by conditional inference trees. These models, in combination with Geographic Information Systems, make a decision model feasible for the prediction of social vulnerability based on housing information.This research was funded by the University of Granada, grant number PP2016-PIP0

    Mining and correlating traffic events from human sensor observations with official transport data using self-organizing-maps

    Get PDF
    Cities are complex systems, where related Human activities are increasingly difficult to explore within. In order to understand urban processes and to gain deeper knowledge about cities, the potential of location-based social networks like Twitter could be used a promising example to explore latent relationships of underlying mobility patterns. In this paper, we therefore present an approach using a geographic self-organizing map (Geo-SOM) to uncover and compare previously unseen patterns from social media and authoritative data. The results, which we validated with Live Traffic Disruption (TIMS) feeds from Transport for London, show that the observed geospatial and temporal patterns between special events (r = 0.73), traffic incidents (r = 0.59) and hazard disruptions (r = 0.41) from TIMS, are strongly correlated with traffic-related, georeferenced tweets. Hence, we conclude that tweets can be used as a proxy indicator to detect collective mobility events and may help to provide stakeholders and decision makers with complementary information on complex mobility processes

    Visualizing Historical Book Trade Data: An Iterative Design Study with Close Collaboration with Domain Experts

    Full text link
    The circulation of historical books has always been an area of interest for historians. However, the data used to represent the journey of a book across different places and times can be difficult for domain experts to digest due to buried geographical and chronological features within text-based presentations. This situation provides an opportunity for collaboration between visualization researchers and historians. This paper describes a design study where a variant of the Nine-Stage Framework was employed to develop a Visual Analytics (VA) tool called DanteExploreVis. This tool was designed to aid domain experts in exploring, explaining, and presenting book trade data from multiple perspectives. We discuss the design choices made and how each panel in the interface meets the domain requirements. We also present the results of a qualitative evaluation conducted with domain experts. The main contributions of this paper include: 1) the development of a VA tool to support domain experts in exploring, explaining, and presenting book trade data; 2) a comprehensive documentation of the iterative design, development, and evaluation process following the variant Nine-Stage Framework; 3) a summary of the insights gained and lessons learned from this design study in the context of the humanities field; and 4) reflections on how our approach could be applied in a more generalizable way

    Doctor of Philosophy

    Get PDF
    dissertationRecent advancements in mobile devices - such as Global Positioning System (GPS), cellular phones, car navigation system, and radio-frequency identification (RFID) - have greatly influenced the nature and volume of data about individual-based movement in space and time. Due to the prevalence of mobile devices, vast amounts of mobile objects data are being produced and stored in databases, overwhelming the capacity of traditional spatial analytical methods. There is a growing need for discovering unexpected patterns, trends, and relationships that are hidden in the massive mobile objects data. Geographic visualization (GVis) and knowledge discovery in databases (KDD) are two major research fields that are associated with knowledge discovery and construction. Their major research challenges are the integration of GVis and KDD, enhancing the ability to handle large volume mobile objects data, and high interactivity between the computer and users of GVis and KDD tools. This dissertation proposes a visualization toolkit to enable highly interactive visual data exploration for mobile objects datasets. Vector algebraic representation and online analytical processing (OLAP) are utilized for managing and querying the mobile object data to accomplish high interactivity of the visualization tool. In addition, reconstructing trajectories at user-defined levels of temporal granularity with time aggregation methods allows exploration of the individual objects at different levels of movement generality. At a given level of generality, individual paths can be combined into synthetic summary paths based on three similarity measures, namely, locational similarity, directional similarity, and geometric similarity functions. A visualization toolkit based on the space-time cube concept exploits these functionalities to create a user-interactive environment for exploring mobile objects data. Furthermore, the characteristics of visualized trajectories are exported to be utilized for data mining, which leads to the integration of GVis and KDD. Case studies using three movement datasets (personal travel data survey in Lexington, Kentucky, wild chicken movement data in Thailand, and self-tracking data in Utah) demonstrate the potential of the system to extract meaningful patterns from the otherwise difficult to comprehend collections of space-time trajectories
    corecore