10,530 research outputs found

    Visualization of Time-Series Data in Parameter Space for Understanding Facial Dynamics

    Get PDF
    Over the past decade, computer scientists and psychologists have made great efforts to collect and analyze facial dynamics data that exhibit different expressions and emotions. Such data is commonly captured as videos and are transformed into feature-based time-series prior to any analysis. However, the analytical tasks, such as expression classification, have been hindered by the lack of understanding of the complex data space and the associated algorithm space. Conventional graph-based time-series visualization is also found inadequate to support such tasks. In this work, we adopt a visual analytics approach by visualizing the correlation between the algorithm space and our goal – classifying facial dynamics. We transform multiple feature-based time-series for each expression in measurement space to a multi-dimensional representation in parameter space. This enables us to utilize parallel coordinates visualization to gain an understanding of the algorithm space, providing a fast and cost-effective means to support the design of analytical algorithms

    What May Visualization Processes Optimize?

    Full text link
    In this paper, we present an abstract model of visualization and inference processes and describe an information-theoretic measure for optimizing such processes. In order to obtain such an abstraction, we first examined six classes of workflows in data analysis and visualization, and identified four levels of typical visualization components, namely disseminative, observational, analytical and model-developmental visualization. We noticed a common phenomenon at different levels of visualization, that is, the transformation of data spaces (referred to as alphabets) usually corresponds to the reduction of maximal entropy along a workflow. Based on this observation, we establish an information-theoretic measure of cost-benefit ratio that may be used as a cost function for optimizing a data visualization process. To demonstrate the validity of this measure, we examined a number of successful visualization processes in the literature, and showed that the information-theoretic measure can mathematically explain the advantages of such processes over possible alternatives.Comment: 10 page

    LOMo: Latent Ordinal Model for Facial Analysis in Videos

    Full text link
    We study the problem of facial analysis in videos. We propose a novel weakly supervised learning method that models the video event (expression, pain etc.) as a sequence of automatically mined, discriminative sub-events (eg. onset and offset phase for smile, brow lower and cheek raise for pain). The proposed model is inspired by the recent works on Multiple Instance Learning and latent SVM/HCRF- it extends such frameworks to model the ordinal or temporal aspect in the videos, approximately. We obtain consistent improvements over relevant competitive baselines on four challenging and publicly available video based facial analysis datasets for prediction of expression, clinical pain and intent in dyadic conversations. In combination with complimentary features, we report state-of-the-art results on these datasets.Comment: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR

    Learning Bodily and Temporal Attention in Protective Movement Behavior Detection

    Get PDF
    For people with chronic pain, the assessment of protective behavior during physical functioning is essential to understand their subjective pain-related experiences (e.g., fear and anxiety toward pain and injury) and how they deal with such experiences (avoidance or reliance on specific body joints), with the ultimate goal of guiding intervention. Advances in deep learning (DL) can enable the development of such intervention. Using the EmoPain MoCap dataset, we investigate how attention-based DL architectures can be used to improve the detection of protective behavior by capturing the most informative temporal and body configurational cues characterizing specific movements and the strategies used to perform them. We propose an end-to-end deep learning architecture named BodyAttentionNet (BANet). BANet is designed to learn temporal and bodily parts that are more informative to the detection of protective behavior. The approach addresses the variety of ways people execute a movement (including healthy people) independently of the type of movement analyzed. Through extensive comparison experiments with other state-of-the-art machine learning techniques used with motion capture data, we show statistically significant improvements achieved by using these attention mechanisms. In addition, the BANet architecture requires a much lower number of parameters than the state of the art for comparable if not higher performances.Comment: 7 pages, 3 figures, 2 tables, code available, accepted in ACII 201

    Automatic Analysis of Facial Expressions Based on Deep Covariance Trajectories

    Get PDF
    In this paper, we propose a new approach for facial expression recognition using deep covariance descriptors. The solution is based on the idea of encoding local and global Deep Convolutional Neural Network (DCNN) features extracted from still images, in compact local and global covariance descriptors. The space geometry of the covariance matrices is that of Symmetric Positive Definite (SPD) matrices. By conducting the classification of static facial expressions using Support Vector Machine (SVM) with a valid Gaussian kernel on the SPD manifold, we show that deep covariance descriptors are more effective than the standard classification with fully connected layers and softmax. Besides, we propose a completely new and original solution to model the temporal dynamic of facial expressions as deep trajectories on the SPD manifold. As an extension of the classification pipeline of covariance descriptors, we apply SVM with valid positive definite kernels derived from global alignment for deep covariance trajectories classification. By performing extensive experiments on the Oulu-CASIA, CK+, and SFEW datasets, we show that both the proposed static and dynamic approaches achieve state-of-the-art performance for facial expression recognition outperforming many recent approaches.Comment: A preliminary version of this work appeared in "Otberdout N, Kacem A, Daoudi M, Ballihi L, Berretti S. Deep Covariance Descriptors for Facial Expression Recognition, in British Machine Vision Conference 2018, BMVC 2018, Northumbria University, Newcastle, UK, September 3-6, 2018. ; 2018 :159." arXiv admin note: substantial text overlap with arXiv:1805.0386

    Linguistically-driven framework for computationally efficient and scalable sign recognition

    Full text link
    We introduce a new general framework for sign recognition from monocular video using limited quantities of annotated data. The novelty of the hybrid framework we describe here is that we exploit state-of-the art learning methods while also incorporating features based on what we know about the linguistic composition of lexical signs. In particular, we analyze hand shape, orientation, location, and motion trajectories, and then use CRFs to combine this linguistically significant information for purposes of sign recognition. Our robust modeling and recognition of these sub-components of sign production allow an efficient parameterization of the sign recognition problem as compared with purely data-driven methods. This parameterization enables a scalable and extendable time-series learning approach that advances the state of the art in sign recognition, as shown by the results reported here for recognition of isolated, citation-form, lexical signs from American Sign Language (ASL)

    Digital interaction: where are we going?

    Get PDF
    In the framework of the AVI 2018 Conference, the interuniversity center ECONA has organized a thematic workshop on "Digital Interaction: where are we going?". Six contributions from the ECONA members investigate different perspectives around this thematic

    CGAMES'2009

    Get PDF
    • …
    corecore